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Abstract

This study introduces a formal abstract notation to describe precisely structural and behav-

ioral aspects of design patterns. A pattern description is constructed based on the book

of Gamma et al., and is refined through analyzing carefully selected example implementa-

tions. Example implementations come from existing large real-world programs. Produced

pattern descriptions can be used to check the compliance of other instances with intended

patterns.

It is also shown that for some patterns, even the combined structural and behavioral

descriptions are not enough to capture the essence of a pattern. An invariant has to be

introduced to complement the pattern description. Based on components needed to describe

patterns, they can be classified into structure-based patterns, behavior-based patterns, and

invariant-based patterns. The latest require the most comprehensive description and are the

focus of this study.

As a very detail-rich pattern,Iterator is selected as an example to apply the complete

process on it. Invariants are also introduced for three other patterns to show that the need

for invariants is not limited to one pattern.

The study shows that differentiating design patterns in their formal abstract notation

is easier and more precise than when done based on class diagrams and natural language

descriptions. Also, the process of establishing a pattern description can itself give a better

insight about the essence and details of the described pattern.
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Chapter 1

Introduction

The claim of this thesis is that informal approaches for choosing and applying design pat-

terns are not precise enough. The book ofGamma et al. [12] presents patterns in a well-

organized form that is based on class diagrams and natural language. A natural language

description can be ambiguous and may not fully capture the essence of a pattern. A designer

may not be able to easily compare similar patterns. For instance,Builder andStrategyare

both intended to provide a group of interchangeable implementations to perform some task.

Therefore, a more precise description may be needed to make a proper distinction between

them. A formal description may also provide an easier way to communicate those differ-

ences between designers. A well-defined formal description may be needed to check the

correctness of a program instance. The correctness of an instance is determined by its com-

pliance with the pattern formal description. Compliance with a pattern formal description

may also maximize the reusability intended by the pattern.

We argue that describing design patterns in a formal abstract notation can improve the

process of dealing with them. Describing patterns using abstract data types such as sets and

bags allow more concise descriptions than code segments. Abstract pattern descriptions

can be constructed after analyzing selected programs that implement them. Analyzing

pattern instances from diverse application domains gives the most general description for

the pattern.

Formal descriptions have the flexibility of integrating structural and behavioral aspects

of patterns. They allow comparisons, verification, and proofs to be done within the same

environment. It is also shown that for some patterns, complementing the description with

1



2 1. Introduction

an invariant is essential to fully describe the pattern. Besides the benefit of choosing the

right pattern, a formal description can also be used to check the compliance of a program

instance with the pattern.

Iterator is selected in this study as an example to show the complete process on it.

Invariants are also introduced forAbstract Factory, Composite, andSingleton.

1.1 Pattern Description

The language used in this study to describe patterns is an attempt to combine both the

structural and behavioral aspects of each pattern.

The structural aspect may be viewed as a direct translation of the class diagram of the

pattern. Capturing the structural side of a pattern allows checking if an instance complies

with the pattern from the structural point of view. Structural compliance of an instance

with the pattern does not mean that methods of the instance will have the same behavior

expected from pattern methods.

The behavioral aspect provides the behavior expected from pattern methods [25]. Be-

havior is given in an abstract notation [30]. An instance complies with the pattern if it

satisfies all the statements describing the behavior of the pattern. Statements in the pattern

that are not satisfied by the instance usually imply that some behavior or benefits are miss-

ing. An instance may still partially comply with the pattern in this case as long as some

behavior is supported.

Structural and behavioral compliance with the pattern may not be enough to conclude

that a design is an instance of the pattern. In structural and behavioral compliance, we

match the requirements of the pattern with statements in the instance. It is still possible to

have extra statements in the instance contradicting with the expected pattern behavior. To

avoid this kind of problems, we introduceinvariantsto patterns where applicable.

A pattern invariant may be viewed as a condition that needs to hold during the execution

of the program. Unlike the check of structural and behavioral compliance, an instance can

not partially preserve the invariant. A design that violates the invariant is not an instance of

the pattern.

Formal analysis in this study uses common mathematical notation (sets, functions, etc.)

to describe patterns. This allows direct comparisons, verification, and proofs as needed.
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1.2 The Approach

The motivation behind formalization in this study is to:

• provide a way to examine the suitability of using a specific pattern in a design [23];

• provide means of checking compliance of a design instance with a well-defined pat-

tern [14].

An attempt to achieve these goals is done as follows.

Description Components

• Pattern description: For each pattern, we analyze a reasonable number of programs

that are based on the pattern. This is done to confirm our understanding of the pattern

that is based on the book ofGamma et al. [12]. We then try to reach an abstract

description of that pattern that captures both the structural and behavioral aspects of

the pattern. The pattern is introduced as a module. A module is a representation of

one or more classes. We give the formal description of classes involved in the pattern

including special cases if any.

• Data structures: We define the module data structures that may be needed to express

the pattern. A class is expressed as a set of objects. An attribute of typeT defined in

classC is expressed as a function from typeObjectto typeT. More details about the

formal language used are given in subsequent chapters.

• Pattern invariant: Invariant-based patterns are those patterns whose essence can not

be completely captured without introducing an invariant. If this applies to the pattern

we deal with, then we propose an appropriate invariant. We make sure that a proposed

invariant is neither too strong nor too specific to a certain application. Invariants are

expressed in terms of the defined data structures.

Well-Definedness of a Pattern

A produced pattern description is the basis for checking compliance of instances with the

pattern. Therefore, it is necessary to check that the description is well-defined before using

it. A significant step in case of invariant-based patterns is to show that methods of the
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proposed pattern description preserve the invariant. In practice, these proofs have also led

to finding missing statements in pattern descriptions. We also need to give an appropriate

initialization for pattern data structures and show that this initialization establishes the

invariant.

Checking Compliance of an Instance

A well-defined pattern description is used to check the compliance of instances with

that pattern. This step applies whenever we need to check if a design that we produced

complies with the pattern, or even to evaluate the compliance of existing programs with

the pattern. The process of converting an instance into the introduced abstract notation

can also be applied in the absence of source code. This is illustrated in an instance of

Iterator shown later on. The abstract description of the instance is constructed based on

the interface documentation of the design. This extends the applicability of the approach

to include development based on specification.

The steps involved in checking compliance are as follows:

• Instance description: We start with giving the instance in the same format in which

we have given the pattern itself. That includes the instance invariant if any. An

instance invariant is specific to the instance application and may be stronger than the

pattern invariant.

• Structural compliance: A check is done to see if the instance complies structurally

with the pattern description. This check consists of matching structural statements of

the formalized pattern with statements from the formalized instance.

• Behavioral compliance: A check is done to see if the instance complies behav-

iorally with the pattern description. This check consists of matching statements of

formalized pattern methods with statements from formalized instance methods. It

is required that the expected functionalities be matched in the instance without side

effects that may interfere with them.

• Invariant preservation: A formalized instance has its own invariant. An instance

invariant can be stronger than the proposed pattern invariant. A check is done to see
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if formalized instance methods preserve the invariant. Doing this in an informal way

is the most natural way for such a verification.

• Proof of invariant preservation: Formal proofs for invariant preservation may also

help as a double-checking to make sure that formalized instance methods preserve

the invariant.

1.3 Invariant-Based Patterns

Design patterns are already classified into three main categories, namely creational, struc-

tural and behavioral [12]. This classification follows from the functionality expected from

each pattern. Following the formal analysis introduced in this study, we can classify pat-

terns according to components needed to describe and verify them.

As a pattern has no unique abstract description, one pattern may fall in more than one

category. The classification given below is associated with the pattern description language

introduced in this study.

Structure-Based Patterns

These are patterns that can be completely described without defining class attributes.

Direct translation of class diagrams of these patterns is usually enough to describe them.

They involve no state and usually require no invariant or behavioral description. These

patterns are usually based on call-redirections. An example isAdapter, which converts

the interface of one class into that of another. Calls to methods in theAdapterclass are

simply redirected to methods in theAdapteeclass. Structure-based patterns also include

Factory MethodandFacade.

Behavior-Based Patterns

These are patterns that cannot be completely described without introducing class attributes.

In addition to a structural description, each of these patterns has methods with specific be-

havior that needs to be behaviorally described.Observeris an example of behavior-based

patterns.



6 1. Introduction

Invariant-Based Patterns

In some cases, both the structural and behavioral descriptions are not enough to capture

the essence of the pattern. Those patterns usually involve implicit assumptions that can

not be described structurally or behaviorally. Those cases are best covered by introducing

invariants. Many patterns can either belong to behavior-based or invariant-based patterns

depending on how general the proposed invariant is. Before concluding that an invariant

is indeed a pattern invariant, a reasonable number of pattern instances need to be ana-

lyzed. The diversity of instance sources is essential to make sure that an invariant is neither

too strong nor too specific to application field. Invariant-based patterns includeIterator,

Abstract Factory, Composite, andSingleton. We focus in this study on invariant-based pat-

terns, as the process of analyzing them covers all necessary steps to deal with all types of

patterns.

1.4 Example Sources

Program examples that are used to illustrate the approach are carefully selected from vari-

ous sources. Diversity in sources is a key decision to make sure that any derived conclusion

is based on independent sources and examined on different application fields.

Most of the examples are implemented inJava. However, a few examples are given in

other programming languages such asC#. This is to demonstrate that the techniques are

applicable in any programming language that supports object-oriented features. As detailed

below, some of the sources for applications are major, while others are only considered for

diversity.

Design patterns are usually described using examples. That is why the first major ex-

ample source may naturally be a set of learning programs. TheJava Design Patternsbook

is one such source [5]. The book illustrates each pattern with a simpleJavaprogram that

uses the pattern to solve a design problem. Example programs are given as a learning tuto-

rial, so they are simple, and the main focus of programs is to illustrate patterns rather than

what programs do.

Another major source isJHotDraw. It is a Java GUI framework that is intended to

produce programs involving technical and structured graphics. The reason for considering

this framework as a major example source, is that its design relies heavily on many well-
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known design patterns [17]. Another reason is that an original author of the framework,

Erich Gamma, is one of the authors of the book introducing design patterns [12].

The third major source used is theJava libraries. Even the early stages ofJava li-

braries were packed with many design patterns [33].Erich Gammawrote an interesting

article on this topic in 1996. The article shows how the originalJavateam integrated many

design patterns in theAWT (Abstract Window Toolkit) design. He even shows as an ex-

ample a relationship between five classes (ComponentPeer, Component, Toolkit, Container

andLayoutManager) involving at least five different design patterns (Composite, Strategy,

Bridge, Abstract FactoryandSingleton) [11, 16].

All other sources used were considered for having a different implementation language,

different application field or different implementation approach.



Chapter 2

Related Work

One related approach uses a specification method calledDisCo that can be used to de-

fine a system using three components: classes, relations and actions [26]. Preconditions

and postconditions are expressed in the form of relations and given to specify the actions

within the system. Such a system is used to describe design patterns formally.Observer

is introduced as an example. The approach is quite simple. However, it does not associate

actions with classes. Therefore, no direct calls can be made to actions as introduced by the

approach. Also, the approach does not consider a module invariant or module initialization.

The authors of [22] argue that many programs using a design patterns can be understood

as formal refinements of a specifications not using the pattern. The approach formalizes

the correctness of the transformation steps and uses theObject Calculus, a temporal logic,

as the framework for reasoning. The paper also highlights key requirements needed by

a system using a design pattern to be a correct refinement of the original system. The

above case is illustrated on many design patterns, including creational patterns, structural

patterns and behavioral patterns. The introduced framework allows adding invariants to

pattern descriptions. An invariant is attached only to theObserverpattern, following the

description of [12]. However, the only invariant introduced in the study is a trivial one.

The approach does not involve invariants in the formal processing of the pattern. Pattern

descriptions given are not justified or refined by comparisons with real examples. There is

also no mention of the well-definedness of the given descriptions.

Another interesting study may be considered as a group of guidelines to find a good

formalization rather than providing a specific approach [13]. Four interesting points are

8
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given to evaluate a theory for design patterns. These points are:

• The possibility of formalizing both the problem and the solution given by the pattern.

This is achieved in our study be giving a consistent representation for both the pattern

and its instances. This is illustrated on all considered patterns as shown later on.

• The constraints for applying each design pattern. This was also addressed in our

study. Formal statements used to describe patterns in our study represent constraints

for applying these pattern in instances.

• The possibility of automating the process of applying a pattern, recognizing a pattern

in a program, and discovering new patterns from repeated problems. Tools for design

patterns manipulation are based on formal models to represent patterns. We introduce

such a model to describe patterns in our study.

• The effective classification for design patterns. Our study even proposed a further

classification for design patterns based on the components needed to describe them

rather than what they do. This is shown latter on in this study.

