
Inheritance, Specification and
Documentation Support for an

Object-Oriented Language

By

Jie Liang, B. Sc., M. Eng.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M. Sc.
Department of Computing and Software

McMaster University

c© Copyright by Jie Liang, August 30, 2004

ii

MASTER OF SCIENCE (2004) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE:
Inheritance, Specification and Documentation Support for an Object-Oriented Language

AUTHOR: Jie Liang, B. Sc., M. Eng. (Northeastern University, PRC)
B. Sc. (McMaster University, Canada)

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: xii, 126

iii

Abstract

Lime is an object-oriented programming language with action-based concurrency.

Concurrency in Lime has been previously implemented. Our current work integrates

specification and documentation features into Lime and its compiler. The goal of this

integration is to improve software quality, in particular correctness, extensibility, and

maintainability in a uniform and coherent manner.

Lime provides a flexible inheritance mechanism that separates subclassing (code

sharing) from subtyping (substitutability). Any class can sever as a superclass (for

the purpose of reuse) or/and as a supertype (for the purpose of specification) and any

child class can either inherit the implementation, the interface specification, or both.

Behavioral specifications are expressed by preconditions, postconditions and in-

variants. These and other intermediate annotations can be written using quantifiers

and other standard mathematical notation, and can be checked at run-time.

The associated documentation tool generates a description of the behavioral inter-

face of each class that includes the preconditions and postconditions of the methods,

the class invariants, the subtype hierarchy, and subclass hierarchy.

iv

Acknowledgments

First, I would like to express my sincere thanks to my supervisor, Dr. Emil Sekerinski,

for his thoughtful guidance and constant encouragement throughout my study.

I am grateful to Dr. Riaha Khedri and Dr. Spencer Smith for their careful review

and comments. Thanks to all the other professors and graduate students for their

help in these two years.

Thanks to my families for their love, understanding and support.

Contents

Abstract iii

Acknowledgments iv

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Software Quality Factors . 2

1.2 Important Lime Language Features 3

1.3 Structure of the Thesis . 8

2 Related Work 9

2.1 Assertions . 9

2.2 Inheritance and Subtyping . 11

2.3 Assertions and Inheritance in Programming Languages 15

2.3.1 APP, an Annotation PreProcessor for C 15

2.3.2 Design by Contract in Eiffel 17

2.3.3 Java Specification with JML 19

v

vi CONTENTS

2.3.4 Subtyping and Subclassing in Sather, Theta and POOL-I . . . 22

2.4 Mathematical Symbol Representation 30

2.5 Automatic Documentation Generation Tools 32

3 Design Features of Lime 35

3.1 Assertion . 35

3.2 Mathematical Symbols . 37

3.3 Expression Extensions . 38

3.4 Separate Subclassing and Subtyping 41

3.5 Inheritance of Specification . 46

3.6 Documentation Generation . 48

4 Implementation 51

4.1 Background . 51

4.1.1 JavaCC . 52

4.1.2 Java Virtual Machine . 53

4.1.3 Format of Java Class Files . 54

4.1.4 Jasmin . 58

4.1.5 Byte Code Engineering Library 61

4.2 Strategy of Separating Subtyping and Subclassing 62

4.3 Handling Inheritance . 65

4.4 Supporting Assertion and Behavioral Subtyping 70

4.5 Extending Lime Expression . 72

4.6 Implementing LimeD . 76

5 Testing 79

CONTENTS vii

5.1 Fundamental Test . 79

5.2 Assertion and Extension Expression Test 82

5.3 A Small System . 84

5.4 Generated Documents . 87

6 Conclusions 93

6.1 Summary . 93

6.2 Conclusion . 94

6.3 Future Work . 94

A Java Source Code 95

B Fundamental and Assertion Test Results 103

B.1 Lime Source Code . 103

B.2 Fundamental Test Results . 105

B.3 Assertion Test Results . 107

C A Small System 113

C.1 Source Code . 113

C.2 Test Results . 117

viii CONTENTS

.

List of Figures

2.1 Liskov and Wing’s Subtype Relation Definition 14

3.1 Precedence of Operators . 41

3.2 Syntax of Lime Expressions . 42

3.3 Definition of extend . 43

3.4 Definition of implement . 44

3.5 Definition of inherit . 45

4.1 Inheritance Graph in Lime View . 62

4.2 Inheritance Graph of Java Classes . 63

4.3 Inheritance Graph of the Example System 66

4.4 Sequence Diagram for Classes Handling Method Inheritance 68

4.5 Demonstration of Implementaiton for old and result 74

5.1 Fundamental Test Examples . 80

5.2 A Small System . 85

5.3 Summary Page . 88

5.4 Class Arith Document Part One . 89

5.5 Class Arith Document Part Two . 90

ix

x LIST OF FIGURES

5.6 Class Arith Document Part Three . 91

List of Tables

2.1 UTF-8 Encoding . 31

3.1 Mathematical Symbols Used in Lime 38

4.1 Type Descriptors in Jasmin . 60

xi

xii LIST OF TABLES

Chapter 1

Introduction

Lime is an action-based object-oriented concurrent programming language, which was

developed by E. Sekerinski from McMaster University [54]. The development of Lime

is based on the observation that more and more applications will be implemented on

networks of processors in the future. It is difficult for programmers to do multipro-

gramming using current object-oriented languages. The claim is that action systems,

which model concurrency by nondeterministic choices among actions, can help us to

simplify both the specification and design of concurrent applications. Lime combines

action systems with object-oriented language features to make the development of

object-oriented concurrent programs easier and more efficient. Concurrency in Lime

has been implemented by a previous year’s master student Guanrong Lou [42]. The

main goal of our work on Lime is adding some language features to improve software

quality.

1

2 1. Introduction

1.1 Software Quality Factors

The purpose of software engineering is to find ways of building high quality products.

Software quality is best described as a combination of several factors. Quality fac-

tors can be divided into two different categories, external and internal factors. The

definitions in this section are from Meyer’s book [45].

External quality factors are such properties as speed or ease of use, whose pres-

ence or absence in a software product may be detected by its users.

Internal quality factors are other properties, such as being modular or readable,

which are perceptible only to computer professionals who have access to the actual

software text.

External factors are best achieved through the internal ones. The intention of our

work is to provide a set of language features which hold the potential for improvements

in the following quality factors:

• Correctness is the ability of software products to perform their exact tasks,

as defined by their specification.

• Reusability is the ability of software elements to serve for the construction of

many different applications.

Other quality factors such as robustness and efficiency can further be improved

in future work by providing exception handling mechanism [14, 21, 38, 49] and code

optimization.

An automatic documentation generator may help to meet the requirements of ex-

tendibility, reusability and maintainability by providing information on a class’s

1. Introduction 3

application programming interface (API), behavioral specification and the system’s

structure.

1.2 Important Lime Language Features

In this section, we discuss some of the language features that we have added to Lime

to increase its potential for improvement in software quality factors.

The first quality factor we consider to improve is correctness. Correctness is the

prime quality. If a system does not do what it is supposed to do, everything else about

it, whether it is fast, easy to use etc, means little. Correctness is a relative notion.

A software system or its component is neither correct nor incorrect; it is correct or

incorrect with respect to a certain specification.

To be correct, a software implementation must have a behavioral interface speci-

fication which consists of both the specified interface and the specified behavior.

The interface specification languages in the Larch family [33, 57], JML [10, 12, 34]

and Eiffel [45] specify the behavior of their modules by a Hoare-style specification,

i.e., preconditions and postconditions [23].

An invariant is a correctness condition imposed on a class, and this condition

must not be violated by any method of a class. A precondition is associated with a

particular method and imposes a correctness condition on the client of the method;

the client must ensure that the precondition is fulfilled. A postcondition is also

associated with a particular method, but it imposes a correctness condition on the

implementation of the method; a violation of a postcondition indicates an error in

the implementation of the method [50].

We added preconditions, postconditions and invariants to the Lime language to

4 1. Introduction

formulate behavior specifications; the main advantage of this approach is the homoge-

nous integration of assertions into the programming language, i.e., compiler error

messages are consistent. For the consideration of the tradeoff between correctness

and efficiency, we made the Lime compiler have the capability to selectively enable

and disable assertion checking.

We extended the syntax of expression with quantifiers and several logical operators

that are required for writing more complete specifications. We also imported a set of

mathematical symbols such as ⇒,⇐,⇔,∀,∃,Σ and Π into the language to represent

boolean operators and quantifiers.

The behavioral specifications in Lime are used to describe the behavior of a class or

method more precisely; they are also useful for dynamic run-time checks of specifica-

tion violations. The resulting behavioral specifications are the resource for generating

documentation.

The next quality factor that we improved is reusability. Reusability is a benefit

often credited to the inheritance of object-oriented programming (OOP). Inheritance

is a major feature of OOP; its basic idea is defining a new class as an extensions of

existing classes.

Subtyping and subclassing [9, 47] are related but conceptually different views of

inheritance: Subtyping is related to specification and interface inheritance; subclass-

ing is a mechanism for implementation inheritance. The subtyping relation is in a

behavioral hierarchy. The subclassing relation is in an implementation hierarchy.

The following examples show the difference between subclassing and subtyping.

class CartesianPoint

attr x, y : real;

method set (x, y : real)

1. Introduction 5

self.x, self.y := x, y

method scale(s : real)

x, y := x*s, y*s

end

class PolarPoint implement CartesianPoint

attr r, phi : real;

method set(x, y : real)

self.r, self.phi := sqrt(x2 ∗ y2), arctan(y/x)

method scale(s : real)

r := r * s

end

class Point

attr x, y : integer;

end

class Line extend Point

attr u, v : integer;

end

Class PolarPoint is defined as a subtype of class CartesianPoint using the clause

implement. Class PolarPoint only inherits the interface of class CartesianPoint. It

needs to provide implementation for the methods defined in class PolarPoint. Class

Line is a subclass of class Point. While the Line class can use the Point class (to

construct ifself), it is invalid to assign an instance of the class Line to a variable

whose type is Point.

6 1. Introduction

Currently, only a few languages, such as POOL-I [3], Theta [16], PolyTOIL [8] and

Sather [56], support separating subtyping and subclassing. In strongly-typed object-

oriented languages like Simula [7], Trellis [53], C++ [55], C# [36] and Java [22],

subtyping and subclassing are combined and equated. In most such languages, sub-

classing is restricted to satisfy the requirements of subtyping. It has been argued that

this eliminates several important opportunities for code reuse [31, 45].

We propose an inheritance mechanism for Lime, that separates subclassing from

subtyping, and makes inheritance in Lime more flexible. Any class in Lime can act

as a superclass or a supertype; it contains a specified interface, specified behavior,

and implementation. A child class has the choice of inheriting either the behavioral

interface specification, the implementation, or both.

Three different clauses are used for inheritance:

1. Subclassing uses the extend clause : B extend A

Class B is called a subclass of class A, it can reuse the code in class A.

2. Subtyping uses the implement clause : B implement A

Class B is called a subtype of class A, it inherits the interface and behavioral

specification from class A.

3. Subclassing and subtyping often go along in parallel. For handling this common

case, we use the inherit clause: B inhert A

Class B inherits the behavioral interface specification and implementation from

class A.

For type safety, we provide some means for dynamic run-time assertion checks

that enhance subtyping to preserve the behavioral specifications inherited from all

supertypes.

1. Introduction 7

Other quality factors, such as extendibility, reusability, and maintainability, can

benefit from automatic documentation generation. We developed a documentation

tool called LimeD to support automatic documentation generation in Lime.

In traditional programming languages, the documentation is separated from its

source code. The documentation may seem trivial, but many software projects are

poorly documented [51]. When it becomes necessary to maintain a software project,

the lack of documentation can be a major problem; and maintenance may cause the

separated documentation to get out of sync with its source code. As software projects

grow in size, software documentation becomes increasingly important. It is essential

to keep documentation consistent and up-to-date.

Lime’s support for automatic documentation generation was influenced by early

work on literate programming. The term “Literate Programming” was coined by

Knuth in his paper [27], in which also a particular documentation system called WEB

was introduced. In WEB system, a tool called tangle can extract and assemble the

program fragments according to the rules of the programming language. Another

tool called weave formats the documentation, generates indexes, and presents all of

it in a nice-looking paper format. The difference between the Lime documentation

tool LimeD and most literate programming tools is that the goal of LimeD is to

extract information from source code for documentation generation only. For this

reason we do not have to extend our tool to support method implementations, as

most literate programming tools do. For supporting inheritance, LimeD also needs

to extract information from the class files of superclasses and supertypes.

The idea for the document layout was derived from Javadoc [19, 20, 29, 35], a

tool from Sun Microsystems for generating API documentation in HTML format

from documentation comments in Java source code. According to Lime features, the

8 1. Introduction

document generated by LimeD contains information on the API and the behavior

as specified by preconditions, postconditions and class invariants; it provides infor-

mation on behavioral subtyping; it also displays the hierarchies of classes and types.

The mathematical symbols for representing quantifiers and operators in a behavioral

interface specification are properly displayed in a web browser.

My main contributions are making Lime a Behavioral Interface Specification Lan-

guage (BISL) and augmenting Lime by following language features:

• Lime supports subclassing and subtyping as distinct features, making the in-

heritance mechanism flexible.

• Lime supports run-time checking of behavioral specifications.

• Lime supports automatic documentation generation with the aid of LimeD.

• Lime provides high readability and expressiveness of source code by supporting

mathematical symbols.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 gives an introduction on the work related to the added language fea-

tures. Chapter 3 introduces the design of the added features. Chapter 4 gives the

details of the implementation. Chapter 5 gives some testing results and applications.

Chapter 6 draws the conclusions of our work.

Chapter 2

Related Work

For improving quality factors, we focus our work on specification and inheritance.

The Lime design strategy follows the principles of object-orientation. The important

feature of Lime is that it separates subtyping and subclassing. Lime also supports

assertions, behavioral subtyping and automatic documentation generation. Some

ideas are derived from Eiffel, JML and Literate Programming.

2.1 Assertions

Assertions are formal constrains on software system behavior that are commonly

written as annotations of a source text. The primary goal in writing assertions is to

specify what a system is supposed to do rather than how it does it. The use of asser-

tion to specify software dates back to Hoare’s 1969 paper on formal verification [23].

A correctness formula (also called Hoare triple) is an expression of the form

{P} A {Q}

9

10 2. Related Work

where A denotes an operation, P and Q are properties of A, and P is called the

precondition and Q is called the postcondition. It is a mathematical notation, not a

programming construct, and used to express the properties of software elements.

Design by Contract (DBC), proposed by Meyer for Eiffel [45], is a formal technique

for dynamically checking specification violation during runtime. The principal idea

behind DBC is that a class and its client have a “contract” with each other. The

client must guarantee certain conditions before calling a routine (method) defined by

the class, and in return the class guarantees certain properties that will hold after

the call. The contract describes under what conditions the software may be used and

which task it is supposed to perform. These conditions and tasks can be considered

benefits and obligations for a class and a client. An obligation for a class is a benefit

for a client and vice versa.

• The precondition binds the client: it defines the conditions under which a call

to the routine is legitimate. It is an obligation for the client and a benefit for

the supplier.

• The postcondition binds the class: it defines the conditions that must be ensured

by the routine on return. It is a benefit for the client and an obligation for the

supplier.

The benefits are, for the client, the guarantee that certain properties will hold after

the call; for the supplier, the guarantee that certain assumptions will be satisfied

whenever the routine is called. The obligations are, for the client, to satisfy the

requirements as stated by the precondition; for the supplier, to do the job as stated

by the postcondition.

2. Related Work 11

Preconditions and postconditions describe the properties of individual routines.

There is also a need for expressing global properties of the instances of a class. A

class invariant is such an assertion, specifying the allowed global states of a class and

expressing restrictions on and relationships between the values of the attributes.

Meyer also proposes an invariant rule that precisely defines when an assertion is

a correct invariant for a class.

An assertion I is a correct class invariant for a class C if and only if it meets the

following two conditions:

• Every creation routine of C, when applied to arguments satisfying its precon-

dition in a state where the attributes have their default values, yields a state

satisfying I.

