
Tutorial	on	Excep0on	Handling

Emil	Sekerinski  
based	on	joint	work	with	Tian	Zhang	
McMaster	University,	Canada 
Updated	November	2016

“Preventing to fail 
by preparing to fail” 



Why	Programs	Fail

• Specifica0on	is	in	error:	

• does	not	capture	the	user’s	intent	

• incomplete,	inconsistent	

• Design	is	in	error:	

• logical	error,	e.g.	forgoRen	case	

• idealized	hypotheses,	e.g.	about	integer 
range,	available	memory,	processing	speed	

• incorrect	assump0ons	about	other	components	

• Underlying	machine	fails:	

• incorrect	compila0on	

• error	in	library	implementa0on	

• hardware	failure

6.10 Conclusion and Summary of the Second Refinement

During this refinement, we have seen again how the proofs (or rather the failed proof attempts) have helped
us correcting our mistakes or improving our model. If fact, we discovered four errors, we introduced
several additional invariants, we corrected four events, and we introduced two more variables. Here is the
final version of this second refinement:

carrier sets: COLOR

constants: d, red, green

prp2_1: COLOR = {green, red}

prp2_2: green 6= red

variables: a, b, c,
ml_tl,
il_tl,
ml_pass,
il_pass

inv2_1: ml_tl 2 COLOR

inv2_2: il_tl 2 COLOR

inv2_3: ml_tl = green ) a + b < d ^ c = 0

inv2_4: il_tl = green ) 0 < b ^ a = 0

inv2_5: ml_tl = red _ il_tl = red

inv2_6: ml_pass 2 BOOL

inv2_7: il_pass 2 BOOL

inv2_8: ml_tl = red ) ml_pass = TRUE

inv2_9: il_tl = red ) il_pass = TRUE

variant_2: b_2_n(ml_pass) + b_2_n(il_pass)

And here are the events of the second refinement:

ML_out_1
when

ml_tl = green
a + b + 1 6= d

then
a := a + 1
ml_pass := 1

end

ML_out_2
when

ml_tl = green
a + b + 1 = d

then
a := a + 1
ml_tl := red
ml_pass := TRUE

end

49

Invited talk, NODES Winter seminar, Turku, Finland February 3, 2012

Johan Karlsson
Chalmers University of Technology, Göteborg, Sweden 3

Trends in the bathtube curve

Infant mortality Constant failure rate Wear out

Fa
ilu

re
 ra

te

• Infant mortality:  Increasing manufacturing defects
• Constant failure rate: Increasing rate of transient, intermittent and permanent faults
• Wearout: Acceleration of aging phenomena

Johan Karlsson 5NODES Winter Seminar, February 3, 2012

Time

Source: Vikas Chandra, ARM  R&D, Dependable Design in Nanoscale CMOS Technologies: Challenges and Solutions 
Keynote address, WDSN, Estoril, Portugal, June 29, 2009

1 – 20 weeks 3 – 10 years

Soft error rate trend for SRAM
(Radiation test data from Sun Microsystems)

Johan Karlsson 6NODES Winter Seminar, February 3, 2012

Source: A. Dixit, R. Heald, and A. Wood, “Trends from Ten Years of Soft Error Experimentation, SELSE´09, Stanford, CA, USA.

1  FIT =  10-9 faults per hour



Design	Error:	MicrosoT	Zune	Bug	...

from	techcruch.com:



...	Design	Error:	MicrosoT	Zune	Bug



Detected	Faults

• Some	errors	are	always	detected	by	the	underlying	machine:	

• indexing	an	array	out	of	bounds	

• alloca0ng	memory	when	none	is	available	

• reading	a	file	beyond	its	end	

• Some	errors	can	be	detected	by	instrumen0ng	programs: 
 

• Some	faults	are	“unfeasible”	to	detect:	

• only	a	single	pointer	to	an	object	exists	

• validity	of	precondi0on	and	invariant	of	binary	search	

• termina0on	

class	STACK 
			capacity:	INTEGER 
			count:	INTEGER	
invariant 
	 count	<=	capacity 
push	is	... 



Responding	to	Detected	Faults

• Even	with	best	effort,	possibility	of	fault	in	a	complex	system	remains.	

S₁	;	S₂	;	S₃	;	S₄	 where	S₁,	S₃	may	detect	an	error 
																								 in	case	of	error,	execute	T	instead	

• Explicit	tes0ng	a	priori	or	a	posteriori: 
 
 
 
 
 
 
 

• Dedicated  
excep0on	handling:

if	S₁	possible	then  
			S₁	;	S₂	;  
			if	S₃	possible	then  
						S₃	;	S₄  
			else	T  
else	T

S₁	;	
if	S₁	successful	then  
			S₂	;	S₃  
			if	S₃	successful	then  
						S₄  
			else	T  
else	T

try 
			S₁	;	S₂	;	S₃	;	S₄	  
catch  
			T handler

body



Excep0on	Handling

• no	addi0onal	variables	and	control  
structures	interspersed;	original  
program	structure	remains	visible	