A detailed method is given in another study using a sophisticated notation [14]. Pat-

terns are abstract in order to be applicable in various domains and to achieve the desired

reusability. Three formalization approaches are briefly introduced (LePUS, DisCo and

RSL). A justification for adopting the third one is given. The approach is to generalize

the model, formally specify how to match a design with a pattern, and then to include in

the model a specification of the behavioral properties in it. It is claimed that the approach

was applied on many common patterns. It has identified ambiguities and incompleteness

in informal pattern descriptions, and has led to proposed new pattern structures [4]. One

such proposed structure is for theBuilder pattern. It is suggested thatClient be added to

the class diagram as an explicit participant in it.Client has one proposed methodCreate

that makes the responsibilities ofClient explicit. Those responsibilities are: instantiat-

ing ConcreteBuilderandDirector, then, to invokeConstructmethod in classDirector and

GetResultin classConcreteBuilder. The original class diagram does not include these ac-

tions and rather has them in an interaction diagram. However, the analysis of the introduced

approach suggests making these interactions explicitly part of the pattern structure.
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A quite different approach proposes a framework to represent patterns as a structured

document based onSGML(Structured Generalized Markup Language) [27]. The approach

integrates components of a pattern description (text, charts and pseudo-code) in a single

document. That document will also include links to related documents and source code.

Charts can be generated automatically from that document. A significant motivation for the

approach is to allow the pattern to be effectively processed on a computer and to make a

design patterns catalog available on the computer. All information are enclosed in markup

language tags. For example, the intent of the pattern is enclosed between< intent >

and< /intent > tags. The information needed to generate code and build charts also lie

betweenstructuretags. The description of methods is given in terms of simple abstract

terms that can also be translated to real code (Javafor example).

A technique is given in a study to formalize design patterns so that they can be identified

in the source code [19]. A check to see if a design pattern is used correctly is also possible.

The approach is to define roles of the pattern, annotate the code with comments that indicate

those roles, and give rules to check the relationship between those roles. Decorator is used

as an example in the study.

The significance of having tools for the application of design patterns is highlighted in

another study [6]. The idea is to allow less experienced programmers to benefit from using

them. The document introduces a method calledADV (Abstract Data View) to formalize

patterns.ADV is given as the basis for creating such tools. A brief description is also given

to one prototype tool.

An interesting study is motivated by the belief that design patterns are often used to

create code but then they are usually forgotten [31]. It is also likely that modifications

to the code will not conform to design patterns used. The solution proposed here is to

allow programmers to work in terms of design patterns and source code simultaneously.

A suite of tools is suggested to do this.PEKOE is a prototype tool that was developed to

support the idea. Using the tool, patterns can be identified, created, verified, and edited in

conjunction with source code. It is also possible to check if the pattern is still maintained

by code that was modified. To reach these goals, a precise language is used to define design

patterns. This language is based on breaking the pattern into elements and constraints. This

will assist with creating queries to identify instances of patterns.

A study sees design patterns as abstractions that are used to describe portions of systems
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so that designers can learn from them [29]. Some concepts are repeated within the common

design patterns. Those concepts are considered as elementary patterns that can be used as

building blocks to construct the common design patterns. The study provides those basic

units and calls themEDPs(Elemental Design Patterns).

Another study claims that the problem with most formal approaches to describe pat-

terns is the focus on either the structural or the behavioral aspect, but not on both [32].

BPSL(Balanced Pattern Specification Language) is introduced as a balanced, yet simple

approach that integrates both structural and behavioral aspects of a pattern.BPSLcom-

bines two subsets of logic,FOL (First Order Logic) andTLA (Temporal Logic of Actions).

A typical formalization usingBPSLincludes permanent relations, temporal relations, in-

variant, initial conditions, and actions.Observeris formalized as a case study. However,

the invariant introduced is also trivial and is not involved in the formal processing of the

pattern. Our study also achieves a balance between the structural and behavioral aspects

of a pattern. However, our study represents behavior in a programming-like notation rather

than temporal logic of actions. We also make a more precise notion for method calls, in

particular which object triggers a call.



Chapter 3

Formal Pattern Analysis

In this chapter, we give more details about the formal language and techniques used in this

study. The notation used is based on an object-oriented programing language introduced in

a study to describe concurrent systems [28].

We assume that every expressione has a unique typeT, written e : T. For a function

f of typeT → U the application to argumente of typeT is written asf (e). Predicates are

expressions of typeboolean, with valuestrueandfalse. On predicates, we use the operators

¬ (negation),∧ (conjunction),∨ (disjunction),⇒ (implication), and⇐ (consequence).

3.1 Syntax for Classes

We give first the formal syntax of the language in extendedBNF. The constructa | b stands

for eithera or b, [a] means thata is optional, and{a} means thata can be repeated zero or

more times:

class ::= classidentifier[ implements identifier]

{attribute | initialization | method}
end

attribute ::= attr variableList

initialization ::= initialization ( variableList) statement

method ::= method identifier( variableList) [: type] statement

statement ::= assertexpression|

12
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identiferList := expressionList|
identiferList :∈ expressionList|
identifier := identifier.identifier( expressionList) |
identifier := new identifier( expressionList) |
return expression|
begin statement{ ; statement} end |
if expressionthen statement[ elsestatement] |
while expressiondo statement

for expressiondo statement

var variableList• statement

variableList ::= identifierList : type{ , identifierList : type}
identifierList ::= identifier{ , identifier}
expressionList ::= expression{ , expression}

A class is declared by giving it a name, optionally stating that the class implements another

class, and then listing all the attributes, initializations, and methods. Initializations have

only value parameters, methods may have both value and result parameters. The assertion

statementassertb checks whether boolean expressionb holds. If it holds, it continues,

otherwise it aborts. The object creationx := new C(e) creates a new object of classC

and calls its initialization with value parametere. We do not further defineidentifier and

expression.

Bag, Sequence and Set Notation

We use the notation[ ] to indicate an empty bag (also known as multi-set) ,[x, y, ...., z]

for the bag with elementsx, y, ...., z, A ∪ B for the union of bagsA andB, andA− B for

the subtraction of bagB from A. We use the notation〈〉 to indicate an empty sequence,

A & B for the concatenation of two sequencesA andB, andA − B for the subtraction of

sequenceB from sequenceA. The predicatex ∈ Sevaluates totrue if the elementx is in

sequenceS at least once, and evaluates tofalseotherwise. Sequence subtractionA − B

removes all the occurrences of any element inB from A. We use the expressionlength(s)

to indicate the length of sequences. We use the notation{ } to indicate an empty set, and
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| A | to indicate the cardinality of setA.

Abstract Statements

The nondeterministic assignment operator:∈ is introduced above as a part of the language

used in this study. The assignmentx :∈ s assigns tox any element from set, bag or

sequencesas long as at least one element exists, otherwise,x is assigned the valuenil. The

assignmentx :/∈ s assigns tox any element such that this element is not ins.

Transitive Closure of a Relation

The relationR+ is the transitive closure of a binary relationR. It is defined to be the set of

pairs(u, v) such that there is a path of length one or more fromu to v. The pair(u, u) is in

R+ if and only if there is a cycle of length one or more fromu to u.

Controlling Access to Members of a Class

The language introduced is intended as a module description language. Therefore, all at-

tributes and methods are publicly accessible. We define the keywordprivateto give access

privilege to a member only within its own class.

3.2 Classes and Modules

A pattern is represented by a module. A module is equivalent to a package containing one

or more classes. Classes are declared by a class declaration, with every class we associate

a set of objects of that class. A subclass is associated with a subset of its superclass set of

objects. A module declares variables with initial values as well as procedures. Procedures

operate on local variables and possibly variables declared in other modules. We use the

following syntax for defining a module with two variablesp, q and a single procedurem:

module K

var p : P := p0

var q : Q := q0

procedure m(u : U) : T

M

end
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The class defines the attributes and the methods of objects. A class is defined in terms

of a module with one variable for each attribute, one procedure for each method, and an

extra variable for the objects populating that class. Variables map each object of the class

to the corresponding attribute value. We allow variables to be of abstract types such as

sets, bags, etc. Each procedure takes an additional value parameter,this, for the object to

which the procedure is applied. We assume the typeObjecthas infinitely many elements

including the distinguished elementnil. All objects are of typeObject.

packageR

classC

attr a : A

static attr b : B

initialization (g : G)

I

method m(u : U) : V

M

static methodn(s : S) : T

N

end

classD inherits C

attr e : E

initialization (g : G)

J

method l(q : Q) : R

L

end

end

=̂ module R

var C, D : set ofObject:= {}, {}
var C.a : Object→ A

var D.e : Object→ E

var C.b : B

procedure C.new(g : G) : Object

var this : Object•

this :/∈ C∪ {nil} ; C := C∪ {this} ;

I ; return this

procedure D.new(h : H) : Object

var this : Object•

this :/∈ D ∪ {nil} ; C := C∪ {this} ;

D := D ∪ {this} ; J ; return this

procedure C.m(this : Object, u : U) : V

assertthis∈ C ; M

procedure C.n(s : S) : T

N

procedure D.l(this : Object, q : Q) : R

assertthis∈ D ; L

procedure D.m(this : Object, u : U) : V

assertthis∈ D ; M[C.m\D.m]

procedure D.n(s : S) : T

N

end
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Attribute e is introduced as a mapping between objects and elements of typeE. Each

object of classC maintains its own value for attributee. Therefore,e is referred to bythis.e

within a method body. The notationS[m\n] stands for statementSwith every occurrence

of m replaced byn; it is used above to capture the redirection of calls in methods ofC to

methods overwritten inD. A static attributeb is introduced as a single element of type

B. Therefore, all objects of classC share the same value for attributeb. Similarly, static

methodl is not associated with any object, while methodm is associated with the caller

object, referred to asthis. A class name prefix as in the case ofC.newis dropped whenever

there is no ambiguity. In general, referencingx.e amounts to applying the mappinge to x.

Creating a new objectx of classC with initialization parametere amounts to calling the

newprocedure of classC. Calling the methodmof an objectx of classC amounts to calling

the procedurem of classC with x as the additional parameter that is bound tothis in m:

x.p =̂ p(x)

x := new C(e) =̂ x := C.new(e)

z := x.m(f ) =̂ z := C.m(x, f )

z := p(e) =̂ var v, result •

v := e; S; z := result

where p is declared by:

procedure p(v)

S

3.3 Invariant Notation and Proofs

We express invariants in terms oftyped logic. Predicates that we produce are similar in

context to the terminology introduced by common modeling languages. For instance,

OCL (Object Constraint Language) is a formal language used to express constraints. It

is intended to complementUML descriptions [30]. Even thought it uses a very similar

notation to the one we use, we still prefer our more concise notation with commonly

understood meaning. An example would be thatOCL usesforAll andexistsrather than∀
and∃ respectively. We also avoid the heavy baggage of complexity that may result from

using more comprehensive notations like theB−Method[1] andZ notation[7].
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Weakest Preconditionwp

For a system denoted byS and having a desired post-condition denoted byR, we denote

the corresponding weakest pre-condition bywp(S, R) [10]. If the initial state satisfies

wp(S, R), the system is certain to establish eventually the truth ofR. Becausewp(S, R) is

the weakest pre-condition, we also know that if the initial state does not satisfywp(S, R),

this guarantee can not be given, i.e.Rmay not hold or the system may even not terminate.

Weakest Liberal Preconditionwlp

The weakest liberal preconditionwlp(S, R) is weaker thanwp(S, R) defined above. The

preconditionwlp(S, R) only guarantiee that the system will not produce the wrong result,

i.e. will not reach a final state not satisfyingR, but nontermination is left as an alterna-

tive. The notion ofwp(S, R) andwlp(S, R) also apply when we replace the post-condition

Rwith an invariantP. We relatewp to wlp as follows:wlp(S, R) ≡ wp(S, true) ⇒ wp(S, R).

Verifying Invariants

For a moduleM with variablesv1, v2, .. represented asV having initial valuesv10, v20, ..

represented asV0 and public procedures represented byS1, .., Sn, predicateP is an

invariant of M if:

1. Initial values establishP

V = V0 ⇒ p

2. Public procedures preserveP

p⇒ wlp(m1, p)

. . .

p⇒ wlp(mn, p)

The following rule is used in checking of invariant preservation:

P1 is an invariant ofM ∧ P2 is an invariant ofM ⇒ P1∧P2 is an invariant ofM (3.1)
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Weakest Liberal Precondition Rules

The expressionp [x\e] denotesP, where every occurrence ofx is replaced bye. The

expression(a; x : e) denotes containera where the element at positionx is replaced by the

valuee. The expressionp [a\(a ; x : e)] denotesP, where every occurrence ofa is replaced

by (a ; x : e) [8].

notice that:

(a ; x : e)(x) = e (3.2)

(a ; x : e)(y) = a(y) if x 6= y (3.3)

Rules for finding the weakest liberal preconditions are given below [10].

wlp(x := e, p) = p [x\e] (3.4)

wlp(x :∈ s, p) = ∀x ∈ s • p (3.5)

wlp(x :/∈ s, p) = ∀x ∈ s • p (3.6)

wlp(x.a := e, p) = p [a\(a ; x : e)] (3.7)

wlp(x.a :∈ s, p) = ∀h ∈ s • p [a\(a ; x : h)] (3.8)

wlp(S ; T, p) ⇐ wlp(S, wlp(T, p)) (3.9)

wlp(assertb, p) = b⇒ p (3.10)

wlp(return e, p) = p [result\e] (3.11)

Rule (3.4) states that the weakest liberal precondition for an assignment statementx :=

e with respect to an invariantp is equal to the invariant expressionp wheree is substituted

into x.

Rule (3.5) states that the weakest liberal precondition for a nondeterministic assignment

statementx :∈ s with respect to an invariantp is a universal quantification that reads: for

every element in containers, the predicatep holds.

