
A Compiler for an Action-Based
Object-Oriented Programming

Language

By

Guanrong Lou, BSc. Hon. Computer Science

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

c© Copyright by Guanrong Lou, 2004

ii

MASTER OF SCIENCE(2004) McMaster University
(Computer) Hamilton, Ontario

TITLE: A Compiler for an Action-Based Object-Oriented Programming Language

AUTHOR: Guanrong Lou, BSc. Hon. Computer Science(McMaster University)

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: ix, 97

iii

Abstract

Lime is an action-based object-oriented concurrent programming language, which
was developed by Dr. Sekerinski from McMaster University. The development of Lime
is based on the observation that more and more applications will be implemented on
networks of processors in the future and those are significantly more ambitious than
current applications. It is difficult for programmers to do multiprogramming us-
ing current object-oriented programming languages. Action systems, which model
concurrency by nondeterministic choice among atomic actions (e.g. Lamport’s Tem-
poral Logic of Actions, J. Misra and K. M. Chandy’s Unity Logic and Back’s Action
Systems), can help us to simplify both the specification and design of concurrent
applications. But all of that is still theoretical. Such action systems have not been
implemented and experimented with very thoroughly.

Lime is an object-oriented programming language that is based on the action
system. The closest approach is Seuss, which was developed by J. Misra et.al. at
The University of Texas at Austin, but the limitation of Seuss is that it is not fully
object-oriented. One purpose of my research is to find out how to schedule actions
for applications running on a multiprocessor environment. I implemented a compiler
for this new technique that can translate programs written in Lime to Java assembly
language.

Object-oriented programming techniques are used widely in software development,
and Lime can make a good combination of these techniques and action systems. So
we can make the development of object-oriented concurrent programs much easier
and efficient.

iv

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to
complete this thesis.

I am deeply indebted to my supervisor, Dr. E. Sekerinski whose help, stimulating
suggestions and encouragement helped me in all the time of research and writing of
this thesis.

Especially, I would like to give my special thanks to my wife Hongliang and my
son Jayson whose love enabled me to complete this work.

Contents

Abstract iii

Acknowledgement iv

1 Introduction 1
1.1 Why Lime . 1
1.2 Contributions . 1
1.3 Structure of the Thesis . 2

2 Related Work 3
2.1 Ada . 4
2.2 Java . 6
2.3 C# . 7
2.4 Seuss . 8
2.5 πoβλ . 9
2.6 Other Languages . 11
2.7 Conclusion . 13

3 Lime 14
3.1 Action System . 14
3.2 What Is Lime . 15

3.2.1 Actions . 15
3.2.2 Methods . 16
3.2.3 Program Structure and Execution 17

3.3 Lime Syntax . 18
3.3.1 Notations . 18
3.3.2 Representation of Lime Programs 19
3.3.3 Identifiers and Numbers . 20
3.3.4 Compilation Unit . 21
3.3.5 Constant, Procedure and Program Declarations 21

v

vi CONTENTS

3.3.6 Class Declarations . 22

3.3.7 Types . 24

3.3.8 Expression . 25

3.3.9 Statements . 27

3.4 Lime Examples . 29

3.4.1 An Integer Generator . 29

3.4.2 A General Semaphore . 29

3.4.3 Reader-Writer . 30

3.4.4 Dining Philosophers . 30

3.4.5 A Screen Saver . 32

3.4.6 Fish Screen Saver . 33

3.4.7 Priority Queue . 35

3.4.8 A Simple Symbol Table . 36

3.4.9 Other Examples . 37

4 Java Virtual Machine and Jasmin 39

4.1 Java Virtual Machine . 39

4.1.1 Components of Java Virtual Machine 39

4.1.2 Java Virtual Machine Instruction Set 41

4.2 Jasmin . 44

5 Basic Translation Schemes 48

5.1 Translation Schemes for Expressions 49

5.2 Translation Schemes for Statements 50

5.3 Translation Schemes for Objects . 56

5.4 Translation Schemes for Assignments 56

6 Advanced Translation Schemes 58

6.1 Translation Principles . 58

6.2 Run Time Library . 61

6.3 Translation Schemes . 63

7 Implementation of Lime Compiler 69

7.1 Lime Compiler Overview . 69

7.2 Scanner and Parser . 70

7.3 Symbol Table . 81

7.4 Code Generation . 89

7.5 Testing the Implementation . 92

7.6 Running the Compiler . 93

CONTENTS vii

8 Conclusion and Future Work 95

Bibliography 97

List of Figures

5.1 Translation of Lime program . 49

6.1 The translation principle . 60
6.2 The mechanism to handle the selection of actions 67

7.1 Components of the implementation of Lime compiler 70
7.2 The structure of the input file to JavaCC 71
7.3 The class hierarchy of the symbol table entries 83
7.4 The class hierarchy of type checking exceptions 90

viii

List of Tables

4.1 JVM instructions for integer arithmetic 41
4.2 JVM instructions for stack manipulation 42
4.3 JVM instructions for integer comparison and jumps 42
4.4 JVM instructions for creating new arrays 42
4.5 JVM instructions for accessing arrays or objects 43
4.6 JVM instructions for method return 43
4.7 JVM instructions for method call . 43
4.8 JVM instructions for assignments . 43

5.1 Translation schemes for boolean expressions 51
5.2 Translation schemes for integer arithmetic 52
5.3 Translation schemes for compound and control flow statements 53

ix

x LIST OF TABLES

Chapter 1

Introduction

1.1 Why Lime

Concurrent programming is desirable for many reasons, such as improved response
and better exploitation of hardware. There are many real life cases that can benefit
from the advantages provided by concurrency. Additionally, object-oriented program
design provides benefits such as reusability and maintainability.

Java and C# are popular object-oriented programming languages today and both
of them support concurrent programming. But they were invented as general purpose
languages and concurrency features are not critical for them, so this support has some
limitations. There also exist a large number of research proposals and experimental
languages for developing new object-oriented languages for concurrent programming.
However, all of them have some limitations in concurrent software development.

Lime was invented as a truly concurrent object-oriented programming language.
Concurrency is one of the most important features of the Lime, and are also critical
for it. Lime is based on an action system. The purpose of the development is to
simplify both the specification and design of object-oriented concurrent applications.

1.2 Contributions

My contributions in the research of Lime include:

• Complete the design of Lime, including its functionality and syntax;

• Design the translation schemes to translate Lime to Jasmin, a Java assembly
language;

• Design and implement a compiler for Lime.

1

2 1. Introduction

Lime is an ongoing research project and many aspects are likely to evolve over time.
Therefore the design and implementation of the compiler should be as general as
possible. We use an object-oriented approach to present and implement the compiler.
The code of the compiler is written entirely in Java. The target language of the Lime
compiler is Jasmin, a Java assembly language. We made this choice since we want
the compiled Lime programs to run on the Java Virtual Machine and without looking
deeply into Java class files.

1.3 Structure of the Thesis

• In Chapter 2, the concurrency features of some programming languages and
limitations of them are discussed.

• In Chapter 3, a brief background of action systems is first given. Then Lime is
introduced by describing its features, its syntax and some sample programs.

• Chapter 4 discusses the Java Virtual Machine and Jasmin. Jasmin is an assem-
bler that translates from an intermediate language to Java bytecode. Lime uses
Jasmin to handle the final translation to Java.

• Chapter 5 and Chapter 6 describe the translation schemes that are used to
translate Lime to its target language, Jasmin.

• Chapter 7 contains the description of the design and implementation of the
Lime compiler.

• Chapter 8 outlines the conclusion of the thesis, in addition to discussing future
work.

Chapter 2

Related Work

In this chapter, some programming languages, especially some object-oriented lan-
guages, which support concurrent programming, are discussed. The intention is to
have a general idea about the nature of those languages and how they support con-
current programming as well as some problems and limitations.

Most modern programming languages support concurrent programming. There
also exist a large number of research proposals for developing new object-oriented
languages for current programming.

There are different ways to classify concurrent object-oriented programming lan-
guages. For example, Peter Wegner introduces the classification according to whether
objects are internally sequential, quasi-concurrent or concurrent [24]:

Sequential objects possess a single active thread of control. Objects in Ada tasks
and Seuss are examples of sequential objects.

Quasi-concurrent objects have multiple threads but only one thread may be
active at a time. Control must be explicitly released to allow interleaving of
threads.

Concurrent objects do not restrict the number of internal threads. New threads
are created freely when accepting requests. Languages like Java and C# support
concurrent objects. From the point of view of the called objects, a new local
thread is effectively created whenever a method is activated in response to a
message.

This section is going to give an overview of the concurrent features of some pro-
gramming languages and some research proposals. The purpose is to give a general
idea about how these languages support concurrent programming and their limita-
tions.

3

4 2. Related Work

2.1 Ada

Ada was developed for the U.S. Department of Defense to be the standard language
for programming defense applications [11]. The concurrency features of Ada are one
of the most important parts of the language, and are also critical for its intended
uses.

In Ada, the basic construct for concurrent processes is the task. An Ada task is a
unit of modularization comprising a specification and a body, and also a data object.
A task terminates when it reaches the end of the begin-end code of its body. Tasks
may either be static (created at start of execution and never terminate) or dynamic,
e.g. create a new task for each new radar trace in a radar system.

A task can be temporarily paused by delay statements. The delay statement has
the following two formats:

• Delay xyz : where xyz is an expression of type duration, causes the execution of
the thread to be delayed for (at least) the given amount of time;

• Delay until tim: where tim is an expression of type time, causes execution of
the thread to be delayed until (at the earliest) the given tim.

Ada provides select statements to support nondeterministic task interaction.

• Selective accept: Select statement allows a choice of actions. For example:

select
entry1 (· · ·) do · · · end;

or
when some condition entry2 (· · ·);

or
delay · · · ddd · · · ;

end select;

Ada takes whichever open entry arrives first, or if none arrives by end of delay,
do ddd ;

• Conditional entry call: Make a call only if it will be accepted. The condi-
tional entry call allows the task client to withdraw the offer to communicate if
the server task is not prepared to accept the call immediately [5]. For example:

select
entry − call · · ·

else
statements

end select;

2. Related Work 5

If entry-call is accepted immediately, the body of the entry will be executed;
otherwise the else statements will be executed;

Ada was first standardized in 1983 [11]. Ada 83 introduced rendezvous as the
primary interprocess communication mechanism and the sole synchronization mech-
anism. Everything else has to be programmed using rendezvous.

A second version of Ada was standardized in 1995 [11]. The two new features
of Ada 95 for concurrent programming are protected type and the request statement.
The protected type supports the synchronized access to shared data. A request state-
ment supports the synchronization and scheduling that depends on the arguments of
calls. A protected type encapsulates shared data and synchronizes access to it. Each
instance of a protected type is similar to monitors.

Tasks can share variables; however, they cannot assume these variables are up-
dated except at synchronization points. The abort statement allows one task to
terminate another task. There is also a mechanism for setting the priority of a task.

The following is an example of how to implement a semaphore in Ada using
protected types.

protected type Semaphore is
entry P ;
procedure V ;
private Lock : Boolean := False;

end Semaphore;
protected body Semaphore is

entry P when not Lock is
begin

Lock := True;
end P ;
procedure V is
begin

Lock := False;
end V ;

end Semaphore;
task body Semaphore is
begin

loop
accept P ;
accept V ;

end loop;
end Semaphore;

6 2. Related Work

2.2 Java

Java is an object-oriented language developed by Sun Microsystems, released to the
public in 1995 [12].

Concurrent programming in Java is based on Java threads. A Java thread is
an object of the java.lang.Thread class or an object that implements the Runnable
interface. The thread maintains housekeeping and control of its activity. Every
program consists of at least one main thread. Other internal background threads
may also be started during Java Virtual Machine (JVM) initialization. All user-level
threads are explicitly constructed and started from the main thread, or from any
other threads that they in turn create.

Threads in Java execute concurrently, at least conceptually. So they can simul-
taneously access shared variables. Java supports mutual exclusion by means of the
keyword synchronized, which can be used in the entire method or in a sequence of
statements. In Java, a monitor is used to synchronize the access to a shared resource.
All Java objects have a monitor and each object can be used as a mutually exclusive
lock. When a synchronized method is invoked, the invoked thread waits to obtain
the lock on the object, then executes the body of the method, and finally releases the
lock.

For the communication between different threads, Java uses the signal oriented
methods wait(), notify() and notifyAll() that are inherited from the root class Object.
A thread calls O.wait() when it needs to be suspended until the object referenced by
O has a particular state. Another thread, on detecting that this object’s state has
the desired value, invokes either O.notify() or O.notifyAll().

The following example shows a semaphore implemented in Java using synchronized
methods, and the methods call wait() and notify().

public class Semaphore{
private boolean lock;
public Semaphore() {

lock = false;
}
public synchronized void P (){

while(lock){
try {

wait();
}
catch(InterruptedException e){}

}

2. Related Work 7

lock = true;
}
public synchronized void V (){

lock = false;
notify();

}
}

To use this semaphore, one simply creates an object s of the class Semaphore
and calls the method s.P() and s.V ().

Semaphore s = new Semaphore();
s.P ();
s.V ();

2.3 C#

C# is an object-oriented programming language for building applications for the
Microsoft .NET development environment. C# borrows heavily from Java, including
the concurrency features.

The common language runtime (CLR) provides the following three synchroniza-
tion methods [6].

Synchronized code regions The synchronization can be done on either the entire
method or a part of them using the Monitor class.

Classic manual synchronization Use the various synchronization classes (like the
WaitHandle, Mutex, ReaderWriterLock, ManualResetEvent, AutoResetEvent
and the Interlocked) to create the synchronization mechanisms. Any field or
method that the programmer want to synchronize must be manually defined as
such.

Synchronized contexts SynchronizationAttribute can be used to enable simple, au-
tomatic synchronization for ContextBoundObject objects. This technique is use-
ful if only the attributes and methods need to be synchronized. All objects in
the same context domain share the same lock.

Generally speaking, the mechanisms used in C# are similar to those used in Java.
But C# provides a wider libraries collection than Java does.

Following example shows a semaphore implemented in C#.

8 2. Related Work

using System;
using System.Threading;
public class Semaphore{

private boolean lock;
public Semaphore(){

lock = false
}
public void P ()
{

try{
lock(this){

try{
Monitor.Wait(this, T imeout.Infinite);

}
catch(ThreadInterruptedException e){}

}
}
catch(SynchronizationLockException){}
lock = true;

}
public void V (){

try{
lock(this){

lock = false;
}

}
catch(SynchronizationLockException){}

}
}

2.4 Seuss

Seuss is an experimental programming language proposed by Misra et. al. at the
University of Texas at Austin [20]. Unlike other languages such as Java, C# and
Ada, Seuss does not support built-in concurrency or is commitment to either shared
memory or message-passing style of implementation. Seuss also does not provide
a mechanism for specific communication or synchronization mechanism, except the
procedure call. Computation and communication, process specifications and interface

2. Related Work 9

specifications are not distinguished.
Consequently, Seuss does not have many of the traditional multiprogramming

concepts we have discussed previously. For example, there is no mechanism like pro-
cesses, locking, rendezvous, waiting, interference or deadlock. Typical multiprograms
employing message passing over bounded or unbounded channels can be encoded
in Seuss by declaring the processes and channels as the components of a program.
Shared memory multiprograms can be encoded by having processes and memories as
components.