• useful	for	rare	or	undesired	cases	

• allows	for	imperfec0ons	during  
design	process	suppor0ng 
extension	and	contrac0on  

f	=	fopen(filename,	"r");	
if	(f	==	NULL)	{	
			...	error	
}	else	{	
			...	read	file	(possibly	failing)	
			fclose(f);	
}	

try	{ 
			f	=	fopen(filename,	"r");	
			...	read	file	(possibly	failing)	
			fclose(f);	
}	catch	{	
			...	error 
}	

static	void	FutureFeature()	
{	
			//	Not	developed	yet.	
			throw	new	NotImplementedException();	
}	

[MS	Developer	Documentation	for	.NET]	



Example:	Monte	Carlo	Integra0on	in	Python

• Func0on	f	evaluated	randomly: 
may	lead	to	arithme0c	excep0on	

• “Rare	and	undesired”,	but	possible.	

• Here	excep0on	handler	does	nothing,	but	quality	of	result	affected.	

def	area(f,	a,	b,	l,	u,	n):	
				c	=	0	
				for	i	in	range(n):	
								try:	
												x	=	random.uniform(a,	b)	
												y	=	random.uniform(l,	u)	
												if	0	<=	y	<=	f(x):	
																c	=	c	+	1	
												elif	f(x)	<=	y	<=	0:	
																c	=	c	-	1	
								except:	
												pass	
				return	(u	-	l)	*	(b	-	a)	*	c	/	n	

+

–

y

x

u

l
b

a



Further	Examples	for	Excep0on	Handling

• Some	a	priori	tests	cannot	be	performed	efficiently,	e.g.	tes0ng	
arithme0c	addi0on	for	possible	overflow	requires	a	subtrac0on,	which	
means	doubling	the	number	of	opera0ons,	e.g.	in	a	matrix	
mul0plica0on. 

• A	priori	tests	like	for	arithme0c	overflow	of	floa0ng	point	numbers	
cannot	be	performed	reliably	at	all	due	to	rounding	errors.  

• Errors	like	stack	overflow	on	a	procedure	call	are	difficult	to	test	for	
because	programming	languages	do	not	offer	any	means.  

• Transient	hardware	failures	may	occur	at	any	0me,	so	there	is	no	place	
to	test	for	them.	



Overview

What	should	an	excep0on	handler	do	in	general?	

Where	is	an	excep0on	handler	best	placed?	

‣ we	give	a	theory	based	on	weakest	precondi0ons	

‣ applicable	to	python,	Java,	C#,	...;	supported	in	Eiffel		

 
 

Where	does	this	fit	in?	

 

 
(Avizienis	et	al	2004)



Outline

‣ Prelude:	undefinedness	of	expressions	

‣ Review:	weakest	precondi0ons	

‣ Theory:	weakest	excep0onal	precondi0ons	

‣ Theory:	domain	proper0es	

‣ Discussion:	“Java	vs.	Eiffel”	style	excep0ons	

‣ PaRerns:	masking,	propaga0ng,	flagging,	rollback,	degraded	service,	
recovery	block,	repeated	aRempts,	condi0onal	retry	

‣ Theory:	total	and	“par0al”	correctness	asser0ons	

‣ Applica0on:	Eiffel	

‣ Theory:	Algebraic	Laws



The	Problem	of	Undefinedness

• If	E	=	E	is	true,	then	is	x	div	y	=	x	div	y	also	true,	as	in:	

b	:=	(x	div	y	=	x	div	y)	

• If	P	∧	Q	≡	Q	∧	P	is	true,	then	are	the	following	the	same:	

var	a	:	array	N	of	T	;	 ...	  
var	n	:=	0	;	 ...  
while	a(n)	≠	key	and	n	<	N	do	 while	n	<	N	and	a(n)	≠	key	do  
				n	:=	n	+	1	 				n	:=	n	+	1	

‣ Our	solu0on	is	to	dis0nguish	

terms	in	the	logic	↔	expressions	in	programs	

and	in	par0cular:	

predicates	(boolean	terms)	↔	boolean	expressions



Terms	vs	Expressions

• Terms	in	the	logic,	here	higher-order	logic:	

• used	to	reason	about	programs	

• all	familiar	laws	hold:			P	=	P					P	∧	Q	≡	Q	∧	P					P	∨	¬P	

• Expressions	in	programs:	

• “look	like	terms”,	but	may	be	undefined	

• ∆E:	the	definedness	of	E	

• ‘E’:	the	value	of	E	

• include	condi0onal	and,	or	as	well	as	strict	&,	|



Definedness	and	Value	of	Expressions	...