Rule (3.6) states that the weakest liberal precondition for a nondeterministic assignment

statementx :/∈ s with respect to an invariantp is a universal quantification that reads: for

every element in the complement ofs, the predicatep holds.
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Rule (3.7) states that the weakest liberal precondition for an assignment statement

x.a := e with respect to an invariantp is equal to the invariant expressionp where ele-

mentx at containera is replaced by the valuee.

Rule (3.8) states that the weakest liberal precondition for a nondeterministic assignment

statementx.a :∈ s with respect to an invariantp is a universal quantification that reads:

when every element ofs is substituted into elementx at containera in predicatep, the

predicate holds.

Rule (3.9) states that to find the weakest liberal precondition for a sequence of state-

mentsS ; T with respect to an invariantp, we need to find the weakest liberal precondition

wlp(T, p) for the latest statement first.wlp(S, wlp(T, p)) is stronger than the weakest liberal

precondition for the sequence of statementsS ; T.

Rule (3.10) states that the weakest liberal precondition for the statementassertb with

respect to an invariantp is simply equal tob⇒ p.

Rule (3.11) states that the weakest liberal precondition for the statementreturn e with

respect to an invariantp amounts to the invariant expressionp itself.

3.4 Example

To illustrate the process introduced in this study, we apply it on a selected portion of the

Iterator pattern where iteration is over a sequence. Both the iterator and the aggregate

are represented by classIterator given below. We give the translation from a class into a

module and show how the module is used to prove compliance with the invariant [9].

Class Description

We start by giving the class description of that portion of the pattern.

classIterator

attr container: seq ofObject

attr i : integer

initialization

begin

this.container:= 〈〉;
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this.i := 0

end

method Next

begin

assertthis.i < length(this.container);

this.i := this.i + 1

end

end

Module Description

We then give the corresponding module representation.

module Iterator

var Iterator : set ofObject:= {}
var container: Object→ seq ofObject

var i : Object→ integer

procedure new: Object

var this : Object•

this :/∈ Iterator∪ {nil};
Iterator := Iterator∪ {this};
this.container:= 〈〉;
this.i := 0

end

procedure Next(this : Object)

begin

assertthis∈ Iterator;

assertthis.i < length(this.container);

this.i := this.i + 1

end

end

Invariant

(∀k ∈ Iterator • 0 ≤ k.i ≤ length(k.container))
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Well-Definedness

We finally show how the description ofNextpreserves the invariant.

wlp(Iterator.Next, P)

≡ � definition of Iterator.Next�
wlp(assertthis∈ Iterator; assertthis.i < length(this.container); this.i := this.i + 1

, (∀k ∈ Iterator • 0 ≤ k.i ≤ length(k.container)))

⇐ � wlp of this.i := this.i + 1, rules(3.9) and(3.4) �
wlp(assertthis∈ Iterator; assertthis.i < length(this.container)

, (∀k ∈ Iterator • 0 ≤ k.i ≤ length(k.container))[this.i \ this.i + 1][this.i \ this.i + 1][this.i \ this.i + 1])

≡ � case analysiswith k = this and k6= this�
wlp(assertthis∈ Iterator; assertthis.i < length(this.container)

, (∀k ∈ Iterator−{this}Iterator−{this}Iterator−{this} • 0 ≤ k.i ≤ length(k.container)∧
0 ≤ this.i ≤ length(this.container)0 ≤ this.i ≤ length(this.container)0 ≤ this.i ≤ length(this.container)

)[this.i \ this.i + 1][this.i \ this.i + 1][this.i \ this.i + 1])

≡ � substitution �
wlp(assertthis∈ Iterator; assertthis.i < length(this.container)

, (∀k ∈ Iterator−{this} • 0 ≤ k.i ≤ length(k.container)∧
0 ≤ this.i + 1this.i + 1this.i + 1 ≤ length(this.container)))

⇐ � wlp of the two assert statements, rules(3.9) and(3.10) �
this∈ Iterator∧ this.i < length(this.container)

⇒⇒⇒
(∀k ∈ Iterator−{this} • 0 ≤ k.i ≤ length(k.container)∧
0 ≤ this.i + 1this.i + 1this.i + 1 ≤ length(this.container))

≡ � p∧ q⇒ r ∧ q≡ p∧ q⇒ r �
this∈ Iterator∧ this.i < length(this.container)

⇒⇒⇒
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(∀k ∈ Iterator−{this} • 0 ≤ k.i ≤ length(k.container)∧
0 ≤ this.i + 1)

⇐ � definition of implication, strengthening�
(∀k ∈ Iterator−{this} • 0 ≤ k.i ≤ length(k.container)∧
0 ≤ this.i + 1)

⇐ � strengthening�
(∀k ∈ Iterator−{this} • 0 ≤ k.i ≤ length(k.container)∧
0 ≤ this.i ≤ length(this.container)this.i ≤ length(this.container)this.i ≤ length(this.container))

⇐
PPP
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Iterator

As described in the book ofGamma et al. [12], theIterator pattern is intended to provide a

way to access elements of an aggregate sequentially without exposing its underlying repre-

sentation. The pattern suggests separating the aggregate definition from traversal methods.

The responsibilities to access, traverse, and keep track of the current element are placed

in the iterator interface. This allows traversing elements of the aggregate in different ways

without complicating the aggregate interface. The design is flexible and allows imposing

constraints on which elements of the aggregate are to be visited.

The pattern involves four participants.Iterator defines an interface to access and tra-

verse elements of an aggregate.ConcreteIteratorimplements theIterator interface, and

keeps track of the current element of the traversed aggregate.Aggregatedefines an inter-

face for creating anIterator object. ConcreteAggregateimplements theIterator creation

interface to return an instance of the properConcreteIterator.

Four methods are introduced in the interface forIterator: First initializes the current

element to the first element,Nextadvances the current element to the next element,IsDone

checks whether we have advanced beyond the last element, andCurrentItemreturns the

current element.

The pattern is applicable whenever we need to access elements of an aggregate without

exposing its internal representation. It can also provide a way to traverse objects of the

same aggregate multiple times. Another application for the pattern is when we need a

uniform interface for traversing different aggregate structures.

An iterator object is constructed around a specific aggregate object, and the two objects

23
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ClientClient Iterator

First()
Next()
IsDone()
CurrentItem()

ClientConcreteIterator

return new ConcreteIterator (this)  

ClientAggregate

CreateIterator()

ClientConcreteAggregate

CreateIterator()

return new ConcreteIterator(this)

Figure 4.1: Iterator Class Diagram

are coupled. An iterator object is returned by methodCreateIteratorin the aggregate object.

Apart fromCreateIterator, other methods of an aggregate are not specified by the pattern.

However, those methods are required to invalidate all associated iterators in case of adding

or removing elements. Invalidating an iterator is represented by setting a boolean flag to

false.

In our study, we relax the sequential access requirement to include unordered aggre-

gates. An unordered aggregate is the basis to generate the most basic form of the pattern.

An ordered aggregate is used to generate a special case of the pattern and is considered to

be a refinement of the basic form. Another refinement of the basic form is the case when

there is a criteria to select elements visited rather than visiting all elements.

Iterator is one of the richest invariant-based patterns. Unlike most of design patterns,

it requires a considerable amount of behavioral description for its methods. Therefore,

Iterator is selected to illustrate the complete analysis process introduced in this study.
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As shown earlier, a pattern is introduced as a module. A module is a representation

of one or more classes. In this chapter, we give the formal description of classes involved

in the pattern including special cases. We also give the module variables and invariant.

Methods of a class are translated to module procedures only within the formal proofs. In the

following chapters, we give the formal proofs of the pattern description well-definedness

and show the compliance of a selected instance with the pattern.

4.1 The Pattern

Below we give the formal description for theIterator design pattern. As mentioned earlier,

it is based on the description in the book ofGamma et al. [12]. The description is refined

by analyzing instances that implement the pattern.

classAggregate

method CreateIterator: Iterator

end

classConcreteAggregateimplementsAggregate

attr cont : bag of Object

initialization

this.cont := []

method CreateIterator: Iterator

var c : Object•

begin

c := new ConcreteIterator;

return c

end

end
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classIterator

method First

method Next

method IsDone: boolean

method CurrentItem: Object

end

classConcreteIteratorimplements Iterator

attr valid : boolean

attr aggregate: Aggregate

attr container: bag of Object

attr visited: bag of Object

attr current : Object

initialization (agg : Aggregate)

begin

assertthis.container 6= [];

this.valid := true;

this.aggregate:= agg;

this.container:= agg.cont;

this.visited:= [];

this.current :∈ this.container

end

method First

begin

assertthis.valid;

this.visited:= [];

this.current :∈ this.container

end

method Next

begin
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assertthis.valid;

assertthis.visited 6= this.container;

this.visited:= this.visited∪ [this.current];

this.current :∈ this.container− this.visited

end

method IsDone: boolean

begin

assertthis.valid;

return this.visited= this.container

end

method CurrentItem: Object

begin

assertthis.valid;

return this.current

end

end

method Client

var ag : Aggregate, iter : Iterator •

begin

ag := new ConcreteAggregate;

iter := ag.CreateIterator;

iter.Next

end

4.2 Data Structures

var Iterator, Aggregate: set ofObject:= {}, {}
var cont : Object→ bag of Object

var valid : Object→ boolean

var aggregate: Object→ Object
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var container: Object→ bag of Object

var visited: Object→ bag of Object

var current : Object→ Object

4.3 Pattern Invariant

Invariant P

(∀i ∈ ConcreteIterator• i.container= i.aggregate.cont∨ ¬ i.valid)∧
(∀i ∈ ConcreteIterator• i.visited⊆ i.container)∧
(∀i ∈ ConcreteIterator• i.current∈ i.container− i.visited∨ i.container= i.visited)

The above invariant reads as follows:

• The elements stored in the iterator container should be the same as those in the asso-

ciated aggregate or the iterator is invalid.

• Visited elements need to belong to the iterator container.

• The current element in the iterator is an element of the container of the iterator which

was not visited before, or we are at the end of the iteration.

To maintain the elements condition, an iterator may need to:

• Maintain a pointer to the underlying aggregate;

• Maintain a copy of the elements in the aggregate container.

We compare the stored copy of container elements with the original elements through the

pointer to the underlying aggregate.

4.4 Special Cases

To formalize a pattern, we need to make a few assumptions about the expected behavior

of methods of the pattern. An assumption used in the above formalization ofIterator
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pattern is that the underlying data structure associated with the iterator object behaves as

a bag of objects. Another assumption is that all elements of the data structure have to be

visited. Below we introduce two special cases:

Sequential Iteration

SeqIteratorandSeqAggregaterefineConcreteIteratorandConcreteAggregaterespectively.

SeqIteratoriterates over an ordered container represent bySeqAggregate. The underlying

data structurecont is represented abstractly with asequencerather than abag.

classSeqAggregateimplementsAggregate

attr cont : seq ofObject

initialization

this.cont := 〈〉
method CreateIterator: Iterator

return new SeqIterator(this)

end

classSeqIteratorimplements Iterator

attr valid : boolean

attr aggregate: SeqAggregate

attr container: seq ofObject

attr i : integer

initialization (agg : SeqAggregate)

begin

this.valid := true;

this.aggregate:= agg;

this.container:= agg.cont;

this.i := 0

end

method First

begin
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assertthis.valid;

this.i := 0

end

method Next

begin

assertthis.valid;

asserti < length(this.container);

this.i := this.i + 1

end

method IsDone: boolean

begin

assertthis.valid;

return this.i ≥ length(this.container)

end

method CurrentItem: Object

begin

assertthis.valid;

return this.container[i]

end

end

Selective Sequential Iteration

SelectSeqIteratorrefinesSeqIterator. SeqIteratoralso iterates over an ordered container

represent bySeqAggregate. SelectSeqIteratorwill however be able to impose a criteria on

which elements are to be visited rather than visiting all of them.

classSelectSeqIteratorinherits SeqIterator

method Next

var j : integer•

begin

assertthis.container= this.aggregate.cont;

assertthis.i < length(this.container);

j := this.i;

this.i :∈ {x | x≥ j}
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end

end

Special Cases Data Structures

var SeqIterator, SeqAggregate: set ofObject:= {}, {}
var aggregate: SeqIterator→ SeqAggregate

var container: SeqIterator→ seq ofObject

Note that:

SeqIterator⊆ Iterator andSeqAggregate⊆ Aggregate

Special Cases InvariantPA

The two introduced special cases share the following invariant:

(∀k ∈ SeqIterator• k.container= k.aggregate.cont∨ ¬ k.valid)∧
(∀k ∈ SeqIterator• 0 ≤ k.i ≤ length(k.container)

The above invariant reads as follows:

• The elements stored in the iterator container should be the same as those in the asso-

ciated aggregate or the iterator is invalid.

• The valid range for attributethis.i which represents the pointer to the current element

atcontaineris between0 andlength(this.container).
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Well-Definedness of the Pattern

The rules for a module to preserve an invariant are given in an earlier chapter. A module

initialization is required to establish the invariant. Class methods and initializations are

only required to preserve the invariant.ConcreteIteratoris abbreviated toCI throughout

this chapter.