A Seuss program contains cats and boxes. Cats are roughly equivalent to classes in
traditional object-oriented languages. A box is an instance of a cat. Cats can contain
data elements as well as two types of procedures, partial and total procedures. A
procedure can be either a method or an action. An action is executed autonomously
an infinite number of times during a program execution. A method is called from
another procedure [16, 20].

A partial procedure has an execution condition. When the procedure is called, if
the condition does not hold, the call is rejected to preserve the program state. Total
procedures do not have a condition so that the call to it is always successful. Total
procedures can only call other total procedures.

The following program is an example of a semaphore implemented in Seuss using
a partial procedure to implement the P operation and a total method to implement
the V operation of the semaphore. Then a partial action is used by the program to
access this semaphore.

cat Semaphore
var lock : boolean init false
partial method P :: not lock → lock := true
total method V :: lock := false

end
box s : Semaphore
box RunSemaphore

partial action :: not s.P → {do some work}; s.V
end

2.5 πoβλ

πoβλ is a concurrent language that is inspired by POOL [15]. Concurrency in πoβλ
can be done in two ways. One is creating non–default bodies. (Default bodies can
only sequentially respond to arriving messages. So the synchronous message passing
highly prevents concurrency). In this way, messages are accepted in an arbitrary

10 2. Related Work

order.

The other way for πoβλ to support concurrent programming is called post–
processing. πoβλ allows the programmer to specify that further execution can be
done concurrently once a return is called, so this is also called early return. Return
causes the caller to continue execution with the value given. The callee continues
execution of the rest of the method body. The following program shows an example
of a priority queue implemented by this mechanism. The priority queue delivers and
removes the smallest element by a remove method and also new elements can be
added to this queue by another add method [15].

Priq class
vars m : [N] ← nil; l : private ref(Priq) ← nil
add(e : N) method
begin

return
if m = nil then(m ← e; l ← new Priq)
elif m < e then l!add(e)
else(l!add(m); m ← e)
fi

end
rem() method r : N
begin

return
if m <> nil then m ← l!rem()

if m = nil then l ← nil
fi

fi
end

end Priq

In both the add and rem methods the return statement is on the first line. If we
make an assumption that only one method in a particular class instance can run at
any given time then it is easy to see that the structures will not be compromised by
the concurrent addition to and removal from the queue structures. In a traditional
programming language the return statement would have been at the end for the add
method. This implementation allows the value to be put into the queue and forgotten
about, as the queue itself as an independent entity takes care of it. The calling
procedure is free to continue its work. In the method rem, a traditional language
would also have placed the return statement at the end of the method, even though

2. Related Work 11

the value to return is know at the very beginning. On top of this, the value to return
would have to be stored in an extra variable to avoid destroying it while updating
the rest of the queue structures. In this implementation the return value can be sent
as soon as it is known so that the calling procedure can continue its work, while the
queue finishes updating its structures as independently.

The semaphores can not be implemented in πoβλ since there is no wait statement
in the language. Once a call to the P operation of a semaphore fails, the call finishes
instead of staying in the wait state.

2.6 Other Languages

Objective CAML (Categorically Abstract Machine Language) is an object-oriented
programming language based on the ML family. A class declaration defines a type
with the same name as the class. There are two kinds of polymorphism in the lan-
guage. One of them is parametric polymorphism (parameterized classes). The other
one is called inclusive polymorphism, which uses the subtyping relation between
objects and delayed binding. There is no method overloading notion in Objective
CAML [10]. The concurrent programming is supported through the threads library.
The following modules are provided by the threads library [17]:

• Thread : the lightweight thread that handles threads creation and termination.

• Mutex : used to implement critical sections and protect shared mutable data
structures against concurrent accesses.

• Condition: used when one thread wants to wait until another thread has finished
doing something.

• Event : used to implement synchronous inter-thread communications over chan-
nels.

• ThreadUnix : used to re-implement some of the functions from Unix so that they
only block the calling thread, not all threads in the program, if they cannot
complete immediately.

The threads library in Objective CAML is implemented by time-sharing on a
single processor. It will not take advantage of multi-processor machines. It will not
make the programs run faster by using this library (even much slower for the cost of
context switching). However, it may make it easy to write some programs by using
several communicating processes [17].

12 2. Related Work

The concurrent programming is supported by Ruby in the way that is similar to
that of Objective CAML – by the thread library that is implemented by time-sharing
on a single processor. Three classes are provided by the thread library: the class
Thread that represents user-level threads, the class Mutex that is used to protect
shared data against concurrent accesses and the class ConditionV ariable that is used
when one thread wants to wait until another thread finishing its job [7] .

Python is an object-oriented programming language originally developed for
scripting. Python supports method overloading and exception handling. It also sup-
ports dynamic typing and multiple inheritance. Python threads are tightly controlled
by a global interpreter lock and scheduler. The thread module provides low-level ac-
cess to threads such as thread creation and simple mutex locks. The threading module
is a high-level access to threads. The threads are implemented as classes (similar to
Java) The threading module provides the following synchronization primitives: mu-
tual exclusion locks, reentrant locks, conditional variables, semaphores and events [3].
Some work has been done to enhance the concurrency feature of them. For exam-
ple, Papathomas et al. developed an experimental framework based (roughly) on
inheritable synchronization constraints [21].

DisCo (Distributed Cooperation) is an experimental specification language for
reactive systems, based on the execution model of joint actions. The notion of joint
action systems was developed to “describe distributed systems and to support a
rigorous methodology for their design” [13]. Unlike other action systems, the ideas of
DisCo were formulated in such a way that temporal logic could be applied. DisCo is
both action-oriented and object-oriented.

Bonsangue et al. proposed an approach called OO-action systems [4]. They took
a class-based approach to object-orientation: OO-action systems model classes and
instances of classes, i.e., objects, are created at run time. The objects themselves can
be distributed and active. Communication between objects takes places via remote
procedure calls and shared variables.

Back et al. [2] proposed an approach to show how objects are added into Action-
Oberon, an Oberon-like language for parallel programming. They extend the Oberon
language for executing action systems with type-bound actions. Type-bound actions
combine the concepts of type-bound procedures (methods) and actions, bringing ob-
ject orientation to action systems. Type-bound actions are created at runtime along
with the objects of their bound types. They permit the encapsulation of data and
code in objects. Allowing an action to have more than one participant gives us a
mechanism for expressing n-ary communication between objects. By showing how
type-bound actions can logically be reduced to plain actions, they give an extension
a firm foundation in the refinement calculus.

2. Related Work 13

2.7 Conclusion

Ada′s protected type mechanism offers mutual exclusion and synchronization control
which support concurrent programming, but without object-oriented programming
feature (such as inheritance). The combination of concurrency and object-oriented
programming in Ada needs a lot of work.

Java and C# can be considered to be pure object-oriented languages. Object
inheritance could become a problem with concurrent programming. When a class
overrides a synchronized method, it must also explicitly declare the overriding method
as synchronized otherwise the method will not be synchronized in the child. For
example, if a new version of a class C is produced (with new functionality or a
revised implementation, etc.), a user who had defined a subclass C1 of the original
class should be able simply to re-link with the new version. But if either version of
class C contains synchronization code, this will potentially not work. The user will
need the source code for the new version and may need to modify the source code
for C1. On the other hand, threads of Java and C# needs to be created and handled
explicitly. Java and C# were designed as general purpose programming languages,
they were not designed for concurrent programming.

Seuss is the only programming language, which is based on action systems, but
Seuss is not fully object-oriented. There is no inheritance and objects can not be
created dynamically. In order to make action execution atomic, each action can only
call a guarded method once and a call must be the first statement of the action.
Currently, Seuss is only translated into a sequential programming language and does
not take advantage of object-oriented programming.

The most important advantage of πoβλ is that early return can be implemented
by introducing some background actions to do the real work when the needed value
has been returned to the caller. But synchronization is achieved by one-thread-at-a-
time concept since every data is considered to be an object. There is no mechanism
in the language to synchronize threads working on multiple objects. πoβλ also lacks
subtyping and inheritance.

The new object-oriented language, Lime, which is introduced in the next chapter,
will solve these problems in some way. Lime is a good combination of an object-
oriented programming language and action systems. Lime can simplify both the
specification and design of object-oriented concurrent applications.

Chapter 3

Lime

In this chapter, a brief background of action systems is first given. Then, Lime, a
new object-oriented concurrent programming language that is based on the action
system, is introduced. Lime language is introduced by first given its main features
and its syntax then several sample programs written in it.

3.1 Action System

Action systems were originally proposed as a formalism for parallel systems and dis-
tributed systems. This formalism is based on an extended version of Dijkstra’s guarded
commands language, which introduced the concept of guards and committed choice
nondeterminism [9]. A guard is a boolean expression attached to a statement defi-
nition specifying when that statement can be executed. In an action system, which
action is chosen for execution is not determined. This is called nondeterminism.

The formalism of action systems can be extended from the original form to object-
orientation.

In general, actions are guarded commands of the form p→A where p is a boolean
condition and A a statement. An action is enabled if the guard of it is true; otherwise
the action is disabled.

An action system A is a set of actions operating on local and global variables. It
has the form:

A = |[var l := l0; g := g0

do Ai[] · · · [] Am od
]|

Action systems describe computations in which the list of local variables l and the
list of global variables g are first created and initialized to be l0 and g0, respectively.

14

3. Lime 15

The local and global variables are assumed to be distinct.
After the initialization of the state variables, an enabled action Ai is selected for

execution nondeterministically. Actions operating on disjoint sets of variables can be
executed in parallel. Actions are considered to be atomic, which means that when
an action is picked up for execution, it will be completed without any interference.
So two actions Ai and Aj that are enabled at the same time and do not have any
read-write conflicts can be executed in any order. The computation terminates if no
action is enabled; otherwise it continues indefinitely. Hence we can model parallel
behavior with actions taking the view of interleaving action systems.

An action system is fair if it is guaranteed that every action in the system gets
a chance to execute. In other words, a continuously enabled action is eventually
selected for execution.

3.2 What Is Lime

Lime is an action-based object-oriented concurrent programming language, which
was developed by Dr. Emil Sekerinski at McMaster University [23] [22]. This lan-
guage is intended to make a good combination of action systems and object-oriented
programming.

The most significant difference between Lime and the traditional object-oriented
languages is that actions and guarded methods are added in order to implement action
systems.

3.2.1 Actions

Actions in Lime are executed automatically. They are not referenced within the
program but are invoked by the scheduler. Actions have no arguments or return
values.

Each action declaration has the format:

action A when b do S or action A do S

where A is the name of the action, b is a boolean condition and S is the body of
the action. This action is enabled if b holds, otherwise it is disabled. The execution
of an action is accepted if the action is enabled. The following is an example of an
action in Lime:

action A
when b do begin

x := x + 1;

16 3. Lime

b := false
end

When the scheduler chooses to execute this action (which means that the object
this action belongs to is enabled), it first checks the boolean condition of this action,
b=true. If the condition holds then the body of the action, x :=x+1; b:=false, is
executed.

An action with the format action A do S means that the condition to execute
this action is always true. In other words, action A is always enabled.

3.2.2 Methods

Unlike actions, methods in Lime may have arguments and return values. There are
two types of methods in Lime, guarded methods and unguarded methods.

An unguarded method is the same as a method in other object-oriented program-
ming languages, such as a method in Java. Here is an example of a class with an
unguarded method:

class C
method addX (x : integer) : integer
begin

x := x + 1;
return x

end
end

The unguarded method addX takes an integer as its argument, increases it by 1
and returns the new value to the caller. The call to an unguarded method is always
accepted.

Guarded methods may accept or reject the call. They have the following format:

method M when b do S

where M is the name of the guarded method, b is a boolean condition and S is
the body of the method. This guarded method is enabled if b holds, otherwise it is
disabled. The following is an example of a guarded method:

class C
attr x : integer

3. Lime 17

initialization x := 0
method addX : integer

when x < 10 do
begin

x := x + 1;
return x

end
end

When this method is called, the condition, x< 10, is checked. If it holds, this
call is accepted and the body of the method, x :=x+1; return x, is executed; if the
condition does not hold, the call is rejected.

3.2.3 Program Structure and Execution

A Lime program consists of several class definitions and one program definition. The
attributes, actions and methods of the class are declared in the class definition. In the
program definition we control the flow of the program, allocate whatever resources
are needed, and run any methods that provide the functionality for the application.
It is similar to the main method in Java. The following example shows how Lime
program is structured:

class C1
// body of class C1
class C2
// body of class C2
program P
begin

//...
end

Execution of Lime is similar to that of traditional languages. The main difference
is that we have some background threads (the number of the threads depends on
the number of processors and various translation schemes) to pick up and execute
the actions. We require that every action can be chosen infinitely often during the
execution.

18 3. Lime

3.3 Lime Syntax

A programming language is an infinite set of sentences well formed according to
its syntax. In this section, we introduce the syntax of Lime by giving the context-
free grammar (grammar for short) of this language, described in EBNF (extended
Backus-Naur Formalism) [1].

3.3.1 Notations

The grammar of Lime consists of terminals, nonterminals, a start symbol and a set
of productions.

Terminals are the basic symbols from which strings are formed. Terminals are also
called tokens.

Nonterminals are syntactic variables that denote sets of strings. The nonterminals
define sets of strings that help to define the language generated by the grammar.
They also impose a hierarchical structure on the language that is useful for both
syntax analysis and translation.

Start symbol is one special nonterminal in the grammar, and the set of strings it
denotes is the language defined by the grammar.

Productions of the grammar specify the manner in which the terminals and non-
terminals can be combined to form strings. A production rule defines a nonter-
minal symbol in terms of other nonterminal symbols and/or terminal symbols.
A production rule has the following form:

LeftHandSide ::= RightHandSide

The “::=” sign separates the definition (RightHandSide) from the defined sym-
bol (LeftHandSide). As the result of a production rule, RightHandSide replaces
left side wherever LeftHandSide appears in a production rule.

In the rest of this section, a nonterminal symbol is denoted by italic font, such as
N ; and a terminal symbol is put between two double quotes, such as “T”.

Let M and N be two given symbols, we have the following notations:

• M | N denotes the alternative between M and N (either M or N);

• MN denotes that the concatenation of M and N (M followed by N);

3. Lime 19

• [M] denotes that M is optional;

• { M } denotes a sequence of M (the sequence may be empty);

• (MN) denotes that M and N are grouped, i.e. (M | N)M means MM or
NM.

3.3.2 Representation of Lime Programs

In a programming language, the representation of symbols in terms of characters
depends on the underlying character set. The ASCII (American Standard Code
Information Interchange) set is used in Lime. Following symbols are first defined:

• White space: is a non-empty sequence of blanks, new lines and tabs. White
spaces are ignored by the compiler.