Let	c	be	a	constant,	x	a	variable,	and	assume	a	:	array	N	of	T: 
 
	 ∆c	 ≡		true	 ‘c’	 =		c	  
	 ∆x	 ≡		true	 ‘x’	 =		x	  
	 ∆a(E)	 ≡		∆E	∧	0	≤	‘E’	<	N	 ‘a(E)’	 =		a(E)  
	 ∆-E	 ≡		∆E	 ‘-E’	 =		-E  
	 ∆¬E	 ≡		∆E	 ‘¬E’	 =		¬E  
	 ∆(E	·	F)	 ≡		∆E	∧	∆F	 ‘E	·	F’	 =		E	·	F  
	 ∆(E	div	F)	 ≡		∆E	∧	∆F	∧	‘F’	≠	0	 ‘E	div	F’	 =		E	div	F  
	 ∆(E	mod	F)	 ≡		∆E	∧	∆F	∧	‘F’	≠	0	 ‘E	mod	F’	 =		E	mod	F  
	 ∆(E	+	F)	 ≡		∆E	∧	∆F	 ‘E	+	F’	 =		E	+	F  
	 ∆(E	–	F)	 ≡		∆E	∧	∆F	 ‘E	–	F’	 =		E	–	F  
	 ∆(E	=	F)	 ≡		∆E	∧	∆F	 ‘E	=	F’	 =		E	=	F  
	 …	

With	bounded	arithme0c:	

	 ∆(E	·	F)	 ≡		∆E	∧	∆F	∧	minint	≤	E	·	F	≤	maxint 

we	will	leave	out	the	‘quotes’ 
as	structure	is	preserved



...	Definedness	and	Value	of	Expressions

Let	c	be	a	constant,	x	a	variable,	and	assume	a	:	array	N	of	T: 
 
	 ∆(E	and	F)	 ≡		∆E	∧	(E	⇒	∆F)	 ‘E	and	F’	 =		E	∧	F  
	 ∆(E	or	F)	 ≡		∆E	∧	(¬E	⇒	∆F)	 ‘E	or	F’	 =		E	∨	F  
 
	 ∆(E	&	F)	 ≡		∆E	∧	∆F	 ‘E	&	F’	 =		E	∧	F  
	 ∆(E	|	F)	 ≡		∆E	∧	∆F	 ‘E	|	F’	 =		E	∨	F  

Some	laws:	

	 ¬(E	and	F)	 =		¬E	or	¬F  
	 ¬(E	or	F)	 =		¬E	and	¬F  

condi0onal  
operators

strict 
operators

	 Dijkstra	 Eiffel	 Java 
and	 cand	 and	then	 &&  
or	 cor	 or	else	 ||



Weakest	Precondi0ons

	 wp(S,	Q)		≡	weakest	precondi0on	such	that	S  
	 	 terminates	with	postcondi0on	Q	

Let	Q	be	a	predicate,	x	a	list	of	variables,	E	a	list	of	expressions,	and  
S,	T	statements:	

	wp(abort,	Q)	 ≡		false	 abor0ng	statement 
	wp(stop,	Q)	 ≡		true	 blocking	statement  
	wp(skip,	Q)	 ≡		Q	 iden0ty	statement 
	wp(x	:=	E,	Q)	 ≡		∆E	∧	Q[x	\	E]	 mul0ple	assignment 
	wp(x	:∈	E,	Q)	 ≡		∆E	∧	(∀	x'	∈	E	•	Q[x	\	x'])	 nondeterminis0c	ass.  
	wp(S	;	T,	Q)	 ≡		wp(S,	wp(T,	Q))	 sequen0al	composi0on  
	wp(S	⊓	T,	Q)	 ≡		wp(S,	Q)	∧	wp(T,	Q)	 binary	choice 



Weakest	Precondi0ons	of	Condi0onal	and	Itera0on

Let	B	be	boolean	expression:	

	 wp(if	B	then	S	else	T,	Q)		≡		∆B	∧	(B	⇒	wp(S,	Q))	∧	(¬B	⇒	wp(T,	Q))	

Let	V	be	an	integer	term	and	v	an	auxiliary	variable.	If	

	 B	∧	P	∧	V	=	v	 ⇒		wp(S,	P	∧	V	<	v)  
	 B	∧	P	 ⇒		V	>	0 
	 P	 ⇒			B	

then:	

	 P		⇒		wp(while	B	do	S,	¬B	∧	P)  

P	is	invariant 
V	is	variant



Example:	Linear	Search	in	Array

Assume	a	:	array	N	of	T	and	let: 
 
	 P	 ≡		N	≥	0 
	 S	 =		n	:=	0	;	while	n	<	N	and	a(n)	≠	key	do	n	:=	n	+	1 
	 Q	 ≡		0	≤	n	≤	N	∧	(∀	i	|	0	≤	i	<	n	•	a(i)	≠	key)	∧	(n	<	N	⇒	a(n)	=	key)	

Then	we	can	show	

	 P		⇒	wp(S,	Q)	

using	

	 invariant:	 0	≤	n	≤	N	∧	(∀	i	|	0	≤	i	<	n	•	a(i)	≠	key)  
	 variant:	 N	–	n  



Weakest	Excep0onal	Precondi0ons	...

	 wp(S,	Q,	R)		≡		weakest	precondi0on	such	that	S	terminates	and 
	 	 					–	on	normal	termina0on	Q	holds	finally, 
	 	 					–	on	excep0onal	termina0on	R	holds	finally.	