5.1 Module Initialization Establishes Invariant

wlp(Iterator := {} ∧ Aggregate:= {} , P)

≡ ( (∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited)

) [CI, Aggregate\ { }, { }][CI, Aggregate\ { }, { }][CI, Aggregate\ { }, { }]

≡ � substitution, replace every occurrence of Iterator with the value[ ] �
(∀i ∈ { }{ }{ } • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ { }{ }{ } • i.visited⊆ i.container) ∧
(∀i ∈ { }{ }{ } • i.current∈ i.container− i.visited∨ i.container= i.visited)

≡ � logic, universal quantification over empty range�

32
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truetruetrue

5.2 ConcreteIterator Initialization Preserves Invariant

According to the relationship between classes and modules given earlier, the statements

this :/∈ CI ∪ {nil} ; CI := CI ∪ {this} are added toCI initialization.

wlp(CI.new, P)

≡ � definition of CI.new�
wlp(this :/∈ CI ∪ {nil};

CI := CI ∪ {this};
assertthis.container 6= [];

this.valid := true;

this.aggregate:= agg;

this.container:= agg.cont;

this.visited:= [ ];

this.current :∈ this.container

, P)

⇐ � wlp of this.current :∈ this.container, rules(3.8) and(3.9) �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont; this.visited:= [ ]

,∀h ∈ this.container• (∀h ∈ this.container• (∀h ∈ this.container• (

(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited)

) [current\ (current; this : h)] )[current\ (current; this : h)] )[current\ (current; this : h)] )

⇐ � wlp of this.visited:= [ ], rules(3.7) and(3.9) �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
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assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont

,∀h ∈ this.container• (

(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited)

) [current\ (current; this : h)] [visited\ (visited; this : [ ])] )[visited\ (visited; this : [ ])] )[visited\ (visited; this : [ ])] )

≡ � case analysiswith i = this and i 6= this�
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont

,∀h ∈ this.container• (

(∀i ∈ CI−{this}CI−{this}CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this}CI−{this}CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this}CI−{this}CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid)(this.container= this.aggregate.cont∨ ¬ this.valid)(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container)(this.visited⊆ this.container)(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visited∨ this.container= this.visited)(this.current∈ this.container− this.visited∨ this.container= this.visited)(this.current∈ this.container− this.visited∨ this.container= this.visited)

) [current\ (current; this : h)] [visited\ (visited; this : [ ])] )

≡ � substitution �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont

,∀h ∈ this.container• (

(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.(visited; this : [ ])(visited; this : [ ])(visited; this : [ ]) ⊆ this.container) ∧
(this.current∈ this.container− this.(visited; this : [ ])(visited; this : [ ])(visited; this : [ ])∨
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this.container= this.(visited; this : [ ])(visited; this : [ ])(visited; this : [ ]))

) [current\ (current; this : h)] )

≡ � simplification, (f : a; b)(a) ≡ b, therefore, (visited; this : [ ])(this) ≡ [ ] �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont

,∀h ∈ this.container• (

(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨
i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
([ ][ ][ ] ⊆ this.container) ∧
(this.current∈ this.container− [ ][ ][ ] ∨ this.container= [ ][ ][ ])

) [current\ (current; this : h)] )

≡ � logic, [ ] ⊆ this.container �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont

,∀h ∈ this.container• (

(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
truetruetrue∧
(this.current∈ this.container− [ ] ∨ this.container= [ ])

) [current\ (current; this : h)] )

≡ � substitution, logic, all elements of this.container are in this.container�
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wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited)∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧ true∧ truetruetrue) )

≡ � logic, removed true∧ true �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this};
assertthis.container 6= []; this.valid := true; this.aggregate:= agg;

this.container:= agg.cont

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited)∧
(this.container= this.aggregate.cont∨ ¬ this.valid) )

⇐ � wlp of the last three assignment statements, rules(3.7) and(3.9) �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this}; assertthis.container 6= []

, ( (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited)∧
(this.container= this.aggregate.cont∨ ¬ this.valid)

) [container\ (container; this : agg.cont)] [aggregate\ (aggregate; this : agg)][container\ (container; this : agg.cont)] [aggregate\ (aggregate; this : agg)][container\ (container; this : agg.cont)] [aggregate\ (aggregate; this : agg)]

[valid \ (valid; this : true)][valid \ (valid; this : true)][valid \ (valid; this : true)] )

≡ � substitution �
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this}; assertthis.container 6= []

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited)∧
(agg.cont= agg.cont∨ false)(agg.cont= agg.cont∨ false)(agg.cont= agg.cont∨ false) )
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≡ � logic, removed last predicate�
wlp(this :/∈ CI ∪ {nil}; CI := CI ∪ {this}; assertthis.container 6= []

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) )

⇐ � wlp of CI := CI ∪ {this}, rules(3.4) and(3.9) �
wlp(this :/∈ CI ∪ {nil}; assertthis.container 6= []

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited)

) [CI \ CI ∪ {this}][CI \ CI ∪ {this}][CI \ CI ∪ {this}]

≡ � substitution, CI ∪ {this}−{this} ≡ CI �
wlp(this :/∈ CI ∪ {nil}; assertthis.container 6= []

, (∀i ∈ CICICI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CICICI • i.visited⊆ i.container) ∧
(∀i ∈ CICICI • i.current∈ i.container− i.visited∨ i.container= i.visited) )

⇐ � wlp of assertthis.container 6= [], rules(3.10) and(3.9) �
wlp(this :/∈ CI ∪ {nil}
, (this.container 6= [] ⇒this.container 6= [] ⇒this.container 6= [] ⇒
(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited) ) )

⇐ � definition of implication, strengthening�
wlp(this :/∈ CI ∪ {nil}
, (∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited) )
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≡ � wlp of this :/∈ CI ∪ {nil}, rule (3.6) �
∀h ∈ CI • (∀h ∈ CI • (∀h ∈ CI • (

(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited) )

≡ � ”h” does not appear in predicate�
(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited)

⇐
PPP

5.3 First Preserves Invariant

The statementassertthis ∈ CI is added toFirst due to the translation from a method to a

procedure.

wlp(CI.First, P)

≡ � definition of CI.First �
wlp(assertthis∈ CI; assertthis.valid;

this.visited:= [ ]; this.current :∈ this.container

, P)

⇐ � wlp of this.current :∈ this.container, rules(3.8) and(3.9) �
wlp(assertthis∈ CI; assertthis.valid; this.visited:= [ ]

,∀h ∈ this.container• (∀h ∈ this.container• (∀h ∈ this.container• (

(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited)
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) [current\ (current; this : h)] )[current\ (current; this : h)] )[current\ (current; this : h)] )

⇐ � wlp of this.visited:= [ ], rules(3.7) and(3.9) �
wlp(assertthis∈ CI; assertthis.valid

,∀h ∈ this.container• (

(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited)

) [current\ (current; this : h)] [visited\ (visited; this : [ ])] )[visited\ (visited; this : [ ])] )[visited\ (visited; this : [ ])] )

≡ � case analysiswith i = this and i 6= this�
wlp(assertthis∈ CI; assertthis.valid

,∀h ∈ this.container• (

(∀i ∈ CI−{this}CI−{this}CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this}CI−{this}CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this}CI−{this}CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧(this.container= this.aggregate.cont∨ ¬ this.valid) ∧(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧(this.visited⊆ this.container) ∧(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visited∨ this.container= this.visited)(this.current∈ this.container− this.visited∨ this.container= this.visited)(this.current∈ this.container− this.visited∨ this.container= this.visited)

) [current\ (current; this : h)] [visited\ (visited; this : [ ])] )

≡ � substitution �
wlp(assertthis∈ CI; assertthis.valid

,∀h ∈ this.container• (

(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.(visited; this : [ ])(visited; this : [ ])(visited; this : [ ]) ⊆ this.container) ∧
(this.current∈ this.container− this.(visited; this : [ ])(visited; this : [ ])(visited; this : [ ])∨
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this.container= this.(visited; this : [ ])(visited; this : [ ])(visited; this : [ ]))

) [current\ (current; this : h)] )

≡ � simplification, (f : a; b)(a) ≡ b, rule (3.2) �
wlp(assertthis∈ CI; assertthis.valid

,∀h ∈ this.container• (

(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
([ ][ ][ ] ⊆ this.container) ∧
(this.current∈ this.container− [ ][ ][ ] ∨ this.container= [ ][ ][ ])

) [current\ (current; this : h)] )

≡ � logic�
wlp(assertthis∈ CI; assertthis.valid

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) )

⇐ � wlp of assertthis.valid, rules(3.10) and(3.9) �
wlp(assertthis∈ CI

, this.valid

⇒⇒⇒
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) )
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≡ � merging the last predicate�
wlp(assertthis∈ CI

, this.valid

⇒
(∀i ∈ CICICI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) )

≡ � wlp of assertthis∈ CI, rule (3.10) �
this∈ CI

⇒⇒⇒
this.valid

⇒
(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited)

⇐ � definition of implication, strengthening�
(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited)

⇐ � logic, (∀i ∈ X− {a}) ⇐ (∀i ∈ X− {a} ∧ a) ≡ (∀i ∈ X) �
� predicates having CI−{this} are weaker than those having Iterator�
PPP
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5.4 Next Preserves Invariant

The statementassertthis ∈ CI is added toNextdue to the translation from a method to a

procedure.

wlp(CI.Next, P)

≡ � definition of CI.Next�
wlp(assertthis∈ CI; assertthis.valid;

assertthis.visited 6= this.container;

this.visited:= this.visited∪ [this.current];

this.current :∈ this.container− this.visited

, P)

⇐ � wlp of this.current :∈ this.container− this.visited, rules(3.8) and(3.9) �
wlp(assertthis∈ CI; assertthis.valid;

assertthis.visited 6= this.container;

this.visited:= this.visited∪ [this.current]

,∀h ∈ this.container− this.visited• (∀h ∈ this.container− this.visited• (∀h ∈ this.container− this.visited• (

(∀i ∈ CI • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI • i.visited⊆ i.container) ∧
(∀i ∈ CI • i.current∈ i.container− i.visited∨ i.container= i.visited)

) [current\ (current; this : h)] )[current\ (current; this : h)] )[current\ (current; this : h)] )

≡ � case analysiswith i = this and i 6= this�
wlp(assertthis∈ CI; assertthis.valid;

assertthis.visited 6= this.container;

this.visited:= this.visited∪ [this.current]

,∀h ∈ this.container− this.visited• (

(∀i ∈ CI−{this}CI−{this}CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this}CI−{this}CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this}CI−{this}CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
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(this.container= this.aggregate.cont∨ ¬ this.valid) ∧(this.container= this.aggregate.cont∨ ¬ this.valid) ∧(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧(this.visited⊆ this.container) ∧(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visited∨ this.container= this.visited)(this.current∈ this.container− this.visited∨ this.container= this.visited)(this.current∈ this.container− this.visited∨ this.container= this.visited)

) [current\ (current; this : h)] )

≡ � substitution, logic, quantification�
wlp(assertthis∈ CI; assertthis.valid;

assertthis.visited 6= this.container;

this.visited:= this.visited∪ [this.current]

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
truetruetrue)

⇐ � wlp of this.visited:= this.visited∪ [this.current], rules(3.7) and(3.9) �
wlp(assertthis∈ CI; assertthis.valid; assertthis.visited 6= this.container

, ((∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container)

)[visited\ (visited; this : this.visited∪ [this.current] )] )[visited\ (visited; this : this.visited∪ [this.current] )] )[visited\ (visited; this : this.visited∪ [this.current] )] )

≡ � substitution, simplification �
wlp(assertthis∈ CI; assertthis.valid; assertthis.visited 6= this.container

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited∪ [this.current]this.visited∪ [this.current]this.visited∪ [this.current] ⊆ this.container) )
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≡ � logic, X ∪ {a} ⊆ Y ≡ X ⊆ Y∧ a ∈ Y, split this.visited∪ [this.current] �
wlp(assertthis∈ CI; assertthis.valid; assertthis.visited 6= this.container

, (∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visitedthis.visitedthis.visited⊆ this.container) ∧
(this.current(this.current(this.current∈ this.container) )

⇐ � wlp of assertthis.visited 6= this.container, rules(3.10) and(3.9) �
wlp(assertthis∈ CI; assertthis.valid

, this.visited 6= this.container

⇒⇒⇒
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container) )

⇐ � wlp of assertthis.valid, rule (3.10) �
wlp(assertthis∈ CI

, this.valid

⇒⇒⇒
this.visited 6= this.container

⇒
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
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(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container) )

≡ � wlp of assertthis∈ CI, rule (3.10) �
this∈ CI

⇒⇒⇒
this.valid

⇒
this.visited 6= this.container

⇒
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container)

⇐ � definition of implication, strengthening, removed first two predicates�
this.visited 6= this.container

⇒
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container)

≡ � definition of implication�
this.visited=== this.container
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∨∨∨
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨ i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container)

≡ � distributivity of ∨ over ∧ �
this.visited= this.containerthis.visited= this.containerthis.visited= this.container∨ (∀i ∈ CI−{this} • i.container= i.aggregate.cont

∨¬ i.valid) ∧
this.visited= this.containerthis.visited= this.containerthis.visited= this.container∨ (∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
this.visited= this.containerthis.visited= this.containerthis.visited= this.container∨ (∀i ∈ CI−{this} •

i.current∈ i.container− i.visited

∨i.container= i.visited) ∧
this.visited= this.containerthis.visited= this.containerthis.visited= this.container∨ (this.container= this.aggregate.cont