• Letter and Digit: are used to define other symbols, such as identifiers and
numbers.

• Operators and delimiters: are either special characters or reserved words. Re-
served words are also called keywords, they have a predefined meaning to the
compiler and therefore must not be used for any other purpose.

The operators and delimiters composed of special characters are:

+ addition
− subtraction
∗ multiplication
/ division
:= assignment
= equal
< less than
> greater than
<= less than or equal
>= greater than or equal
<> not equal
[left square bracket
] right square bracket
(left parentheses
) right parentheses

20 3. Lime

The reserved words are enumerated in the following list; their meaning will be
explained throughout this thesis:

abstract action array and
assert attr begin boolean
while class const do
div else end extend
false if implement import
inherit initialization integer interface
new nil not method
when of or procedure
program protected public redefine
real repeat return then
true type var

• Comment: Lime supports three types of comments. The first type is a single-
line comment, which begins with the characters “//” and continues until the
end of the current line. The second kind of comment is a multi-line comment.
It begins with the characters “/*” and continues, over any number of lines, until
the characters “*/”. Any text between the “/*” and the “*/” is ignored by the
compiler. This type of comment cannot be nested (i.e., one “/* */” comment
cannot appear within another one). The third type of comment is a special case
of the second. If a comment begins with “/**”, it is regarded as a special doc
comment. Like regular multi-line comments, doc comments end with “*/” and
cannot be nested.

• EOF: a special token, which is used to indicate the end of the input file.

3.3.3 Identifiers and Numbers

In Lime, identifiers are defined as sequences of letters and digits. The first character
must be a letter. Identifier is defined as follows:

Identifier ::= Letter{Letter | Digit}

IdentifierList is a sequence of identifiers of the same type, it has the form:

IdentifierList ::= Identifier{“,” Identifier}

3. Lime 21

Numbers are either integers or real numbers. Currently, only integers are sup-
ported in Lime. Numbers are denoted by sequences of digits without any space
between these digits. Integer in Lime is defined as follows:

IntegerLiteral ::= [“0”-“9”]{[“0”-“9”]}

3.3.4 Compilation Unit

A compilation unit is a unit of source code that can be compiled. In Lime, the
compilation unit has the form:

CompilationUnit ::= {Import“;”}{Declaration} EOF

This means that a compilation unit consists:

• A sequence of imported classes, which has the form:

Import ::= “import” QualifiedIdentifier

• A sequence of declarations, including constant declarations, class declarations,
procedure declarations and program declarations:

Declaration ::= ConstDeclaration | ClassDeclaration
| ProcedureDeclaration | ProgramDeclaration

• Finally, EOF, a special token indicating the end of the input file.

3.3.5 Constant, Procedure and Program Declarations

All identifiers must be declared before they are used, unless they are imported from
another class. If an identifier is to denote a constant value, it must be introduced
by a ConstDeclaration declaration that indicates the value for which the constant
identifier stands. A constant declaration has the form:

ConstDeclaration ::= “const” Identifier “=” Expression | Statement

The following examples show the use of constant declaration:

22 3. Lime

const A = 50 + 100
const b = false

The compiler determines the data type of the constant automatically.

The procedure declarations and program declaration have the following forms:

ProcedureDeclaration ::= “procedure” Identifier [ValueParameter]
[ResultParameter][Statement]

ProgramDeclaration ::= “program” [VarList] [Statement]

3.3.6 Class Declarations

A class is declared by giving it a name, optionally stating the class being inherited, and
then listing all the attributes, initializations, methods, and actions. Class declarations
in Lime have following form:

ClassDeclaration ::= “class” Identifier{Inherit}{Feature} “end”

• Identifier represents the name the class.

• Inherit indicates the relationship of this class to other classes or interfaces, it
is defined as following:

Inherit ::= (“inherit” | “extend” | “implement”)Identifier

This means that the current class can inherit, and/or extend other classes,
and/or implement some interfaces.

• The body of the class is defined in Feature. It consists a sequence of declarations
of methods, attributes, initializations, actions and constants. Each of them will
be introduced in the following sub-sections.

Feature ::= Method | Attrbute | Initialization | Action | ConstDeclaration

3. Lime 23

Method

Methods may have both value parameters and result parameters. Method declara-
tions in Lime have the form:

Method ::= “method” Identifier [ValueParameter]
[ResultParameter][[“when” Expression “do”]Statement]

Identifier is the name of the method. ValueParameter is the list of input param-
eters and their types. ValueParameter has the form:

ValueParameter ::= “(”TypedIdentifierList“)”

and TypedIdentifierList has the following form:

TypedIdentifierList ::= IdentifierList “:” Type {“,” IdentifierList “:” Type}

ResultParameter shows the return type of the method, which has the format:

ResultParameter ::= “:” Type

Attribute

Attribute give the attributes of the class. It has the form:

Attribute ::= “attr” VariableDeclarator {“,”VariableDeclarator}“:” (Type)

VariableDeclarator is used to give the declaration of a variable, it has the following
form:

VariableDeclarator ::= VariableDeclaratorId [“:=” VariableInitializer]

where VariableDeclaratorId gives the name of the variable and VariableInitializer
gives possible initialization of the variable. They have the form:

VariableDeclaratorId ::= Identifier{“[”“]”}

VariableInitializer ::= ArrayInit | Expression

24 3. Lime

Initialization

Initialization initializes the attributes as needed. It has the following form:

Initialization ::= “initialization” [ValueParameter][Statement]

Action

Action in Lime is defined as:

Action ::= “action” Identifier [“when” Expression “do”] Statement.

3.3.7 Types

There are two types in Lime, the reference type and primitive type.

Type ::= ReferenceType | PrimitiveType

Primitive Types

The primitive type represents the elementary data types in Lime, integer and boolean.

PrimitiveType ::= “boolean” | “integer”

• Type “integer”: This type represents the whole integer numbers, and any value
of type “integer” is therefore an integer. Operators applicable to integers include
following basic arithmetic operations:

+ add
− subtract
∗ multiply
div divide
mod remainder of division

• Type “boolean”: A “boolean” value is one of the two logical truth values denoted
by the standard identifiers “true” and “false”. A set of logical operations is
provided which, together with “boolean” variables, form “boolean” expressions.
These operators are “and”, “or” and “not”.

3. Lime 25

a and b = “if a then b else false”
a or b = “if a then true else b”
not a = “if a then false else true”

It needs to be mentioned that lazy evaluation is used in Lime boolean operations.
That is to say, when evaluating a and b, if a is false, the result of false is returned
immediately instead of evaluating the value of b. Similarly, when evaluating a
or b, if a is true, the result of true is returned immediately instead of evaluating
the value of b.

Reference Types

The reference type has the following format:

ReferenceType ::= (ClassOrInterfaceType{“[” “]” }) |
(PrimitiveType(“[”“]”)+)

ClassOrInterfaceType ::= Ident [TypeArguments]
“.”Ident [TypeArguments]}

TypeArguments ::= “<” ActualTypeArgument{“,” ActualTypeArgument}
((“>”) | (“>>”) | (“>>>”))

ActualTypeArgument ::= “?” [(“extends” | “super”)ReferenceType] |
ReferenceType

3.3.8 Expression

An expression is in general composed of several operands and operators. Its evaluation
consists of applying the operators to the prescribed sequence, in general taking the
operators from left to right.

The syntax of Expression in Lime is defined as follows:

Expression ::= CondExpr { “:=” Expression }

CondExpr ::= CondOrExpr {“?” Expression “:” CondExpr}

CondOrExpr ::= CondAndExpr { “or” CondAndExpr }

26 3. Lime

CondAndExpr ::= EqExpr { “and” EqExpr }

EqExpr ::= RelExpr { “=” RelExpr | “ <> ” RelExpr }

RelExpr ::= AddExpr { “<” AddExpr | “>” AddExpr
| “<=” AddExpr | “>=” AddExpr | “=” AddExpr
| “<>” AddExpr}

AddExpr ::= MulExpr { “+” MulExpr | “−” MulExpr }

MulExpr ::= UnaryExpr {“∗” UnaryExpr
| “div” UnaryExpr | “mod” UnaryExpr }

UnaryExpr ::= “not” UnaryExpr | PrimExpr

PrimExpr ::= PrimPrefix | {PrimSuffix}

PrimPrefix ::= Literal | “this”
| {Identifier “.”} “super” “.” Identifier
| “(” Expression “)” | AllocatExpr
| Type “.” “class” | Name

Name ::= Identifier [”.” Identifier]

AllocatExpr ::= “new” (ClassOrInterfaceType
(ArrayDimsAndInits | Arguments {Feature}
| “(” Expression “)” | AllocatExpr
| (“integer” | “boolean”) ArrayDimsAndInits)

Arguments ::= “(” {ArgumentList } {“,” } “)”

ArgumentList ::= Expression [“,” Expression]

PrimSuffix ::= “.” (“this” | “super” | AllocatExpr
| { ReferenceTypeList } Identifier) | “[” Expression “]”
| Arguments | ReferenceTypeList

ReferenceTypeList ::= “<” ActualTypeArgument [“,” ActualTypeArgument]
| { ReferenceTypeList } Identifier) | “[” Expression “]”

3. Lime 27

| Arguments | ReferenceTypeList

ArrayDimsAndInits ::= (“[” Expression “]”)+ { “[” “]” }
| (“[” “]”)+ ArrayInit

ArrayInit ::= “{” [VariableInitializer { “,” VariableInitializer }]
[“,”] “}”

There are a few basic rules governing expressions in Lime, for example, every vari-
able in an expression must have been previously defined and assigned a value; two
operators must never be written side by side. For instance, a∗−b is not permitted
and must be written as a∗(−b).

3.3.9 Statements

The specification of an action is called a statement. Statement in Lime has the
following form:

Statement ::= Compound | If | While | Return | Var | StatementExpression

Statement Expression

The statement expression has the following form:

StatementExpression ::= PrimExpr [“:=” Expression]

Compound and Return Statements

The compound statement represents a sequence of statements, starting with “begin”
and ending with “end”. Compound is defined as:

Compound ::= “begin” Statement { “;” Statement } “end”

For example, if a statement S1 follows S0, it is expressed as:

begin S0; S1 end

28 3. Lime

A Return statement consists of the symbol “return”, possibly followed by an
expression. It indicates the termination of a method, and the expression specifies the
value returned as result of the method call. Its type must be assignment compatible
with the result type specified in the method declaration. Return statement has the
following format.

Return ::= “return” [Expression]

Control Structures

It is a prime characteristic of a programming language that individual actions can be
selected, repeated, or performed conditional depending on some previously computed
results. This is determined by the control structures. There are two control structures
in Lime, While and If statement.

• The While statement is defined as follows:

While ::= “while” Expression “do” Statement

The Expression is of type “boolean” which was discussed in the section on data
types. Following is an example of using the While statement to calculate the
sum of first 100 positive integers (i and sum are initialized to be 0, respectively):

while i <= 100 do
begin sum := sum + 1; i := i + 1 end

• The if statement has the form

If ::= “if” Expression “then” Statement [“else” Statement]

The Expression here is also of type “boolean”.

The following two examples illustrate general form of If statement:

if a = 0 then b := 1
if b > 0 then a := b else a := −bW

3. Lime 29

3.4 Lime Examples

It is much easier to develop concurrent programs in Lime than in other traditional
object-oriented languages. The programmer only needs to create the actions the
objects have and does not need to worry about how those actions are scheduled in
the background. All that scheduling work is left to the Lime compiler.

3.4.1 An Integer Generator

Following example shows how a Lime class, IntegerGenerator, implements a simple
arbitrary integer number generator using actions. The class has two actions, inc and
dec, which increment and decrement the counter respectively.

class IntegerGenerator
attr n : integer
attr m : integer
initialization n := 0
action inc

n := n + 1
action dec

when n > 0 do n := n− 1
method fetch : integer
begin

m := n;
n := 0;
return m

end
end

Note that the action inc is always enabled.

3.4.2 A General Semaphore

Synchronization is a fundamental aspect of a concurrent program. Semaphores are
the first and remain one of the most important synchronization tools. The following
example shows a general semaphore implemented in Lime.

class Semaphore
attr value : integer
initialization value := 0

30 3. Lime

method P
/*to access and lock the object*/

when value > 0 do value := value− 1
method V
/*to release the lock on the object*/

value := value + 1
end

Since the V operation on the semaphore is always accepted, it is implemented
as an unguarded method. The P operation is only accepted when value> 0, so it is
implemented as a guarded method.

3.4.3 Reader-Writer

The following example shows how to use monitors to implement the reader/writer
problem in Lime. Reader processes query a database and writer processes examine
and alter it. We need to ensure that a resource is either accessed by up to R readers
or a single writer. Attribute n is the number of readers that are currently reading
the resource, N is the maximum number of readers can read the resource at the same
time, both attribute are initialized to be R [23].

class ReaderWriter
attr n, N : integer
initialization(R : integer)

begin n := R; N := R end
method StartRead

when n > 0 do n := n− 1
method startWrite

when n = N do n := 0
method endRead

n := n + 1
method endWrite

n := N
end

3.4.4 Dining Philosophers

The Dining Philosophers problem is a traditional problem in the history of concur-
rency. N philosophers are sitting around a circular table on which are placed N plates
and N forks, one plate in front of each philosopher, one fork between each pair of

3. Lime 31

philosophers. Philosophers sit and think for a while, then get hungry, pick up the fork
on each side, and eat. Then they return them to the table, and return to thinking.

The next example shows how to implement the Dining Philosophers problem in
Lime. The eating process of each philosopher is implemented as an action; and one
philosopher can only pick up the fork when the forks on his both sides are available.
Here the monitor mechanism is used. The class Philosopher contains an action eat,
and the action is enabled when both the left and right forks of the philosopher are
available. In the program NPhilosopher, we only need to create the array of the
philosophers and the forks, and assign the forks to the philosophers. The schedule of
how the philosophers picking up the forks is left to the Lime compiler.

//The class of Philosopher
class Philosopher

attr leftFork, rightFork : Fork
action eat
when leftFork.avail and rightFork.avail do begin

leftFork.avail := false;
rightFork.avail := false;

end
action finishEat
when notleftFork.avail and notrightFork.avail do begin

leftFork.avail := true;
rightFork.avail := true

end
end
//The class of Forks
class Fork

attr avail : boolean
initialization avail := true

end
//The class of N philosopher problem
class NPhilosopher

attr N : integer
attr i : integer
attr philosopher[] : Philosopher
attr fork[] : Fork
method start
begin

//create philosophers and forks

32 3. Lime

philosopher = new Philosopher[N];
fork = new Fork[N];
i := 0;
//assign forks to philosophers
while (i < N − 1) do begin

philosopher[i].leftFork := fork[i];
philosopher[i].rightFork := fork[i + 1];
i := i + 1

end;
philosopher[i].leftFork := fork[i];
philosopher[i].rightFork := fork[0]

end
end

3.4.5 A Screen Saver

Our next example implements a program that locks a terminal each time the un-
guarded method lock is invoked. No more interaction is possible until the correct
password is entered at the keyboard. The variable pword is the password that is used
to unlock the terminal.

class ScreenSaver
attr b : boolean
attr input, pword : integer
initialization b := true
method getKeyboardInput : integer
/*to get the input integer from the keyboard*/
method outputDisplay(i : integer)
/*to display the input integer on the terminal*/
method setPassword(i : integer)

pword := i
method lock

b := false
action checkPassword

when not b do begin
input := getKeyboardInput;
b := (pword = input)

end

3. Lime 33

action displayInput
when b do begin

input := getKeyboardInput;
outputDisplay(input)

end
end

Two actions, checkPassword and displayInput are nondeterminately selected to
execute during the program execution. When the screen is locked, the action check-
Password is enabled. The input from the keyboard is used to compare with the
password (pword) and to unlock the screen if they are the same. When the screen
is not locked, the action displayInput is enabled. Then the input from the keyboard
will be displayed on the screen.