• Every exported routine of the class, when applied to arguments and a state

satisfying both I and the routine’s precondition, yields a state satisfying I.

Assertions have three major applications: they help produce reliable software,

they provide systematic documentation, and they are a central tool for testing and

debugging software.

2.2 Inheritance and Subtyping

Inheritance is a language mechanism that allows new object definitions to be based

on existing ones. A new class inherits the properties of its parents, and may introduce

new properties that extend, modify or defeat its inherited properties.

Inheritance is one of the characteristic features of object-oriented programming.

It is often regarded as the feature that distinguishes object-oriented programming

12 2. Related Work

from other programming paradigms.

Although the reason for distinguishing between inheritance and subtyping has

been widely recognized and accepted, only a few programming languages, such

as POOL-I [3], Theta [16], PolyTOIL [8] and Sather [56] separate subtyping from

subclassing.

The following definitions have been proposed by LaLonde and Pugh [32].

• Subclassing is an implementation mechanism for sharing code and representa-

tion.

• Subtyping is a substitutability relationship; an instance of a subtype can stand

in for an instance of its supertype.

Cook [13] points out that in most strongly-typed object-oriented languages, in-

cluding C++, Eiffel, and Simula, types are equated with classes, and inheritance is

basically restricted to satisfy the requirements of subtyping. He also suggests that

subtyping should be clearly separated from subclassing.

America [2, 3] describes that in POOL-I subtyping is based on the externally

observable behavior of objects. It includes not only their signature (the names of

available methods and their parameter and result types) but also more detailed in-

formation about this behavior.

The essence of behavioral subtyping is summarized by Liskov and Wing’s subtype

requirement [39]:

Let φ(x) be a property provable about objects x of the type T . Then φ(y)

should be true for objects y of type S where S is a subtype of T .

2. Related Work 13

Liskov and Wing [40, 41] also present a way of defining the subtype relation that

ensures that subtype objects preserve behavioral properties of their supertypes. The

subtype relation is based on the specifications of the sub- and supertypes.

Two kinds of properties of an object’s behavior in a program must be preserved:

invariants, which are properties true of all states, and history properties, which are

properties true of all sequences of states.

A type defines a set of values for an object and a set of methods that provide the

only means to manipulate that object. Obj is a set of unique identifiers for all objects

that can contain values. A type is modeled as a triple < O, V,M >, where O ⊆ Obj

is a set of objects, V ⊆ V al is a set of values, and M is a set of methods.

A type specification includes the following information:

• The type’s name;

• A description of the type’s value space;

• A definition of the type’s invariant and history properties;

• For each of the type’s methods:

– Its name;

– Its signature;

– Its behavior in terms of preconditions and postconditions.

The behavioral subtype relation is rigorously described by Liskov and Wing whose

definition is shown in Figure 2.1. In this definition they use the substitution notation

E[x/R]

to stand for expression E with all occurrence of the variable x replaced by expression

R. Our Lime implementation follows the rules given in this definition.

14 2. Related Work

Subtyping relation : σ = < Oσ, S,M > is a subtype of τ = < Oτ , T,N > written σ � τ

if there exists an abstraction function, A : S → T, and a renaming map, R : M → N ,

such that:

1. Subtype methods preserve the supertype methods’ behavior. If mτ of τ is the

corresponding renamed method mσ of σ, the following rules must hold:

• Signature rule.

– Contravariance of arguments. mτ and mσ have the same number of arguments. If

the list of argument types of mτ is αi and that of mσ is βi, then ∀i . αi � βi.

– Covariance of result. Either both mτ and mσ have a result or neither has. If there

is a result, let mτ ’s result type be α and mσ’s be β. Then β � α.

– Exception rule. The exceptions signaled by mσ are contained in the set of exceptions

signaled by mτ .

• Methods rule. For all x : σ :

– Precondition rule. mτ .pre[A(xpre)/xpre] ⇒ mσ.pre.

– Postcondition rule. mσ.post ⇒ mτ .post[A(xpre)/xpre, A(xpost)/xpost].

2. Subtypes preserve supertype properties. For all computations c and all states ρ

and ψ in c such that ρ precedes ψ, for all x : σ :

• Invariant Rule. Subtype invariants ensure supertype invariants.

Iσ ⇒ Iτ [A(xρ)/xρ]

• Constraint Rule. Subtype constraints ensure supertype constraints.

Cσ ⇒ Cτ [A(xρ)/xρ, A(xψ)/xψ]

Figure 2.1: Liskov and Wing’s Subtype Relation Definition

2. Related Work 15

2.3 Assertions and Inheritance in Programming

Languages

2.3.1 APP, an Annotation PreProcessor for C

Rosenblum [52] describes an assertion processing system for C and UNIX called APP.

APP provides a rich collection of features for specifying not only the assertions them-

selves but also the responses to failed runtime assertion checks.

APP recognizes assertions that appear as annotations of C source text. In partic-

ular, the assertions are written inside comment regions using the extended comment

indicators /*@ ... @*/.

Each APP assertion specifies a constraint that applies to some state of a computa-

tion. The constraint is specified using C’s expression language, with the C convention

that an expression evaluating to zero is false, while a nonzero expression is true.

APP recognizes two enhancements to the C expression language within assertion

regions: quantifiers and the operator in. Existential and universal quantification over

finite domains can be specified using a syntax that is similar to C’s syntax for for

loops. The operator in can be used to indicate that an expression is be evaluated in

the entry state of the function that encloses the expression.

APP recognizes four assertion constructs, each indicated by a different keyword:

• assume specifies a precondition on a function;

• promise specifies a postcondition on a function;

• return specifies a constraint on the return value of a function;

• assert specifies a constraint on an intermediate state of a function body.

16 2. Related Work

The following examples illustrate the usage of assertion in APP. Since C is not

an object-oriented language, inheritance issues are not a concern in APP. In function

swap, the assumption states the precondition that the pointers x and y be non-null

(and thus evaluate to true) and not equal to each other. The two postconditions use

the operator in to relate the values of the integers upon exit from the function to their

values upon entry. The specification of sort uses the existential quantifier some and

universal quantifier all to state both the obvious ordering requirement of the result

as well as the requirement that the result must be a permutation of the input array.

void swap (x, y)

int *x, *y;

/*@

assume x && y && x != y;

promise *x == in *y;

promise *y == in *x;

@*/

{

...

}

int* sort(x, size)

int* x;

int size;

/*@

assume x && size > 0;

return S where S // S is non-null

&& all (int i=0; i < in size-1; i=i+1) S[i] < S[i+1] // S is ordered

&& all (int i=0; i < in size; i=i+1)

some (int j=0; j < in size; j=j+1)

2. Related Work 17

x[i] == S[j]; // S is a permutation of x

@*/

{

...

}

2.3.2 Design by Contract in Eiffel

Eiffel is a landmark programming language that integrates executable specifications

into the language. Design by contract is a way for developing reliable software. In

Eiffel, the contracts are defined by program code, and are translated into executable

code by the compiler. Thus, any violation of the contract can be detected immediately

during runtime.

In Eiffel [44], require and ensure clauses are used to respectively introduce precon-

dition and postcondtion. Each assertion is a list of boolean expressions, separated by

semicolons; here a semicolon is equivalent to a boolean and. Boolean expressions in

assertion have a few extensions such as the old notation. The notation old e, where e

is an expression, denotes the value that e had on routine entry. Any occurrence of e

not preceded by old in the postcondition denotes the value of the expression on exit.

A class invariant affects all the contracts between a routine of the class and a

client. The correctness requirement on the routine may be expressed by the following

correctness formula:

{INV ∧ pre} body {INV ∧ post}

Syntactically, a class invariant is an assertion, appearing in the invariant clause of

the class, after the features and just before the end.

The following example shows assertions in Eiffel:

18 2. Related Work

class BINARY_TREE [T]

feature

... Attribute and routine declaration ...

put_child(new: NODE) is

-- Add new to the children of current node

require

new /= void

do

... Insert algorithm ...

ensure

new.parent = Current

child_count = old child_count + 1

end -- put_child

invariant

left /= Void implies (left.parent = Current)

right /= Void implies (right.parent = Current)

end

The basic rules governing the rapport between inheritance and assertion have been

proposed by Meyer [45]:

Parents’ Invariant rule: The invariants of all the parents of a class

apply to the class itself.

Assertion Redeclaration rule (1): A routine redeclaration may re-

place the original precondition by one equal or weaker, and the original

postcondition by one equal or stronger.

Assertion Redeclaration rule (2): In the redeclared version of a rou-

tine, it is not permitted to use a require or ensure clause. Instead one

may:

2. Related Work 19

• use a clause introduced by require else, to be or-ed with the original

precondition.

• use a clause introduced by ensure then, to be and-ed with the original

postcondition.

In the absence of such a clause, the original assertion is retained. Eiffel supports

behavioral subtyping by following its parents’s invariant rule and assertion redec-

laration rules that imply Liskov and Wing’s invariant rule, precondition rule and

postcondition rule.

2.3.3 Java Specification with JML

The lack of assertions and design by contract features for checking of preconditions,

postconditions, and invariants in the Java language has led to some languages and run-

time assertion checking tools for Java, such as Alloy Annotation Language (AAL) [26],

Jass [6], and iContract [30]. AAL is a language for annotating Java code based on

the Alloy modeling language. It offers a syntax similar to JML and has the same

opportunities for generation of run-time assertions. JML, which stands for “Java

Modeling Language,” is a behavioral interface specification language (BISL) designed

to specify Java modules.

As an example, class Purse illustrates JML’s main features. JML adds assertions

to Java by writing them as special comments (/*@ ... @*/ or //@ ...). Within such

comments JML extends the Java syntax with several keywords—in this example,

invariant, requires, assignable, ensures, and signals. It also supports three forms

of quantifier expressions: universal and existential quantifiers (\forall and \exists),

generalized quantifiers (\sum, \product, \min, and \max, and a numeric quantifier

20 2. Related Work

(\num of).

The central ingredients of a JML specification are preconditions (given in requires

clauses), postconditions (given in ensures clauses), and class invariants. In addition to

“normal” postconditions, JML also supports “exceptional” postconditions, specified

in signals clauses. The signals clause in the class Purse specifies that method debit

may throw a PurseException, and, in that case, the balance will not change (as

specified by the use of the \old keyword). The assignable clause for the method debit

specifies a frame condition, namely that debit will assign to only the balance field.

public class Purse {

final int MAX_BALANCE;

int balance;

//@ invariant 0 <= balance && balance <= MAX_BALANCE;

byte[] pin;

/*@ invariant pin != null && pin.length == 4

@ && (\forall int i; 0 <= i && i < 4; 0 <= pin[i] && pin[i] <= 9);

@*/

/*@ requires amount >= 0;

@ assignable balance;

@ ensures balance == \old(balance) - amount && \result == balance;

@ signals (PurseException) balance == \old(balance);

@*/

int debit(int amount) throws PurseException {

if (amount <= balance) { balance -= amount; return balance: }

else { throw new PurseException("overdrawn by " + amount); }

}

2. Related Work 21

/*@ requires 0 < mb && 0 <= b && b <= mb && p != null && p.length == 4

@ && (\forall int i; 0 <= i && i < 4; 0 <= pin[i] && pin[i] <= 9);

@ assignable MAX_BALANCE, balance, pin;

@ ensures MAX_BALANCE == mb && balance == b

@ && (\forall int i; 0 <= i && i < 4; p[i] == pin[i]);

@*/

Purse(int mb, int b, byte[] p) {

MAX_BALANCE = mb; balance = b; pin = (byte[])p.clone();

}

}

JML adapts some notation such as \old and \result to Eiffel. A difference from

Eiffel is that JML extends the syntax of Java expressions with quantifiers and other

constructs that are needed for logical expressiveness. Without supporting quantifiers,

Eiffel has to use an auxiliary method call in assertions to express and to check the

same content as a quantifier does.

In JML, a subclass inherits specifications such as preconditions, postconditions,

and invariants from its superclasses and interfaces that it implements. An important

feature of JML’s specification inheritance is that its semantics supports a behavioral

notion of subtyping. JML checker handles JML’s specification inheritance [17]. That

is, it combines specifications from superclasses and superinterfaces and use as those

to form a complete specification of a class. In essence, preconditions are disjoined,

postconditions are conjoined in the form of
∧

(\old(pi) ⇒ qi) (where pi is a precondi-

tion and qi is the corresponding postcondition), and invariants are conjoined. That

meets Liskov and Wing’s substitution property.

22 2. Related Work

2.3.4 Subtyping and Subclassing in Sather, Theta and

POOL-I

Sather [48, 56] is an object-oriented language developed at the International Com-

puter Science Institute. It has statically-checked strong (contravariant) typing, mul-

tiple inheritance, separate implementation and type inheritance, exception handling,

assertions, preconditions, postconditions, and class invariants.

Sather provides separate mechanisms for subtyping and subclassing concepts. Ab-

stract classes represent interfaces: sets of signatures that subtypes of the abstract class

must provide. Other kinds of classes provide implementations. Classes may include

an implementation from other classes using a special include clause; this does not

affect the subtyping relationship between classes.

In the following examples, $PLAYER is an abstract type. The name of abstract

type must be in capital letters. The leading $ differentiates abstract from concrete

types. The abstract type $PLAYER specifies the common interface. In the body of

the type declaration, the operations are given without any implementation.

Class PLAYER is a concrete type or class which is a subtype of $PLAYER. The

subtype relation is expressed by the < symbol. Class PLAYER will not be used for in-

stantiation; there will be no objects of type PLAYER. The main purpose of this class is

to declare attributes and routines that are common to other classes of type $PLAYER,

which include the implementation of this class. The routine getmove does not pro-

vide a basic implementation. However, for consistency with the interface required by

$PLAYER, a dummy implementation must by given. The routine ask pawn xchg pro-

vides a default implementation. Concrete class HUMAN is a subtype of $PLAYER.

It provides an implementation for at least the signatures given in the specification of

2. Related Work 23

$PLAYER. HUMAN inherits the implementation of class PLAYER by the include

statement, and it redefines routine getmove and ask pawn xchg.

type $PLAYER is

getmove(b: BOARD): MOVE:

ask_pawn_xchg: CHAR:

end;

class PLAYER < $PLAYER is

attr iswhite: BOOL;

create(iswhite: BOOL): SAME is

ret: SAME := new;

ret.iswhite := iswhite;

return ret;

end;

getmove(b: BOARD): MOVE is

raise "PLAYER: invalid call to getmove\n";

end;

ask_pawn_xchg: CHAR is

return ‘Q’;

end;

end; --of class PLAYER

class HUMAN < $PLAYER is

include PLAYER;

getmove(b: BOARD): MOVE is

return MAIN::display.getmove(iswhite);

end;

ask_pawn_xchg: CHAR is

MAIN::display.update(MAIN::board.str);

24 2. Related Work

return MAIN::display.ask_pawn_xchg;

end;

end; -- of class HUMAN

Sather supports separating subtyping and subclassing, but there exist some re-

strictions for Sather’s types and classes. Only abstract classes such as $PLAYER

can have descendants in the type hierarchy, but cannot be instantiated as objects.

Concrete classes, such as PLAYER and HUMAN, are always leaf nodes in the sub-

type graph, but can be instantiated. All Sather variables are statically typed. If a

variable is declared as a concrete type, then only objects of exactly that type can be

held by it. As a result, all calls on such variables are monomorphic, i.e. the actual

implementation invoked is statically determined.

In Sather, abstract classes only provide interfaces, a set of signatures, no

behavioral specification; statements for precondition, postcondition and invariant

are used in concrete classes to check the correctness. Sather’s subtype relation only

follows the signature rule defined in Liskov and Wing’s subtype relation, that is the

contra/covariance rules. It does not support behavioral subtyping.