Let	Q,	R	be	predicates,	x	a	list	of	variables,	E	a	list	of	expressions,	and  
S,	T	statements:	

	wp(abort,	Q,	R)	 ≡		false 
	wp(stop,	Q,	R)	 ≡		true 
	wp(skip,	Q,	R)	 ≡		Q 
	wp(raise,	Q,	R)	 ≡		R	 raising	excep0on  
	 
wp(x	:=	E,	Q,	R)	 ≡		(∆E	⇒	Q[x	\	E])	∧	(¬∆E	⇒	R)  
	wp(x	:∈	E,	Q,	R)	 ≡		∆E	∧	(∀	x'	∈	E	•	Q[x	\	x'])	∧	(¬∆E	⇒	R)  
wp(S	⊓	T,	Q,	R)	 ≡		wp(S,	Q,	R)	∧	wp(T,	Q,	R)  

raiseskip



Weakest	Excep0onal	Precondi0on	of	Sequen0al	and	Excep0onal	Composi0on

	 wp(S	;	T,	Q,	R)	 ≡		wp(S,	wp(T,	Q,	R),	R)	  
	 wp(try	S	catch	T,	Q,	R)	 ≡		wp(S,	Q,	wp(T,	Q,	R))	 excep0onal  
		 	 	 composi0on  
 

S	;	T

S

T

S

T

try	S	catch	T



Weakest	Excep0onal	Precondi0on	of	Condi0onal	and	Itera0on

	 wp(if	B	then	S	else	T,	Q,	R)		≡	 (∆B	∧	B	⇒	wp(S,	Q,	R))	∧ 
	 	 (∆B	∧	¬B	⇒	wp(T,	Q,	R))	∧ 
	 	 (¬∆B	⇒	R)  

If	

	 ∆B	∧	B	∧	P	∧	V	=	v	 ⇒		wp(S,	P	∧	V	<	v,	R)  
	 ∆B	∧	B	∧	P	 ⇒		V	>	0 
	 ¬∆B	∧	P	 ⇒		R	

then:	

	 P		⇒		wp(while	B	do	S,	¬B	∧	P,	R)  

P	is	invariant 
V	is	variant



Proper0es	of	Weakest	Excep0onal	Precondi0ons

Reduc0on:	If	S	contains	neither	raise	nor	try-catch	statements,	then:	

	 wp(S,	Q)		≡		wp(S,	Q,	false)	

Conjunc0vity:	

	 wp(S,	Q,	R)	∧	wp(S,	Q’,	R’)		≡		wp(S,	Q	∧	Q’,	R	∧	R’)	

Monotonicity:	

	 if	Q	⇒	Q’	and	R	⇒	R’	then	wp(S,	Q,	R)	⇒	wp(S,	Q’,	R’)  
Separa0on:	

	 wp(S,	true,	R)	∧	wp(S,	Q,	true)		≡		wp(S,	Q,	R)  
 



Derived	Statements

	 a(E)	:=	F	 =		a	:=	a(E	←	F)  
	 if	B	then	S		 =		if	B	then	S	else	skip  
	 assert	B	 =		if	¬B	then	raise 
	 try	S	finally	U	 =		try	S	catch	(U	;	raise)	;	U 
	 try	S	catch	T	finally	U	 =		try	S	catch	try	T	catch	(U	;	raise)	;	U 
	 	 =		try	(try	S	catch	T)	finally	U 
 

S

T

try	S	catch	T	finally	U

U

U

S

try	S	finally	U

U

U



Domains

	 tr	S	 =	 wp(S,	true,	true)	 	 	 termina0on  
	 nr	S	 =	 wp(S,	true,	false)	 	 	 normal	termina0on  
	 ex	S	 =	 wp(S,	false,	true)	 	 	 excep0onal	termina0on  
	 en	S	=	 ¬wp(S,	false,	false)		 	 enabledness	

Proper0es:	

tr	abort	 ≡	false	 tr	stop	 ≡	true	 tr	skip	≡	true	 tr	raise	 ≡	true 
nr	abort	 ≡	false	 nr	stop	 ≡	true	 nr	skip	≡	true	 nr	raise	 ≡	false 
ex	abort	 ≡	false	 ex	stop	 ≡	true	 ex	skip	≡	false	 ex	raise	≡	true 
en	abort	 ≡	true	 en	stop	 ≡	false	 en	skip	≡	true	 en	raise	≡	true	

tr(x	:=	E)	 ≡	true	 tr(S	;	T)	⇒	tr	S	 	 tr(S	⊓	T)	 ≡	tr	S	∧	tr	T  
nr(x	:=	E)	 ≡	∆E	 nr(S	;	T)	⇒	nr	S	 	 nr(S	⊓	T)	 ≡	nr	S	∧	nr	T  
ex(x	:=	E)	 ≡	¬∆E	 ex(S	;	T)	⇐	ex	S	 	 ex(S	⊓	T)	 ≡	ex	S	∧	ex	T  
en(x	:=	E)	 ≡	true	 en(S	;	T)	⇒	en	S	 	 en(S	⊓	T)	 ≡	en	S	∨	en	T	

...