3.4.6 Fish Screen Saver

This example was first introduced in [2]. Some fish swim around the screen. The
position of each fish is given by horizontal axis x and vertical axis y. The fish is
either moving up (when up is true) or down, and either right (when right is true) or
left. When a fish reaches the border of the screen, it will change the direction.

In the following implementation, each possible movement of a fish is implemented
as an action.

class F ish
attr x, y : integer
attr up, right : boolean
const WIDTH = 20
const HEIGHT = 10
initialization
begin

x := 0; y := 0; up := true; right := true
end
action moveUp

when y < HEIGHT and up do y := y + 1
action moveRight

when x < WIDTH and right do x := x + 1
action moveLeft

when x > 0 and not right do x := x− 1
action moveDown

34 3. Lime

when y > 0 and not up do y := y − 1
action bounceUp

when y = 0 and up do up := false
action bounceDown

when y = HEIGHT and not up do up := true
action bounceRight

when x = WIDTH and right do right := false
action bounceLeft

when x = 0 and not right do right := true
end

Then we can implement the screen saver program as follows. We can create as
many as numFish fish and do not need to worry about how to schedule those actions,
the Lime compiler will do it for us.

programFishScreenSaver
var i : integer
var f : Fish
const numFish = 10
begin

i := 0;
while i < numFish do begin

f := new Fish; i := i + 1 end
end

Lime is an object-oriented programming language so we can define a class in
terms of another class. The definition of the subclass inherits all the operations of
the superclass. Both methods and actions can be overridden. Previously we define a
class Fish that has some actions making the fish move on the screen. The following
example defines a class FastFish that inherits from Fish, actions in FastFish overrides
the ones in its superclass.

class FastF ish extends F ish
action moveUp

when y < HEIGHT and up do y := y + 2
action moveRight

when x < WIDTH and right do x := x + 2
action moveLeft

when x > 0 and not right do x := x− 2

3. Lime 35

action moveDown
when y > 0 and not up do y := y − 2

end

3.4.7 Priority Queue

In the previous chapter, an example of a priority queue using the early return mech-
anism in πoβλ was introduced. It is complicated to implement early return in most
programming languages, such as Java and C#. The early return can be implemented
in Lime by actions. The following program shows this priority queue example imple-
mented in Lime:

class Priq
attr m : integer
attr l : Priq
attr a : boolean
attr p : integer
initialization a := false
method add(e : integer)

when not a do
if l = nil then begin m := e; l := new Priq end
else begin p := e; a := true end

action doAdd
//The action do the real adding work

when a do
begin

if m < p then l.add(p)
else begin l.add(m); m := p end;
a := false

end
method remove : integer

when not a do
begin

var x : integer;
x := m; m := l.remove(); return x end

end

In this example, an action doAdd is added to perform the real task of adding new

36 3. Lime

element to the proper position of the queue. This action is enabled when its guard,
boolean variable a holds (means there is an element that needs to be added). The
method add is guarded, it is only enabled when a is false (means that there is no
other element being added). The method add returns immediately to the caller after
setting a to be true and leaves all the adding work to the background action, doAdd.

3.4.8 A Simple Symbol Table

Our last example shows how to implement early return in Lime. There is a simple
symbol table implemented in class SymbolTable. The data in this table is an object
of class SymbolEntry and each entry has a key which is of type integer. The data in
this symbol table is ordered by the key value. The method insert tries to insert new
data in the table. It only inserts the data when it can find the correct place for the
data immediately. Otherwise the method only sets the boolean variable a to be true
to enable the action doInsert which can do the complex insertion work, and returns
to the caller.

class SymbolTable
attr mk,md, k1, d1 : integer
attr l, r : SymbolTable
attr a : boolean
initialization begin a := false; mk := 0; md := 0; l := nil; r := nil end
method insert(k : integer, d : integer)

when not a do
if mk = 0 then begin mk := k; md := d end
else if mk = k then md = d

else begin a := true; k1 := k; d1 := d end
/*The action to do the real insertion work*/
action doInsert

when a do begin
if k1 < mk then begin

if l = nil then l := new SymbolTable();
l.insert(k1, d1); mk := k1; md := d1 end

else begin
if r = nil then r := new SymbolTable();
r.insert(k1, d1); mk := k1; md := d1 end;

a := false
end

method search(k : integer) : integer

3. Lime 37

when not a do
if k = mk then return md
else if k < mk then return l.search(k)

else return r.search(k)
end

3.4.9 Other Examples

The array data type is important all programming languages. Lime also supports the
array data type. The following is an example that shows how to operate on an array
of integers:

class IntArray
attr x : integer
attr i : integer
attr b[] : integer //declare but not create
method A
begin

i := 0; x := 10;
b := new integer[x]; //create the array
while i <= 9 do begin

b[i] := x ∗ 5;
i := i + 1

end
end

end

Lime methods may have parameters associated with them. These parameters are
assigned copies of the actual parameters when the method is called. The parameter
then acts as a local variable within the called method. Any changes made to the
value of this variable last for the lifetime of the method and do not affect the original
value. There are two ways in Lime for passing arguments. If the arguments are of
primary type, they are passed by their value; if they are of object or array, then they
are passed by reference.

class ParameterPassing
attr a : integer
attr b[] : integer

38 3. Lime

method foo
begin

a := 1;
b := new integer [2];
b[0] := 1;
b[1] := 2;
m(a);
n(b)

end
method m(p : integer)
//parameter is passed by its value

p := p + 2
method n(b : integer[]) begin
//parameter is passed by its reference

p[0] := p[0] ∗ 2;
p[1] := p[1] ∗ 2

end
end

Lime is compiled into java class file and executed on the Java Virtual Machine.
Methods defined in Java can be called by Lime. In this way we can take advantage of
Java features and develop complex programs. The following example shows the use
of Java method System.out.println to print the output to the screen.

class C
attr i, k : integer
method m begin

i := 0; k := 0;
while i < 100 do begin

k := k + i;
i := i + 1

end
//call Java method
System.out.println(k)

end
end

Chapter 4

Java Virtual Machine and Jasmin

The target language of the Lime compiler is a Java assembly language called Jasmin.
The assembly language code can then be translated to Java byte-code (Java class
file) by the Jasmin assembler such that it can be executed on a Java Virtual Machine
(JVM for short).

The reason to translate Lime into the Java assembly language instead of Java
source code is that we need to control when to enter and exit the monitor (to lock or
release an object). The entering and exiting of the monitor need to come in pair by
using the keyword synchronized in Java. So it is not possible to control the entering
and exiting of a monitor from the Java source code.

In this chapter, some basic knowledge of the components of JVM and some JVM
instructions we use in our compilation are first introduced; then we give a brief
introduction to Jasmin. These are fundamentals for our translation schemes.

4.1 Java Virtual Machine

JVM is an abstract machine used as a target for Java compilation. It is a platform-
neutral runtime engine used to execute Java programs. The relevant components of
JVM are introduced in this section [18].

4.1.1 Components of Java Virtual Machine

Class File Loader

The interface to the JVM is through the class file. A class file has a strict format. The
strictness of the format is required in part so that the JVM specification remains well
defined. The class file loader is used to read the class file, verify it and initialize its
static fields. There is information on constants, fields, methods and attributes in the

39

40 4. Java Virtual Machine and Jasmin

class file. Function γ is defined to return the information contained in the class file.
Let ClassName be the name of a class, then γ(ClassName) = (γK , γF , γM , γP , S, C)
where:

Constant Pool γK : a pool for constants and literals used by the class. For arrays,
it contains entries (n, t) where n is the dimension of the array and t is the type
of elements in the array. For fields, it contains entries of the form (c, f) where
c is the name of the class and f is the field’s name.

Field Table γF : a list of fields in the class. Entries in the field table have the form
(t, sd, a) where t is the type of the field and sd is either static or dynamic. If
sd is static then a is the address of the static field otherwise a is an offset of
the non-static field.

Method Table γM : a list of methods in the class (with flags and method signa-
tures). Entries in the table have the form (c, p, n, l, sd, ms) where c is the name
of the class that the method belongs to; p is the pointer to the byte-code of the
method; n and l are the number of arguments and local variables of the method.
ms is the maximum number of stack cells needed by the method execution and
sd is either static or dynamic.

Byte-Code Programs γP : sequences of cells of size 1 byte. For some instructions,
the arguments are encoded in the instruction itself (e.g. aload 0, iconst 4). For
most instructions, the instruction and its arguments are stored in consecutive
cells.

Superclass S : the superclass of the current class and any interfaces this class im-
plements.

This Class C : code segments that implement this class’ methods.

Execution Environment

The JVM has 4 registers used for program execution [18]:

PC : program pointer, points to a position in the program store;

VARS : all local variables are addressed relative to this register;

OPTOP : points to the topmost cell of the operand stack;

FRAME : points to the first cell of the execution environment.

4. Java Virtual Machine and Jasmin 41

JVM Instruction Meaning
add add two integers
neg negate an integer
isub subtract two integers
imul multiple two integer
idiv divide two integers

Table 4.1: JVM instructions for integer arithmetic

Store

The store, stack and heap are sequences of cells of size 4 bytes; stack and heap are
disjoint areas of the store [18].

4.1.2 Java Virtual Machine Instruction Set

A Java Virtual Machine instruction consists of an opcode specifying the operation to
be performed, followed by zero or more operands embodying values to be operated
upon. There are 166 instructions in the current version of JVM. The meanings of
instructions that are used in Lime compiler are briefly introduced in the remaining of
this section [18, 19]. The details of these instructions, especially the usages and how
they operate on the stack are introduced in [19].

The JVM instructions are grouped into the following eight category according to
their usage in the Lime compiler:

• Instructions for integer arithmetic are introduced in Table 4.1;

• Instructions for stack manipulations are introduced in Table 4.2;

• Instructions for integer comparison and jumps are introduced in Table 4.3;

• Instructions for creating new arrays are shown in Table 4.4;

• Instructions for accessing arrays or objects are introduced in Table 4.5;

• Instructions for method returns are shown in Table 4.6;

• Instructions for method calls are introduced in Table 4.7;

• Instructions for assignments are introduced in Table 4.8.

42 4. Java Virtual Machine and Jasmin

JVM Instruction Meaning
iconst n push the constant n(0-5) onto the stack
bipush n push one-byte signed integer
ldc n push single-word constant onto stack
istore n store integer in local variable n
iload n push integer from local variable n

Table 4.2: JVM instructions for stack manipulation

JVM Instruction Meaning
goto a branch to address
ifeq a jump if equal to zero
ifgt a jump if greater than zero
ifle a jump if less than or equal to zero
if icmpeq a jump if two integers are equal
if icmpne a jump if two integers are not equal
if icmple a jump if first integer is less than or equal to the second

one
if icmpge a jump if first integer is greater than or equal to the second

one
if icmplt a jump if first integer is less than the second one
if icmpgt a jump if first integer is greater than the second one

Table 4.3: JVM instructions for integer comparison and jumps

JVM Instruction Meaning
newarray t allocate new array for integer number or boolean
anewarray t allocate new array for objects of type t
multianewarray t d allocate multi-dimensional array of type t with dimen-

sion d

Table 4.4: JVM instructions for creating new arrays

4. Java Virtual Machine and Jasmin 43

JVM Instruction Meaning
aload v retrieve object reference from local variable
aaload retrieve object reference from array
iaload retrieve integer from array
astore v store object reference in local variable
aastore store object reference in array
iastore store in integer array

Table 4.5: JVM instructions for accessing arrays or objects

JVM Instruction Meaning
return return from a method whose return type is void
ireturn return from method with integer result
areturn return from method with object reference result

Table 4.6: JVM instructions for method return

JVM Instruction Meaning
iaload retrieve integer from array
invokespecial invoke method belonging to a specific class
invokevirtual i call an instance method

Table 4.7: JVM instructions for method call

JVM Instruction Meaning
getstatic i get value of static field
putstatic i set value of static field
getfield i get value of object field
putfield i set value of object field

Table 4.8: JVM instructions for assignments

44 4. Java Virtual Machine and Jasmin

4.2 Jasmin

The Lime compiler uses Jasmin as the target language. Jasmin was developed by
Jon Meyer [19]. It takes ASCII descriptions for Java classes, written in a simple
assembler-like syntax and using the JVM instruction set. Jasmin converts them into
binary Java class files suitable for executing on a JVM [19].

Jasmin takes care of the generation of the constant pool, so that one can write
numbers, method signatures and types as strings in Jasmin files. The mapping of
labels to addresses in the byte-code is also taken care by Jasmin, so that one can use
strings as labels in jump instructions.

Jasmin source files consists of a sequence of newline-separated statements. There
are three types of statements:

• Directives: used to give Jasmin meta-level information. A directive statement
consists of a directive name, and then zero or more parameters separated by
spaces, then a newline. All directive names start with a ‘.’. For example:

– .method public M ()V : declares a public method M whose return type is
void ;

– .field public foo I : declares a public integer field foo;

– .class C : declares a class C.

• Instructions: which are JVM instructions.

• Labels: consist of a name followed by a ‘:’, and a newline. Labels can only be
used within method definitions and are local to that method.

A Jasmin file starts by giving information on the class being defined in the file –
such as the name of the class by .class, the name of the superclass by .super, etc. The
following section of the Jasmin file is a list of field definitions by the directive .field.
The rest of the Jasmin file lists methods defined by the class.

The following example shows a Jasmin program that is generated by the Lime
compiler. The original Lime program is the example shown in Section 3.3.3. Note
that a Jasmin comment starts with a “;” character, and terminates with the newline
character at the end of the line [19]. The methods P and V are translated differently
because P is a guarded method while V is an unguarded one. The details of the
translation schemes will be introduced in the next two chapters.