Theta [16] is an object-oriented language that was developed for use within the

Thor object-oriented database system. A Theta program consists of a group of pro-

gram units. A program unit is a specification or a module. Specifications define

abstract types and routines; modules provide implementations of these types and

routines. New types and routines are defined by providing specifications. A specifi-

cation defines interface information; it does not include any information about how

the new type or routine is to be implemented. The specification of a type defines the

supertypes, and the names and signatures of the methods. A type can have multiple

2. Related Work 25

supertypes. Classes and routine implementations are placed inside modules. Each

module implements one or more specifications. A type is implemented by one or more

classes. A class contains some instance variables that store the state of objects of the

type, and routines that implement the object’s methods. A class can inherit from

a single superclass. Objects of a subclass contain superclass instance variables and

methods.

In the following examples, type bag gives a simple abstraction. Type stack is

defined as a subtype of bag using ‘<’. The specification of stack introduces a new

method, top. It contains specifications for push and pop, since they constrain the

behavior of the corresponding bag methods, and for copy, since it has a different

signature and specification than its counterpart, but it omits the specification of size,

since it would be identical to its counterpart. Class brep implements type bag and

provides an access to the array that contains its elements, e.g., by providing a get els

method, which returns the els component of a bag. Class srep implements type

stack and inherit brep. stack implementation is dependent on the details of the bag

implementation, e.g., that put adds the new element to the high end of the array and

get removes the newest element.

bag = type [T]

put (x: T)

get () returns (T) signals (empty)

size () returns (int)

copy () returns (bag[T])

where T has copy() returns (T)

end bag

stack = type [T] < bag[T] {push for put, pop for get}

26 2. Related Work

push (x: T)

pop () returns (T) signals (empty)

top () returns (T) signals (empty)

copy () returns (stack[T])

where T has copy () returns (T)

end stack

brep = class[T] for bag[T]

...

sz: int implements size % implementation of size method

els: array[T] implements get_els % implementation of get_els method

put (x: T)

els.append(x)

sz := sz + 1

end put

get () returns (T) signals (empty)

x: T := els.remove() except when bounds: signal empty end

sz := sz - 1

return (x)

end get

copy () returns (bag[T])

where T has copy () returns (T)

return (brep[T]{sz := sz, els := els.copy()})

end copy

end brep

srep = class[T] for stack[T] inherits brep[T] {push for put, pop for get}

top () returns (T) signals (empty)

return (self.get_els().top())

except when bounds: signal empty end

2. Related Work 27

end top

copy () returns (stack[T])

where T has copy () returns (T)

return (srep[T]{mk_copy[T](self)})

end copy

end srep

Theta provides separate mechanisms for type hierarchy and inheritance. For a

strongly-typed object-oriented language, the compiler needs to know the type hier-

archy: which types are subtypes of which other types. In Theta this information is

provided in type specifications. The inheritance mechanism is separate from the type

hierarchy, so that related types can have independent implementations and unrelated

types can have related implementations.

Theta does not support assertions. The subtype relation only follows the

signature rule defined in Liskov and Wing’s subtype relation.

The language POOL-I [2, 3] is a member of the POOL family of languages, which

have been designed to support the development of large programs for highly parallel

machines with or without shared memory. POOL-I is the first language that includes

subtyping and inheritance as completely separate language mechanisms. In POOL-I

subtyping is based only on the externally observable behavior of objects. This includes

not only their signature but also more detailed information about the behavior.

In the following examples, the specifications of integer bag, stack, and queue

are given by type Int Bag, Int Stack, and Int Queue respectively. The class AIS

implements the type Int Stack, because it has the required methods get and put with

the right argument and result types and the property LIFO.

28 2. Related Work

TYPE Int_Bag

METHOD get () : Int

METHOD put (Int) : Int_Bag

END Int_Bag

TYPE Int_Stack

PROPERTY LIFO %% last in, first out

METHOD get () : Int

METHOD put (Int) : Int_Stack

END Int_Stack

TYPE Int_Queue

PROPERTY FIFO %% first in, first out

METHOD get () : Int

METHOD put (Int) : Int_Queue

END Int_Queue

CLASS AIS

VAR a := Array(Int).new(1, 0)

METHOD get () : Int

BEGIN IF a@ub = 0

THEN RESULT NIL

ELSE RESULT a@high %% also decreses ub

FI

END get

METHOD put (n: Int) : AIS

BEGIN IF a@high : = n; %% increase ub and place n at high and

RESULT SELF

END put

PROPERTY LIFO

2. Related Work 29

END AIS

The relations among user-defined types are not declared explicitly in POOL-I. The

type mechanism in POOL-I offers the possibility to analyze types dynamically. Since

every object that is an element of the type Int Stack or Int Queue will certainly have

the methods get and put, it will also be an element of the type Int Bag. Therefore,

the types Int Stack and Int Queue are subtypes of the type Int Bag.

The Subtyping in POOL-I depends not only on the signatures of the different

types (the names of the methods and their parameter and result types) but also on

the behavior. The specification of a type in POOL-I is augmented with a collection

of properties, which are just identifiers. The compiler will not check whether the

code of a class really satisfies such a specification; it will just base its decisions about

subtyping relationships on the presence or absence of these property identifiers. The

types Int Stack and Int Queue have different properties, so they are different types

and neither of them is a subtype of the other one.

The POOL-I makes a distinction between types and classes: A type is a collection

of objects that have the same behavior; a class is a collection of objects that look

exactly the same on the inside. We say that a class implements a type σ when each

object of the class has type σ. There may be many classes that implement a certain

type and many types that are implemented by a certain class. If a class implements

a type, it automatically implements all the supertypes of this type. The class AIS

implements the type Int Stack, because it has the required methods get and put with

the right argument and result types and the property LIFO. The class AIS also

implements the type Int Bag that is a supertype of Int Stack.

30 2. Related Work

2.4 Mathematical Symbol Representation

Solving mathematical problem and evaluating boolean expressions is the fundamental

usage of programming languages, but the most elementary mathematical symbols

such as ≤,≥, and 6= are not used in programming languages. Languages such as

Pascal use <=, >= and <> to stand for ≤,≥ and 6=. That is different from the way

they are printed in books or any other printed source on paper.

Microsoft’s Equation Editor and Math Type are popular mathematical equation

editors. Equations exist as graphic objects such as OLE (Object Linking and Em-

bedding), EGO (Edit Graphic Object) in the documentation of Microsoft’s Equation

Editor and Math Type; and they can be saved as EPS (Encapsulated PostScript)

files, WMF files (Windows Metafiles), or PICT files (standard Macintosh graphics).

This way is not suitable for programming language source code that has to be text

or extended text as required for compilation parsing.

Numerous symbolic mathematical operators are used in formal specification lan-

guages such as VDM [25] and Z [58, 15]. They use LATEX to present mathematical

formulae and symbols. It requires the user of Z to have knowledge of LATEX; and

the source code on which the programmer works is in the LATEX format that can be

parsed, but is not very suitable for reading.

Currently, most text editors such as TextEdit, jEdit, AbiWord and Microsoft Word

support Unicode encoding such as UTF-8 and UTF-16. With the aid of Unicode

encoding and its corresponding font, mathematical symbols are properly represented

in the above text editors and are suitable for parsing. Though Unicode cannot handle

complicated mathematical formula, it is enough for us to present the mathematical

symbols used in our language.

2. Related Work 31

Unicode [1, 18] is the international standard whose goal is to specify a code match-

ing every character needed by every written human language to a single unique integer

number, called a code point. Unicode has become the dominant encoding scheme in

internationalization of software and multilingual environments. Windows OS such

as Windows NT, Windows 2000 and Windows XP make extensive use of Unicode,

more specifically UTF-16, as an internal representation of text. UNIX-like operating

Systems such as Linux, BSD and Mac OS X have adopted Unicode, more specifically

UTF-8, as the basis of representation of multilingual text.

UTF-8 (8-bit Unicode Transformation Format) is a lossless, variable-length char-

acter encoding for Unicode. A Unicode character’s bits are divided into several groups,

which are then divided among the lower bit positions inside the UTF-8 bytes. The

contents of Table 2.1 are from Lindholm and Yellin’s book [37]. All characters in

the range ‘000000’ to ‘00007F’ are represented by a single byte. The seven bits of

data in the byte give the value of the character represented. Characters in the range

‘000080’ to ‘0007FF’ are represented by a pair of bytes a and b, the bytes represent

the character with the value ((a & 0x1f) << 6) + (b & 0x3f). Characters in the

range ‘000800’ to ‘00FFFF’ are represented by three bytes a, b, and c. The character

with the value ((a & 0xf) << 12) + ((b & 0x3f) << 6) + (c & 0x3f) is represented

Code range UTF-8 binary Value (a: 1st byte, b: 2nd byte, c: 3rd byte)

000000 - 00007F 0xxxxxxx a

000080 - 0007FF 110xxxxx 10xxxxxx ((a & 0x1f) << 6) + (b & 0x3f)

000800 - 00FFFF 1110xxxx 10xxxxxx 10xxxxxx ((a & 0xf) << 12) + ((b & 0x3f) << 6) + (c & 0x3f)

Table 2.1: UTF-8 Encoding

32 2. Related Work

by the bytes. The Unicode and UTF-8 encoding for the mathematical symbols used

in Lime is given later on in Table 3.1.

2.5 Automatic Documentation Generation Tools

Program documentation is a very useful and essential resource for programmers and

system users, however producing and keeping it up-to-date can be an expensive and

time-consuming endeavor. Many tools have been developed to address this issue.

A traditional computer program consists of a text file containing program code.

Scattered in amongst the program code are comments that describe the various parts

of the code. Donald Knuth changes the attitude to the construction of programs in

his literate programming paradigm [27]:

Instead of imaging that our main task is to instruct a computer what to

do, let us concentrate rather on explaining to human beings what we want

a computer to do.

Knuth’s approach is to combine Pascal code with TEX documentation to produce

a new language WEB, that offers programmers a superior approach to programming.

The idea is that a programmer writes one document, the web file, that combines

documentation (written in TEX) with code (written in Pascal).

Running on the web file, the WEB system produces a complete Pascal program,

ready for compilation by an ordinary Pascal compiler and a TEX file, ready to be pro-

cessed by TEX. The resulting documents include a variety of automatically generated

indices and cross-references that make it much easy to navigate the code.

Since then a number of researchers have worked sporadically on the ideas as well

as on the tools for literate programming. The CWEB [28] system of Structured

2. Related Work 33

Documentation is a version of WEB for documenting C, C++, and Java programs.

Thus CWEB combines TEX with today’s most widely used professional programming

languages. FWEB [5] is a WEB system of structured documentation for multiple

languages. Noweb [24] is designed to meet the needs of literate programmers while

remaining as simple as possible. It has been used for tens of thousands of lines of code

in such languages as C, C++, Haskell, Modula-3, Objective Caml, and Standard ML.

One of the main ideas behind literate programming is to formulate the understand-

ing of the program, and connect this understanding to traditional program source.

Literate programming has attracted interest in the functional programming commu-

nity. Since a short functional language program can contain more information and is

more difficult to understand, recording the understanding is more important. There

are three tools (IDoc, HDoc and Haddock [43]) supporting Haskell documentation.

A different kind of documentation system, such as Javadoc and Doxygen have

only little to do with the ideals of literate programming; They generate on-line inter-

face documentation in HTML format.

Doxygen can also generate off-line reference manual (in LATEX or RTF) from a

set of source files. Doxygen can be configured to extract the code-structure from

undocumented source files. This can be very useful to quickly find your way in large

source distributions.

The reuse of library components is a cornerstone of today’s software development.

Therefore, developers need good library documentation to take advantage of complex

APIs. The major source of Java API information consists of Web pages generated by

the Javadoc tool [19, 20, 29, 35]. The Javadoc program extracts the names, param-

eters, return types, and other necessary information from classes and methods with

the aid of a Java parser. The developers can also augment their source code by writ-

34 2. Related Work

ing special tagged comments. Javadoc then uses these comment tags to strengthen

the documentation.

Lime supports automatic documentation generation using LimeD. The develop-

ment of LimeD got ideas from these documentation tools discussed above. The design

and goals for developing LimeD is explained in Chapter 3.

Chapter 3

Design Features of Lime

In this chapter, we discuss the analysis and design of the new Lime features. We

research the reason and background of the added features and introduce them in

Chapter 2. In Chapter 1, we have introduced the added Lime language features.

Here, we discuss them in further detail. We also describe the details for Lime on how

to handle adding new features.

3.1 Assertion

We should design Lime to integrate assertions as programming language constructs,

as Eiffel does. We should take the old and result notation and the idea that assertions

are written using Lime’s expression syntax from Eiffel. To allow us to easily write

complete specifications, we extend the syntax of Lime expressions with quantifiers and

other constructs that are needed for logical expressiveness and are not supported by

Eiffel. Assertion constructs should meet the requirements for specifying the behavior

of a Lime module, providing information for automatic documentation and for being

35

36 3. Design Features of Lime

executable for dynamically checking specification violation.

An assertion is a predicate which states a logical sentence that evaluates to true

or false. If during the program execution the assertion evaluates to false, an error

is indicated. Lime uses the following three kinds of assertions to specify its module

behavior:

• class invariant,

• method precondition, and

• method postcondition.

In addition, Lime has assert statements that specify a constraint on an interme-

diate state of a method body. The assert statement starts with the keyword assert.

A class invariant specifies the allowed global states of a class. The class invariant

is declared with the keyword invariant and it is located between the declarations of

attribute and method. The class invariant is checked whenever the state of the class is

stable; i.e., it is checked at the beginning and end of each public method’s execution.

A precondition can be used to specify the valid states for method invocation. The

precondition is checked at the beginning of the method body. It is declared with the

keyword pre.

A postcondition specifies the legal states after method invocation. The postcon-

dition is checked at all normal return points of the methods; i.e., it is checked for all

return statements and at the end of method bodies. The postcondition is declared

with the keyword post.

To emphasize the behavioral specification, both the precondition and the post-

condition are located at the beginning of the method body. They will be reorganized

according to their execution order in the generated intermediate language.

3. Design Features of Lime 37

3.2 Mathematical Symbols

Formal specification languages such as VDM and Z make heavy use of symbolic

mathematical operators, which discourages use by programmers. These kind of for-

mal specification languages focus on formal theorem proving and reasoning; they do

not support runtime assertion checking. Languages, like Eiffel limit assertions to ex-

pressions of the underlying programming language, which makes it difficult to write

complete specifications. JML and APP extend boolean expression with quantifiers

that are executable for runtime specification violation checking. They represent quan-

tifiers with special keywords composed of ASCII characters. For example, universal

quantifier and existential quantifier are represented by \forall and \exists in JML,

all and some in APP respectively. They are not very meaningful. Especially when

specification appears in automatically generated documentation whose readers are

not programmers in the underlying programming language, these keywords may be

confusing.

We should design Lime to moderately use mathematical symbols for quantifiers

and operators. This will make formal specification more meaningful, and it will make

the language source code and generated documents highly readable and unambiguous.

The specification should be executable for formal verification. Lime should be more

expressive for specification than Eiffel, easier to use than VDM and more meaningful

and readable than JML and APP.

To make the source code and generated documentation more readable and mean-

ingful, we import a number of mathematical symbols shown in Table 3.1 to Lime

language. With the aid of Unicode and UTF-8 encoding, these mathematical sym-

bols can be parsed by the Lime compiler and displayed in, for example,TextEdit

38 3. Design Features of Lime

for editing source code and inside generated documentation on web browsers. Some

symbols are used for replacing old operators; others are used in extended expressions.

Symbol Name Unicode UTF-8 binary Note

≤ lessequal 2264 11100010 10001001 10100100 replace <=

≥ greaterequal 2265 11100010 10001001 10100101 replace <=

6= notequal 2260 11100010 10001001 10100000 replace <>

∧ logicaland 2227 11100010 10001000 10100111 logical and

∨ logicalor 2228 11100010 10001000 10101000 logical or

¬ logicalnot 00AC 11000010 10101100 negation

⇒ arrowdblright 21D2 11100010 10000111 10010010 implication

⇐ arrowdblleft 21D0 11100010 10000111 10010000 consequence

⇔ arrowdblboth 21D4 11100010 10000111 10010100 if and only if

∀ universal 2200 11100010 10001000 10000000 universal quantifier

∃ existential 2203 11100010 10001000 10000011 existential quantifier

Σ summation 2211 11100010 10001000 10010001 sum

Π product 220F 11100010 10001000 10001111 product

Table 3.1: Mathematical Symbols Used in Lime

3.3 Expression Extensions

To have more expressiveness that makes more specialized assertion languages conve-

nient for writing behavioral specifications, Lime extends its expressions with various

constructs, such as quantifiers.