Total	Correctness	Asser0on

	 {P}	S	{Q,	R}	 ≡		P	⇒	wp(S,	Q,	R)  
	 {P}	S	{Q}	 ≡		P	⇒	wp(S,	Q,	false)	

Example	of	annota0on:	

	 {P}		 ⇐	 {P₁}	S₁	{Q₁,	R₁}	∧ 
	 try			 	 {P₂}	S₂	{Q₂,	R₂}	∧ 
	 	 {P₁}	 	 (P	⇒	P₁)	∧ 
	 	 S₁	 	 (R₁	⇒	P₂)	∧ 
	 	 {Q₁,	R₁}	 	 (R₂	⇒	R)	∧ 
	 catch	 		 (Q₁	⇒	Q)	∧ 
	 	 {P₂}	 	 (Q₂	⇒	Q)  
	 	 S₂  
	 	 {Q₂,	R₂}  
	 {Q,	R}	



Example:	Satura0ng	Vector	Division

{true}  
	 i	:=	0 
	 {i	=	0}  
	 ; 
	 {invariant	I: 
	 	 i	∈	[0,	n]	∧	∀	j	∈	[0,	i)	•	(b(j)	≠	0	∧	c(j)	=	a(j)	div	b(j))	∨	(b(j)	=	0	∧	c(j)	=	maxint)}  
	 {variant	V:	n	–	i}  
	 while	i	<	n	do  
	 	 {i	<	n	∧	I	∧	V	=	v}  
	 	 	 try 
	 	 	 	 c(i)	:=	a(i)	div	b(i)  
	 	 	 	 {i	<	n	∧	I	∧	b(j)	≠	0	∧	c(i)	=	a(i)	div	b(i)	∧	V	=	v,	i	<	n	∧	I	∧	b(i)	=	0	∧	V	=	v}  
	 	 	 catch  
	 	 	 	 {i	<	n	∧	I	∧	b(i)	=	0	∧	V	=	v}  
	 	 	 	 c(i)	:=	maxint  
	 	 	 	 {i	<	n	∧	I	∧	b(i)	=	0	∧	c(i)	=	maxint	∧	V	=	v}  
	 	 	 {i	<	n	∧	I	∧	((b(i)	≠	0	∧	c(i)	=	a(i)	div	b(i))	∨	(b(i)	=	0	∧	c(i)	=	maxint))	∧	V	=	v}  
	 	 	 ; 
	 	 	 i	:=	i	+	1 
	 	 {I	∧	V	<	v}  
	 {i	≥	n	∧	I}  
{∀	j	∈	[0,	n)	.	(b(j)	≠	0	∧	c(j)	=	a(j)	div	b(j))	∨	(b(j)	=	0	∧	c(j)	=	maxint)}	



Method	Specifica0ons	...

One	precondi0on	+  
one	postcondi0on	for	each	exit 
(Cris0an	1984)	

All	possible	failures	would	need	to	be	an0cipated:	imprac0cal	

• tools	do	not	verify	“unchecked”	excep0ons	(Jacobs	&	Müller	2007)	

• typical	use	as	control	structure	for	undesired	or	rare	cases

S

entry

public	static	void	int	search(int[]	a,	int	x) 
			throws	NullPointerException,	NotFoundException	
/*	requires:	a	is	sorted	
			ensures:		0	<=	result	<	a.length	&&	a[result]	==	x	  
			signals	NullPointerException:	a	==	null 
			signals	NotFoundException:	x	not	in	a	
*/	
[Liskov	&	Guttag	00,	Leavens	et	al	06:JML,	Barnet	et	al	05:Spec#]	

normal  
exit

excep0onal  
exits



...	Method	Specifica0ons

In	Eiffel	methods	have	only	one 
excep0onal	exit	(Meyer	1997)	

• specified	with	a	precondi0on  
and	a	single	postcondi0on	

• excep0onal	exit	taken	if 
postcondi0on	not	established	

• “valid”	outcome	even	in	presence 
of	unan0cipated	failures	

We	further	elaborate	on	this	view.

method	is 
			require 
						pre	
			do 
						body	
			ensure 
						post	 
			rescue 
						handler 



PaRern:	Masking

	 try	request	next	command  
	 catch	command	:=	help	

If	

	 {P}	S	{Q,	H}  
	 {H}	T	{Q}	

then:	

	 {P}	try	S	catch	T	{Q}

desired (but possibly weakened)  
postcondition is always established



PaRern:	Masking	with	Re-raising

	 try	process	file	A	and	output	file	B 
	 catch	(delete	file	B	;	raise)	

If	

	 {P}	S	{Q,	H}  
	 {H}	T	{R,	R}	

then:	

	 {P}	try	S	catch	(T	;	raise)	{Q,	R}

in a modular design, each module  
restores a consistent state before 
passing on the exception



PaRern:	Flagging

	 try	(process	file	A	and	output	file	B	;	done	:=	true)  
	 catch	(delete	file	B	;	done	:=	false)	