; Generated By Lime Compiler at 6:27:1 on 4/2/2004.
;—————————————————-*/
.class public Semaphore

4. Java Virtual Machine and Jasmin 45

.super java/lang/Object

.implements ActiveObject

.field value I

;The standard class initializer, from the initialization part of the program
.method public < init > ()V
.limit stack 2
.limit locals 1

aload 0
invokespecial java/lang/Object/ < init > ()V
;initialize the variables
aload 0
iconst 0
; type of attribute is I
putfield Semaphore/value I
aload 0
iconst 1
putfield Semaphore/inPool
aload 0
iconst 0
; type of attribute is
putfield Semaphore/nextAction
return

.end method

; ———-method P ———–
.method P ()V
.limit stack 4
.limit locals4

aload 0
monitorenter
goto L W TEST
L W BODY :
L WAIT 1 BEGIN :
aload 0
invokevirtual java/lang/Object/wait()V
EXCEPTION HANDLER :
L WAIT 1 END :
.catch java/lang/InterruptedException from L WAIT 1 BEGIN to

46 4. Java Virtual Machine and Jasmin

L WAIT 1 END using EXCEPTION HANDLER
L W TEST :
aload 0
getfield Semaphore/value I
ineg
iconst 0
if icmpgt L GT 1 1
iconst 0
goto L GT 1 2
L GT 1 1 :
iconst 1
L GT 1 2 :
ifgt L W BODY
aload 0
aload 0
getfield Semaphore/value I
iconst 1
isub
; type of attribute is I
putfield Semaphore/value I
;—- if ... then ...——-
aload 0
getfield Semaphore/inPool
ineg
ifle L IF 1 1
aload 1
invokevirtual ObjectPool/add()V
aload 0
iconst 1

; type of attribute is
putfield Semaphore/inPool
L IF 1 1 :
aload 0
monitorexit
return

.end method
; end of method P

;———-method V ———–

4. Java Virtual Machine and Jasmin 47

.method V ()V

.limit stack 4

.limit locals 4
aload 0
monitorenter
;—- if ... then ...——-
aload 0
getfield Semaphore/inPool
ineg
ifle L IF 2 1
aload 0
getfield Semaphore/this
aload 1
invokevirtual ObjectPool/add()V
aload 0
iconst 1
putfield Semaphore/inPool
L IF 2 1 :
aload 0
aload 0
getfield Semaphore/value I
iconst 1
iadd
; type of attribute is I
putfield Semaphore/value I
aload 0
monitorexit
return

.end method
; end of method V

Chapter 5

Basic Translation Schemes

Lime is an ongoing research project and many aspects are likely to evolve over time.
Therefore the design and implementation of the compiler should be as general as
possible. The most important feature of Lime is that the actions and guarded methods
are added to the language. How to translate the actions and the guarded methods
is the key of the Lime compiler. On the other hand, the translation of a Lime
program without actions and guarded methods is more straightforward. For this
reason, we separate the compilation of a Lime program to two steps. First, the
program is translated into an intermediate Lime program without actions and guarded
methods. Then the intermediate Lime program is translated into Jasmin. This two-
step translation is shown in Figure 5.1.

This chapter introduces the basic translation schemes, which are used to translate
Lime without actions and guarded methods into Jasmin.

For the ease of notation of the translation schemes, a function code is defined as
follows:

code p ρ

where p is the Lime program that is being translated; ρ is the address environment
of this Lime program [8]. The function is defined by structural induction on p and
returns sequences of Jasmin instructions.

The notion of types in Jasmin and in Lime is different. In Jasmin, for the type
integer the abbreviation “I ” is used, and for the type void the abbreviation “V ” is
used. Array types have “[” as a prefix and class types an “L” as a prefix and a “;” as
a suffix. Following examples show the Jasmin expressions and their meanings:

LTest type of an object Test
Test/F (I)V method F in class Test, has an integer as its

48

5. Basic Translation Schemes 49

a.lime
may contain actions
or guarded methods

a.lime.LIME
does not contain actions or
guarded methods

a.j target code

Figure 5.1: Translation of Lime program

argument and return type is void
Test/F (I)I method F in class Test, has an integer as its

argument and returns an integer
Test/F (II)I method F in class Test, has two integers as its

arguments and return type is integer
Test/F (LTest ;B)LTest method F in class Test, has two arguments, one is

of type Test and one of boolean, return type is Test
[I one-dimensional array of type integer
[[LTest 2-dimensional array of type Test

A function ξ is defined to return the corresponding Jasmin type by given a Lime
type t :

ξ(t) =

I t = integer
V t = void
B t = boolean
Lt t is a class name

5.1 Translation Schemes for Expressions

To translate integer and boolean expressions, JVM instructions for integer arithmetic,
stack manipulation and conditional/unconditional jumps are needed.

The translation schemes for some boolean expressions are shown in Table 5.1.
Other boolean expressions can be translated by using similar schemes. The integer

50 5. Basic Translation Schemes

arithmetic expressions and assignments to local integer variables are shown in Ta-
ble 5.2. The assignments to arrays, classes and object fields will be shown later in
this chapter.

5.2 Translation Schemes for Statements

The basic control flow statements, If and While statements, and Compound state-
ment are translated by the schemes shown in Table 5.3.

Lime supports both one-dimensional and multi-dimensional arrays. The elements
of an array can be primitive types or objects. JVM instructions newarray, anewarray
and multianewarray are used to create new arrays of different types.

• Multi-dimensional arrays of both primitive types or objects are created by the
instruction multianewarray:

code(new t [e1] . . . [ek]) ρ =
code e1 ρ
. . .
code ek ρ
multianewarray i k

where γK(i) = (k, t).

• One-dimensional arrays for primitive types are created by instruction newarray:
code(new t [e]) ρ =

code e ρ
newarray i

where t ∈ {integer, boolean} and γK(i) = t.

• One-dimensional arrays for types other than integer and boolean are created by
instruction anewarray:

code(new c [e]) ρ =
code e ρ
anewarray i

where c is a class name and γK(i) = c.

The following is the translate scheme to translate the access to a multi-dimensional
array of integers. Translation of accessing one-dimensional arrays and arrays of other
types is similar.

code x[i1] . . . [ik] ρ = aload ρ(x)
code i1 ρ

5. Basic Translation Schemes 51

Lime expression Translation scheme

code(e1 = e2) ρ

code e1 ρ
code e2 ρ
isub
ifeq l1
iconst 0
goto l2

l1 : iconst 1
l2 :

code(e1 and e2) ρ

code e1 ρ
ifle l1
code e2 ρ
ifle l1
iconst 1
goto l2

l1 : iconst 0
l2 :

code(e1 or e2) ρ

code e1 ρ
ifgt l1 ;e1 is true
code e2 ρ
ifle l1 ;e2 is true
iconst 0 ; both are false
goto l2

l1 : iconst 1
l2 :

code(e1 > e2) ρ

code e1 ρ
code e2 ρ
isub
ifgt l1
iconst 0
goto l2

l1 : iconst 1
l2 :

code(not e) ρ

code e ρ
ifeq l1
iconst 1
goto l2

l1 : iconst 0
l2 :

Table 5.1: Translation schemes for boolean expressions

52 5. Basic Translation Schemes

Lime expression Translation scheme

code(e1 + e2) ρ
code e1 ρ
code e2 ρ
iadd

code(e1− e2) ρ
code e1 ρ
code e2 ρ
isub

code(e1 div e2) ρ
code e1 ρ
code e2 ρ
idiv

code(e1 ∗ e2) ρ
code e1 ρ
code e2 ρ
imul

code(e1 mod e2) ρ
code e1 ρ
code e2 ρ
imod

code x ρ
x: an object variable of type t getfield x ξ(t)
code x ρ
x: a class variable of type t getstatic x ξ(t)

code(−e1) ρ
code e1 ρ
ineg

code c ρ
c: a constant ldc c

code (x := e) ρ

x: a local variable
code e ρ
istore ρ(x)

Table 5.2: Translation schemes for integer arithmetic

5. Basic Translation Schemes 53

Lime expression Translation scheme

code(begin st1; st2 end) ρ
code st1 ρ
code st2 ρ

code (if e then st) ρ

code e ρ
ifeq label
code st ρ

label:

code(if e then st1 else st2) ρ

code e ρ
ifeq label1
code st1 ρ
goto label2

label1 : code st2 ρ
label2 :

code (while e do st) ρ

label1 : code e ρ
ifeq label2
code st ρ
goto label1

label2 :

Table 5.3: Translation schemes for compound and control flow statements

54 5. Basic Translation Schemes

aaload
...
code ik−1 ρ
aaload
code ik ρ
iaload

If k is smaller than the dimension of the array stored in x, then the JVM instruction
aaload should be used instead of iaload. aaload should also be used when x contains
an array of objects.

Translation Schemes for Class Declarations

The following is the scheme used to translate class declarations:

code(public class ClassName extends SuperClass body) ρ =
.class public ClassName
.super SuperClass
codeFields body ρ
.method public <init>()V

aload 0
invokespecial SuperClass/ <init>()V
codeInitObjectF ields body ρ
return

.end method

.method public <clinit>()V
return

.end method
code body ρ

In this translation scheme, function codeFields and codeInitObjectF ields are used to
traverse the body of the class declaration and process field declarations [8]. They are
defined as follows:

• codeFields(attr x : type) ρ =.field public x ξ(type)

• codeInitObjectF ields(x := e) ρ = code(x := e) ρ

Each method is uniquely determined by its signature. The signature of a method
contains:

• The name of the class C where the method is defined in;

5. Basic Translation Schemes 55

• The name of the method, M ;

• The types ti of its parameters (and as a result implicitly the number n of its
parameters);

• The return type of the method, t.

This signature of the method is stored in the constant table. Further information on
this method can be found in the method table according to the signature.

The translation scheme for method declarations is as follows:

code(m(p1 : t1, · · · , pk : tk) : t MethodBody) ρ =
.method public m(ξ(t1) · · · ξ(tk))ξ(t)

code MethodBody ρ
.end method

Declarations of local variables are translated as follows:

• When t ∈ {integer, boolean}:
code(var x : t) ρ = istore ρ(x)

• When t is a reference type:
code(var x : t) ρ = astore ρ(x)

In Jasmin, a return statement must be executed at the end of each method. The
translation schemes for method returns are as follows:

• code return ρ = return

• code(return e) ρ =
code e ρ
ireturn

(if infer type(e) ∈ {integer, boolean})

• code(return e) ρ =
code e ρ
areturn

(if infer type(e) is a reference type)

The function infer type(e) above is defined to return the inferred type of an
expression e.

56 5. Basic Translation Schemes

Method Call

For a method call, the reference of the object also needs to pass to the method. The
following is the translation scheme for the call to a virtual method, where C is the
type inferred for expression e. If there is no expression e, the instruction aload 0 is
generated to get a reference to the current object. C is the name of current class.

code e.m(e1, · · · , ek) ρ =
code e ρ
code e1 ρ
...
code ek ρ
invokevirtual C/m(ξ(t1) · · · ξ(tk))ξ(t)

5.3 Translation Schemes for Objects

The initialization of class and object fields can be done by two special methods,
<init> and <clinit>.

• The body of the method <clinit> contains the assignments for static fields.
<clinit> is called once when the class is loaded to initialize the static fields.

• The body of method <init> contains the assignments of other fields. <init>
is called when an object is created and initializes its object fields.

To create a new object, the JVM instruction dup (to duplicate top single-word
item on the stack) and new (to create an object) are used. The translation scheme
for creating a new object is shown as follow:

code new c() ρ =
new c
dup
invokespecial c/ < init > ()V

5.4 Translation Schemes for Assignments

In Lime, we can assign values to local variables, object fields or class fields.
The translation schemes of assignments ares as follows:

5. Basic Translation Schemes 57

• code(c.x := e) ρ =
code e ρ
putstatic ξ(c)/x ξ(t)

where x is a class field and t its type.

• code(e1.x := e2) ρ =
code e1 ρ
code e2 ρ
putfield ξ(c)/x ξ(t)

where x is an object field and Type(e1) = c and t the type of x.

• code(x := e) ρ =
code e ρ
istore ρ(x)

where x is a local variable and Type(e) ∈ {integer, boolean}.
• code(c := e) ρ =

aload 0
code e ρ
putfield ξ(c)/x ξ(t)

where x is an object field of current class c and t the type of x.

• code(c := e) ρ =
code e ρ
putstatic ξ(c)/x ξ(t)

where x is a class field of the current class c and t the type of x.

The following is the translation scheme for assignments to arrays:
code(e1.x[d1] · · · [dk] := e2) ρ =

code e1 ρ
getstatic ξ(c1)/ξ(t)
code d1 ρ
aaload
...
code dk−1 ρ
aaload
code dk ρ
code e2 ρ
aastore

Chapter 6

Advanced Translation Schemes

The translation schemes used to translate a Lime program with actions or guarded
methods into an intermediate Lime program that is without actions and guarded
methods are introduced in this chapter. Actions and guarded methods are translated
into unguarded methods, and some routines are added into the intermediate Lime
program to handle actions and guarded methods [23].

6.1 Translation Principles

For the ease of discussion, following terminology is defined to distinguish objects in
Lime programs:

• Guarded Object: An object that has either guarded methods or actions, or has
both guarded methods and actions.

• Unguarded Object: An object that has neither guarded methods nor actions.

• Active Object: An object that has actions.

• Passive Object: An object that does not have any actions.

• Enabled Object: An active object that has at least one enabled action.

• Disabled Object: An active object that has no enabled actions.

• Blocking: Blocking means that a method of an object is called but the guard
of that method is false.

58

6. Advanced Translation Schemes 59

During program execution, there exist several working threads that execute the
methods and actions of the objects. An object can only be accessed by one thread at
a time, which means that the object needs to be locked when a method or an action
of it is being executed by a thread. When a thread calls a method of an object that
is locked by another thread, this thread becomes suspended. The suspended thread
may resume the call if the lock is released by another thread later and this thread
obtains the lock on the object.

We impose a constraint that one thread can lock at most one object at a time. This
means that a thread must release the lock on object A before the thread obtaining
the lock on object B. On the other hand, a thread also needs to release the lock on an
object when the thread blocks. In this way, other working threads have the chance
to call the methods of execute the actions of the object. So that on the exit from a
method or action, the blocked thread has to be notified to evaluate the guard again
and resume if possible or suspend again.

During the execution of the program, two pools are maintained. One is the thread
pool and the other is the object pool. The thread pool contains all working threads
that call the methods of the objects or execute the actions of the objects. The object
pool is used to hold the active objects and is initialized to be empty. When an active
object is created, a pointer to that object is placed in the object pool. Each active
object has an extra boolean attribute inPool indicating whether a pointer to it is in
the object pool.

When a working thread in the thread pool becomes available, it requests a ref-
erence to an active object from object pool. If the selected object is disabled, the
thread removes the pointer to this object from the object pool and also resets the
inPool attribute. If the object is enabled, the thread executes an enabled action and
leaves the object in the object pool.

Each working thread locks an object when working on it, i.e., executing one of
its methods or actions. The thread unlocks the object when finishing executing the
method or action. The lock is also released at a call to another object and obtained
again at re-entry from the call.

Fairness among the actions of an object is ensured by evaluating the action guards
cyclicly. Fairness among the objects is also ensured by retrieving active objects from
the object pool in a cycling fashion.