Lime adds the following new constructs to its expression syntax:

• ⇒ for logical implication. It is the only one binary infix operator that associates

3. Design Features of Lime 39

to the right. The expressions on either side of these operators must be type of

boolean, and the type of the result is also boolean.

• ⇐ for logical consequence. The expressions on either side of these operators

must be type of boolean, and the type of the result is also boolean.

• ⇔ for logical equivalence. The expressions on either side of these operators

must be type of boolean, and the type of the result is also boolean. Note that

⇔ means the same things as = for expressions of type boolean; however, ⇔ has

a lower precedence.

• old for referring to value in the pre-state. It is used in post clause to indicate

an expression whose value is taken from the pre-state of a method call. For

example, old e denotes the value of the expression e evaluated in the pre-state

of a method call.

• result for referring to the value or object that is being returned by a method.

It is used in a method’s post clause. Its type is the return type of the method.

• The general linear quantifier of the form ∗ x |P • E, where ∗ is a quantifier

operator; x is the bound variable of the quantification; P is the range of the

quantification; E is an expression, the body of the quantification. Seven quan-

tifiers are added.

– ∀ and ∃ are universal and existential quantifiers respectively. Their type is

boolean. If the range predicate P evaluates to false, i.e. an empty range, the

value of universal quantification defaults to true; the value of existential

quantification defaults to false.

40 3. Design Features of Lime

– Σ, Π, MAX and MIN are generalized quantifiers that return the sum,

product, maximum or minimum of the values of the expressions given,

where the variable satisfies the given range. The expression in the body

must be of numeric type, which currently is integer only. The type of

the quantified expression as a whole is the type of its body. The range

predicate must be of type boolean. For empty range, Σ has default value

0; Π has default value 1; MAX and MIN have no default value, they will

indicate an error.

– NUM is a numerical quantifier. It returns the number of values for its

variables for which the range and the expression in its body are true. The

entire quantifier expression has type integer. It has default value 0. Both

the range predicate and the body must have type boolean.

The precedence of operators in expressions is given in Figure 3.1. Operators on the

first line have the highest precedence, on the lowest line have the lowest precedence,

on the same line have the same precedence. The Lime language guarantees that the

operands of operators appear to be evaluated in a specific evaluation order, namely,

from left to right.

Figure 3.2 shows the syntax of the extended expressions in Lime. We use the

following notation to describe the syntax. A nonterminal symbol is denoted by italic

font; a terminal symbol is put between two double quote marks; the extended parts

are denoted by bold font.

• M | N denotes that alternative between M and N (either M or N);

• MN denotes that the concatenation of M and N (M followed by N);

3. Design Features of Lime 41

∀ ∃ Σ Π MAX MIN NUM () method calls

(unary)− + ¬ not

∗ / div mod

(binary) + −

< > ≤ ≥ = 6=

∧ and

∨ or

⇒ ⇐

⇔

lowest :=

Figure 3.1: Precedence of Operators

• [M] denotes that M is optional;

• {M} denotes a sequence of M (the sequence may be empty);

• (MN) denotes that M and N are grouped, i.e. (M |N)M means MM or NM .

3.4 Separate Subclassing and Subtyping

First of all Lime is an object-oriented programming language, it should support OOP’s

characteristic features — encapsulation, polymorphism and especially inheritance.

We should design Lime to support separate subclassing and subtyping. We also

should design Lime to make inheritance more flexible so that any class can be a

superclass and supertype that gives the rights to child classes to choose what (method

signature, behavioral specification or implementation) is to be inherited from the

parent class.

42 3. Design Features of Lime

Expression ::= EquivalenceExpr

EquivalenceExpr ::= ImplicationExpr {“⇔” ImplicationExpr}

ImplicationExpr ::= ConditionalOrExpr [“⇒” ConditionalOrExpr

| “⇐” ConditionalOrExpr]

ConditionalOrExpr ::= ConditionalAndExpr {“∨” ConditionalAndExpr

| “or” ConditionalAndExpr}

ConditionalAndExpr ::= RelationalExpr {“∧” RelationalExpr

| “and” RelationalExpr}

RelationalExpr ::= AdditiveExpr [“<” AdditiveExpr | “>” AdditiveExpr | “≤” AdditiveExpr

| “≥” AdditiveExpr | “=” AdditiveExpr | “6=” AdditiveExpr]

AdditiveExpr ::= MultiplicativeExpr {“+” MultiplicativeExpr

| “−” MultiplicativeExpr}

MultiplicativeExpr ::= UnaryExpr {“∗” UnaryExpr | “/” UnaryExpr | “div” UnaryExpr

| “mod” UnaryExpr}

UnaryExpr ::= “−” UnaryExpr | “¬” UnaryExpr | “not” UnaryExpr

| “+” UnaryExpr | PrimaryExpr

PrimaryExpr ::= Literal | Ident | “(”Expression“)”

| AssertionPrimary | Call

AssertionPrimary ::= Old | Result | SpecQuantifiedExpr

Old ::= “old” (Ident | “(”Expression“)”)

Result ::= “result”

SpecQuantifiedExpr ::= Quantifier Ident “|” AdditiveExpr (“<” | “≤”) Ident

(“<” | “≤”) AdditiveExpr“•” Expression

Quantifier ::= “∀” | “∃” | “Σ” | “Π” | “MAX” | “MIN” | “NUM”

Figure 3.2: Syntax of Lime Expressions

3. Design Features of Lime 43

τ extend σ

1. τ inherits attribute aσ of σ: τ.A ⊇ σ.A.

2. For each non-private method mσ of σ there is a corresponding method mτ of τ ,

such that

• mτ gets mσ’s signature: mτ .Sig = mσ.Sig.

• mτ has mσ’s implementation: mτ .Imp = mσ.Imp.

Figure 3.3: Definition of extend

Lime has three access modifiers, private, protected and public. We should design

Lime to allow using private attributes in specifications such that the private attributes

can be accessed in a subtype’s inherited specification.

A Lime class definition consists of a class invariant (I), a set of attributes (A)

and a set of methods (M). We model a class as a triple 〈I, A,M〉. A method is

composed of a signature (Sig), behavioral specification and implementation (Imp).

The Method signature includes name, access, return and parameters’ types. The

behavioral specification consists of a precondition (Pre) and a postcondition (Post).

The implementation is the source code of the method body. We model a method as

a quadruple 〈Sig, Pre, Post, Imp〉.

Lime uses the extend clause to handle single subclassing (shown in Figure 3.3);

implement clause to handle multisubtyping (shown in Figure 3.4); inherit clause to

handle the common case of subclassing and subtyping (shown in Figure 3.5).

We use the following examples to show the usage of the inheritance clauses. The

method sum1to9 in the class A calculates the sum of sequence 1, 2, ..., 9.

44 3. Design Features of Lime

τ implement σ1, σ2, ..., σn

1. τ preserves invariants of all supertypes (σ1, σ2, ..., σn): τ.I ⇒
∧n

i=1 σi.I.

2. τ inherits all attributes from all supertypes (σ1, σ2, ..., σn): τ.A ⊇
⋃n

i=1 σi.A.

3. For each non-private method mσi
of each supertype σi there is a corresponding

method mτ of τ , such that

• mτ gets mσi
’s signature (mτ .Sig = mσi

.Sig).

• mτ weakens preconditions: mτ .P re⇐
∨n

i=1(mσi
∈ σi.M ∧mσi

.P re).

• mτ strengthens postconditions: mτ .Post⇒
∧n

i=1(mσi
∈ σi.M ⇒ mσi

.Post).

Figure 3.4: Definition of implement

public class A

public attr sum : integer;

private attr i : integer;

invariant sum ≥ 0

public method sum1to9: integer

pre sum = 0

post result =
∑

i | 0<i <10 • i

begin

sum := (1+9)*9/2;

println(sum);

return sum

end

3. Design Features of Lime 45

τ inherit σ (equivalent to τ extend σ implement σ)

1. τ preserves invariant of σ: τ.I ⇒ σ.I.

2. τ inherits attribute aσ of σ: τ.A ⊇ σ.A.

3. For each non-private method mσ of σ there is a corresponding method mτ of τ ,

such that

• mτ gets mσ’s signature: mτ .Sig = mσ.Sig.

• mτ has mσ’s implementation: mτ .Imp = mσ.Imp.

• mτ weakens preconditions: mτ .P re⇐ mσ.P re.

• mτ strengthens postconditions: mτ .Post⇒ mσ.Post.

Figure 3.5: Definition of inherit

initialization

sum := 0

end

When we define a new class B as: class B extend A, class B will inherit attributes

sum and i, and method sum1to9 with implementation from A. Lime allows to override

the inherited method. Class B can redefine method sum1to9 to return any integer

value, that will not cause any problem, since class B only inherits the method’s

signature and implementation not behavioral specification.

class B extend A

public method sum1to9: integer \\ override inherited method

46 3. Design Features of Lime

return 0 \\ OK since no assertion required

end

For case class B implement A, class B inherits attributes sum and i, and behav-

ioral interface specification that includes class invariant, method’s preconditions and

postconditions, and method’s signatures without implementation. Class B has to pro-

vide an implementation for method sum1to9, otherwise class B should be declared

as abstract. The implementation can be different, but must preserve the inherited

behavioral specifications that will be dynamically checked at runtime.

class B implement A

public method sum1to9: integer

return 45 \\ make it satisfy inherited postcondition (result =
∑

i | 0<i <10 • i)

end

For case class B inherit A, class B inherits attributes sum and i, and the behav-

ioral interface specification that includes class invariant, method’s preconditions and

postconditions, and the method’s signatures with implementation.

3.5 Inheritance of Specification

Inheritance is very powerful, but is dangerous too. Without the possibility of client

control, class developers can use redeclaration and dynamic binding to change the

semantics of operations treacherously. In most OOP Language such as Java and

C++, being the subtyping relation only requires involved classes to conform the

contra/covariant rules that only ensure that no type errors happen.

3. Design Features of Lime 47

Lime as a BISL should meet the subtyping requirement proposed by Liskov and

Wing [39]. We should design Lime to carry out checking of the following rules defined

in Liskov and Wing’s definition of subtype relation [40]:

• Precondition rule ensures the subtype’s method can be called at least in any

state required by supertype.

• Postconditon rule says that the subtype method’s postcondition can be stronger

than the supertype method’s postcondition.

• Invariant rule states subtype invariants ensures supertype invariants.

The precondition rule ensures the subtype’s method can be called at least in

any state required by the supertype. The postcondition rule says that the subtype

method’s postcondition can be stronger than the supertype method’s postcondition;

hence, any property that can be proved based on the supertype method’s postcondi-

tion also follows from the subtype method’s postcondition. The invariant rule shows

that a subtype’s invariant implies a supertype’s invariant.

In Lime, a subtype inherits the specification such as preconditions, postconditions

and invariants from its supertypes. An important language feature of Lime is that

its semantics supports a behavioral notion of subtyping. To ensure that a program

continues to work as expected in situations where a supertype object is replaced

by a subtype object, Lime supports the standard design by contract weakening of

preconditions and strengthening of postcondition.

When Lime performs a runtime specification violation checking in its subtype,

preconditions and postconditions of a method are combined with the corresponding

preconditions and postconditions of the supertypes. Preconditions are combined with

48 3. Design Features of Lime

a logical or and postcondition with a logical and thus achieving a weakening of

preconditions and a strengthening of postconditions.

In addition, the class invariant of a subtype is combined with invariants inherited

from all its supertypes by using a logical and, and checked in every stable state, i.e. at

the end of the initialization and the beginning and end of each non-private method’s

execution.

The approach for dynamically checking assertions in Lime makes it follow the

precondition rule, postcondition rule and invariant rule in the Liskov and Wing’s

subtype definition.

3.6 Documentation Generation

The essence of and related work in automatic documentation generation is given in

Chapters 1 and 2. We should design Lime to automatically generate documentation

from source code. For this purpose, we propose a documentation tool, LimeD.

The core goals for developing LimeD are

• to generate documentation directly from source code;

• to provide a behavioral interface specification, not only an application program-

ming interface (API);

• to show the hierarchies of classes and types;

• to make the resulting documents be hyperlinked, highly readable, and easily

navigated.

The design of LimeD is focused on achieving the goals that make LimeD generate

interface and specification documentation.

3. Design Features of Lime 49

The document must be automatically generated from the source code. A static

document is too likely to get out of sync with the source code on which it is based.

Some data structures in the Lime compiler hold the information that is necessary

for generating documentation. For example, we can extract information on attributes

and methods from symbol tables. We built our documentation tool LimeD based on

the existing Lime compiler.

We add documentation comments and documentation tags to Lime syntax for

documentation generation purpose. LimeD supports embedded HTML inside the

documentation comment. LimeD not only provides Lime API but also provides be-

havioral specification informations such as class invariant, method preconditions and

postconditions. For supporting behavioral subtyping, LimeD provides all supertype’s

behavioral specification that are extracted from their class files.

LimeD shows the inheritance relations by different means: the class hierarchy is

shown as a graphic, subtype hierarchy is shown as an indented list.

To make the documentation easily navigated and to support cross references, we

make full use of the Web’s capabilities by generating documentation in HTML format

so that it can be presented in various web browsers. LimeD generates an all class

list with links and leaves an anchor in every class and method’s name that makes

navigating inside or between documentations easy.

Currently, LimeD can generate interface and specification documentation. One

future work on LimeD would be extending to provide system design documentation

that requires to collect all information on aggregation, interaction, and inheritance

between the classes inside the system. Aggregation information can be obtained

from the non-primitive type attribute declaration. Interaction information can be

obtained from the method invocation. The current version of LimeD already has a

50 3. Design Features of Lime

way to get inheritance information. All the information obtained has to be held by

an appropriate data structure and presented graphically.

Chapter 4

Implementation

In this chapter, we discuss the details of the implementation of the Lime compiler and

LimeD. We introduce the structure of the software and the algorithms that are used

for adding new language features. We also introduce some solutions in more details.

Before doing that, we first introduce our compilation strategy and tools used in the

compiler.

4.1 Background

The parser is generated by Java Compiler Compiler (JavaCC). The Lime compiler

first translates its source code, in which the character set is extended to Unicode for

presenting mathematical symbols, into an intermediate Jasmin [46] code that uses

the Java Virtual Machine (JVM) [37] instructions set; during this step, specification

clauses are reorganized according to their execution order. Jasmin, a Java assembler,

converts intermediate language code into byte-code Java class files. For supporting

inheritance and separate compilation, the compiler extracts information from Java

51

52 4. Implementation

class files with the aid of the Byte Code Engineering Library (BCEL).

4.1.1 JavaCC

Sun’s JavaCC is a parser generator and lexical analyzer generator. JavaCC will read

a language’s description written in a LEX/YACC-like [4] manner and generate code,

written in Java, that will read and analyze that language.

A JavaCC grammar is specified using code-like extended BNF. Both the lexical

and grammar specification are contained in the same file. JavaCC also provides lexical

state and lexical action capabilities.

JavaCC is a DFA-based parser generator. It generates recursive-descent parsers.

A recursive-descent parser is a top-down parser built from a set of mutually recur-

sive procedures, each of which implements a grammar production rule. By default,

JavaCC generates an LL(1) parser. However, there may be portions of the grammar

that are not LL(1). For example, classes and methods have modifiers such as ab-

stract, private, and public. JavaCC offers the capabilities of syntactic and semantic

lookahead to resolve shift-shift ambiguities locally at these points.