∨¬ this.valid) ∧
this.visited= this.containerthis.visited= this.containerthis.visited= this.container∨ (this.visited⊆ this.container) ∧
this.visited= this.containerthis.visited= this.containerthis.visited= this.container∨ (this.current∈ this.container)

⇐ � strengthening, removed this.visited= this.container from predicates�
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨
i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
this.visited= this.containerthis.visited= this.containerthis.visited= this.container∨ (this.current∈ this.container)

⇐ � strengthening, a ∈ X ⇐ a ∈ X− Y �
� replace this.container with this.container− this.visited �
(∀i ∈ CI−{this} • i.container= i.aggregate.cont∨ ¬ i.valid) ∧
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(∀i ∈ CI−{this} • i.visited⊆ i.container) ∧
(∀i ∈ CI−{this} • i.current∈ i.container− i.visited∨
i.container= i.visited) ∧
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visitedthis.visitedthis.visited) ∨ this.visited= this.container

≡ � CI = CI−{this} ∪ {this} �
PPP

5.5 IsDone Preserves Invariant

The statementassertthis∈ CI is added toIsDonedue to the translation from a method to

a procedure.

wlp(CI.IsDone, P)

≡ � definition of CI.IsDone�
wlp(assertthis∈ CI; assertthis.valid; return this.visited= this.container

, P)

⇐ � wlp of return visited= container, rules(3.9) and(3.11) �
wlp(assertthis∈ CI; assertthis.valid

, P)

⇐ � wlp of assertthis.valid, rule (3.10) �
wlp(assertthis∈ CI

, this.valid

⇒⇒⇒
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visited∨ this.container= this.visited) )
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≡ � wlp of assertthis∈ CI, rule (3.10) �
this∈ CI

⇒⇒⇒
this.valid

⇒
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visited∨ this.container= this.visited)

⇐ � definition of implication, strengthening�
PPP

5.6 CurrentItem Preserves Invariant

The statementassertthis ∈ CI is added toCurrentItemdue to the translation from a

method to a procedure.

wlp(CI.CurrentItem, P)

≡ � definition of CI.CurrentItem�
wlp(assertthis∈ CI; assertthis.valid; return this.current

, P)

⇐ � wlp of return this.current, rules(3.9) and(3.11) �
wlp(assertthis∈ CI; assertthis.valid

, P)

≡ � wlp of assertthis.valid, rule (3.10) �
wlp(assertthis∈ CI

, this.valid

⇒⇒⇒
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(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visited∨ this.container= this.visited) )

≡ � wlp of assertthis∈ CI, rule (3.10) �
this∈ CI

⇒⇒⇒
this.valid

⇒
(this.container= this.aggregate.cont∨ ¬ this.valid) ∧
(this.visited⊆ this.container) ∧
(this.current∈ this.container− this.visited∨
this.container= this.visited)

⇐ � definition of implication, strengthening�
PPP
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Instance Compliance with the Pattern

The instance given is a simple program found in the C# documentation as an example

for iteration over an ordered aggregate [24]. The program iterates over an aggregate of

type ArrayList using an iterator of typeIEnumerator. Note that since iteration in this

instance is sequential, it is matched with the first special case of the pattern introduced

earlier. Sources given below forIEnumerable, ArrayList and IEnumeratorare extracts

from the C# documentation for each of these parts. No specific implementations exist for

these parts. Source given for the client part is an actual C# program that is included in the

documentation for classArrayList as an example on how to use this class. This instance is

selected to show that the approach of the study applies both in presence and in absence of

the source code provided that good documentation exists.

6.1 Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.
IEnumerable

System.Collections.IEnumerable Interface

Summary

Implemented by classes that support a simple iteration over instances of the collection.

Description

[Note: System.Collections.IEnumerable contains the System.Collections.IEnumerable.

GetEnumerator method. The consumer of an object should call this method to obtain

50
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an enumerator for simple iteration over an instance of a collection.Implement this

interface to support the foreach semantics of C#.]

IEnumerable.GetEnumerator() Method

Summary

Returns a System.Collections.IEnumerator that can be used for simple iteration

over a collection.

Return Value

A System.Collections.IEnumerator that can be used for simple iteration over

a collection.

ArrayList

System.Collections.ArrayList Class

Implements:

System.Collections.IList

System.Collections.ICollection

System.Collections.IEnumerable

System.ICloneable

Summary

Implements a variable-size System.Collections.IList that uses an array of objects to

store its elements.

Description

System.Collections.ArrayList implements a variable-size System.Collections.IList

that uses an array of

objects to store the elements. A System.Collections.ArrayList has a

System.Collections.ArrayList.Capacity, which is the allocated length

of the internal array. The total number of elements contained by a list

is its System.Collections.ArrayList.Count. As elements are added to

a list, its capacity is automatically increased as required by reallocating

the internal array.

ArrayList.GetEnumerator() Method

Summary

Returns a System.Collections.IEnumerator for the current instance.

Return Value

A System.Collections.IEnumerator for the current instance.

Description

If the the current instance is modified while an enumeration is in progress,

a call to System.Collections.IEnumerator.MoveNext or

System.Collections.IEnumerator.Reset throws System.InvalidOperationException.

IEnumerator
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System.Collections.IEnumerator Interface

Summary

Implemented by classes that support a simple iteration over a collection.

Description

[Note: System.Collections.IEnumerator contains the System.Collections.

IEnumerator.MoveNext and System.Collections.IEnumerator.Reset methods

and the System.Collections.IEnumerator.Current property. The consumer

of an object should call these methods or use this property when iterating

over or reading the elements of a collection.When an enumerator is

instantiated or a call is made to System.Collections.IEnumerator.Reset, the

enumerator is positioned immediately before the first element of the collection

and a snapshot of the collection is taken. When the enumerator is in this

position, a call to System.Collections.IEnumerator.MoveNext is necessary

before reading System.Collections.IEnumerator.Current from the collection.

If changes are made to the collection(such as adding, modifying or deleting

elements) the snapshot may get out of sync, causing the enumerator to throw

a System.InvalidOperationException if the System.Collections.IEnumerator.MoveNext

or System.Collections.IEnumerator.Reset are invoked. Two enumerators

instantiated from the same collection at the same time can have different

snapshots of the collection. Enumerators are intended to be used only to

read data in the collection.An enumerator does not have exclusive access to the

collection for which it was instantiated.]

IEnumerator.Reset() Method

Summary

Positions the enumerator immediately before the first element in the collection.

Description

[Note: When the current instance is constructed or after System.Collections.

IEnumerator.Reset is called, the current instance is positioned immediately

before the first element of the collection, use

System.Collections.IEnumerator.MoveNext to position

the current instance over the first element

of the collection.]

Behaviors

A call to System.Collections.IEnumerator.Reset is required to position the

current instance immediately before the first element of the collection. If elements are added,

removed, or repositioned in the collection after the current instance was instantiated,

it is required that a call to System.Collections.IEnumerator.Reset throw a

System.InvalidOperationException.

IEnumerator.MoveNext() Method

Summary

Advances the current instance to the next element of the collection.
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Return Value

true if the current instance was successfully advanced to the next element;

false if the current

instance has passed the end of the collection.

Description

[Note: When the current instance is constructed or after System.Collections.

IEnumerator.Reset is

called, the current instance is positioned immediately before the first element

of the collection. Use System.Collections.IEnumerator.MoveNext to position it

over the first element of the collection.]

Behaviors

A call to System.Collections.IEnumerator.MoveNext is required to position the

current instance over the next element in the collection and return true if the

current instance was not positioned

beyond the last element of the collection when System.Collections.IEnumerator.

MoveNext was called. If the current instance is already positioned immediately

after the last element of the collection, a call to

System.Collections.IEnumerator.MoveNext is required to return false, and

the current instance is required to remain in the same position. If elements

are added, removed, or repositioned in the collection after the current

instance was instantiated, it is required that a call to

System.Collections.IEnumerator.MoveNext throw System.InvalidOperationException.

IEnumerator.Current Property

Summary

Gets the element in the collection over which the current instance is positioned.

Property Value

The element in the collection over which the current instance is positioned.

Description

[Note: When the current instance is constructed or after System.Collections.

IEnumerator.

Reset is called, use System.Collections.IEnumerator.MoveNext to

position the current

instance over the first element of the collection.]

Behaviors

It is required that System.Collections.IEnumerator.Current return the

element in the collection over which the current instance is positioned

unless it is positioned before the first or after the last element of the

collection. If the current instance is positioned before the first element or

after the last element of the collection, System.Collections.IEnumerator.Current

is required to throw System.InvalidOperationException If elements were added,

removed, or repositioned in the collection after the current instance was
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instantiated, System.Collections.IEnumerator.Current returns the value it would

have returnedbefore the collection was modified.

It is also required that System.Collections.IEnumerator.Current not

change the position of the current instance: consecutive calls to System.Collections.

IEnumerator.Current are required to return the same object until either

System.Collections.IEnumerator.MoveNext or

System.Collections.IEnumerator.Reset is called.

Client

using System;

using System.Collections;

public class SamplesArrayList {

public static void Main() {

// Create and initialize a new ArrayList.

ArrayList myAL = new ArrayList();

myAL.Add("Hello");

myAL.Add("World");

myAL.Add("!");

// Display the properties and values of the ArrayList.

Console.WriteLine( "myAL" );

Console.WriteLine( "Count: {0}", myAL.Count );

Console.WriteLine( "Capacity: {0}", myAL.Capacity );

Console.Write( "Values:" );

PrintValues( myAL );

}

public static void PrintValues( IEnumerable myList ) {

IEnumerator myEnumerator = myList.GetEnumerator();

while ( myEnumerator.MoveNext() )

Console.Write( " {0}", myEnumerator.Current );

Console.WriteLine();

}

}

Notes:
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• The output for the above program is:

myAL

Count: 3

Capacity: 16

Values: Hello World !

6.2 Instance Description

classIEnumerable

method GetEnumerator: IEnumerator

end

classArrayList implements IEnumerable

attr cont : seq ofObject

initialization

cont := 〈〉
method GetEnumerator: IEnumerator

return new Enumerator(this)

end

classIEnumerator

method Reset

method MoveNext: boolean

method Current : Object

end

classEnumeratorimplements IEnumerator

attr valid : boolean
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attr aggregate: ArrayList

attr container: seq ofObject

attr i : integer

initialization (agg : ArrayList)

begin

this.valid := true;

this.aggregate:= agg;

this.container:= agg.cont;

this.i := −1

end

method Reset

begin

assertthis.valid;

this.i := −1

end

method MoveNext: boolean

begin

assertthis.valid;

if this.i < length(this.container) then this.i := this.i + 1;

return this.i ≤ length(this.container)

end

method Current : Object

begin

assertthis.i > −1;

assertthis.i < length(this.container);

return this.container[i]

end

end

method Client

var myAL: ArrayList, myEnumerator: IEnumerator•

begin
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myAL:= new ArrayList

myEnumerator:= myList.GetEnumerator

myEnumerator.MoveNext

end

Notes:

• In this instance, source code is only available for the client part. It is given as an

example of constructing the description based on design documentation rather than

the source code. The attributes used in the above instance description follow those

introduced in the pattern description itself.

• Enumeratoris not part of the instance. It is added based on the requirements of

classes that implementIEnumeratoras in theC# documentation [24].

• The elements ofcontainer start with elementcontainer[0] and end with element

container[length(container)− 1].

• Variablei is initialized to−1 because a call toMoveNextis required beforeCurrent

can be called. The first call toMoveNextwill advancei to 0. Note thatcontainer[0]

is the first element ofcontainer.

• C# documentation forResetandMoveNextrequire that if the original container is

edited, an exception should be raised. However, this is not required forCurrent.

• Exceptions required by theC# documentation are represented in the instance de-

scription usingassertstatements.

Data Structures

var IEnumerator, IEnumerable: set ofObject:= {}, {}
var Enumerator, ArrayList : set ofObject

var aggregate: Object→ Object

var container: Object→ seq ofObject
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Note that:

Enumerator⊆ IEnumeratorandArrayList⊆ IEnumerable

Instance Invariant P1

(∀k ∈ Enumerator• k.container= k.aggregate.cont∨ ¬ k.valid) ∧ (6.1)

(∀k ∈ Enumerator• − 1 ≤ k.i ≤ length(k.container) (6.2)

The above invariant reads as follows:

• The elements stored in the iterator container should be the same as those in the asso-

ciated aggregate or the iterator is invalid.

• The valid range for attributei which represents the pointer to the current element at

containeris between−1 andlength(container).

We notice that the instance invariant is weaker than the relevant pattern invariant(PA ⇒
P1). This is an early indication of a potential mismatch of the instance with the pattern.

This is going to be illustrated in the behavioral compliance given later on.