This translation principle is shown in Figure 6.1 [22]. Obj1 is a passive object.
Obj2, Obj3 and Obj4 are active objects, thus each has a boolean attribute inPool.
Obj2 and Obj4 are partially enabled objects and Obj3 is an disabled object. Thin
arrows from an object to another object represent references. Thick arrows from a
thread to an object represent references with locks.

60 6. Advanced Translation Schemes

object pool

thread pool

inPool

�inPool

inPool

Obj1

Obj2

Obj3

Obj4

Figure 6.1: The translation principle

When a working thread executes a guarded method of an object, the thread first
evaluates the guard of the methods. The thread continues to execute the body of the
method if the guard is true; otherwise the thread waits.

All waiting threads are notified to reevaluate the guards when a thread exits from
a guarded object. This is because the execution of the method or action of a guarded
object may affect the guards of other guarded methods or actions.

With this principle, action guards are only evaluated when a working thread select
it from the object pool. Method guards are only re-evaluated when another thread
has exited the object and thus possibly affected the guard. The memory overhead is
that every active object requires one bit for the inPool attribute, one integer for the
index to the last evaluated action guard, and one pointer in the object pool.

6. Advanced Translation Schemes 61

6.2 Run Time Library

A run time library is created to schedule the selection of active objects and actions.
This library includes:

• An interface ActiveObject that declares a method doAction. All classes of ac-
tive objects will implement this interface. The method doAction is used to
handle the selection of actions within the object. ActiveObject is implemented
as follows:

interface ActiveObject

{
void doAction();

}

• Class ObjectPool is used to handle the pool for the active objects. This class
contains two methods: method put puts the pointers to the active objects onto
the object pool (indicates that the object is enabled); method get gets a pointer
to an active object from the pool so that this object is ready for a working thread
to execute. The pool is implemented as a dynamic array of active objects.

– Method put is used to put an object into the end of the array. When
the array becomes full, a new array with doubled size is created and the
original array is copied into the new one;

– Method get is used to get the object from the array. Note that this is done
in a cyclic fashion; which action is selected from the array is controlled by
the static attribute curr.

The class ObjectPool is implemented as follows:

class ObjectPool{
private static int max = 128;
private static int size = 0;
private static int curr = 0;
private static ActiveObject[] pool = new ActiveObject[max];
private static Boolean lock = new Boolean(false);
public static void put(ActiveObject o){

synchronized(lock){
if(size == max){

max = max ∗ 2;

62 6. Advanced Translation Schemes

ActiveObject[] n = new ActiveObject[max];
System.arraycopy(pool, 0, n, 0, size);
pool = n;

}
if(size == 0)

lock.notify();
pool[size] = o;
size + +;

}
}
public static synchronized ActiveObject get(){

synchronized(lock){
try{

while(size == 0)
lock.wait();

}catch(InterruptedException ie){}
curr = curr%size;
final ActiveObject o = pool[curr];
size−−;
pool[curr] = pool[size];
pool[size] = null;
curr + +;
return o;

}
}

}

• Class ObjectThread is used to create the running threads for Lime execution.
The number of the working threads is implemented as a constant. No more
threads will be created even if all threads are suspended. This means that false
deadlocks are possible.

The action threads are implemented as daemon threads, meaning that the whole
program is going to terminate when the main program terminates. The imple-
mentation of the class is as follows:

class ObjectThread extends Thread{
private static final int T = 3;
public static void startThreads(){

for(int i = 0; i < T ; i + +){

6. Advanced Translation Schemes 63

ObjectThread ot = new ObjectThread();
ot.setDaemon(true);
ot.start();

}
}
public void run(){

while(true)
(ObjectPool.get()).doAction();

}
}

6.3 Translation Schemes

New Object Creation

• For the creation of a new passive object, the translation is simply to copy the
statement.

• Whenever a new active object is created, a pointer to that object is placed into
the object pool. This is done by calling the method add of class ObjectPool. So
the creation of active objects “x := new C ” is translated as follows:

x := new C;
ObjectPool.add(x)

Method Call

All method calls in Lime need to be synchronized. So the call statement is put
between the two instructions, monitorenter and monitorexit. Note that these are
JVM instructions. They are used in intermediate Lime to mark the beginning and
the ending of a synchronized blocks in a Lime program.

A method call “x.m(e)” is translated as follows:
monitorexit(this);
x.m(e);
monitorenter(this)

Action Declaration

Actions are translated into unguarded methods that return boolean. The return value
indicates whether this action was enabled and the body of the action was success-

64 6. Advanced Translation Schemes

fully executed. If the guard of the action holds and the action’s body is executed
successfully, the method returns true, otherwise it returns false.

• Action “action A when C do S” is translated as follows:
method A : boolean

monitorenter(this);
if C then begin

S;
return true

end
else

return false
monitorexit(this)

• An always enabled action “action A do S” is translated as follows:
method A : boolean

monitorenter(this);
begin

S;
return true

end
monitorexit(this)

Methods Declaration

For all guarded classes, the execution of the method may affect the guards of actions
or guarded methods. So when a method is successfully executed, all threads need to
be notified so that the suspended threads can re-evaluate the guards.

For all active objects, when a method is successfully executed, the guards of the
actions may be affected. This may change a disabled object to be enabled. So for
a disabled object, when a method is executed, the object needs to be put into the
object pool.

The body of a guarded method can be executed if the guard holds, otherwise the
method is blocked and the thread executing the method gets suspended.

• An unguarded method “method m(p) MethodBody” in a passive class is trans-
lated as follows:

method m(p)
begin

monitorenter (this);
MethodBody;

6. Advanced Translation Schemes 65

notifyAll();
monitorexit(this)

end

• An unguarded method “method m (p) MethodBody” in an active class is trans-
lated as follows:

method m(p)
begin

monitorenter(this);
MethodBody;
if not inPool then

begin
ObjectPool.add(this);
inPool := true

end;
notifyAll();

monitorexit(this)
end

• A guarded method “method m (p) when C do S” in a passive class is translated
as follows:

method m(p)
begin

monitorenter(this);
while not C do wait();
S;
notifyAll();

monitorexit(this)
end

• A guarded method “method m (p) when C do S” in an active class is translated
as follows:

method m(p)
begin

monitorenter(this);
while not C do wait();
S;
if not inPool then
begin

ObjectPool.add(this);

66 6. Advanced Translation Schemes

inPool := true
end;
notifyAll();

monitorexit(this)
end

Class Declaration

• For passive classes, the translation is just a copy of the class declaration.

• For active class, three attributes, inPool, nextAction and nextAction are added
to the intermediate Lime code to handle the selection of actions and objects.

A class declaration “class C ClassBody end” is translated as follows:
class C implements ActiveObject

ClassBody
attr inPool : boolean
attr nextAction : integer
attr numAction : integer
method doAction

// · · ·
end

Method doAction is used to select the actions of the object cyclicly. All actions
are translated into unguarded methods whose return types are boolean. Thus
actions in the object A1, A2, · · · , An all become methods A1, A2, · · · , An. The
evaluation of the guards is in a cyclic fashion. This is done by implementing a
while loop. The loop exits when an action is enabled and successfully executed
or all actions are disabled. If an action is executed then the object is put into
the object pool again; if no action is enabled then the object is removed from the
object pool. The mechanism of handling the actions is shown in Figure 6.2.
The method doAction that implements this mechanism is inserted into each
active class. The code for the doAction is shown below. Note that the code
is written in Lime since this translation happens when the compiler translate
the original Lime program to the intermediate Lime program. Also note that
numAction is the class attribute that is used to indicate the number of actions
in the class. The method doAction is implemented as follows:

method doAction

begin

var start : integer;

6. Advanced Translation Schemes 67

loop:
 done := A 1
 …
 done := A n

 exit

when an action is executed

when all actions are evaluated,
but none of them holds

put into object pool

remove from object pool

done = true

done = false

Figure 6.2: The mechanism to handle the selection of actions

var done : boolean;
start := nextAction;
done := false;
nextAction := (nextAction + 1) mod numAction

while not done or nextAction <> start do

begin

if nextAction = 0 then done := A1;
· · ·
if nextAction = n− 1 then done := An;
nextAction := (nextAction + 1) mod numAction

end; //of the loop
if done then

begin

notifyAll;
ObjectPool.put(this)

end

else

inPool := false

end

Note that doAction gets called only when the object is partially enabled (inPool
is true). This scheme supports inheritance of active classes and even overriding
of actions. However, if the class C extends an active class, then the declaration
of the attributes inPool and nextAction have to be left out, only doAction() has
to be generated.

68 6. Advanced Translation Schemes

Program Declaration

When a Lime program starts, the threads that are used to execute the actions at
background needs to be created and started.

A program declaration “program P S” is translated as follows:
program P
begin

ObjectThread.startThreads();
S

end

Chapter 7

Implementation of Lime Compiler

The Lime compiler was developed under Mac OS X 10.2, which uses Darwin (origi-
nally released in March 1999, a version of the BSD UNIX operating system supporting
both Macintosh and UNIX file systems) 6.6 as its core. The JVM for the development
is version 1.3.1. Because of the portability of Java, the Lime compiler can run at any
other platforms with JVM installed.

7.1 Lime Compiler Overview

Compilation is the process of translating source code into an object program, which is
composed of machine instructions along with the data needed by those instructions.
The Lime compiler consists of the following four major components, which are also
shown in Figure 7.1:

Scanner The scanner reads the characters from source program; groups the charac-
ters into lexemes (sequences of characters, each lexeme corresponds to a token);
then returns the next token to the parser. The scanner is also called lexical
analyzer.

Parser The parser groups tokens according to the grammar, discovers the underlying
structure of the source program and finds syntax errors.

Symbol table The symbol table is used for type checking.

Code generator The code generator generates target code from the abstract syntax
tree.

The scanner and parser are generated by JavaCC; the other components are writ-
ten in Java. The details of the implementation are introduced in the following sections.

69

70 7. Implementation of Lime Compiler

Scanner

Code Generator

Symbol Table

Parser

AST

Figure 7.1: Components of the implementation of Lime compiler

7.2 Scanner and Parser

The scanner and parser of Lime compiler are generated using Sun’s Java Compiler
Compiler – JavaCC. JavaCC is an LL(k) scanner/parser generator for Java, compara-
ble to the well-known LR parser generator yacc [14] for C. LL(k) stands for “left-right,
leftmost derivation with k tokens of look-ahead.” A grammar is said to be LL if, for
each distinct pair of productions with the same left-hand side, there is no confusion
about which left-hand side to apply for k symbols of look-ahead.

The input file to JavaCC for generating the scanner and parser for Lime is
LimeParser.jjt. The structure of LimeParser.jjt is shown in Figure 7.2. The file
contains four parts: option settings, Java compilation unit, token definitions and
grammar production rules. Each of these parts will be gone through in detail in the
rest of this section.

LimeParser.jjt starts with the settings for the options offered by JavaCC. Three
options are set in this part:

• MULTI is set to “true” to generate a multi mode parse tree. The default for
this is false, generating a simple mode parse tree; in multi mode the type of the
parse tree node is derived from the name of the node. Since the implementations
for code generation are provided in the node classes, this option needs to be set

7. Implementation of Lime Compiler 71

JavaCC options

Java compilation unit

Token definitions

Production rules

LimeParser.jjt

Figure 7.2: The structure of the input file to JavaCC

to “true”.

• NODE SCOPE HOOK is set to “true” to insert calls to parser methods on
entry and exit of every node scope;

• NODE PREFIX is set to “AST ” so that all class names constructed for node
on abstract syntax tree start with “AST ”.

options{
NODE PREFIX = “AST ”;
MULTI = true;
NODE SCOPE HOOK = true;

}

The second part of LimeParser.jjt is called Java compilation unit and is purely
written Java. This part is enclosed between PARSER BEGIN (LimeParser) and
PARSER END(LimeParser), where LimeParser is used as the prefix for all generated
parser classes and as the name for the generated main class. The parser code that
JavaCC generates is inserted immediately before the closing brace of the main Java
compilation unit. Following tasks are performed in the compilation unit:

72 7. Implementation of Lime Compiler

• All global variables are declared and initialized if needed;

• Two methods, jjtreeOpenNodeScope and jjtreeCloseNodeScope, are defined to
open and close each node in the abstract syntax tree respectively (The sig-
natures of these two methods are generated by JavaCC since the option
NODE SCOPE HOOK is set to “true”.) ;

• Method WriteHeader and WriteOut are defined to write the generated code
into the target file;

• Method printSymbolTable is defined to print out the contents of the symbol
table on the standard output. This method is mainly used for debug purpose;

• Method usage is defined to print out the usage of the compiler;

• Method process is the most important method in this class. It opens and reads
the input file; creates the output file; determines the compilation mode based
on given flag. If everything is fine then the method creates an empty symbol
table and starts the compilation .

The implementation of this part is listed as follows:

PARSER BEGIN(LimeParser)
package lime.compiler.parser;
import java.io.∗;
import java.util.V ector;
public class LimeParser{

// the root of the SymbolTable tree
private static SymbolTable rootTable;
public static PrintStream out = null;
public static boolean flag = true;
public static boolean flag1 = true;
// the SymbolTable of the procedure currently being parsed.
private static SymbolTable currentScope;
private static ImportedClassList importClass;
private static Token expr token;
private String fileName;
public static V ector actionName;
public static V ector v;
public static String currentClass;
public static boolean hasAction = false;

7. Implementation of Lime Compiler 73

public static V ector target;
public static String methodReturnType;
//*********************************
public static int ifCount = 0;
public static int andCount = 0;
public static int orCount = 0;
public static int eqCount = 0;
public static int leCount = 0;
public static int ltCount = 0;
public static int geCount = 0;
public static int gtCount = 0;
public static int waitCount = 0;
public static boolean inil = false;
public static int arrayId = 0;
//*********************************
final static void jjtreeOpenNodeScope(Node n)
{

((SimpleNode)n).firstToken = getToken(1);
Token s = getToken(0);

}
final static void jjtreeCloseNodeScope(Node n)
{

((SimpleNode)n).lastToken = getToken(0);
}
public static void process(String file)
{

Token tokenList = null;
LimeParser parser = null;
InputStream in = null;
importClass = new ImportedClassList();
rootTable = new SymbolTable(null, (char)0);
currentScope = rootTable;
try

{
if (flag)

out = new PrintStream(new FileOutputStream

(file.substring(0, file.length()− 10) + “.j”));
else

out = new PrintStream

74 7. Implementation of Lime Compiler

(new FileOutputStream(file + “.LIME”));
}
catch(Exception e)
{

System.out.println(e.getMessage());
return;

}
try

{
in = new FileInputStream(file);
parser = new LimeParser(in);

}
catch(java.io.F ileNotFoundException e)
{

System.out.println(“Lime Parser : File” + file + “not found.”);
return;

}
try

{
TokenList ttt = parser.CompilationUnit(out);
System.out.println(“Lime Parser :

Lime program parsed successfully.”);
}
catch(ParseException e){

System.out.println(“LimeParser : Encountered errors during parse.”);
System.out.println(e.getMessage());
return;

}
}//End of process
private void WriteHeader(PrintStream out)
{

out.println(“;This Jasmin file is generated by the Lime compiler”);
}
private void WriteOut(PrintStream out, TokenList t)
{

WriteHeader(out);
t.printWithSpecials(out);

}
// Prints the SymbolTable. Mostly for debugging.