JavaCC also provides the capability of building an Abstract Syntax Tree (AST)

via a tool called JJTree. JJTree is a pre-processor for JavaCC that inserts parse tree

building actions at the appropriate places in the JavaCC grammar source. The output

of JJTree is run through JavaCC to create the parser. By default, JJTree generates

code to build parse tree nodes for each nonterminal in the language. Although JavaCC

is a top-down parser, JJTree constructs the parse tree from the bottom up. JavaCC

does not generate output languages. However once the AST has been generated, it

is easy to generate code from it.

4. Implementation 53

4.1.2 Java Virtual Machine

A virtual machine is a software emulation of a real machine. It has an instruction set

and manipulates various memory areas at run time just like a physical machine.

The JVM’s instruction set is composed of byte-codes. A byte-code is either a byte-

sized instruction or a byte-sized operand. When a Java source code file is compiled,

the Java compiler converts program statements to byte-codes. The compiler creates

a class file to contain the output of byte-codes. When the Java runtime system runs

a Java program, the data contained in the class files is loaded into memory and Java

interpreter is started. The Java interpreter reads each successive byte-code and passes

the instruction and operands to the JVM.

The JVM [37] consists of an instruction set, a set of registers and an operand

stack. The registers of the JVM maintain machine state during its operation. They

are directly analogous to the registers of a microprocessor. The JVM’s registers

include:

• PC: the Java program counter;

• VARS: a pointer to the first local variable of the currently executing method,

all local variables are addressed relative to this register;

• OPTOP: a pointer to the top of the Java operand stack;

• FRAME: a pointer to the execution environment of the currently executing

method.

JVM is a stack-based machine. On each Java method invocation, the JVM allo-

cates a Java frame, which contains an operand stack. Most JVM instructions take

values from the operand stack of the current frame, operate on them, and return

54 4. Implementation

results to the same operand stack. The operand stack is also used to pass arguments

to methods and receive method results.

4.1.3 Format of Java Class Files

The Lime compiler converts a Lime source code to a Java class file. For supporting

separate compilation, we need to extract information from Java class files. In this

part, we introduce the format of Java class file. The contents are taken from [11, 37]

with some modification.

The class file structure is as follows where type u1 and u2 represent an unsigned

one-byte and two-byte quantity, respectively.

ClassFile {

cp info constant pool[];

u2 access flags;

u2 this class;

u2 super class;

u2 interfaces count;

u2 interfaces[interfaces count];

u2 fields count;

field info fields[fields count];

u2 methods count;

method info methods[methods count];

}

The attributes in the ClassFile structure are as follows:

• constant pool : It is an array structure where each entry has a cp info sub-

4. Implementation 55

structure. It contains string constants that represents the name of the classes,

interfaces, fields, methods and other constants that are referenced within the

ClassFile structure and its substructures.

• access flags : It denotes the access permissions and other modifier set up of a

class.

• this class : It is a valid index into the constant pool array, and the entry at that

index is a CONSTANT Class info structure representing the class or interface

defined by this class file.

• super class : If it is zero, then this class file represents the class Object. Other-

wise, it is a valid index into the constant pool array, and the entry at that index

is a CONSTANT Class info structure representing the direct superclass of the

class defined by this class file.

• interfaces count : It denotes the number of the interfaces of the given class.

• interfaces[] : It contains a set of valid indices into the constant pool array, and

the entry at each index is a CONSTANT Class info structure representing the

direct superinterface of the class defined by this class file.

• fields count : It denotes the number of field info structures of a given class.

• fields[] : It contains a set of field info structures that gives a complete description

of a field that is declared in the class defined by this class file.

• methods count : It denotes the number of method info structures of a given class.

56 4. Implementation

• methods[] : It contains a set of method info structures that gives a complete

description of all methods that are declared in the class defined by this class

file.

Every entry in the constant pool is a cp info structure:

cp info {

u1 tag;

u1 info[];

}

The value of attribute tag determines the type of the string constant this con-

stant pool entry represents. Attribute info[] contains corresponding information

about the string constant.

The CONSTANT Class info structure is used to represent a class or an interface.

It has the following format:

CONSTANT Class info {

u1 tag;

u2 name index;

}

The attribute tag has value 7. The name index is a valid index into constant pool,

and the entry at that index is the name of the class or interface represented by

this CONSTANT Class info structure.

Fields and methods that are referenced in a class are entries in the constant pool

of that class represented by the following structures:

CONSTANT Fieldref info {

u1 tag;

u2 class index;

4. Implementation 57

u2 name and type index;

}

CONSTANT Methodref info {

u1 tag;

u2 class index;

u2 name and type index;

}

The tag has the value 9 or 10 in CONSTANT Fieldref info or CON-

STANT Methodref info, respectively. The value of class index is a valid index

into constant pool, and the entry at that index is a CONSTANT Class info struc-

ture that represents the class or interface in which the field or method is declared.

The name and type index is a valid index into constant pool, and the entry at that in-

dex represents the name and type of the field or the name, return type and argument

type of a method, respectively.

Every field or method declared in a class is described by a field info or method info

structure, respectively. They have the following format:

field info {

u2 access flags;

u2 name and type index;

u2 attributes count;

attribute info attributes[attributes count];

}

method info {

u2 access flags;

u2 name and type index;

58 4. Implementation

}

attribute info {

u2 attribute name index;

u4 attribute length;

u1 info[attribute length];

}

The value of the access flags denotes the access permission and other modifier set

up of the field or method. The name and type index is a valid index into constant pool,

and the entry at that index represents the name and type of the field or the name,

return type and argument type of a method, respectively.

4.1.4 Jasmin

Jasmin is a Java assembler developed by Jon Meyer and Troy Downing [46]. It takes

a textual description of a class, written in a simple assembler-like syntax using the

JVM instruction set and converts this into a binary Java class file suitable for loading

into a Java interpreter.

Lime first converts its source code to Jasmin assembler code; Jasmin converts

it to a Java class file. This avoids getting into the details of constant pool indices,

attribute tables and so on.

The following listing shows the fragments of the Jasmin file that is generated

from the Lime example used in Section 3.4.

4. Implementation 59

.class public A C1

.super java/lang/Object

.implements A

.field public sum I

.field protected i I

.method public sum1to9() I

.limit stack 4

.limit locals 5

...

aload 0

iconst 1

bipush 9

iadd

bipush 9

imul

iconst 2

idiv

putfield A C/sum I

getstatic java/lang/System/out Ljava/io/PrintStream;

aload 0

getfield A C/sum I

invokevirtual java/io/PrintStream/println(I)V

...

ireturn

.end method

The above example shows Jasmin’s syntax. We can take a look at the instructions

and directives that start with a “.” character used in this example. The first three

lines contain information about the class defined in the file. Three directives are used

in this part. The .class and .super directive tell the JVM the name of this class and its

1The reason for suffix “ C” will be explained later.

60 4. Implementation

superclass. After .class and .super, it is a list of the interfaces that are implemented

by the class you are defining, using the .implements directive.

After the header information, the next section of the Jasmin file is a list of field

definitions.

A field is defined using the .field directive:

.field <access-spec> <field-name> <descriptor> [= <value>]

The capital “I” in the .field directive is a type descriptor. Table 4.1. shows the

type descriptors used in Jasmin.

Descriptor Type Meaning

B byte signed byte

C char charactor

D double double-precision IEEE float

F float single-precision IEEE float

I int integer

J long long integer

S short signed short

Z boolean true or false

[C char[] single-dimensional array of 16-bit Unicode chars

[[F float[][] two-dimensional array of floats

[Ljava/lang/Thread Thread[] single-dimensional array of threads

V void method returns no result

Table 4.1: Type Descriptors in Jasmin

After listing the fields of the class, the rest of the Jasmin file lists methods defined

by the class.

A method is defined using the basic form:

.method <access-spec> <method-spec>

4. Implementation 61

<statements>

.end method

The following directives can be used only within method definitions:

.limit stack <integer>

sets the maximum size of the operand stack required by the method.

.limit locals <integer>

sets the number of local variables required by the method.

JVM instructions are placed between the .method and .end method directives.

JVM instructions can take zero or more parameters, depending on the type of in-

struction used.

4.1.5 Byte Code Engineering Library

For generating byte codes Java class file, we get help from Jasmin; we also need to ex-

tract information from class files for supporting separate compilation and inheritance.

BCEL is a good helper for doing this work.

BCEL operates at the level of actual JVM instructions; so it can let you dig into

the bytecode of Java classes and give you a convenient possibility to analyze, create,

and manipulate Java class files. BCEL parses the Java class file and generates a set

of objects which contain all the symbolic information of the given class: methods,

fields and byte code instructions, in particular.

62 4. Implementation

4.2 Strategy of Separating Subtyping and Sub-

classing

Lime uses three clauses (extend, implement and inherit) to establish the inheritance

relation. For example, the class header

class Sub extend Sup2 implement Sup1

builds an inheritance relation shown by an inheritance graph in Figure 4.1. In this

graph, as well as in all other Lime inheritance graphs, solid and dashed arcs are used

to represent subtype and subclass relationships, respectively.

Sup1Sup2

Sub

Figure 4.1: Inheritance Graph in Lime View

Now, we discuss how the inheritance relationship is implemented in the generated

executable Java class file. Java supports single inheritance and implementation of

multiple interfaces that can only contain method signatures and constant static vari-

ables. The superclass and the interfaces are referred to by super class and interfaces[]

in ClassFile structure. For each Lime source class, we generate two Java class files.

One stores a Java class that contains all the information in the original Lime file, and

4. Implementation 63

Sup1

Sup1_C
Sup2_C

Sup2

Sub

Sub_C

Figure 4.2: Inheritance Graph of Java Classes

its name ends with “ C”, the other stores a Java interface that still uses its original

name. An attribute declaration such as

attr s : Sub;

is translated to a Jasmin code like

.field s LSub

that generates the same content in Java class file as we declare it in Java as:

Sub s;

When we create an instance in Lime, we have to create it from a class type. For

example, the statement

s := new Sub();

will be translated to

64 4. Implementation

s := new Sub C()

in the background. For any Lime class X, we also make the generated class X C be a

subtype of type X by using a directive (.implement X) in X C ’s Jasmin code so that

the above assignment statement meets the requirement of the Lime type checking

system.

The graph in Figure 4.2 shows the inheritance relationship among the generated

Java classes. For Java, it is legal to assign an instance of Sub C to a variable declared

as a type of Sup1 or Sup2. According to our definition of extend, implement and

inherit, class Sub is Sup1 ’s subclass, not subtype. We built a type checking system

that checks whether the assigned variable type is the supertype of the instance’s

class. From the inheritance graph view, this job is to check whether there exists a

path that is composed of all solid arcs between two types. Since a supertype does

not contain any information on its subtypes, a subtype holds its direct supertypes in

its interfaces[] that builds a subtype relationship in a directed acyclic graph (DAG)

that may have multiple levels. Checking system travels the subtype relation DAG

and searches for the assigned supertype. If it exists in the subtype DAG, then the

substitution is valid.

From the inheritance graph, we can see that the subclass (Sub C) is still a subclass

of superclass (Sup2 C) in the generated Java classes inheritance relationship, so it

can inherit attributes, method’s interfaces and implementation from the superclass.

The substitution is prohibited by the Lime type checking system; the subtype (Sub)

extends its supertype interface Sup1, so it can inherit method interfaces from its

supertypes. We discuss how to handle inheriting specified behavior from supertypes

in Section 4.4.

4. Implementation 65

4.3 Handling Inheritance

In this section, we discuss how to handle inheritance in Lime. We only focus on han-

dling method inheritance. We use similar ways to handle attribute inheritance. The

following system is used for illustrating the process of handling method inheritance.

This system consists of the following classes:

class C inherit S13 implement S11, S12

class S11 extend S23 implement S21, S22

class S12 implement S24

class S13 extend S25

class S25 extend S32 implement S31

class S21

Classes S22, S23, S24, S31 and S32 are leaf node classes, they have similar class

declaration as class S21. The inheritance relation graph is shown in Figure 4.3.

Clause implement establishes a subtype relation represented as a solid arc. Clause

extend establishes a subclass relation represented as a dashed arc. Clause inherit

handles a kind of relation in which the child class is a subtype also a subclass of its

parent class; this kind of relation is represented as two parallel arcs, one is solid, the

other is dashed. This kind of relation exists between class C and class S13.

Handling method inheritance involves a number of Java classes such as

JavaClassHandler, ClassParser, JavaClass, MethodInfoGenerator, MethodInfo and

MethodTable. Classes ClassParser and JavaClass are from BCEL. The Lime parser

contains a method table of type MethodTable to hold the information on all meth-

ods that are defined in current class or inherited from superclasses and supertypes.

When the Lime parser handles inheritance clauses (extend, implement and inherit),

66 4. Implementation

 S11

 C

S12 S13

S21 S22 S23 S24 S25

S31 S32

Figure 4.3: Inheritance Graph of the Example System

it traverses the inheritance DAG in the depth first search (DFS) order, the order for

our example system is:

S21 −→ S22 −→ S23 −→ S11 −→ S24 −→ S12 −→ S31 −→ S32 −→ S25 −→ S13 −→ S31

−→ S32 −→ S25 −→ C.

For each class node, JavaClass extracts method’s information from Java class file

corresponding to current node. MethodInfoGenerator generates a set of instance of

MethodInfo that are added to the method table. The structure of MethodInfo is as

follows:

4. Implementation 67

MethodInfo {

int accessflag;

String className;

String methodName;

String methodArgument;

String methodReturn;

String methodPre = “”;

String methodPost = “”;

}

This process is briefly represented by the sequence diagram shown in Figure 4.4.

Traversing in the inheritance DAG is achieved by recursively calling class Java-

ClassHandler ’s method:

public static void handleInheritance(String supFilePath, boolean isInterface, boolean

isSupertype, boolean beAbstract, boolean isInherit, MethodTable mT, int inheritLevel)

This method is placed in Appendix A. The parameters, isInterface, isSupertype, be-

Abstract, and inInherit, are used for tracing and handling different inheritance cases:

• Case 1: class node reaches current class node via all dashed arcs. This kind of

classes such as S13, S25 and S32 are pure superclasses. The current class inher-

its method’s interface and implementation from them. Non-abstract methods

in these classes are kept non-abstract.

• Case 2: class node reaches current class node via all solid arcs. This kind of

classes such as S21, S22, S11, S24, S12 and S13 are pure supertypes. Current

class inherits method’s interface and behavioral specification that is precondi-

tion and postcondition from them. All methods in these classes are generated

68 4. Implementation

M
ethodTable

Java Classhandler
ClassParser

M
ethodInfoG

enerator

m
I: M

ethodInfo
handleInheritance()

jcls:JavaClass
create()

parse()

getSuperclassNam
e()

getInterfaceNam
es()

create()

createM
ethodInfos()

addM
ethodInfo(m

I)

F
igu

re
4.4:

S
eq

u
en

ce
D

iagram
for

C
lasses

H
an

d
lin

g
M

eth
o
d

In
h
eritan

ce

4. Implementation 69

as abstract MethodInfo by setting its accessflag, that means current class does

not inherit their implementation.

• Case 3: class node reaches current class node via mixed (dashed and solid) arcs.

This kind of classes such as S23 and S31 act as Java interface. Current class

can only inherit the method interface from them. Methods in these classes are

generated as abstract MethodInfo that contains no specification.

Class MethodTable’s method

public void addMethodInfo (MethodInfo mI)

whose source code is attached in Appendix A, also needs to handle different cases:

• Case 1: the added MethodInfo does not exist in method table. Just add it.

• Case 2: the class node of the adding MethodInfo is an ancestor node of the class

node of the existing MethodInfo. Override the accessflag, reset className and

handle behavioral specification.

• Case 3: the class nodes of the adding MethodInfo and the existing Method-

Info are in a different branch. Merge behavioral specification, only when the

adding MethodInfo is non-abstract and the existing one is abstract, override its

accessflag as non-abstract and reset className.

During handling inheritance, some fundamental language issues, such as abstract

class instantiation, overriding method with weaker access privileges, are handled.