6.3 Structural Compliance

The pattern description given above involves both structural and behavioral statements. To

check the structural compliance of the instance with the pattern, we need to match each

structural statement in the pattern with an equivalent statement in the instance.

classAggregate

method CreateIterator: Iterator

end

is matched by:

classIEnumerable

method GetEnumerator: IEnumerator

end
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classSeqAggregateimplementsAggregate

is matched by:

classArrayList implements IEnumerable

classIterator

method First

method Next

method IsDone: boolean

method CurrentItem: Object

end

is matched by:

classIEnumerator

method Reset

method MoveNext: boolean

method Current : Object

end

Note that we do not need to match each method in the pattern with one in the instance. This

is because we are going to compare the behavior of instance methods with the behavior of

pattern methods. Methods in the implementing instance can be split or merged.

classSeqIteratorimplements Iterator

is matched by:

classEnumeratorimplements IEnumerator

method Client

var ag : Aggregate, iter : Iterator •

begin

ag := new ConcreteAggregate;



60 6. Instance Compliance with the Pattern

iter := ag.CreateIterator;

iter.Next

end

is partially matched by:

method Client

var myAL: ArrayList, myEnumerator: IEnumerator•

begin

myAL:= new ArrayList

myEnumerator:= myList.GetEnumerator

myEnumerator.MoveNext

end

The first statement is clearly not matched by the instance. VariablemyAL should be

declared asIEnumerablerather thanArrayList. Failure to use the more abstract type

IEnumerableremoves the flexibility of using different aggregate with a minimal code

changes.

6.4 Behavioral Compliance

An instance complies behaviorally with the pattern if the behavior suggested by pattern

methods is supported by instance methods. An instance that misses one or more function-

alities in its methods may still partially comply with the pattern.

• Initialization: SeqIteratorinitialization is partially matched byEnumeratorinitial-

ization. In both cases,i represents a pointer to an element ofcontainer. In case of

SeqIterator, i in initialized to 0 to point at the first element ofcontainer. In case

of Enumerator, i in initialized to−1 to point immediately before the first element

of container. In the later case, a call toMoveNextis necessary before being able to

access the first element ofcontainer.

• First: This method provides the ability to reuse the same iterator. Similar to the

argument used with initialization, this method is partially matched by methodReset.

Notice that it is only thanks to formalization that we realize thatResetandFirst are

intended to do the same thing. Method names do not imply this.
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• Next: This method provides the ability to advance the pointer to current element. It

is matched by methodMoveNextin the instance. The only difference between the

two methods is the return type. This neither affects the functionality nor adds side

effects.

• IsDone: This method provides the ability to verify if we have more elements, with-

out changing the state of the iterator. Even though the functionality expected from

IsDoneis included in the functionality ofMoveNext, we see thatMoveNextdoes more

than that simple check. In case ofMoveNext, the pointer to the current element will

be advanced as a side effect. Therefore, the functionality of checking if we are at the

end of the container without side effects is not supported by the instance.

• CurrentItem: This method provides the ability to retrieve the current element without

changing the state of the iterator. It is partially matched by methodCurrent. C#

documentation does not require a check if the original container is edited. That check

is specified in the pattern description and is missing in the instance.CurrentItem

has two extra assertions that are not in the pattern description. These assertions are

required by theC# documentation. However, they do not cause side effects and are

not affecting the compliance.

6.5 Instance Invariant Preservation

We use rule (3.1) introduced earlier to check invariant preservation of the instance.

• Module initialization establishes the invariant as the universal quantification in both

predicates is over an empty range.

• ConcreteIteratorinitialization preserves the invariant because:

1. First predicate (6.1) of the instance invariant is directly established by the first two

statement of the initialization.

2. Second predicate (6.2) of the instance invariant is also established as the initial-

ization setsi to−1, a value within the valid range fori.

• Resetpreserves the invariant because:

1. First predicate (6.1) holds as the method asserts that the copy of container main-
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tained by the iterator is still equal to the associated aggregate’s container.C# doc-

umentation requires that if the original container is edited, an exception should be

raised.

2. Second predicate (6.2) holds as the method setsi to −1, a value within the valid

range fori.

• MoveNextpreserves the invariant because:

1. First predicate (6.1) holds as shown above.

2. Second predicate (6.2) holds as the value ofi is only increments after checking

that it is less thanlength(container). Therefore, the maximum possible value fori is

equal tolength(container), which is within the valid range fori.

• Currentpreserves the invariant because:

The method does not change the value of any attribute in the program.

Based on the information given above, we see that the given program is indeed an

instance of theIterator pattern. This is because the program preserves the invariant and it

provides at least some of the functionalities described by the pattern. We also see that some

functionalities described by the pattern are missing from the program. Therefore, it only

complies partially with the pattern.
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Abstract Factory

The book ofGamma et al. [12] describes theAbstract Factorypattern as an interface for

creating families of related objects without specifying their concrete classes. The pattern

makes exchanging product families easy and promotes consistency among products.

Abstract Factorypattern involves five participants.AbstractFactorydeclares methods

that create abstract product objects.ConcreteFactoryimplements methods to create con-

crete product objects.AbstractProductdeclares an interface for a type of product object,

and is implemented by aConcreteProduct. A Client declares and deals with abstract prod-

ucts. Concrete product objects are only returned by factory objects.

The pattern is applicable whenever we need a system to be independent of how its

products are created, composed, and represented. It is also applicable in systems that should

be configured with one of many families of products. Another application for the pattern is

to enforce using a family of related product objects together, or to reveal only the interfaces

of a library of products.

An instance of the pattern will typically need only one object ofConcreteFactoryper

product family. Therefore,ConcreteFactoryis best implemented as aSingleton. This

pattern is an example to demonstrate that combining patterns may amount to conjoining

their invariants. The introduced invariant forAbstract Factoryinvolves the invariant for

Singleton. The invariant forSingletonis introduced later on in this study.

The description given below captures the essence of the pattern and does not necessarily

map to a direct implementation of the pattern. For example, the initializers of concrete

products assign every set of product to an empty set. This is done to make sure that all

63
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Client ClientAbstractFactory
CreateProductA()
CreateProductB()

ClientConcreteFactory1
CreateProductA()
CreateProductB()

ClientConcreteFactory2
CreateProductA()
CreateProductB()

ClientAbstractProductA

ProductA1ClientProductA2

ClientAbstractProductB

ProductB1ClientProductB2

Figure 7.1: Abstract Factory Class Diagram

products will belong to one family of products.

7.1 The Pattern

classAbstractFactory

method CreateProductA: AbstractProductA

method CreateProductB: AbstractProductB

end

classConcreteFactory1 implementsAbstractFactory

initialization

AbstractProductA:= {};
AbstractProductB:= {};
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ConcreteFactory1 := {this};
AbstractFactory:= ConcreteFactory1

method CreateProductA: AbstractProductA

var c : Object•

begin

c :/∈ ProductA1 ∪ {nil};
ProductA1 := ProductA1 ∪ {c};
return c

end

method CreateProductB: AbstractProductB

var c : Object•

begin

c :/∈ ProductB1 ∪ {nil};
ProductB1 := ProductB1 ∪ {c};
return c

end

end

classConcreteFactory2 implementsAbstractFactory

initialization

AbstractProductA:= {};
AbstractProductB:= {};
ConcreteFactory2 := this;

AbstractFactory:= ConcreteFactory2

method CreateProductA: AbstractProductA

var c : Object•

begin

c :/∈ ProductA2 ∪ {nil};
ProductA2 := ProductA2 ∪ {c};
return c

end

method CreateProductB: AbstractProductB
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var c : Object•

begin

c :/∈ ProductB2 ∪ {nil};
ProductB2 := ProductB2 ∪ {c};
return c

end

end

classAbstractProductA

method AnyOperation

end

classProductA1 implementsAbstractProductA

method AnyOperation

end

classProductA2 implementsAbstractProductA

method AnyOperation

end

classAbstractProductB

method AnyOperation

end

classProductB1 implementsAbstractProductB

method AnyOperation

end
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classProductB2 implementsAbstractProductB

method AnyOperation

end

method Client

var factory : AbstractFactory, product: AbstractProductA•

begin

factory := new ConcreteFactory1;

product:= factory.CreateProductA;

product.AnyOperation

end

The return of a new product instance in methodsCreateProductAandCreateProductBis

equivalent to adding the new product instance to the set of all this product objects. For

example,ProductA1 := ProductA1 ∪ {new ProductA1}.

Data Structures

var AbstractFactory, AbstractProductA, AbstractProductB: set ofObject

:= {}, {}, {}
var ProductA1, ProductA2, ProductB1, ProductB2 : set ofObject

var ConcreteFactory1, ConcreteFactory2 : set ofObject

ProductA1, ProductA2 ⊆ AbstractProductA

ProductB1, ProductB2 ⊆ AbstractProductB

ConcreteFactory1, ConcreteFactory2 ⊆ AbstractFactory

Pattern Invariant P

| AbstractFactory|≤ 1 ∧ (

(AbstractProductA= ProductA1)∧
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(AbstractProductB= ProductB1)∧
(AbstractFactory= ConcreteFactory1)

∨
(AbstractProductA= ProductA2)∧
(AbstractProductB= ProductB2)∧
(AbstractFactory= ConcreteFactory2) )

The above invariant reads as follows:

• Only one factory instance is allowed.

• In case the only factory object is of typeConcreteFactory1, all objects declared as

AbstractProductAare in ProductA1, and all objects declared asAbstractProductB

are inProductB1.

In case the only factory object is of typeConcreteFactory2, all objects declared as

AbstractProductAare in ProductA2, and all objects declared asAbstractProductB

are inProductB2.

7.2 Well-Definedness of the Pattern

A module initialization is required to establish the invariant. Class methods and initializa-

tions are only required to preserve the invariant. We apply the proofs onConcreteFactory1.

ConcreteFactory2 is identical except for identifiers. WithinConcreteFactory1, it is also

sufficient to give proofs forinitialization andCreateProductA. Proof forCreateProductB

is identical toCreateProductAexcept for identifiers. Concrete product classes are not

involved in proofs.

Module Initialization Establishes Invariant

wlp(AbstractFactory:= { } ∧ AbstractProductA:= { } ∧ AbstractProductB:= { } , P)

≡ (| AbstractFactory|≤ 1 ∧ (

(AbstractProductA= ProductA1)∧
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(AbstractProductB= ProductB1)∧
(AbstractFactory= ConcreteFactory1)

∨
(AbstractProductA= ProductA2)∧
(AbstractProductB= ProductB2)∧
(AbstractFactory= ConcreteFactory2) )

) [AbstractFactory, AbstractProductA, AbstractProductB\ { }, { }, { }]

≡ � substitution, ProductA1 ⊆ AbstractProductA, etc. �
(| { }{ }{ } |≤ 1 ∧ (

({ }{ }{ } = { }{ }{ })∧
({ }{ }{ } = { }{ }{ })∧
({ }{ }{ } = { }{ }{ })

∨
({ }{ }{ } = { }{ }{ })∧
({ }{ }{ } = { }{ }{ })∧
({ }{ }{ } = { }{ }{ }) )

≡ � logic�
truetruetrue

ConcreteFactory1 Initialization Preserves Invariant

The statementthis :/∈ ConcreteFactory1∪ {nil}is added toConcreteFactory1 initialization

due to the translation to a procedure.

wlp(ConcreteFactory1.new, P)

≡ � definition of ConcreteFactory1.new�
wlp(this :/∈ ConcreteFactory1 ∪ {nil}; ConcreteFactory1 := {this};

AbstractProductA:= {}; AbstractProductB:= {};
AbstractFactory:= ConcreteFactory1

, P)

⇐ � wlp of AbstractFactory:= ConcreteFactory1, rule (3.4), rule (3.9) �
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� , substitution �
wlp(this :/∈ ConcreteFactory1 ∪ {nil}; ConcreteFactory1 := {this};

AbstractProductA:= {}; AbstractProductB:= {};
, | ConcreteFactory1ConcreteFactory1ConcreteFactory1 |≤ 1 ∧ (

(AbstractProductA= ProductA1)∧
(AbstractProductB= ProductB1)∧
(ConcreteFactory1ConcreteFactory1ConcreteFactory1 = ConcreteFactory1)

∨
(AbstractProductA= ProductA2)∧
(AbstractProductB= ProductB2)∧
(ConcreteFactory1ConcreteFactory1ConcreteFactory1 = ConcreteFactory2) )

)

⇐ � wlp of the last two statements respectively, rule (3.4), rule (3.9) �
� , substitution �
wlp(this :/∈ ConcreteFactory1 ∪ {nil}; ConcreteFactory1 := {this}
, | ConcreteFactory1 |≤ 1 ∧ (

({}{}{} = ProductA1)∧
({}{}{} = ProductB1)∧
(ConcreteFactory1 = ConcreteFactory1)

∨
({}{}{} = ProductA2)∧
({}{}{} = ProductB2)∧
(ConcreteFactory1 = ConcreteFactory2) )

)

≡ � logic, ProductA1 ⊆ AbstractProductA, ProductB1 ⊆ AbstractProductB�
wlp(this :/∈ ConcreteFactory1 ∪ {nil}; ConcreteFactory1 := {this}
, | ConcreteFactory1 |≤ 1 ∧ (

({} = {}{}{})∧
({} = {}{}{})∧
(ConcreteFactory1 = ConcreteFactory1)
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∨
({} = ProductA2)∧
({} = ProductB2)∧
(ConcreteFactory1 = ConcreteFactory2) )

)

≡ � logic�
wlp(this :/∈ ConcreteFactory1 ∪ {nil}; ConcreteFactory1 := {this}
, | ConcreteFactory1 |≤ 1∧
truetruetrue )

≡ � logic, the cardinality of a set of one element= 1 �
wlp(this :/∈ ConcreteFactory1 ∪ {nil}; ConcreteFactory1 :=

ConcreteFactory1 ∪ {this}
, truetruetrue )