7. Implementation of Lime Compiler 75

public static void printSymbolTable()
{

printSymbolTable(rootTable);
}
// Recursively prints the root SymbolTable.
private static void printSymbolTable(SymbolTable table)
{

java.util.Enumeration enum = table.elements();
while(enum.hasMoreElements())
{

SymbolTableEntry s = (SymbolTableEntry)enum.nextElement();
if(s instanceof ProcedureEntry)

printSymbolTable(((ProcedureEntry)s).table);
if(s instanceof ClassEntry)

printSymbolTable(((ClassEntry)s).table);
if(s instanceof MethodEntry)

printSymbolTable(((MethodEntry)s).table);
System.out.println(s);

}
}
public static void usage()
{

System.out.println(“Lime Parser : Usage is one of : ”);
System.out.println(“java LimeParser − IP < inputfile > ”);
System.out.println(“to generate intermidiate Lime program for Passive class”);
System.out.println(“java LimeParser − IA < inputfile > ”);
System.out.println(“to generate intermidiate Lime program for Active class”);
System.out.println(“java LimeParser − J < inputfile > ”);
System.out.println(“totranslate the intermidiate Lime to Jasmin.”);
System.exit(0);

}
}//LimeParser

PARSER END(LimeParser)

The Java compilation unit is followed by the list of the definitions of the tokens.
There are two kinds of tokens for the Lime compiler:

• TOKEN: regular tokens in the grammar. The token manager creates a Token
object for each match of such a regular expression and returns it to the parser;

76 7. Implementation of Lime Compiler

• SPECIAL TOKENS: Special tokens are like tokens, except that they do not
have significance during parsing – that is the EBNF productions will ignore
them. Special tokens are still passed on to the parser so that parser actions can
access them.

the following list shows how we defined tokens for the Lime compiler:

SPECIAL TOKEN :/* WHITE SPACE */
{
“ ”
| “ \ t”
| “ \ n”
| “ \ r”
| “ \ f”
}
SPECIAL TOKEN : /* COMMENTS */
{
< SINGLE LINE COMMENT : “//”(∼ [“ \ n”, “ \ r”]) ∗ (“ \ n”|“ \ r”|“ \ r \ n”) >

| < FORMAL COMMENT : “/ ∗ ∗”(∼ [“ ∗ ”]) ∗ “ ∗ ”(“ ∗ ”|(∼ [“ ∗ ”, “/”](∼
[“ ∗ ”]) ∗ “ ∗ ”)) ∗ “/” >

| < MULTI LINE COMMENT : “/ ∗ ”(∼ [“ ∗ ”]) ∗ “ ∗ ”(“ ∗ ”|(∼ [“ ∗ ”, “/”](∼
[“ ∗ ”]) ∗ “ ∗ ”)) ∗ “/” >

}
TOKEN : /* RESERVED WORDS AND LITERALS */
{
| < ACTION : “action” >

| < ARRAY : “array” >

| < AND : “and” >

| < ATTRIBUTE : “attr” >

| < BEGIN : “begin” >

| < BOOLEAN : “boolean” >

| < CHAR : “char” >

| < CLASS : “class” >

| < CONST : “const” >

| < DO : “do” >

| < DIV : “div” >

| < ELSE : “else” >

| < END : “end” >

| < EXTEND : “extend” >

| < FALSE : “false” >

7. Implementation of Lime Compiler 77

| < IF : “if” >

| < IMPLEMENT : “implement” >

| < IMPORT : “import” >

| < INHERIT : “inherit” >

| < INITIALIZATION : “initialization” >

| < INTEGER : “integer” >

| < MOD : “mod” >

| < NEW : “new” >

| < NOT : “not” >

| < METHOD : “method” >

| < OF : “of” >

| < OR : “or” >

| < PROCEDURE : “procedure” >

| < PROGRAM : “program” >

| < PUBLIC : “public” >

| < REDIFINE : “redefine” >

| < RETURN : “return” >

| < THEN : “then” >

| < TRUE : “true” >

| < V AR : “var” >

| < WHEN : “when” >

| < WHILE : “while” >

}
TOKEN : /* LITERALS */
{
< INTEGER LITERAL : [“0”− “9”]([“0”− “9”])∗ >

}
TOKEN :/* IDENTIFIERS */
{
< IDENTIFIER :< LETTER > (< LETTER > | < DIGIT >)∗ >

|
< #LETTER :
[
“ \ u0024”,
“ \ u0041”− “ \ u005a”,

“ \ u005f”,

“ \ u0061”− “ \ u007a”,

“ \ u00c0”− “ \ u00d6”,
“ \ u00d8”− “ \ u00f6”,

78 7. Implementation of Lime Compiler

“ \ u00f8”− “ \ u00ff”,

“ \ u0100”− “ \ u1fff”,

“ \ u3040”− “ \ u318f”,

“ \ u3400”− “ \ u3d2d”,

“ \ u4e00”− “ \ u9fff”,

“ \ uf900”− “ \ ufaff”
]
>

|
< #DIGIT :
[
“ \ u0030”− “ \ u0039”,
“ \ u0660”− “ \ u0669”,
“ \ u06f0”− “ \ u06f9”,
“ \ u0966”− “ \ u096f”,

“ \ u09e6”− “ \ u09ef”,

“ \ u0a66”− “ \ u0a6f”,

“ \ u0ae6”− “ \ u0aef”,

“ \ u0b66”− “ \ u0b6f”,

“ \ u0be7”− “ \ u0bef”,

“ \ u0c66”− “ \ u0c6f”,

“ \ u0ce6”− “ \ u0cef”,

“ \ u0d66”− “ \ u0d6f”,

“ \ u0e50”− “ \ u0e59”,

“ \ u0ed0”− “ \ u0ed9”,

“ \ u1040”− “ \ u1049”
]
>

}
TOKEN :/* SEPARATORS */
{
< LPAREN : “(” >

| < RPAREN : “)” >

| < LBRACE : “{” >

| < RBRACE : “}” >

| < LBRACKET : “[” >

| < RBRACKET : “]” >

| < SEMICOLON : “; ” >

| < COMMA : “, ” >

7. Implementation of Lime Compiler 79

| < DOT : “.” >

}
TOKEN :/* OPERATORS */
{
< ASSIGN : “ := ” >

| < GT : “ > ” >

| < LT : “ < ” >

| < EQ : “ = ” >

| < LE : “ <= ” >

| < GE : “ >= ” >

| < PLUS : “ + ” >

| < MINUS : “− ” >

| < STAR : “ ∗ ” >

| < SLASH : “/” >

}

The next part of the JavaCC file contains all production rules of the Lime gram-
mar. These production rules are expressed in EBNF form. Java code are also applied
for non-context free parts of the grammar. The left hand side of a EBNF production
is expressed by a Java method declaration. JavaCC generates for each nonterminal
an identically named method in the parser class (LimeParser.java). Parameters and
return values are be declared to pass values up and down the parse tree. The right
hand side of the EBNF production rule starts with a set of Java declarations and code,
which is generated into the beginning of the method, and thus carried out every time
this non-terminal is used. The subsequent expansion unit, or parser actions, of the
non-terminals instruct the generated parser on how to make choices. It is enclosed
within braces and can consist of any number of Java declarations and code. The ex-
pansion unit can also include a local lookahead, specified either as a lookahead limit
(to limit the maximum number of tokens of lookahead that may be used for choice
determination purposes), a syntactic lookahead (to test the input stream against a
regular expressions), or a semantic lookahead (to test the tokens of the input stream
with a boolean expression). The following is a piece of program on how the methods
CompilationUnit and AdditiveExpression are defined in JavaCC.

//CompilationUnit ::= { Import “;” } { Declaration } EOF
TokenList CompilationUnit(PrintStream outF ile) :
{Token head; String name; }
{
{head = getToken(1); }

80 7. Implementation of Lime Compiler

(Import()“; ”)∗
(Declaration())∗
< EOF >

{
if(flag) jjtThis.interpret(outF ile, “”);
else jjtThis.interpretI(outF ile);
return new TokenList(head, getToken(0));

}
}

// . . .

/* AdditiveExpression ::=MultiplicativeExpression{
“ + ” MultiplicativeExpression|“− ”MultiplicativeExpression}*/
void AdditiveExpression() #void : {}
{

MultiplicativeExpression()
(
“ + ” MultiplicativeExpression() #AddNode(2)
|
“− ” MultiplicativeExpression() #SubtractNode(2)
)∗

}

JavaCC generates the following Java classes for the scanner and parser:

• TokenMgrError : a simple error class; it is used for errors detected by the lexical
analyzer and is a subclass of Throwable;

• ParseException: another error class; it is used for errors detected by the parser
and is a subclass of Exception and hence of Throwable;

• Token: a class representing tokens. Each Token object has an integer field kind,
representing the kind of the token (PLUS, NUMBER, or EOF) and a String
field image, representing the sequence of characters from the input file that the
token represents;

• SimpleCharStream: an adapter class that delivers characters to the lexical an-
alyzer;

• AdderConstants : an interface defining a number of classes used in both the
lexical analyzer and the parser;

• LimeParserTokenManager : the lexical analyzer;

7. Implementation of Lime Compiler 81

• LimeParser : the parser.

7.3 Symbol Table

The symbol table is one of the core data structures in a compiler. The design of the
Lime symbol table focuses on following issues.

The symbol table must support multiple definitions for a given identifier. All
symbols that share the same identifier at a particular scope level are contained in the
same table. An identifier may be an attribute of a class, a method or an action etc.
There may also be multiple instances for a given kind of definition. The symbol table
is searchable by identifier type (attribute, method or action, etc.) and it can quickly
be determined whether there is more than one definition of a given type (leading to
an ambiguous reference). If the object is named, the symbol will have a field that
points to the symbol for its parent (e.g, a method or class).

Lime has a large global scope, since all classes and packages are imported into the
global name space. Global symbols must be stored in a high capacity data structure
that supports fast lookup. We use hash table to implement the symbol table since
hash table can support a large number of symbols without developing long hash
chains.

The symbol table must also deal with the package information correctly and effi-
ciently. Once a package is imported it should not be referenced again. The imported
classes are referenced as if they were defined in the current compilation unit (e.g.,
via simple type names). Package definitions are kept in a separate table. Packages
are imported into the global scope of the compilation unit from this table. Package
information is live for as long as the main compilation unit is being compiled (e.g.,
through out the compile process).

The symbol table also needs to support the hierarchical scope of Lime, which is
the same as that of Java. So each symbol table needs to contain a pointer to the
symbol table in the next scope up.

The symbol table must be searchable by symbol type. The semantic analysis
phase knows the context for the symbol it is searching for (e.g., whether the symbol
should be a member, method or class). The symbol table hierarchy is searched by
identifier and its type.

The symbol table must be able to determine whether a symbol definition is am-
biguous quickly and correctly. The report of errors must also be efficient.

The implementation of the symbol table of Lime compiler are grouped into three
catalogues:

82 7. Implementation of Lime Compiler

Symbol Table Entries

The classes for entries of the symbol table includes an abstract class SymbolTableEn-
try and each kind of entry has a class that extends it. The following entries are each
represented in a class: ProgramEntry, ClassEntry, ProcedureEntry, MethodEntry, Ac-
tionEntry, AttributrEntry, VariableEntry and ConstantEntry The class hierarchy of
the symbol table entries are shown in Figure 7.3.

The implementation of the class SymbolTableEntry is shown as follows:

package lime.compiler.parser;
public abstract class SymbolTableEntry
{

//attributes
String name;
int type = −1;
String typeName = ””;
SymbolTable parent;
String rType, pType;
//constructor
public SymbolTableEntry(String n, SymbolTable p)
{

this.name = n;
this.parent = p;

}
//get the return type of the entry, if it exists
public String get rType()
{

return this.rType;
}
//get the parameter type, if it exists
public String get pType()
{

return this.pType;
}
//get the name of the current entry
public String get name()
{

return this.name;
}
//get the type of current entry

7. Implementation of Lime Compiler 83

SymbolTableEntry

ProgramEntry

ClassEntry

ProcedureEntry

MethodEntry

ActionEntry

AttributrEntry

VariableEntry

ConstantEntry

Figure 7.3: The class hierarchy of the symbol table entries

84 7. Implementation of Lime Compiler

public int get type()
{

return type;
}
//get the symbol table that the current entry belongs to
public SymbolTable get parent()
{

return this.parent;
}
//compare two entries
public boolean equals(SymbolTableEntry entry)
{

if (this.name.equals(entry.name)&&
this.type == ((SymbolTableEntry)entry).type&&
this.parent == ((SymbolTableEntry)entry).parent)
return true;

else
return false;

}
//following two methods are used to convert the current entry to a string,
//this is mainly for debugging
public String getLocalizedMessage()
{

return (this.getClass().getName() + ”[name = ” + this.name + ”]”);
}
public String toString()
{

return this.getLocalizedMessage();
}

}

Symbol Table

The class SymbolTable extends java.util.Hashtable. It defines all the attributes and
methods for the symbol table.

package lime.compiler.parser;
public class SymbolTable extends java.util.Hashtable
{

7. Implementation of Lime Compiler 85

SymbolTable parent;
char static level;
short const count;
short variable count;
short procedure count;
short attribute count;
short class count;
short action count;
short method count;
//constructor
public SymbolTable(SymbolTable p, char l)
{

//call java.util.Hashtable’s constructor
super(16);
//initialize data fields
this.parent = p;
this.static level = l;
this.variable count = 0;
this.procedure count = 0;
this.attribute count = 0;
this.class count = 0;
this.action count = 0;
this.method count = 0;
this.const count = 0;

}
//set the parent table for the current table
public void set parent(SymbolTable p)
{

this.parent = p;
}
//get the parent table for the current table
public SymbolTable get parent()
{

return this.parent;
}
//get static level of the current table from root table
public char get static level()
{

return this.static level;

86 7. Implementation of Lime Compiler

}
//get the number of variables in the current table
public short get variable count()
{

return this.variable count;
}
//find if the table has entry with given key
public synchronized boolean has(String key)
{
//prepare to search up table

SymbolTable table = null;
for(table = this; table! = null && !table.containsKey(key);
table = table.parent);
//if not found
if(table == null)

return false;
//if found – get using Hashtable’s get method
else

return true;
}
//get the entry from the table by given key
public synchronized SymbolTableEntry get(String key)

throws TypeErrorException
{

//prepare to search up table
SymbolTable table = null;
for(table = this; table! = null && !table.containsKey(key);
table = table.parent);
//if not found
if(table == null)
{

TypeErrorException e = new TypeErrorException(“Identifier ′”
+key + “′ was never declared”, 0);

e.fillInStackTrace();
throw e;