70 4. Implementation

4.4 Supporting Assertion and Behavioral Subtyp-

ing

Lime supports assertions and uses pre, post and invariant clauses to formulate be-

havior specifications. The grammar for the assert statement is as follows:

Assert ::= “assert” expression

After an exception mechanism is provided to Lime, assert will be implemented as

follows:

if ¬ expression then raise an exception

We currently implement it as follows: If the expression does not hold, then print

assertion failure message and call system exit to halt execution.

Clauses pre, post and invariant are used to respectively introduce method pre-

condition, postcondition and class invariant. For emphasizing the behavioral speci-

fication, clause invariant is defined at the beginning of the class, just following the

attribute declaration; clauses pre and post are defined at the beginning of a method.

They are not in the execution position. We have to reorganize them according to

their execution order. During code generation, we respectively place pre and post

statements at the beginning and the end of the method in which they are defined so

that pre and post can be checked before and after method execution respectively; we

also generate a checkInvariant statement for the class invariant and place it at the

end of every method and initialization in the class. Then the class invariant will be

checked at every stable state.

Statements, pre, post and checkInvariant, are implemented in the same way as

the assert statement. Their failure message contains their corresponding information

such as the name of the method and class in which they are defined.

4. Implementation 71

Lime supports behavioral subtyping. Since Java does not support behavioral spec-

ification, we have to find a way to store the information of preconditions, postcondi-

tions and invariants in a Java class file. When we handle inheritance and separate

compilation, we always get the information of the other compilation units from their

Java class file. The reason is that in some situation such as using a library class, we

may not have the source code.

The class invariants, preconditions and postconditions are stored in field[] as

field info; invariant, preconditions and postconditions are respectively named by

classInvariant, method name concatenated with “pre” and method name concate-

nated with “post”. Their values, that is the predicate expression, are stored in at-

tribute[] as attribute info so that they can be extracted as constant values from the

constant pool.

Lime handles behavioral specification inheritance by traversing the subtype rela-

tion DAG and collecting all behavioral specifications in supertypes. For the situation

shown in Figure 4.3, current class C collects behavioral specification from class S21,

S22, S11, S24, S12 and S13. After the invariant, preconditions and postconditions

are extracted from the Java class files, the invariants are combined with logical and,

“∧”; the preconditions of the methods with the same signature are combined with

logical or, ∨; the postconditions of the methods with the same signature are com-

bined with logical and, ∧. The combined preconditions and postconditions are kept

in the method table; the class invariant is assigned to its a corresponding variable.

Statements pre, post and checkInvariant in the method generated code use the com-

bined expression instead of the expression defined in the current class so that dynamic

assertion checking can ensure that subtype preserves the behavior defined in all its

supertypes.

72 4. Implementation

4.5 Extending Lime Expression

Lime adds a number of new constructs to its expression syntax for expressiveness.

Most of the new added constructs involves boolean operations. At the JVM level,

there is no boolean type. Instead, booleans are represented as integers: 0 is used for

false; and 1 for true. Now, we discuss the new constructs’ implementation.

Logical implication, a ⇒ b, could be implemented as

a ≤ b

The above implementation is fine, but it is not a lazy evaluation that is used for the

existing logical operations and as well as or. Lazy evaluation is a concept that at-

tempts to minimize the work the computer has to do. It has two related, yet different,

meanings that could be described as delayed evaluation and minimal evaluation. The

evaluation strategy that we use is minimal evaluation in which an expression is only

evaluated until the point where its final value is known. This means that in some

cases it’s not necessary to evaluate all the parts of an expression. We implement it

as “¬a ∨ b”, that is

if ¬a then true else b

This implementation can handle undefinedness of b in case that a evaluates to false.

This is because a evaluates to false, ¬a will be true, and true ∨ b evaluates to true

for any value of b.

Similarly, logical consequence, a ⇐ b, is implemented as

if a then true else ¬b

Logical equivalence, ⇔ has the same implementation as “=”, but it is given a

lower precedence by the Lime grammar.

Two notations, result and old, can be used in postconditions. Keyword result in a

4. Implementation 73

method’s postcondition holds the method’s return value. Its implementation sequence

is: first we need to declare a variable with the method return type and named by

the method name concatenated with “result”; then we change the implementation of

the return statement, let it assign the return value to the special variable, then jump

to checkInvariant statement; the implementation of result is referring to the special

variable.

The old construct in postconditions is used for referring to the pre-state value

of its expression. The notation old is more difficult to implement than result, since

each method postcondition can have a number of old constructs associated with

different expressions. During parsing, we count each old construct and give it a serial

number; we also pass the token list, which is generated for the post expression, to its

corresponding method’s AST node in which we do the related code generation. We

declare variables for each old construct. During code generation, we get the expression

of the old construct from the token list of post expression and replace its tokens by

a new token with the corresponding variable so that in the new post expression

generated from the exchanged token list, the old construct has been replaced by this

variable. We put an assignment statement, that assigns the extracted expression to

the corresponding variable, in the beginning of the method. Figure 4.5 demonstrates

the above implementation.

Every quantification is based on an operator such as +, ∗,∧,∨. We use the

following pseudocode to show the implementation. Quantifications are directly

translated to Jasmin code in the actual implementation.

∀ i | low ≤ i ≤ up • exp(i) is implemented as

for i:= low to up do

if ¬exp(i) then return false;

74 4. Implementation

Original Lime source code

invariant Icur

method m : T

pre exppre

post exppost // including result and old(ei) ... old(ei+n)

begin

...

return a;

end

Generated code

attr mresult : T ;

attr oldi ...

invariant Icur

method m : T

begin

oldi := old(ei);

...

pre exppre ∨ exppreInh; // exppreInh inherited from all supertypes

begin // the start of original method body

...

mresult := a;

end; //end of original method body

checkInvariant Icur ∧ IInh; // IInh inherited from all supertypes

post exppost ∧ exppostInh; // (exppost ∧ exppostInh)[result, old(ei), ..., old(ei+n)\mresult,

oldi, ..., oldi+n]

end // end of method

Figure 4.5: Demonstration of Implementaiton for old and result

4. Implementation 75

return true;

∃ i | low ≤ i ≤ up • exp(i) is implemented as

for i:= low to up do

if exp(i) then return true;

return false;

∑
i | low ≤ i ≤ up • exp(i) is implemented as

for (sum := 0, i:= low to up do)

sum := sum + exp(i);

return sum;

Π i | low ≤ i ≤ up • exp(i) is implemented as

for (product := 1, i:= low to up do)

product := product * exp(i);

return product;

MAX i | low ≤ i ≤ up • exp(i) is implemented as

if (low > up) then error;

for (max := exp(low), i:= low to up do)

if exp(i) > max then

max := exp(i);

return max;

MIN i | low ≤ i ≤ up • exp(i) is implemented as

76 4. Implementation

if (low > up) then error;

for (min := exp(low), i:= low to up do)

if exp(i) < min then

min := exp(i);

return min;

NUM i | low ≤ i ≤ up • exp(i) is implemented as

for (num := 0, i:= low to up do)

if exp(i) then

num++;

return num;

4.6 Implementing LimeD

For each project, LimeD generates a sub-directory docs to hold all generated docu-

mentation files. To unify the documentation style, LimeD generates a Cascading Style

Sheets (CSS) file. LimeD also generates a summary page for the whole project, that

contains all classes’ declarations. For easily accessing class documentation, a frame

linked indices for all classes is generated and acts as a navigation menu. The main

page in a frame view consists of two frames, the left frame contains the navigation

menu, the right frame contains the summary page.

The documentation of each individual class starts with the class description ex-

tracted from the documentation comment in the source file. Documentation com-

4. Implementation 77

ments can contain embedded HTML code. The document may contain the following

parts:

• Class Invariant contains the invariant defined in the current class and the

invariants inherited from all supertypes. The inherited invariants are “anded” to

generate a single expression. It also gives the invariant that should be preserved

by the current class. All the information is extracted with the aid of the Lime

parser that holds the current class invariant and gets inherited ones from Java

class files of supertypes.

• Class Hierarchy Lime supports single subclassing. The source code contains

first level superclass name in inherit or extend clause. The upper level superclass

name has to be extracted from its direct subclass’s Java class file. We use a

recursive function to extract all level superclass and display the class hierarchy

graphically.

• Type Hierarchy We can use the same strategy for superclass to get informa-

tion on supertypes. Since Lime supports multiple subtypes, we use an indented

list to present subtype relation.

• Attribute contains all non-private attributes defined in the current class.

• Inherited Attribute contains all attributes inherited from superclasses and

supertypes. All inherited attributes are extracted from Lime parser’s symbol

table.

• Method contains all methods defined in the current class. It provides not only

the method signature but also precondition and postcondition defined in the

78 4. Implementation

current class. It also provides the preserved assertions: if the method redefines

or implements the one in supertypes, it has to preserve the precondition and

postcondition defined in supertypes.

• Inherited Method contains all inherited methods. It provides the method

signature and preserved precondition and postconditions.

In all parts mentioned above and in individual methods, we leave a named anchor

for navigating between pages and inside a page. A normal way to display mathe-

matical symbols on web browser is to use decimal reference or entity reference in

HTML, for example, using Σ or Σ to display Σ. Since Lime uses UTF-8

encoding for storing its source code, the behavioral specification obtained from the

Lime parser is still in UTF-8 encoding. We do not need to translate mathematical

symbol to its decimal or entity reference. We can choose the character set in gener-

ated HTML by adding the following meta between HEAD.

<meta http-equiv=“Content-Type” content=“text/html; charset=utf-8” >

Chapter 5

Testing

To verify the design and implementation of the added Lime features, we performed

testing after each developing stage. The examples used are small, simple, and just

for testing purposes. They may not be very meaningful.

5.1 Fundamental Test

While adding the inheritance mechanism to Lime, we also had to handle many related

issues. We use the examples shown in Figure 5.1 to test the following cases. The Lime

source code and test results are attached in Appendix B.

• Assigning a value to a constant variable: For an assignment statement in class

A

z := 2; // z is declared as a const

Lime compiler should be able to detect it and produce an error message.

• Non-abstract class declaration: Class C is declared as

class C implement B

79

80 5. Testing

abstract class A
attr x: integer
const z = 4

public method m1
protected abstract method m2: integer

class B inherit A
public method m2 : integer

class C implement B
public method m1

class D extend B
public method m3

class E inherit B implement C
private method m1

program T

var a: A

var c: C

var d: D

Figure 5.1: Fundamental Test Examples

5. Testing 81

then C inherits the interfaces of method m1 and m2 from class B. It only

implements m1, so method m2 is still an abstract method. Class C cannot

be declared as a non-abstract class. The Lime compiler should give an error

message.

• Assigning weaker access privilege: Class B overrides a protected method m2

declared in class A as public, which is a legal method overriding. Class E tries

to override a public method m1 as private, which is an illegal method overriding.

Class E is a subtype of C, B and A, method m2 in supertypes can be used in a

larger scope, any one can call it. After a substitution of an object of class C by

an object of class E, the method m1 cannot be accessed in the original scope.

The Lime compiler should give an error message for this case.

• Creating an abstract class instance: In program T, the first line

a := new A();

tries to create an instance of the abstract class A. The Lime compiler should

detect it and leave an error message.

• Assigning incompatible type: Assume following lines in Program T

a := d;

a is a variable declared as type A; d is a variable as type D and holds an instance

of class D. Class D extends class B, it is not a subtype of A. The Lime compiler

should prohibit this kind substitution and give an error message.

• Showing polymorphism in Lime: Lime supports polymorphism using dynamic

linking. In the following lines of program T

a := new B();

82 5. Testing

a.m1;

a := new E();

a.m1;

the first invocation of method m1 should execute the method m1 defined in

class B, the second should execute the one in class E.

The test results show that the Lime compiler can handle the above issues, and

satisfies the design requirements.

5.2 Assertion and Extension Expression Test

We use class AS to test the sequence of dynamic assertion checking and the handling

of undefinedness in implication and consequence expressions implemented by using

lazy evaluation.

class AS

attr x: integer;

attr y: integer;

attr i: integer;

attr res: integer;

invariant x = 3

public method dbcTest

pre x = y

post y = res

begin

x := 3;

y := 5;

assert x > y;

res := Σ i|0 ≤ i ≤ 6 • i + 1;

println(res);

5. Testing 83

res := Π i|0 ≤ i ≤ 6 • i + 1;

println(res);

res := MAXi|0 ≤ i ≤ 6 • i + 1;

println(res);

res := MINi|0 ≤ i ≤ 6 • i + 1;

println(res);

if (false ⇒ 4/0 ≤ 0) then

println (1);

if (true ⇐ 4/0 ≤ 0) then

println (2)

end

initialization

begin

x := 4;

y := 5

end

end

Assertion checking cab be turned on and off. We can first test the usage of quan-

tifiers and the handling of undefinedness in implication and consequence expressions

by turning off the assertion checking. After we turn on assertion checking, we test

the reorganizations of assertion clauses. Lime should check the class invariant after

the initialization and every method call, check precondition, postcondition before,

after method execution, respectively. After a violation of assertion is detected and

reported, we use a negation ¬ to correct it and continue the test. The test result is

attached in Appendix B. The test results show Lime handles assertions and unde-

finedness properly.

84 5. Testing

5.3 A Small System

We use a small system shown in Figure 5.2 to demonstrate the usage of the new Lime

features. We use it to test specification inheritance and the notation old and result.

This system is also used for demonstrating documentation generation. The source

code for this system and test result are attached in Appendix C.

In this system, class Add contains a method sum1to9 that is implemented using

a while loop. For testing purpose, we put quantifier ∀ and notation old and result in

its postcondition:

post (∀ i | 0 < i < 10 • i < result) ∧ (old(sum) < result)

Abstract class AddSpe gives a new specification for method sum1to9

post result = Σ i | 0 < i < 10 • i

Class AA is a subclass of Add and a subtype of Add and AddSpe. It contains a

method ave1to9 used for calculating the average of sequence 1, 2, ..., 9. We use an

existential quantifier in its postcondition

post (∃ i | 1 ≤ i ≤ 9 • i < result) ⇒ (∃ i | 1 ≤ i ≤ 9 • i > result)

Class AA inherits the implementation of method sum1to9 from class Add. It overrides

it with a different implementation. Since it is a subtype of Add and AddSpe, it has

to preserve the behavior specified in Add and AddSpe. The test result shows all

the quantifiers, notations, and extended expression work properly. Here, we use a

different way to test what kinds of assertions are checked in run-time; we take the

fragment of the generated intermediate file AA.lime.LIME to show the reorganized

assertions. This generating process has been explained in the Section 4.4.

public method sum1to9: integer

begin

5. Testing 85

public class Add
public attr sum : integer
protected attr i : integer

public method sum1to9 : integer

public abstract class AddSpe

protected attr i : integer

 public abstract method sum1to9 : integer

public class AA inherit Add implement AddSpe

attr t : integer
protected attr i : integer

public method ave1to9 : integer
public method sum1to9 : integer

public abstract class ProSpe

protected attr i : integer

 public abstract method pro1to9 : integer

public class Arith inherit AA implement ProSpe

attr f: integer
 protected attr i : integer

public method pro1to9 : integer

Figure 5.2: A Small System

86 5. Testing

monitorenter;

notifyAll;

/* following is the actual body of the method */

pre (sum = 0);

precondition pre (sum = 0) is from Add

old0 := old(sum);

evaluate expression in old notation and assign to a special variable

begin

sum := (1 + 9)*9/2;

println(sum);

return sum

end;

checkInvariant (sum 0) ;

this invariant is from Add

post(result = Σ i | 0 < i < 10 • i) ∧ ((∀ i | 0 < i < 10 • i < result) ∧ (old0 < result));

in this postcondition, (result = Σ i | 0 < i < 10 • i) is from AddSpe

(∀ i | 0 < i < 10 • i < result) ∧ (old0 < result) is from Add

and the old notation has been replaced by its value at pre-state.

5. Testing 87

monitorexit

end

The above generated intermediate code shows how subtype preserves the behavior of

its supertypes. That is the intention of the design.