⇐ � wlp of any statement with respect to true≡ true�
PPP

CreateProductA Preserves Invariant

The statementassertthis∈ ConcreteFactory1 is added toCreateProductA.

wlp(ConcreteFactory1.CreateProductA, P)

≡ � definition of ConcreteFactory1.CreateProductA�
wlp(assertthis∈ ConcreteFactory1; c :/∈ ProductA1 ∪ {nil};

ProductA1 := ProductA1 ∪ {c}; return C, P)

⇐ � wlp of return c, rules(3.9) and(3.11) �
wlp(assertthis∈ ConcreteFactory1; c :/∈ ProductA1 ∪ {nil};

ProductA1 := ProductA1 ∪ {c}, P)

⇐ � wlp of ProductA1 := ProductA1 ∪ {c}, rules(3.9) and(3.4) �
wlp(assertthis∈ ConcreteFactory1; c :/∈ ProductA1 ∪ {nil}
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, (| AbstractFactory|≤ 1 ∧ (

(AbstractProductA= ProductA1)∧
(AbstractProductB= ProductB1)∧
(AbstractFactory= ConcreteFactory1)

∨
(AbstractProductA= ProductA2)∧
(AbstractProductB= ProductB2)∧
(AbstractFactory= ConcreteFactory2) )

)[ProductA1 \ ProductA1 ∪ {c}][ProductA1 \ ProductA1 ∪ {c}][ProductA1 \ ProductA1 ∪ {c}]

≡ � substitution, ProductA1 ⊆ AbstractProductA�
wlp(assertthis∈ ConcreteFactory1; c :/∈ ProductA1 ∪ {nil}
, | AbstractFactory|≤ 1 ∧ (

(AbstractProductA∪{c}∪{c}∪{c} = ProductA1∪{c}∪{c}∪{c})∧
(AbstractProductB= ProductB1)∧
(AbstractFactory= ConcreteFactory1)

∨
(AbstractProductA= ProductA2)∧
(AbstractProductB= ProductB2)∧
(AbstractFactory= ConcreteFactory2) ) )

⇐ � logic� , rule (3.9)

wlp(assertthis∈ ConcreteFactory1; c :/∈ ProductA1 ∪ {nil}
, (| AbstractFactory|≤ 1 ∧ (

(AbstractProductA= ProductA1)∧
(AbstractProductB= ProductB1)∧
(AbstractFactory= ConcreteFactory1)

∨
(AbstractProductA= ProductA2)∧
(AbstractProductB= ProductB2)∧
(AbstractFactory= ConcreteFactory2) )

)
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≡ � wlp of c :/∈ ProductA1 ∪ {nil}, rule (3.6) �
wlp(assertthis∈ ConcreteFactory1

,∀h ∈ ConcreteFactory1 • (∀h ∈ ConcreteFactory1 • (∀h ∈ ConcreteFactory1 • (

(| AbstractFactory|≤ 1 ∧ (

(AbstractProductA= ProductA1)∧
(AbstractProductB= ProductB1)∧
(AbstractFactory= ConcreteFactory1)

∨
(AbstractProductA= ProductA2)∧
(AbstractProductB= ProductB2)∧
(AbstractFactory= ConcreteFactory2) )

) )

≡ � empty range, ”c” does not appear in predicate�
wlp(assertthis∈ ConcreteFactory1, P)

≡ � wlp of assertthis∈ ConcreteFactory1, rule (3.10) �
this∈ ConcreteFactory1

⇒⇒⇒ P

⇐ � definition of implication, strengthening�
PPP

7.3 First Instance

This example represents a solution to a common design problem. That problem is the need

to have programs making use of persistent data, such that the underlying data storage is

subject to change from one implementation to another. The example uses as a solution a

DAO (Data Access Object) to abstract access to data source. Changing the underlying data

storage fromOracle to Cloudscapefor example should then be done with minimal client

code changes [3].
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Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

DAOFactory

public abstract class DAOFactory {

public static final int CLOUDSCAPE = 1;

public static final int ORACLE = 2;

public static final int SYBASE = 3;

...

public abstract CustomerDAO getCustomerDAO();

public abstract AccountDAO getAccountDAO();

public abstract OrderDAO getOrderDAO();

...

public static DAOFactory getDAOFactory(

int whichFactory) {

switch (whichFactory) {

case CLOUDSCAPE:

return new CloudscapeDAOFactory();

case ORACLE :

return new OracleDAOFactory();

case SYBASE :

return new SybaseDAOFactory();

...

default :

return null;

}

}

}

CloudscapeDAOFactory

public class CloudscapeDAOFactory extends DAOFactory {

public static final String DRIVER=

"COM.cloudscape.core.RmiJdbcDriver";
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public static final String DBURL=

"jdbc:cloudscape:rmi://localhost:1099/CoreJ2EEDB";

// method to create Cloudscape connections

public static Connection createConnection() {

// Use DRIVER and DBURL to create a connection

// Recommend connection pool implementation/usage

}

public CustomerDAO getCustomerDAO() {

// CloudscapeCustomerDAO implements CustomerDAO

return new CloudscapeCustomerDAO();

}

public AccountDAO getAccountDAO() {

// CloudscapeAccountDAO implements AccountDAO

return new CloudscapeAccountDAO();

}

public OrderDAO getOrderDAO() {

// CloudscapeOrderDAO implements OrderDAO

return new CloudscapeOrderDAO();

}

...

}

CustomerDAO

public interface CustomerDAO {

public int insertCustomer(...);

public boolean deleteCustomer(...);

public Customer findCustomer(...);

public boolean updateCustomer(...);

public RowSet selectCustomersRS(...);

public Collection selectCustomersTO(...);

...

}

CloudscapeCustomerDAO

public class CloudscapeCustomerDAO implements CustomerDAO {

public int insertCustomer(...) {

// Implement insert customer here.
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// Return newly created customer number

// or a -1 on error

}

...

}

Auxiliary Class

public class Customer implements java.io.Serializable {

// member variables

int CustomerNumber;

String name;

String streetAddress;

String city;

...

// getter and setter methods...

...

}

Client

...

// create the required DAO Factory

DAOFactory cloudscapeFactory =

DAOFactory.getDAOFactory(DAOFactory.DAOCLOUDSCAPE);

// Create a DAO

CustomerDAO custDAO =

cloudscapeFactory.getCustomerDAO();

// create a new customer

int newCustNo = custDAO.insertCustomer(...);

// Find a customer object. Get the value object.

Customer cust = custDAO.findCustomer(...);

// modify the values in the value object.

cust.setAddress(...);

cust.setEmail(...);

// update the customer object using the DAO



7. Abstract Factory 77

custDAO.updateCustomer(cust);

// delete a customer object

custDAO.deleteCustomer(...);

// select all customers in the same city

Customer criteria=new Customer();

criteria.setCity("New York");

Collection customersList =

custDAO.selectCustomersVO(criteria);

// returns customersList - collection of Customer

// value objects. iterate through this collection to

// get values.

...

Notes:

• Client does not instanciate aCloudscapeDAOFactorydirectly, but rather makes a call

to methodgetDAOFactorywhich returns one concrete factory based on the value of

passed argument.

Instance Description

classDAOFactory

method getCustomerDAO: CustomerDAO

method getAccountDAO: AccountDAO

end

classCloudscapeDAOFactoryimplementsDAOFactory

method getCustomerDAO: CustomerDAO

return new CloudscapeCustomerDAO

method getAccountDAO: AccountDAO

return new CloudscapeAccountDAO

end

classOracleDAOFactoryimplementsDAOFactory
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method getCustomerDAO: CustomerDAO

return new OracleCustomerDAO

method getAccountDAO: AccountDAO

return new OracleAccountDAO

end

classCustomerDAO

method insertCustomer: integer

...

end

classCloudscapeCustomerDAOimplementsCustomerDAO

method insertCustomer: integer

...

end

classOracleCustomerDAOimplementsCustomerDAO

method insertCustomer: integer

...

end

method Client

var cloudscapeFactory: DAOFactory, custDAO: CustomerDAO•

begin

cloudscapeFactory:= new CloudscapeDAOFactory;

custDAO:= cloudscapeFactory.getCustomerDAO;

custDAO.insertCustomer

end



7. Abstract Factory 79

Data Structures

DAOFactory, CustomerDAO, AccountDAO: set ofObject

CloudscapeCustomerDAO, OracleCustomerDAO⊆ CustomerDAO

CloudscapeAccountDAO, OracleAccountDAO⊆ AccountDAO

CloudscapeDAOFactory, OracleDAOFactory⊆ DAOFactory

Instance Invariant P1

| DAOFactory|≤ 1 ∧ (

(CustomerDAO= CloudscapeCustomerDAO)∧
(AccountDAO= CloudscapeAccountDAO)∧
(DAOFactory= CloudscapeDAOFactory)

∨
(CustomerDAO= OracleCustomerDAO)∧
(AccountDAO= OracleAccountDAO)∧
(DAOFactory= OracleDAOFactory) )

Invariant P1 Preservation

InvariantP1 is identical to pattern invariantP, except for identifiers. InvariantP1 is weekly

preserved in this instance, this is done implicitly through the naming convention. We see

that the only instance ofDAOFactoryin the client application iscloudscapeFactory. That

name suggests that it can only be assigned objects ofCloudscapeDAOFactoryand that

there is no need to change the type at runtime as it is the case with GUI applications for

example. That application still gets the benefit of applyingAbstractFactorypattern. In

case the application needs to use a different database connection type, then all we need to

change is the line where the factory object is instantiated.

7.4 Second Instance

The pattern is applied in this program that is used to plan garden layouts. Different types

of gardens (vegetable gardens, annual gardens, etc.) are considered. Gardens contain
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different types of plants (center, border, etc.). Different garden types have different

suitable center plants and different suitable border plants. User Interface has radio buttons

representing the different garden types (vegetable, annual, etc.), buttons representing plant

types (center, border, etc.), and an area to display the suitable plant name. Program user

selects at runtime the garden type using radio buttons and clicks on a plant type to display

the suitable plant name [5].

Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

Garden

public interface Garden {

public Plant getShade();

public Plant getCenter();

public Plant getBorder();

}

VeggieGarden

public class VeggieGarden implements Garden {

public Plant getShade() {

return new Plant("Broccoli");

}

public Plant getCenter() {

return new Plant("Corn");

}

public Plant getBorder() {

return new Plant("Peas");

}

}

AnnualGarden

public class AnnualGarden implements Garden {

public Plant getShade() {

return new Plant("Coleus");

}
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public Plant getCenter() {

return new Plant("Marigold");

}

public Plant getBorder() {

return new Plant("Alyssum");

}

}

Plant

public class Plant {

private String name;

public Plant(String pname) {

name = pname; //save name

}

public String getName() {

return name;

}

}

Client

public class Gardener extends Frame

implements ActionListener {

private Checkbox Veggie, Annual, Peren;

private Button Center, Border, Shade, Quit;

private Garden garden = null;

private String borderPlant = "", centerPlant = "", shadePlant = "";

public Gardener() {

super("Garden planner");

setGUI();

}

private void setGUI() {

...

Veggie = new Checkbox("Vegetable", grp, false);

...

Veggie.addItemListener(new VeggieListener());

...

}
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public void actionPerformed(ActionEvent e) {

Object obj = e.getSource();

if (obj == Center)

setCenter();

...

}

private void setCenter() {

if (garden != null) centerPlant = garden.getCenter().getName();

gardenPlot.repaint();

}

private void clearPlants() {

shadePlant=""; centerPlant=""; borderPlant = "";

gardenPlot.repaint();

}

static public void main(String argv[]) {

new Gardener();

}

class GardenPanel extends Panel {

public void paint (Graphics g) {

...

}

}

class VeggieListener implements ItemListener {

public void itemStateChanged(ItemEvent e) {

garden = new VeggieGarden();

clearPlants();

}

}

} //end of Gardener class

Instance Description

classGarden

method getCenter: Plant

method getBorder: Plant

end
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classVeggieGardenimplementsGarden

method getCenter: Plant

return new Plant(”Corn”)

method getBorder: Plant

return new Plant(”Peas”)

end

classAnnualGardenimplementsGarden

method getCenter: Plant

return new Plant(”Marigold”)

method getBorder: Plant

return new Plant(”Alyssum”)

end

classPlant

attr name: String

initialization (pname: String)

name:= pname

method getName: String

return name

end

method Client

var centerPlant, borderPlant: String, garden: Garden•

begin

garden:= new VeggieGarden;

centerPlant= ””; borderPlant= ””;

centerPlant:= garden.getCenter.getName
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end

Notes:

• ResettingcenterPlantandborderPlantis done in auxiliary methodclearPlants.

• The call centerPlant := garden.getCenter.getName; is done in methodsetCenter

which is called by the event handler of buttons. That event handler checks

which button(Center, Border, etc.) was clicked and calls the appropriate method

(setCenter, setBorder, etc.) accordingly.

• A similar technique is followed with the assignmentgarden:= new VeggieGarden;.

Radio buttons representing different garden types (vegetable, annual, etc.) are im-

plemented using aCheckboxfor each garden type. All these are grouped together

to form a set of radio buttons such that only one can be selected at a time. Each

Checkboxis mapped to an inner class event handler that actually does the above

assignment based on the garden type selected.