If	

	 {P}	S	{Q,	H}  
	 {H}	T	{R}	

then:	

	 {P}  
	 try	(S	;	done	:=	true)	catch	(T	;	done	:=	false)  
	 {(done	∧	Q)	∨	(¬done	∧	R)}

occurrence of exception is  
recorded for further actions



PaRern:	Rollback	with	Masking

	 u0,	v0,	w0	:=	u,	v,	w	; 
	 try	display	form	for	entering	u,	v,	w  
	 catch	u,	v,	w	:=	u0,	v0,	w0	

If	

	 {P}	backup	{P	∧	B}  
	 {B}	restore	{P}  
	 {P	∧	B}	S	{Q,	B}  
	 {P}	T	{Q}	

then:	

	 {P}	backup	;	try	S	catch	(restore	;	T)	{Q}

prevents that an inconsistent  
state, e.g. broken invariant,  
or undesirable state, e.g. that  
only allows termination, is left

B = backup available

T can “clean up”



PaRern:	Rollback	with	Propaga0on

If	

	 {P}	backup	{P	∧	B,	P}  
	 {B}	restore	{P,	P}  
	 {P	∧	B}	S	{Q,	B}	

then:	

	 {P}	backup	;	try	S	catch	(restore	;	raise)	{Q,	P}

like rollback with masking, but  
backup is allowed to fail

B = backup available



Interlude:	Par0al	Correctness

If	{P}	S	{Q,	P},	then	S	is	par0ally	correct	with	respect	to	P,	Q.	

Several	paRerns	ensure	par0al	correctness.	

Eiffel	method	specifica0ons	can	be	understood  
as	par0al	correctness	specifica0ons.	 method	is 

			require 
						pre	
			do 
						body	
			ensure 
						post	 
			rescue 
						handler 



PaRern:	Degraded	Service

	 try	 	 --	try	the	simplest	formula,	will	work	most	of	the	5me 
	 	 z	:=	√(x²	+	y²)  
	 catch		--	overflow	or	underflow	has	occurred  
	 	 try 
	 	 	 m	:=	max(abs(x),	abs(y))	; 
	 	 	 try	 	 --	try	the	formula	with	scaling 
	 	 	 	 t	:=	√((x	/	m)²	+	(y	/	m)²)  
	 	 	 catch	 --	underflow	has	occurred  
	 	 	 	 t	:=	1	; 
	 	 	 z	:=	m	×	t 
	 	 catch	 --	overflow	on	unscaling	has	occurred  
	 	 	 z	:=	+∞	; 
	 	 	 raise	

If	

	 {P}	S₁	{Q,	H₁}  
	 {H₁}	S₂	{Q,	H₂}  
	 {H₂}	S₃	{Q,	R}	

then:	

	 {P}	try	S₁	catch	(try	S₂	catch	S₃)	{Q,	R}

several statements achieve the 
same goal, but one some are  
preferred over others; if the 
first one fails, we fall back to  
a less desirable one

(Hull	et	al	1994)



PaRern:	Recovery	Block	...

(Horning	et	al	1974,	Randell	1975)	

	 ensure	A	 backup	; 
	 by	S₁	 try	(S₁	;	assert	A)  
	 else	by	S₂	 catch	  
	 else	by	S₃	 	restore	;  
	 else	error	 	try	(S₂	;	assert	A)  
	 	 		 catch  
	 	 		 	 restore	; 
	 	 		 	 try	(S₃	;	assert	A)  
	 	 		 	 catch	(restore	;	raise)	

acceptance 
test
alternatives



...	PaRern:	Recovery	Block

If	

	 {P}	backup	{P	∧	B,	P}	 {P	∧	B}	S₁	{Q₁	∧	B,	B}	 Q₁	∧	A₁	⇒	Q 
	 {B}	restore	{P	∧	B}	 {P	∧	B}	S₂	{Q₂	∧	B,	B}	 Q₂	∧	A₂	⇒	Q 
	 	 {P	∧	B}	S₃	{Q₃	∧	B,	B}	 Q₃	∧	A₃	⇒	Q 
then:	

	 {P}  
	 	 backup	; 
	 	 try	(S₁	;	assert	A₁)  
	 	 catch  
	 	 	 restore	;  
	 	 	 try	(S₂	;	assert	A₂)  
	 	 	 catch  
	 	 	 	 restore	;  
	 	 	 	 try	(S₃	;	check	A₃)  
	 	 	 	 catch	(restore	;	raise)  
	 {Q,	P}



Repeated	ARempts

	 ra		=	 while	n	>	0	do  
	 	 	 try	(S	;	n	:=	–1)  
	 	 	 catch	(T	;	n	:=	n	–	1)	; 
	 	 if	n	=	0	then	raise	

If	

	 {P}	S	{Q,	R}  
	 {R}	T	{P}	

then:	