5.4 Generated Documents

We use our LimeD to generate documentations for the system shown in Figure 5.2.

For a project, LimeD generates a class links and a summary page that uses a table

to hold all class declarations in which the class name is a link to its corresponding

document. The class links and summary page are located in the left and the right

frames respectively shown in Figure 5.3.

LimeD generates documentation for each class. Class Arith’s document is shown

in Figures 5.4, 5.5, and 5.6. The class documentation contains Class Invariant, Class

Hierarchy, Type Hierarchy, Attribute and Method parts and their links are on the top

and bottom of the page.

The Class Invariant part contains invariants defined in current class and inherited

from supertypes. It also gives the invariant that should be preserved by the current

class. It is shown in Figure 5.4.

The Class Hierarchy and Type Hierarchy parts show the inheritance relationship.

The Attribute part represents the attributes declared in current class. The inherited

attributes are given in the Inherited Attribute part. These are shown in Figure 5.5.

The Method part contains the method signature and specification; that is, the

preconditions and postconditions defined in current class and inherited from super-

88 5. Testing

Figure 5.3: Summary Page

5. Testing 89

Figure 5.4: Class Arith Document Part One

90 5. Testing

Figure 5.5: Class Arith Document Part Two

5. Testing 91

Figure 5.6: Class Arith Document Part Three

92 5. Testing

types. It also gives the preserved preconditions and postconditions. The inherited

methods are in the Inherited Method part. They are shown in Figure 5.6.

Chapter 6

Conclusions

6.1 Summary

In this thesis, we present the development of the following Lime language features:

• Separating subclassing from subtyping. An inheritance mechanism has been

proposed to separate subclassing from subtyping, to make the inheritance in

Lime more flexible.

• Integrating specification into the language. The preconditions, postconditions

and invariant clauses are used in Lime for expressing the behavioral specification

that can be checked at run-time.

• Supporting automatic documentation generation. A documentation tool LimeD

has been developed for generating behavioral interface documentation.

• Providing high expressiveness. Lime expression can be written using quantifiers

and other standard mathematical notations.

93

94 6. Conclusions

6.2 Conclusion

Based on the above summarization, we conclude:

1. The inheritance mechanism proposed for Lime supports separating subclassing

from subtyping so that code reuse can remove the restriction of satisfying the

requirement of subtyping. It also allows the developing class selectively inherits

the required contents from the existing classes. This mechanism can help in

improving software reusability.

2. The integrated behavioral specification in Lime can help improving software

correctness.

3. The documentation tool LimeD generates up-to-date documents for the ex-

isting system that is very helpful for improving software maintainability and

extendibility.

4. The usage of quantifiers and standard mathematical notation can help improv-

ing software readability.

6.3 Future Work

One possible direction to extend our work is to combine assertions with concurrency.

It would be a challenging research direction to provide an exception mechanism that

can handle assertions and concurrency.

Appendix A

Java Source Code

Method handleInheritance in Class JavaClassHandler :

/** static Method handleInheritance puts all inherited MethodInfo to method table

* by Depth First Search order First parser super class and interfaces file and

* generate JavaClass, get all inherited methods information from JavaClass.

* use the obtained method information to generte MethodInfos and put them to

* method table for later static checking.

*/

public static void handleInheritance(String supFilePath, boolean isInterface,

boolean isSupertype, boolean beAbstract, boolean

isInherit, MethodTable mT, int inheritLevel) {

JavaClass supClass = null;

File supFile;

// isInterface used for creating File

if (isInterface)

supFile = new File(supFilePath + "_C.class");

95

96 A. Java Source Code

else

supFile = new File(supFilePath + ".class");

if (!supFile.exists()) {

System.out.println("Error: super Class or Type file "

+ supFile.toString() + " does not exist.");

} else {

try {

supClass = new ClassParser(supFile.getAbsolutePath()).parse();

}

catch (IOException ioe) {

System.out.println(ioe);

}

catch (ClassFormatError cfe) {

System.out.println(cfe);

}

String superName = supClass.getSuperclassName();

String [] interfaceNames = supClass.getInterfaceNames();

boolean inherit = false; // "inherit" and "isInherit" used for

// avoid repeatly checking assertion

for (int i = 0; i < interfaceNames.length; i++) {

if (!supClass.getClassName().equals(interfaceNames[i] + "_C")) {

if (superName.equals(interfaceNames[i] + "_C")) {

inherit = true;

handleInheritance(interfaceNames[i], true, isSupertype, true,

true, mT, inheritLevel + 1);

} else

A. Java Source Code 97

handleInheritance(interfaceNames[i], true, isSupertype, true,

isInherit, mT, inheritLevel + 1);

}

}

if (!(superName.equals("java.lang.Object"))) {

handleInheritance(superName, false, false, beAbstract,

isInherit || inherit, mT, inheritLevel + 1);

}

MethodInfo [] methodInfos

= new MethodInfoGenerator(isInterface, isSupertype, beAbstract,

isInherit).createMethodInfos(supClass, inheritLevel);

for (int i = 0; i < methodInfos.length; i++) {

String mName = methodInfos[i].getMethodName();

if (!(mName.equals("<init>") || methodInfos[i].isPrivate()

|| (mName.startsWith("check") && mName.endsWith("Assertion")))) {

mT.addMethodInfo(methodInfos[i]);

}

}

}

}

Method addMethodInfo in Class MethodInfo:

/**

* Method addMethodInfo add MethodInfo to method table and check assign weaker

* access privileges error collect all the method assertion info. from super types

* for Behavioural subtyping,

*/

98 A. Java Source Code

public void addMethodInfo (MethodInfo mI) {

// use method name and argument as hask table key

String key = mI.getMethodName() + mI.getMethodArgument();

if(!mTable.containsKey(key)) { //case: method does not exist in method table

mTable.put(key, mI);

if (mI.isAbstract()) {

numAbsMethod++;

}

} else { //case: method already in method table

MethodInfo tempMI = (MethodInfo) mTable.get(key);

if(JavaClassHandler.isAncestor(mI.getClassName(), tempMI.getClassName())) {

//case: the existing method in ancestor class, check weaker access privilege

// and overrider it in method table

//check access privilege

try {

checkAccessPrivilege(mI, tempMI);

} catch (WeakerAccessException e) {

}

// merge method assertions

String hMethodPre = tempMI.getMethodPre();

hMethodPre = hMethodPre.replaceAll("\"", "");

String lMethodPre = mI.getMethodPre();

lMethodPre = lMethodPre.replaceAll("\"", "");

if (hMethodPre.length() > 0) {

if (lMethodPre.length() > 0)

mI.setMethodPre(lMethodPre + “
∨

” + hMethodPre);

A. Java Source Code 99

else

mI.setMethodPre(hMethodPre);

}

String hMethodPost = tempMI.getMethodPost();

hMethodPost = hMethodPost.replaceAll("\"", "");

String lMethodPost = mI.getMethodPost();

lMethodPost = lMethodPost.replaceAll("\"", "");

if (hMethodPost.length() > 0) {

if (lMethodPost.length() > 0)

mI.setMethodPre(lMethodPre + “
∧

” + hMethodPre);

else

mI.setMethodPost(hMethodPost);

}

mTable.remove(key);

mTable.put(key, mI);

if(mI.isAbstract() && !tempMI.isAbstract()) {

numAbsMethod++;

}

if(!mI.isAbstract() && tempMI.isAbstract()) {

numAbsMethod--;

}

} else {

// two methods in differen branch in inherited tree, only thing need

// to do override abstract method by non abstract one

// for Behavioural subtype, the method Info in method table should

100 A. Java Source Code

// hold all assertion info.

if(!mI.isAbstract() && tempMI.isAbstract()) {

String hMethodPre = tempMI.getMethodPre();

hMethodPre = hMethodPre.replaceAll("\"", "");

String lMethodPre = mI.getMethodPre();

lMethodPre = lMethodPre.replaceAll("\"", "");

if (hMethodPre.length() > 0) {

if (lMethodPre.length() > 0)

mI.setMethodPre(lMethodPre + “
∨

” + hMethodPre);

else

mI.setMethodPre(hMethodPre);

}

String hMethodPost = tempMI.getMethodPost();

hMethodPost = hMethodPost.replaceAll("\"", "");

String lMethodPost = mI.getMethodPost();

lMethodPost = lMethodPost.replaceAll("\"", "");

if (hMethodPost.length() > 0) {

if (lMethodPost.length() > 0)

mI.setMethodPost(lMethodPost + “
∧

” + hMethodPost);

else

mI.setMethodPost(hMethodPost);

}

mTable.remove(key);

mTable.put(key, mI);

numAbsMethod--;

A. Java Source Code 101

} else {

String hMethodPre = tempMI.getMethodPre();

hMethodPre = hMethodPre.replaceAll("\"", "");

String lMethodPre = mI.getMethodPre();

lMethodPre = lMethodPre.replaceAll("\"", "");

if (lMethodPre.length() > 0) {

if (hMethodPre.length() > 0)

tempMI.setMethodPre(hMethodPre + “
∨

” + lMethodPre);

else

tempMI.setMethodPre(lMethodPre);

}

String hMethodPost = tempMI.getMethodPost();

hMethodPost = hMethodPost.replaceAll("\"", "");

String lMethodPost = mI.getMethodPost();

lMethodPost = lMethodPost.replaceAll("\"", "");

if (lMethodPost.length() > 0) {

if (hMethodPost.length() > 0)

tempMI.setMethodPost(hMethodPost + “
∧

” + lMethodPost);

else

tempMI.setMethodPost(lMethodPost);

}

}

}

}

}

102 A. Java Source Code

Appendix B

Fundamental and Assertion Test

Results

B.1 Lime Source Code

abstract class A

attr x: integer;

const z = 4;

public method m1

begin

// z := 2;

x := 10;

println(x)

end

protected abstract method m2 : integer

end // end of A

class B inherit A

103

104 B. Fundamental and Assertion Test Results

public method m2 :integer

begin

return 2

end

end // end of B

// class C implement B

abstract class C implement B

public method m1

begin

println(z)

end

end // end of C

class D extend B

public method m3

begin

x := 3;

println(x)

end

end // end of D

class E extend B implement C

attr y : integer;

//private method m1

public method m1

begin

y := 14;

println(y)

end

B. Fundamental and Assertion Test Results 105

end // end of E

program T

var a : A

var c : C

var d : D

begin

//obj a := new A();

obj a := new B();

call a.m1;

obj a := new E();

call a.m1;

obj d := new D()

//a := d

end // end of T

B.2 Fundamental Test Results

The test results has been simplified and some explanations are added:

[stan:~] liangj2% cd work/LimeC

[stan:~/work/LimeC] liangj2% java LimeC -IP A.lime

Lime Parser: Reading from file A.lime . . .

Error: can not to assign a value to constant variable z

Lime Parser: Encountered errors during parse.

detect assigning value to constant variable

we comment out this assignment statement and compile again

[stan:~/work/LimeC] liangj2% java LimeC -IP A.lime

106 B. Fundamental and Assertion Test Results

Lime Parser: Reading from file A.lime . . .

Lime Parser: Lime program parsed successfully.

[stan:~/work/LimeC] liangj2% java LimeC -J A.lime.LIME

Lime Parser: Reading from file A.lime.LIME . . .

Lime Parser: Lime program parsed successfully.

[stan:~/work/LimeC] liangj2% jasmin A.j

Generated: A.class

[stan:~/work/LimeC] liangj2% jasmin A_C.j

Generated: A_C.class

[stan:~/work/LimeC] liangj2% java LimeC -IP B.lime

......

[stan:~/work/LimeC] liangj2% java LimeC -IP C.lime

Lime Parser: Reading from file C.lime . . .

Error: C should be declared abstract; it does not define the following methods

m2 () : integer in class B

detect declaring an non abstract class with non implemented method

we change its declaration to abstract class and recompile.

......

[stan:~/work/LimeC] liangj2% java LimeC -IP D.lime

......

[stan:~/work/LimeC] liangj2% java LimeC -IP E.lime

Lime Parser: Reading from file E.lime . . .

Error: m1 () in E can not override m1 () in A; attempting to assign weaker access privileges.

detect assigning weaker access privilege

we change m1’s access modifier from private to public and recompile.

[stan:~/work/LimeC] liangj2% java LimeC -IP E.lime

B. Fundamental and Assertion Test Results 107

......

[stan:~/work/LimeC] liangj2% java LimeC -IP T.lime

Lime Parser: Reading from file T.lime . . .

Error: A is abstract; can not be instanced.

Error: incompatible types; d’s type (D) is not the subtype of a’s type (A)

a := d

Lime Parser: Encountered errors during parse.

detect creating an instance from an abstract class

detect incompatible type assignment

we comment out both of lines and recompile.

[stan:~/work/LimeC] liangj2% java LimeC -IP T.lime

......

[stan:~/work/LimeC] liangj2% java T

10

14

These two lines show polymorphism in Lime

The first is from the execution of method in class B

The second is from the execution of method in class E

[stan:~/work/LimeC] liangj2%

B.3 Assertion Test Results

[stan:~/work/LimeC] liangj2% java LimeC -IP AS.lime

Lime Parser: Reading from file AS.lime . . .

Lime Parser: Lime program parsed successfully.

108 B. Fundamental and Assertion Test Results

[stan:~/work/LimeC] liangj2% java LimeC -J AS.lime.LIME

We use -J to turn asseriton checking off

Lime Parser: Reading from file AS.lime.LIME . . .

Lime Parser: Lime program parsed successfully.

[stan:~/work/LimeC] liangj2% jasmin AS.j

Generated: AS.class

[stan:~/work/LimeC] liangj2% jasmin AS_C.j

Generated: AS_C.class

[stan:~/work/LimeC] liangj2% java LimeC -IP TA.lime

Lime Parser: Reading from file TA.lime . . .

......

[stan:~/work/LimeC] liangj2% java TA

28

This is the sum of sequence 1, 2 ... 7

5040

This is the product of sequence 1, 2 ... 7 that is 7!

7

This is the maximum of sequence 1, 2 ... 7

1

This is the minimum of sequence 1, 2 ... 7

B. Fundamental and Assertion Test Results 109

1

When implication false ⇒ 4/0 evaluates true, print it out.

undefined 4/0 is handled.

2

print out for true ⇐ 4/0.

We turn assertion checking on

[stan:~/work/LimeC] liangj2% java LimeC -IP AS.lime

Lime Parser: Reading from file AS.lime . . .

Lime Parser: Lime program parsed successfully.

[stan:~/work/LimeC] liangj2% java LimeC -JA AS.lime.LIME

We use -JA to turn asseriton checking off

......

[stan:~/work/LimeC] liangj2% java TA

Class invariant assertion failed in method Initialization of class AS

abnormal program termination

[stan:~/work/LimeC] liangj2%

initialization x:= 4; makes class invariant x = 3 checking fail.

we negate invariant, continue test.

110 B. Fundamental and Assertion Test Results

[stan:~/work/LimeC] liangj2% java TA

Precondition assertion failed in method dbcTest of class AS

abnormal program termination

precondition x = y fails since x := 4; y := 5 in initialization.

negate precondition and continue test.

[stan:~/work/LimeC] liangj2% java TA

Assertion failed in method dbcTest of class AS

abnormal program termination

assert (x > y) fails, negate it, continue test.

[stan:~/work/LimeC] liangj2% java TA

28

5040

7

1

1

2

Class invariant assertion failed in method dbcTest of class AS

abnormal program termination

class invariant fails again, since x := 3; inside method.

we comment out invariant. continue test.

[stan:~/work/LimeC] liangj2% java TA

28

5040

7

B. Fundamental and Assertion Test Results 111

1

1

2

Postcondition assertion failed in method dbcTest of class AS

abnormal program termination

postcondition y = res fails since y := 5 in initialization, res holds 1.

negate precondition and continue test.

[stan:~/work/LimeC] liangj2% java TA

28

5040

7

1

1

2

Right now, everything is fine

112 B. Fundamental and Assertion Test Results

Appendix C

A Small System

C.1 Source Code

{ @description This class is used to test specification violation detection by

dynamically check class invariant, pre and post condition.