}
//if found – get using Hashtable’s get method
else

return (SymbolTableEntry)((java.util.Hashtable)table).get(key);

7. Implementation of Lime Compiler 87

}
//test whether two entries are of the same type
public boolean sameType(SymbolTableEntry s1, SymbolTableEntry s2)
{

if ((s1 instanceof V ariableEntry)&&(s2 instanceof V ariableEntry))
return true;

if ((s1 instanceof ConstantEntry)&&(s2 instanceof ConstantEntry))
return true;

if ((s1 instanceof AttributeEntry)&&(s2 instanceof AttributeEntry))
return true;

if ((s1 instanceof ClassEntry)&&(s2 instanceof ClassEntry))
return true;

if ((s1 instanceof ActionEntry)&&(s2 instanceof ActionEntry))
return true;

if ((s1 instanceof MethodEntry)&&(s2 instanceof MethodEntry))
return true;

if ((s1 instanceof ProcedureEntry)&&(s2 instanceof ProcedureEntry))
return true;

return false;
}
// Puts a new entry in the SymbolTable.
public synchronized SymbolTableEntry put(String key, SymbolTableEntry value)

throws TypeErrorException
{

//if key is already in table
if((this.containsKey((value.get key())))&&(sameType(this.get(key), value)))
{

TypeErrorException e = new TypeErrorException(“Identifier ′”
+key + “′ was already declared”, 0);

e.fillInStackTrace();
throw e;

}
//if not in table
else
{

if (value instanceof V ariableEntry)
this.variable count + +;

if (value instanceof ClassEntry)
this.class count + +;

88 7. Implementation of Lime Compiler

if (value instanceof AttributeEntry)
this.attribute count + +;

if (value instanceof ConstantEntry)
this.const count + +;

if (value instanceof ActionEntry)
this.action count + +;

if (value instanceof MethodEntry)
this.method count + +;

if (value instanceof ProcedureEntry)
this.procedure count + +;

return (SymbolTableEntry)super.put(key, value);
}

}
public synchronized SymbolTableEntry remove(String key)
{

return (SymbolTableEntry)super.remove(key);
}
public synchronized String toString()
{

return (“@” + Integer.toHexString(this.hashCode())+
“, variable count = ” + this.variable count+
“ \ nClass count” + this.class count+
“ \ nAttr count” + this.attribute count+
“ \ nConst count” + this.const count+
“ \ nAction count” + this.action count);

}
}

Type Checking

A new symbol table, rootTable is created when the compilation starts. Once a new
class, method, procedure or program is encountered, a new symbol table is also created
for it. The type checking is performed by going through the chain of the symbol tables
to look for the symbol. If the symbol is not found, an error is reported.

The classes used to handle type checking errors, including CompilerException that
extends Exception and InvalidNumberException, TypeErrorException and Unknown-
SymbolException, which all extend CompilerException. The class hierarchy for type
checking exceptions is shown in Figure 7.4.

The implementation of class CompilerException is shown as follows:

7. Implementation of Lime Compiler 89

package lime.compiler.parser;
public class CompilerException extends Exception
{

protected String error;
protected int line number;
public CompilerException(String message, String error, int line number)
{
//construct Exception

super(message);
this.error = error;
this.line number = line number;

}
public String get error()
{

return this.error;
}
public int get line number()
{

return this.line number;
}
public String getLocalizedMessage()
{

String s = super.getMessage() + System.getProperty(”line.separator”);
s+ = ”Error : \”” + this.get error() + ” \ ”, online”+

this.get line number();
return s;

}
}

7.4 Code Generation

An add-on to JavaCC, JJTree, is a pre-processor for JavaCC that inserts abstract
syntax tree building actions into the JavaCC source code.

JJTree first generates an interface Node and an abstract class SimpleNode imple-
menting Node, which declares and defines some important methods for the abstract
syntax tree. We add the following three methods to it for code generation.

90 7. Implementation of Lime Compiler

CompilerException

UnknownSymbolException

TypeErrorException

InvalidNumberException

Figure 7.4: The class hierarchy of type checking exceptions

• interpret(PrintStream o, String s): used to translate the current node into
Jasmin, write result to output file;

• interpretI (PrintStream o): used to translate node into Lime without actions
and guarded methods, write result to output file;

• print(String s, PrintStream ostr): used to write string s to output file.

By default, JJTree generates a class extending SimpleNode for each non-terminal
symbol in the grammar. The 56 node classes generated are:

AST Action.java AST ModNode.java
AST AddNode.java AST MulNode.java
AST AndNode.java AST LTNode.java
AST ArrayType.java AST NewArray.java
AST IntConstNode.java AST NewObj.java
AST Assert.java AST NotNode.java
AST Assignment.java AST While.java
AST Attrbute.java AST OrNode.java
AST Method.java AST LENode.java
AST ClassDeclaration.java AST ProcedureDeclaration.java
AST CompilationUnit.java AST Initialization.java
AST Compound.java AST ProgramDeclaration.java
AST ConstDeclaration.java AST QualifiedIdentifier.java
AST DivNode.java AST ResultParameter.java
AST EQNode.java AST Return.java
AST Expression AST Statement.java
AST FalseNode.java AST SubtractNode.java

7. Implementation of Lime Compiler 91

AST Feature.java AST Synchronize.java
AST GENode.java AST TrueNode.java
AST GTNode.java AST Type.java
AST Ident.java AST TypedIdentifierList.java
AST IdentifierList.java AST ValueParameter.java
AST If.java AST Var.java
AST Import.java AST Wait.java
AST Inhert.java AST When.java

The code generation of our compiler is straight forward. We go through the each
node in the abstract syntax tree, implement the three methods mentioned above to
perform the translation schemes, which are introduced in the previous two chapters.
The following shows the implementation of such node, AST LENode.

package lime.compiler.parser;
import java.io.∗;
public class AST LENode extends SimpleNode{

int count = 0;
publicAST LENode(int id){

super(id);
}

public AST LENode(LimeParser p, int id){
super(p, id);

}
public void interpret(PrintStream o, String s) {

String label 1 = ”L LE ” + Integer.toString(count) + ” 1”;
String label 2 = ”L LE ” + Integer.toString(count) + ” 2”;
int i, k = jjtGetNumChildren();
for(i = 0; i < k; i + +)

jjtGetChild(i).interpret(o, s);
print(” if icmple” + label 1, o);
print(” iconst 0”, o);
print(” goto” + label 2, o);
print(label 1 + ” : ”, o);
print(” iconst 1”, o);
print(label 2 + ” : ”, o);

}
public void interpretI(PrintStream o);
{

// nothing needs to do for current node

92 7. Implementation of Lime Compiler

}
}
Finally, a class LimeC is used to get information from the command line and to

invoke the compiler. The code follows:

import lime.compiler.parser.∗;
public class LimeC{
public static void main(String args[])
{

if (args.length == 2)
{

System.out.println(“Lime Parser : Reading from file ” + args[1] + “...”);
if (args[0].equals(“− J”))

LimeParser.flag = true;
else{

LimeParser.flag = false;
if (args[0].equals(“− IA”))

LimeParser.flag1 = true;
else

{
if (args[0].equals(“− IP”))

LimeParser.flag1 = false;
else

LimeParser.usage();
}

}
LimeParser.process(args[1]);

}else
LimeParser.usage();

} // end of main
}//end of LimeC

7.5 Testing the Implementation

Testing is a very important concept in software engineering. The testing for the Lime
compiler has two phases, black-box testing and white-box testing. Both of these
phases are done manually.

White-box testing is used to test what is happening on the inside the program.
White-box testing is done during the implementation by unit testing of individual

7. Implementation of Lime Compiler 93

compiler modules.
Black-box testing is used to test the functional requirements of the compiler. The

black-box testing for the Lime compiler includes two phases. The first is to test the
translation schemes of that are introduced in the previous two chapters; the other
one is to test the compiler itself.

To test the translation schemes, we need to check the correctness of generated
code - the the correctness of the generated Jasmin code. A set of Lime programs in
various areas are fully tested with the compiler. The programs need to be modified
to print out some execution information for the test purpose. For example, when the
tests are focused on the scheduling of actions and objects, the test programs need to
print out which thread is working, which object is is picked up by the thread, which
action is chosen to execution, etc.

To test the compiler, we mainly focus on testing the parser. This includes testing
error messages of syntactically incorrect programs and error messages of type incorrect
programs. A set of Lime programs with different syntax/type errors are used as test
cases.

7.6 Running the Compiler

The Lime compiler is packed as a JAR file, LimeC.jar. To install it, the Java Archive
Tool provided as part of the Java Development Kit is needed. The installation takes
following three steps:

• Make a directory for the compiler, for example, “/Users/abc/Lime”;

• Move LimeC.jar to the destination directory;

• Extract LimeC.jar by typing

jar x LimeC.jar.

Before starting to compile a Lime program, the installation path of the compiler
needs to be added to the Java class path. For the above installation example, the
class path should be set by

setenv CLASSPATH .:/Users/abc/Lime.
To compile a Lime program, A.lime, into a Java class file, following three steps

are needed:

• Firstly, compile it into intermediate Lime program, that is, a Lime program
without actions and guarded methods.

94 7. Implementation of Lime Compiler

– For passive class, the option IP is used. For example,

java LimeC -IP A.lime;

– For active class, the option IA is used. For example,

java LimeC -IA A.lime.

This will generate an intermediate Lime program, A.lime.LIME.

• Secondly, compile the intermediate Lime program into Jasmin. The option J is
used in this step. For example,

java LimeC -J A.lime.LIME.

This will generate a Jasmin file, A.j.

• Finally, use Jasmin assembler to get the Java class file by executing

jasmin A.j.

This will generate the final target file, A.class.

Chapter 8

Conclusion and Future Work

We present a new object-oriented programming language, Lime, which is based on
action systems in this thesis. A technique is developed to schedule the selection of
objects and actions. A compiler is implemented to test the technique.

The implementation of the compiler and the library contains following three parts:

• A JavaCC file to generate Lime parser;

• Classes for type checking;

• Classes of abstract syntax trees for code generation.

The implementation contains one JavaCC file and 63 Java classes, with altogether
about hand-written 4500 lines.

We did several experiments to implement some traditional problems in concur-
rent programming (in Chapter 3). It can be seen that it is much easier and more
convenient to solve these problem with Lime (i.e. examples presented in Chapter 3).
Programmers do not need to deal with the details the multi-threaded programming.
Compiler takes care of that. But all our examples are simple because of the short
time. More complex examples, especially examples with object-orientation, are need
to test both the language and the compiler.

Lime itself needs further development to make it more complete and useful. One
of the most important things is to make it more object-oriented. For example, the
supports of more data types, the supportive of exception handling, the supports of
assertions, etc. need to be added.

The translation schemes need more development. Currently we maintain two
pools, one to hold all executing threads and the other for all active objects. Fairness
among the actions within an object and among all active objects is ensured in a cyclic
fashion. The compiler does not do any optimizations like eliminating synchronization

95

96 8. Conclusion and Future Work

statements when not needed and detecting which guards do not need re-evaluation
after specific exits.

The current implementation of the compiler mainly focuses on the functionality
of Lime. More work needs to be done on the compiler. For example, although
inheritance and assertions are enabled in the language grammar, they are just ignored
by the compiler during the compilation. The symbol table and type checking need to
be improved so that they can support object orientation.

The test of the compiler is done manually. Some tools need to be involved for the
testing so that the tool can run a list of scenarios and report useful result. This will
save a lot of time on the testing.

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley, 1986.

[2] Ralph Back, Martin Büchi, and Emil Sekerinski. Action-based concurrency and
synchronization for objects. In M. Bertran and T. Reus, editors, Proceedings
of the Fourth AMAST Workshop on Real-Time Systems, Concurrent, and Dis-
tributed Software (ARTS), volume 1231 of Lecture Notes in Computer Science,
pages 248–262. Springer Verlag, May 1997.

[3] David M. Beazley. Advanced python programming. OReilly Open Source Con-
ference, 2000.

[4] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-
orientation in action systems. Lecture Notes in Computer Science, 1422:68+,
1998.

[5] Alan Burns and Andy Wellings. Concurrency in Ada. Number ISBN: 0-521-
62911-X. Cambridge University Press, second edition, Nov 1997.

[6] Eric Buttow and Tommy Ryan. C# – Your visual blueprint for building .NET
applications. Hungry Minds Inc., 2002.

[7] with Chad Fowler Dave Thomas and Andy Hunt. Programming Ruby, The Prag-
matic Programmer’s Guide, Second Edition. The Pragmatic Programmers, LLC,
2004.

[8] Stephan Diehl. Translation schemes for tasskaf. 1997.

[9] Edsger W. Dijkstra. Solution of a problem in concurrent programming control.
J-CACM, 8(9), September 1965.

[10] Pascal Manoury Emmanuel Chailloux and Bruno Pagano. Developing Applica-
tions with Objective CAML. O’Reilly France.

97

98 BIBLIOGRAPHY

[11] A. Nico Habermann and Dewayne E. Perry. Ada for Experienced Programmers.
Addison-Wesley Publishing, USA, 1983.

[12] Guy Steele Gilad Bracha James Gosling, Bill Joy. The Java Language Specifica-
tion, Second Edition. Sun Microsystems, Inc., 2000.

[13] Kurki-Suonio R Jarvinen H-M. The disco language and temporal logic of actions,
1990.

[14] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY,
USA, 1979.

[15] Cliff B. Jones. An object-based design method for concurrent programs. Report
1992-12-04, University of Manchester, Department of Computer Science, 1992.
ftp://m1.cs.man.ac.uk/pub/TR.

[16] Ingolf Heiko Krüger. Master thesis: An experiment in compiler design for a
concurrent object-based programming language, the university of texas at austin.
1996.

[17] Xavier Leroy. The objective caml system (release 3.00) documentation and user’s
manual. 2000.

[18] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification, Second
Edition. Sun Microsystems, Inc., 1998.

[19] Jon Meyer and Troy Downing. Java Virtual Machine. O’Reilly & Associates,
Inc., 1997.

[20] Jayadev Misra. A discipline of multiprogramming: Programming theory for
distributed applications. 2001.

[21] Michael Papathomas and Anders Andersen. Concurrent object-oriented pro-
gramming in Python with ATOM. In Proceedings of the 6th International Python
Conference, pages 77–87, San Jose, Ca., October 1997.

[22] Emil Sekerinski. Concurrent object-oriented programs: From specification to
code. In Proceedings of the First International Symposium on Formal Methods
for Components and Objects, FMCO 02, Lecture Notes in Computer Science.
Springer Verlag, November 2003.

BIBLIOGRAPHY 99

[23] Emil Sekerinski. A simple model for concurrent object-oriented programming.
International Conference Internet, Processing, Systems, Interdisciplinaries, IPSI
2003, Sveti Stefan, Montenegro, IEEE, 8(9), 2003.

[24] Peter Wegner. Dimensions of object-based language design. In Proc. of the
OOPSLA-87: Conference on Object-Oriented Programming Systems, pages 168–
182, Languages and Applications, Orlando, FL, 1987.