	 {n	≥	0	∧	P}	ra	{Q,	P}	



Repeated	ARempts	with	Rollback

	 rr		=	 backup	; 
	 	 while	n	>	0	do  
	 	 	 try	(S	;	n	:=	–1)  
	 	 	 catch	(restore	;	n	:=	n	–	1)	; 
	 	 if	n	=	0	then	raise	

Assume	that	S,	restore	do	not	modify	n.	If	

	 {P}	backup	{P	∧	B,	P}  
	 {B}	restore	{P	∧	B}  
	 {P	∧	B}	S	{Q,	B}	

then:	

	 {n	≥	0	∧	P}	rr	{Q,	P}	



Condi0onal	Retry

	 cr		=	 done	:=	false	; 
	 	 while	¬done	and	B	do  
	 	 	 try	(S	;	done	:=	true)  
	 	 	 catch	T	; 
	 	 if	¬done	then	raise	

Assume	that	S	preserves	V	=	v.	If	

	 {∆B	∧	B	∧	P}	S	{Q,	R}  
	 {R	∧	V	=	v}	T	{P	∧	V	<	v}  
	 ∆B	∧	B	∧	P	⇒	V	>	0	

then:	

	 {P}	cr	{Q,	P}	

Mimics Eiffel’s rescue and 
retry statements



Eiffel	Example:	Approximate	Square	Root

Let	p	≡	0	≤	l	<	u	∧	l²	≤	n	<	u²	

	 sqrt(n,	l,	u	:	INTEGER)	:	INTEGER 
	 	 {p}  
	 	 local  
	 	 	 m	:	INTEGER 
	 	 {rescue	invariant:	p}  
	 	 {rescue	variant:	u	−	l	}  
	 	 do  
	 	 	 {loop	invariant:	p}  
	 	 	 {loop	variant:	u	−	l}  
	 	 	 from	unFl	u	−	l	=	1	loop  
	 	 	 	 m	:=	l	+	(u	−	l)	//	2 
	 	 	 	 {p	∧	m	=	(l	+	u)	//	2}  
	 	 	 	 if	n	<	m	∗	m	then	u	:=	m	else	l	:=	m	end  
	 	 	 	 {p,	p	∧	m	=	(l	+	u)	//	2	∧	n	<	m²}  
	 	 	 end  
	 	 	 {p	∧	u	−	l	=	1}  
	 	 	 Result	:=	l  
	 	 rescue 
	 	 	 {p	∧	m	=	(l	+	u)	//	2	∧	n	<	m²}  
	 	 	 u	:=	m 
	 	 	 {p}  
	 	 	 retry 
	 	 	 {retry:	p}  
	 	 end  
	 	 {Result²	≤	n	<	(Result	+	1)²}

Eiffel statements have 3 exits:

- normal exit  
- raising exception  
- retrying method body

The retry exit leads to a loop  
structure, which necessitates 
invariant and variant

Retry (3rd) postcondition



Eiffel	Statements

	 wp(skip,	Q,	R,	U)	 ≡		Q 
	 wp(raise,	Q,	R,	U)	 ≡		R 
	 wp(retry,	Q,	R,	U)	 ≡		U	

Most	statements	are	unaffected	by	third	exit,	except	the	rescue-loop.	

Let	V	be	an	expression	over	the	naturals.	If	

{P	∧	V	=	v}	S	{Q,	H	∧	V	=	v,	P	∧	V	<	v}  
{H	∧	V	=	v}	T	{R,	R,	P	∧	V	<	v}	

then:	

{P}	do	S	rescue	T	end	{Q,	R,	U}	

 

raiseskip retry

P	is	the	rescue	invariant 
V	is	the	rescue	variant



Conclusions

• Despite	pu�ng	forth	best	effort	in	the	design,	possibility	of	faults	
remains	and	programs	need	to	respond	to	faults.		

• Excep0on	handling	with	try-catch	statements	allows	systema0c	
treatment	of	faults	(c.f.	resump0on).	

• No0on	of	par0al	correctness	is	methodological	guide:	either	desired	
postcondi0on	is	established	or	precondi0on	re-established.	

• Excep0on	paRerns:	masking,	flagging,	propaga0ng,	rollback,	degraded	
service,	recovery	block,	repeated	aRempts,	condi0onal	retry.	

• Use	of	excep0on	best	reserved	for	truly	excep0onal	situa0ons	rather	
than	as	an	extra	control	structure.



Outlook	...

• try-catch-finally,	intui0vely:	

‣ catch	statement	ensures	safety	by	establishing	a	consistent	state,	

‣ finally	statement	ensures	liveness	by	freeing	all	resources	(freeing	
memory;	closing	files,	windows,	network	connec0ons).

	 {P}		 	 ⇐	 {P}	S₁	{Q₁,	R₁}	∧ 
	 try		 		 	 {Q₁}	S₂	{Q,	R}	∧ 
	 	 S₁	 	 	 {R₁}	S₂	{R,	R}  
	 	 {Q₁,	R₁}	 	  
	 finally	 		  
	 	 {Q₁}	 {R₁}	 		  
	 	 S₂  
	 	 {Q,	R}	 {R,	R}  
	 {Q,	R}

Two	separate 
condi0ons 
needed	for	S₂!