@author Emil Skerinski

@author Jie Liang

@version 1.4

}

public class Add

public attr sum : integer;

protected attr i : integer;

invariant sum ≥ 0

{@description this method used for calculating sum of sequence 1,2,...,9 }

public method sum1to9: integer

pre sum = 0

post (∀ i | 0 < i < 10 • i < result) ∧ (old(sum) < result)

113

114 C. A Small System

begin

i := 1;

while i < 10 do

begin

sum := sum + i;

i := i + 1

end;

return sum

end

initialization

sum := 0

end // end of Add

{ @description This class gives a specification of adding the sequence. }

public abstract class AddSpe

protected attr i : integer;

public abstract method sum1to9: integer

post result = Σ i | 0 < i < 10 • i

end \\ end of AddSpe

{ @description This class is used to test specification violation detection by

dynamically check class invariant, pre and post condition.

@author Emil Skerinski

@author Jie Liang

@version 1.4

}

public class AA inherit Add implement AddSpe

attr t: integer;

C. A Small System 115

protected attr i: integer;

{@description This method is used to calculate the average of sequence of 1..9 }

public method ave1to9 : integer

post (∃ i | 1 ≤ i ≤ 9 • i < result) ⇒ (∃i | 1 ≤ i ≤ 9 • i > result)

begin

t := call sum1to9;

t := t/9;

println(t);

return t

end

{@description This method overrides the inherited one with different implementation }

public method sum1to9: integer

begin

sum := (1 + 9)*9/2;

println(sum);

return sum

end

end // end of AA

{ @description This class gives a specification of production the sequence 1, 2, ...9}

public abstract class ProSpe

protected attr i : integer;

public abstract method pro1to9: integer

post result = Πi | 0 < i < 10 • i

end //end of ProSpe

{ @description This class is used to test specification violation detection by

116 C. A Small System

dynamically check class invariant, pre and post condition.

@author Emil Skerinski

@author Jie Liang

@version 1.4

}

public class Arith inherit AA implement ProSpe

attr f: integer;

protected attr i: integer;

{@description This method is used to calculate the factorial 9!}

public method pro1to9 : integer

begin

f := 1;

i := 1;

while i 9 do

begin

f := f * i;

i := i + 1

end;

println(f);

return f

end

end // end of Arith

program TA

var ar : Arith

var aa : AA

begin

obj ar := new Arith();

call ar.ave1to9;

call ar.sum1to9;

C. A Small System 117

call ar.pro1to9

end

C.2 Test Results

[stan:~/work/LimeC] liangj2% java LimeC -IP Add.lime

Lime Parser: Reading from file Add.lime . . .

Lime Parser: Lime program parsed successfully.

[stan:~/work/LimeC] liangj2% java LimeC -JA Add.lime.LIME

Lime Parser: Reading from file Add.lime.LIME . . .

Lime Parser: Lime program parsed successfully.

[stan:~/work/LimeC] liangj2% jasmin Add.j

Generated: Add.class

[stan:~/work/LimeC] liangj2% jasmin Add_C.j

Generated: Add_C.class

[stan:~/work/LimeC] liangj2% java LimeC -IP AddSpe.lime

......

[stan:~/work/LimeC] liangj2% java LimeC -IP AA.lime

......

[stan:~/work/LimeC] liangj2% java LimeC -IP ProSpe.lime

......

[stan:~/work/LimeC] liangj2% java LimeC -IP Arith.lime

......

[stan:~/work/LimeC] liangj2% java LimeC -IP TA.lime

Lime Parser: Reading from file TA.lime . . .

Lime Parser: Lime program parsed successfully.

[stan:~/work/LimeC] liangj2% java LimeC -JA TA.lime.LIME

Lime Parser: Reading from file TA.lime.LIME . . .

Lime Parser: Lime program parsed successfully.

118 C. A Small System

[stan:~/work/LimeC] liangj2% jasmin TA_C.j

Generated: TA.class

[stan:~/work/LimeC] liangj2% java TA

45

method ave1to9 uses sum1to9, printed from sum1to9

5

the result of ave1to9

45

the result of sum1to9

362880

the result of pro1to9

Bibliography

[1] G. Adams, “Internationalization and character set standards,” StandardView,

vol. 1, no. 1, pp. 31–39, 1993.

[2] P. America, “Designing an object-oriented programming language with be-

havioural subtyping,” in Foundations of Object-Oriented Languages, Lecture

Notes in Computer Science (J. de Bakker, W. de Roever, and G. Rozenberg,

eds.), vol. 489, (REX School/Workshop, Noordwijkerhout, The Netherlands,

May/June 1990), pp. 60–90, Springer-Verlag, 1991.

[3] P. America and F. van der Linden, “A parallel object-oriented language with

inheritance and subtyping,” in Proceedings OOPSLA/ECOOP ’90, ACM SIG-

PLAN Notices, vol. 25, pp. 161–168, October 1990.

[4] A. W. Appel, Modern Compiler Implementation in Java. Cambridge University

Press, 1998.

[5] A. Avenarius and S. Oppermann, “FWEB: a literate programming system for

fortran8x,” ACM SIGPLAN Notices, vol. 25, pp. 52–58, January 1990.

[6] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim, “Jass - Java with asser-

tions,” in Proceedings of the First Workshop on Runtime Verification, Electronic

119

120 BIBLIOGRAPHY

Notes in Theoretical Computer Science (K. Havelund and G. Rosu, eds.), vol. 55,

Elsevier Science, July 2001.

[7] G. M. Birtwistle, O. J. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA Begin.

Auerbach, 1973.

[8] K. B. Bruce, A. Schuett, and R. van Gent, “PolyTOIL: A type-safe polymorphic

object-oriented language,” ACM TOPLAS, vol. 25, no. 2, pp. 225–290, March

2003.

[9] T. Budd, An Introduction to Object-Oriented Programming. Addison Wesley,

third ed., 2002.

[10] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M.

Leino, and E. Poll, “An overview of JML tools and applications,” in Eighth Inter-

national Workshop on Formal Methods for Industrial Critical Systems (FMICS

03), Electronic Notes in Theoretical Computer Science, vol. 66, (Trondheim,

Norway), pp. 1–17, Elsevier Science, June 5–7, 2003.

[11] C. Chen, “A Tool for Detecting Fragile Base Class Problem in Java,” Master’s

thesis, Department of Computing and Software, McMaster University, 2002.

[12] Y. Cheon and G. T. Leavens, “A Runtime Assertion Checker for the Java Model-

ing Language (JML),” in International Conference on Software Engineering Re-

search and Practice (SERP), pp. 322–328, Las Vegas, Nevada, USA: Computer

Science Research, Education, and Applications (CSREA) Press, June 2002.

[13] W. R. Cook, W. L. Hill, and P. S. Canning, “Inheritance is not subtyping,”

in Proceedings of the ACM Conference on Principles of Programming Languages

BIBLIOGRAPHY 121

(POPL ’90), (San Francisco), pp. 125–135, ACM Press. Addison-Wesley, January

1990.

[14] F. Cristian, “Exception handling and software fault tolerance,” IEEE Transac-

tions on Computers, vol. 31, no. 6, pp. 531–540, June 1982.

[15] E. Cusack, “Inheritance in object oriented Z,” in ECOOP ’91 European Con-

ference on Object-Oriented Programming, Lecture Notes in Computer Science

(P. America, ed.), vol. 512, (Geneva, Switzerland), pp. 167–179, Springer-Verlag,

July 1991.

[16] M. Day, R. Gruber, B. Liskov, and A. C. Myers, “Subtypes vs. where clause:

Constraining parametric polymorphism,” in Proceedings of the tenth annual con-

ference on Object-Oriented Programming systems, languages and applications,

ACM SIGPLAN Notices, vol. 30, (Austin, TX, USA), pp. 156–168, October

1995.

[17] K. K. Dhara and G. T. Leavens, “Forcing behavioral subtyping through spec-

ification inheritance,” in Proceedings of the 18th international Conference on

Software Engineering,, (Berlin, Germany), pp. 258–267, IEEE Computer Soci-

ety Press, March 1996.

[18] M. J. Dürst, “Uniprep - preparing a C/C++ compiler for Unicode,” SIGPLAN

Not., vol. 29, no. 1, p. 53, 1994.

[19] H. Eriksson, E. Berglund, and P. Nevalainen, “Using knowledge engineering sup-

port for a Java documentation viewer,” in Proceedings of the 14th international

conference on Software engineering and knowledge engineering, pp. 57–64, ACM

Press, 2002.

122 BIBLIOGRAPHY

[20] L. Friendly, “The design of distributed hyperlinked programming documenta-

tion,” in Proceedings of the 1995 International Workshop on Hypermedia Design,

(IWHD’95) (S. Frasse, F. Garsotto, T. Isakowitz, J. Nanard, and M. Nanard,

eds.), (Montpellier, France), pp. 151–173, Springer, June 1995.

[21] J. B. Goodenough, “Exception handling: Issues and a proposed notation,” Com-

munications of the ACM, vol. 18, no. 12, pp. 683–696, 1975.

[22] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification

Second Edition. Addision-Wesley, 2000.

[23] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communica-

tions of the ACM, vol. 12, no. 10, pp. 576–583, 1969.

[24] A. Johnson and B. Johnson, “Literate programming using noweb,” Linux Jour-

nal, vol. 1997, issue 42, October 1997.

[25] C. B. Jones, Systematic Software Development Using VDM. Englewood Cliffs,

N.J.: Prentice-Hall International Series in Computer Science, second ed., 1990.

[26] S. Khurshid, D. Marinov, and D. Jackson, “An analyzable annotation language,”

in ACM SIGPLAN Notices , Proceedings of the 17th ACM SIGPLAN conference

on Object-Oriented Programming, Systems, Languages, and Applications, vol. 37,

(Seattle, Washington, USA), pp. 231–245, November 2002.

[27] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27, no. 2,

pp. 97–111, May 1984.

[28] D. E. Knuth and S. Levy, The CWEB System of Structured Documentation.

Addision-Wesley, 1993.

BIBLIOGRAPHY 123

[29] D. Kramer, “API documentation from source code comments: A case study of

javadoc,” in Proceedings of the17th Annual International Conference on Com-

puter Documentation, (New Orleans, Louisiana, United States), pp. 147–153,

ACM Press, September 1999.

[30] R. Kramer, “iContract - the Java design by contract tool,” TOOLS 26: Tech-

nology of Object-Oriented Languages and Systems, pp. 295–307, 1998.

[31] B. B. Kristensen, O. L. Madsen, B. Moeller-Pedersen, and K. Nygaard, “The

BETA programming language,” in Research Directions in Object-Oriented Pro-

gramming (B. D. Shriver and P. Wegner, eds.), MIT Press, 1987.

[32] W. R. LaLonde and J. Pugh, “Subclassing 6= subtyping 6= is-a,” Journal of

Object-Oriented Programming, vol. 3, no. 5, pp. 57–62, January 1991.

[33] L. Lamport, “A simple approach to specifying concurrent systems,” Communi-

cations of the ACM, vol. 32, no. 1, pp. 32–45, 1989.

[34] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for detailed design,”

in Behavioral Specifications for Businesses and Systems, chapter 12 (The Kluwer

International Series in Engineering and Computer Science) (H. Kilov, B. Rumpe,

and I. Simmonds, eds.), vol. 523, pp. 175–188, Kluwer Academic Publishers,

1999.

[35] D. M. Leslie, “Using javadoc and XML to produce API reference documenta-

tion,” in Proceedings of the 20th Annual International Conference on Computer

Documentation, (Toronto, Ontario, Canada), October 2002.

[36] J. Liberty, Programming C#. O’REILLY, 2001.

124 BIBLIOGRAPHY

[37] T. Lindholm and F. Yellin, The Java Virtual Machine Specification. Addision-

Wesley, second ed., 1997.

[38] B. H. Liskov and A. Snyder, “Exception handling in CLU,” IEEE Transactions

on Software Engineering, vol. 5, no. 6, pp. 546–558, November 1979.

[39] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM Trans-

actions on Programming Languages and Systems, vol. 16, no. 6, pp. 1811–1841,

November 1994.

[40] B. H. Liskov and J. M. Wing, “Behavioral subtyping using invariants and

constrains,” Technical Reports CMU CS-99-56, School of Computer Science,

Carnegie Mellon University, July 1999.

[41] B. H. Liskov and J. M. Wing, “Subtyping in state based approaches,” in For-

mal Methods for Distributed Processing, A survey of Object-Oriented Approaches

(H. Bowman and J. Derrick, eds.), Cambridge University Press, 2001.

[42] G. Lou, “A compiler for an action-based object-oriented programming language,”

Master’s thesis, Department of Computing and Software, McMaster University,

2003. a M. Sc. Thesis, draft.

[43] S. Marlow, “Haddock, a Haskell document tool,” in Proceedings of the ACM SIG-

PLAN Workshop on Haskell, (Pittsburgh, Pennsylvania), ACM Press, October

2002.

[44] B. Meyer, “Applying “design by contract”,” Computer, vol. 25, no. 10, pp. 40–51,

October 1992.

BIBLIOGRAPHY 125

[45] B. Meyer, Object-Oriented Software Construction 2nd edition. Prentice-Hall,

1997.

[46] J. Meyer and T. Downing, Java Virtual Machine. O’Reilly, 1997.

[47] A. Mikhajlova and E. Sekerinski, “Class refinement and interface refinement

in object-oriented development,” in Fourth International Formal Methods Eu-

rope Symposium, FME’97, Lecture Notes in Computer Science (J. Fitzgerald,

C. Jones, and P. Lucas, eds.), vol. 1313, (Graz, Austria), pp. 82–101, Springer-

Verlag, September 1997.

[48] S. Murer, S. Omohundro, D. Stoutamire, and C. Szyperski, “Iteration abstraction

in Sather,” ACM Transactions on Programming Languages and Systems, vol. 18,

no. 1, pp. 1–15, January 1996.

[49] D. L. Parnas, “A technique for software module specification with examples,”

Communications of the ACM, vol. 15, no. 5, pp. 330–336, 1972.

[50] R. Plösch, “Evaluation of assertion support for the Java programming language,”

Journal of Object Technology, vol. 1, no. 3 Special issue: TOOLS USA 2002

Proceedings, pp. 5–17, 2002.

[51] A. L. Powell, J. C. French, and J. C. Knight, “A systematic approach to creat-

ing and maintaining software documentation,” in Proceedings of the 1996 ACM

symposium on Applied Computing, (Philadelphia, Pennsylvania), pp. 201–208,

February 1996.

126 BIBLIOGRAPHY

[52] D. S. Rosenblum, “A practical approach to programming with asseritons,” IEEE

Transactions on Software Engineering, vol. SE-21, no. 1, pp. 19–31, January

1995.

[53] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt, “An introduction

to Trellis/Owl,” in Proceedings OOPSLA ’86, ACM SIGPLAN Notices, pp. 9–16,

September 1986.

[54] E. Sekerinski, “Concurrent object-oriented programs: From specification to

code,” in First International Symposium on Formal Methods for Components

and Objects, FMCO 02, Lecture Notes in Computer Science 2852, (Leiden, The

Netherlands), pp. 403–423, Springer-Verlag, 2003.

[55] B. Stroustrup, C++. Addision-Wesley, 1987.

[56] C. Szypersky, S. Omohundro, and S. Murer, “Engineering a programming lan-

guage: The type and class system of Sather,” in Proceedings, First Interna-

tional Conference on Programming Languages and System Architectures, Lecture

Notes in Computer Science (J. Gutknecht, ed.), vol. 782, (Zurich, Switzerland),

pp. 208–227, Springer Verlag, March 1994.

[57] J. M. Wing, “Writing Larch interface language specification,” ACM Transactions

on Programming Languages and Systems, vol. 9, no. 1, pp. 1–24, January 1987.

[58] J. Woodcock and J. Davies, Using Z: Specification, Refinement, and Proof.

Prentice-Hall International Series in Computer Science, 1996.