S₁

S₂

S₂



...	Outlook	...

• When	an	excep0on	occurs,	the	condi0on  
in	that	situa0on	is	relevant,	not	the	cause; 
excep0on	types	can	be	used	to	dis0nguish  
different	condi0ons	(cf	causes	of  
excep0ons:	suppor0ng	debugging, 
necessitates	re-raising	excep0ons).	

• Some	excep0ons	may	be	more	severe 
than	others,	e.g.	may	make	repeated  
aRempts	fu0le:	different	excep0on  
types	need	to	be	dis0nguished.

try 
	 ...	{P}	x	:=	x	/	y	{...,	P}  
	 ...	{Q}	a[i]	:=	0	{...,	Q}  
catch		  
	 {P	∨	Q}	 		  
	 T  

while	n	>	0	do  
	 try	(S	;	n	:=	–1)  
	 catch	(T	;	n	:=	n	–	1)	; 
if	n	=	0	then	raise

static	int	top()	throws	UnderflowException	{ 
		 	 try	{return	a[n-1];} 
	 	 catch	(ArrayIndexOutOfBoundsException	e) 
	 	 	 {throw	new	UnderflowException();} 
	 }



...	Outlook

• Concurrent	programs:	in	case	of	a	fault	in	one	thread/process,	others	
may	need	to	revert	to	a	previous	state	as	well.	To	prevent	a	ping-pong	
leading	to	rever0ng	all	the	way	to	the	ini0al	state,	certain	checkpoints	
need	to	be	established.		

• Data	abstrac0on	and	classes: 
class	invariant	has	to	be 
re-established,	otherwise 
cascade	of	errors.

class	BadStack	
	 public	const	C	=	100	
	 private	var	a	:	array	C	of	integer 
	 private	var	n	:=	0	
	 public	method	push(x	:	integer)  
	 		 a(n)	:=	x	;	n	:=	n	+	1	
	 public	method	pop()	:	integer 
	 		 n	:=	n	–	1	;	result	:=	a(n)  
	 public	method	empty	:	boolean  
	 		 result	:=	n	=	0	

	 public	method	full	:	boolean  
	 		 result	:=	n	=	C

OK

BAD,	may  
break 
invariant 
0	≤	n	≤	C



Further	Reading

• Buhr,	P.	A.	and	Mok,	W.	Y.	R.	(2000).	Advanced	Excep0on	Handling	Mechanisms.	IEEE	
Transac0ons	on	SoTware	Engineering,	26(9),	820-836.  
Overview	paper.	

• Garcia,	A.	F.,	Rubira,	C.	M.	F.,	Romanovsky,	A.,	and	Xu,	J.	(2001).	A	compara0ve	study	of	
excep0on	handling	mechanisms	for	building	dependable	object-oriented	soTware.	
Journal	of	Systems	and	SoTware,	59(2),	197-222.  
Overview	paper.	

• Koopman,	P.	and	DeVale,	J.	(2000).	The	Excep0on	Handling	Effec0veness	of	POSIX	
Opera0ng	Systems.	IEEE	Transac0ons	on	SoTware	Engineering,	26(9),	837-848.  
Evaluates	excep0on	handling	by	return	values.	

• Liskov,	B.	and	GuRag,	J.	(2000).	Program	Development	in	Java:	Abstrac0on,	Specifica0on,	
and	Object-Oriented	Design.	Boston,	MA,	USA:	Addison-Wesley	Longman	Publishing	Co.,	
Inc.  
Introduc0on	to	“Java-style”	excep0on.



Further	Reading

• Kiniry,	J.	(2006).	Excep0ons	in	Java	and	Eiffel:	Two	extremes	in	excep0on	design	and	
applica0on.	In	Advanced	Topics	in	Excep0on	Handling	Techniques,	LNCS	4119,	pages	288–
300.	Springer. 
Compares	the	two	philosophies.	

• Meyer,	B.	(1997).	Object-Oriented	SoTware	Construc0on.	Upper	Saddle	River,	NJ,	USA:	
Pren0ce-Hall,	Inc.  
Ra0onale	for	Eiffel-style	excep0ons.	

• Sekerinski,	E.	and	Zhang,	T.	(2011).	Par0al	correctness	for	excep0on	handling.	In	B.	
Bonakdarpour	and	T.	Maibaum,	editors,	Proceedings	of	the	2nd	Interna0onal	Workshop	
on	Logical	Aspects	of	Fault-Tolerance,	pages	116–132.  
Applies	the	no0on	of	par0al	correctness	to	some	excep0on	paRerns.	

• Sekerinski,	E	and	Zhang,	T.	(2011).	A	normal	form	for	mul0-exit	statements.  
Gives	algebraic	laws	of	general	mul0-exit	statements.		

• Sekerinski,	E.	and	Zhang,	T.	(2012).	Verifica0on	rules	for	excep0on	handling	in	Eiffel.  
Formalizes	3-exit	statements	and	derives	verifica0on	rules.