Data Structures

This example is a simple one, no significant work is done by product instances. That is

why the same classPlant is used to represent more than one product. Different products

may be viewed here as subsets ofPlant with different values for theString attribute

name. Plant was also not sub-classed based on different concrete factories. However, the

program still follows the same spirit as suggested by the pattern. This is because sub-

classes ofPlantare also viewed as subsets ofPlantwith different values for attributename.

Garden, Plant : set ofObject

• Let VeggieCenterPlant ⊆ Plant be the set of allplant : Plant where

plant.getName= ”Corn”

• Let AnnualCenterPlant ⊆ Plant be the set of allplant : Plant where

plant.getName= ”Marigold”
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• Let VeggieBorderPlant ⊆ Plant be the set of allplant : Plant where

plant.getName= ”Peas”

• Let AnnualBorderPlant ⊆ Plant be the set of allplant : Plant where

plant.getName= ”Alyssum”

Instance Invariant P2

| Garden|≤ 1 ∧ (

(centerPlant= ”Corn”)∧
(borderPlant= ”Peas”)∧
(Garden= VeggieGarden)

∨
(centerPlant= ”Marigold”)∧
(borderPlant= ”Alyssum”)∧
(Garden= AnnualGarden) )

Invariant P2 Preservation

InvariantP2 is still equal to pattern invariantP, except for identifiers.AbstractProductA

defined with pattern invariant contains exactly one element in that example,

namely centerPlant. Similarly AbstractProductB contains only borderPlant.

Classes ProductA1, ProductA2, ProductB1 and ProductB2 can be viewed as

VeggieCenterPlant, AnnualCenterPlant, VeggieBorderPlant and AnnualBorderPlant

respectively. The distinction between those is based on the value of attributename

defined in classPlant. InvariantP2 is preserved in this instance by reseting the values for

centerPlantandborderPlantto an emptyStringafter an assignment or a reassignment to

the factory instancegarden.

7.5 Third Instance

This example introduces an interfaceIAVDeviceas the abstract factory. A factory can

create audio and video objects as products. Concrete factories are ”cd” and dvd”. The
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program can deal with both audio and video files, and manipulate them on different media

types, namely ”cd” and ”dvd” [20].

Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

IAVDevice

public interface IAVDevice

{

IAudio GetAudio();

IVideo GetVideo();

}

CCd

class CCd:IAVDevice

{

public IAudio GetAudio()

{

return new CCdAudio();

}

public IVideo GetVideo()

{

return new CCdVideo();

}

}

CDvd

class CDvd:IAVDevice

{

public IAudio GetAudio()

{

return new CDvdAudio();

}

public IVideo GetVideo()

{
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return new CDvdVideo();

}

}

IAudio

public interface IAudio

{

string GetSoundQuality();

}

CCdAudio

class CCdAudio:IAudio

{

public string GetSoundQuality()

{

return "CD Audio is better then DVD Audio";

}

}

CDvdAudio

class CDvdAudio:IAudio

{

public string GetSoundQuality()

{

return "DVD Audio is not as good as CD Audio";

}

}

Auxiliary Class

class CAVMaker

{

public IAVDevice AVMake(string xWhat)

{

switch (xWhat.ToLower())

{

case "cd":

return new CCd();

case "dvd":
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return new CDvd();

default:

return new CCd();

}

}

}

Client

public class AbstractFactory

{

static void Main(string[] args)

{

CAVMaker objFactMaker = new CAVMaker();

IAVDevice objFact;

IAudio objAudio;

IVideo objVideo;

string strWhat;

strWhat = args[0];

objFact = objFactMaker.AVMake(strWhat);

objAudio = objFact.GetAudio();

objVideo = objFact.GetVideo();

Console.WriteLine(objAudio.GetSoundQuality());

Console.WriteLine(objVideo.GetPictureQuality());

}

}

Instance Description

classIAVDevice

method GetAudio: IAudio

method GetVideo: IVideo

end

classCCd implements IAVDevice

method GetAudio: IAudio

return new CCdAudio
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method GetVideo: IVideo

return new CCdVideo

end

classCDvd implements IAVDevice

method GetAudio: IAudio

return new CDvdAudio

method GetVideo: IVideo

return new CDvdVideo

end

classIAudio

method GetSoundQuality: String

end

classCCdAudioimplements IAudio

method GetSoundQuality: String

...

end

classCDvdAudioimplements IAudio

method GetSoundQuality: String

...

end

method Main(args : seq ofString)

var objFact : IAVDevice, objAudio: IAudio •
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begin

if (args[0] = ”cd”) then objFact := new CCd;

else if(args[0] = ”dvd”) then objFact := new CDvd;

objAudio:= objFact.GetAudio;

objAudio.GetSoundQuality

end

Notes:

• InstantiatingCCdor CDvd is done in methodAVMakeof auxiliary classCAVMaker.

• Thecasestatement in the above auxiliary method is translated to anif statement.

• args[0] is the value passed to main application methodMain as a command line

argument.

Data Structures

IAVDevice, IAudio, IVideo : set ofObject

CCdAudio, CDvdAudio⊆ IAudio

CCdVideo, CDvdVideo⊆ IVideo

CCd, CDvd⊆ IAVDevice

Instance Invariant P3

| IAVDevice|≤ 1 ∧ (

(IAudio = CCdAudio)∧
(IVideo= CCdVideo)∧
(IAVDevice= CCd)

∨
(IAudio = CDvdAudio)∧
(IVideo= CDvdVideo)∧
(IAVDevice= CDvd) )

Invariant P3 Preservation

InvariantP3 is identical to pattern invariantP, except for identifiers. InvariantP3 is also
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implicitly preserved by this instance. This is done by making the decision of which con-

crete factory to instantiate based on a command line argument. This suggests that the

program will typically have only one factory instance, and that the value of this instances

should never be changed at runtime. That application gets the full benefit of applying

AbstractFactorypattern, and no changes are required to client code when switching from

”cd” to ”dvd”.



Chapter 8

Composite

As described in the book ofGamma et al. [12], theCompositepattern composes objects into

tree structures to represent containment hierarchies. The pattern lets clients treat individual

and composite objects uniformly. In the class diagram,Componentis a common interface

betweenLeaf andComposite.

ClientClient Component

Operation()
Add (Component)
Remove (Component)
GetChild (int)

ClientComposite

Operation()
Add (Component)
Remove (Component)
GetChild (integer)

ClientLeaf

Operation() forall g in children
  g.Operation();

children

Figure 8.1: Composite Class Diagram

92
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The pattern involves four participants.Componentdeclares the interface for objects

in the composition and also for accessing and managing child components.Leaf repre-

sents leaf objects in the composition. A leaf has no children.Compositedefines behavior

for components having children. It stores child components.Client declares and deals

uniformly with the common interfaceComponent.

The pattern is applicable whenever we want to present a part-whole hierarchies of ob-

jects. It is also applicable when we need a client to be able to treat all objects in the

composite structure uniformly.

8.1 The Pattern

classComponent

method Operation

method Add(c : Component)

method Remove(c : Component)

method GetChild(i : integer) : Component

end

classLeaf implementsComponent

method Operation

end

classCompositeimplementsComponent

attr children : seq ofObject

initialization

this.children := 〈〉
method Operation

for i ∈ this.childrendo i.Operation

method Add(c : Component)

assert¬c parent+this;
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this.children := this.children& 〈c〉
method Remove(c : Component)

this.children := this.children − 〈c〉
method GetChild(i : integer) : Component

return this.children[i]

end

Notes:

• In this study, we relax the requirement that object composition is a tree structure as

explained later on.

• We abstractly represent the children of a composite as a sequence. This allows the

existence of the same object multiple times in the same container of children. This

assumptions extends the applicability of the pattern. An example would be to repre-

sent components of a machine asComponent. A machine may contain multiple parts

of the same component, in which case it may not be efficient to represent each as a

different object.

• The relationparentis defined as follows:

x parent y= y ∈ x.children

It maps objects ofComponentto objects ofComposite. x parent ymeans thatx is a

parent ofy.

• The relationparent+ is the transitive closure ofparent. x parent+ y means thatx is

an ancestor ofy.

Data Structures

var Component, Composite, Leaf : set ofObject:= {}, {}, {}
var children : Object→ seq ofObject

Note that:

Composite, Leaf ⊆ Component
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Pattern Invariant P

∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )

The above invariant reads as follows:

Compositeobjects contain no ancestor objects within theirchildrencontainers.

The above invariant allows any object inComponentwithin the containment hierarchy to

be contained by multiple objects ofComposite. Therefore, the containment hierarchy does

not need to be a balanced tree, or even a tree.

8.2 Well-Definedness of the Pattern

A module initialization is required to establish the invariant. Other parts of the system are

only required to preserve the invariant. MethodOperationrepresents a functionality to be

decided by pattern instances. It is not involved in proofs.

Module Initialization Establishes Invariant

wlp(Component:= { } ∧ Composite:= { } ∧ Leaf := { }, P)

≡ � wlp of Component:= { }, rule (3.4) �
∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )[Component\ { }]

≡ � substitution, Composite⊆ Component�
∀ i ∈ { }{ }{ } • (∀ j ∈ i.children • ¬(j parent+ i) )

≡ � logic, universal quantification over empty range�
truetruetrue

Composite Initialization Preserves Invariant

The statementsthis :/∈ Composite∪{nil} ; Composite:= Composite∪{this} are added to

Compositeinitialization due to the translation to a procedure.

wlp(Composite.new, P)
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≡ � definition of Composite.new�
wlp(this :/∈ Composite∪ {nil} ; Composite:= Composite∪ {this};
this.children := 〈〉
,∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) ) )

⇐ � wlp of this.children := 〈〉, rule (3.7) �
wlp(this :/∈ Composite∪ {nil} ; Composite:= Composite∪ {this}
, (∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )

)[children\ (children; this : 〈〉)][children\ (children; this : 〈〉)][children\ (children; this : 〈〉)] )

≡ � case analysiswith i = this and i 6= this�
wlp(this :/∈ Composite∪ {nil} ; Composite:= Composite∪ {this}
, (∀ i ∈ Composite− {this}Composite− {this}Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children • ¬(j parent+ this) )(∀ j ∈ this.children • ¬(j parent+ this) )(∀ j ∈ this.children • ¬(j parent+ this) )

)[children\ (children; this : 〈〉)] )

≡ � substitution, simplification, rules(3.2) and(3.3) �
wlp(this :/∈ Composite∪ {nil} ; Composite:= Composite∪ {this}
,∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ 〈〉〈〉〈〉 • ¬(j parent+ this) ) )

≡ � logic�
wlp(this :/∈ Composite∪ {nil} ; Composite:= Composite∪ {this}
,∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) ) )

⇐ � wlp of Composite:= Composite∪ {this}, rules(3.4) and(3.9) �
wlp(this :/∈ Composite∪ {nil}
,∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )

) [Composite\ Composite∪ {this}][Composite\ Composite∪ {this}][Composite\ Composite∪ {this}]

≡ � substitution, Composite∪ {this} − {this} = Composite�
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wlp(this :/∈ Composite∪ {nil}
,∀ i ∈ CompositeCompositeComposite• (∀ j ∈ i.children • ¬(j parent+ i) ) )

≡ � wlp of this :/∈ Composite∪ {nil}, rule (3.6) �
∀h ∈ Composite• (∀h ∈ Composite• (∀h ∈ Composite• (

∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) ) )

≡ � empty range, ”this” does not appear in predicate�
∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )

⇐
PPP

Add Preserves Invariant

The statementassertthis ∈ Compositeis added toAdd due to the translation from a

method to a procedure.

wlp(Composite.Add, P)

≡ � definition of Composite.Add�
wlp(assertthis∈ Composite; assert¬(c parent+this);

this.children := this.children& 〈c〉
,∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) ) )

⇐ � wlp of this.children := this.children& 〈c〉, rule (3.7), rule (3.9) �
wlp(assertthis∈ Composite; assert¬(c parent+this)

, (∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )

)[children\ (children; this : this.children& 〈c〉)] )[children\ (children; this : this.children& 〈c〉)] )[children\ (children; this : this.children& 〈c〉)] )

≡ � case analysiswith i = this and i 6= this�
wlp(assertthis∈ Composite; assert¬(c parent+this)

, (∀ i ∈ Composite− {this}Composite− {this}Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children • ¬(j parent+ this) )(∀ j ∈ this.children • ¬(j parent+ this) )(∀ j ∈ this.children • ¬(j parent+ this) )

)[children\ (children; this : this.children& 〈c〉)] )
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≡ � substitution, simplification �
wlp(assertthis∈ Composite; assert¬(c parent+this)

,∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children& 〈c〉this.children& 〈c〉this.children& 〈c〉 • ¬(j parent+ this) ) )

⇐ � wlp of assert¬(c parent+this), rule (3.10) �
wlp(assertthis∈ Composite

, ¬(c parent+this)

⇒⇒⇒
∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children& 〈c〉 • ¬(j parent+ this) ) )

≡ � logic, range split �
wlp(assertthis∈ Composite

, ¬(c parent+this)

⇒
∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.childrenthis.childrenthis.children • ¬(j parent+ this) )∧
¬(c parent+ this)¬(c parent+ this)¬(c parent+ this) )

≡ � logic, for any p, q : (p⇒ q∧ p) ≡ (p⇒ q) �
wlp(assertthis∈ Composite

¬(c parent+this)

⇒
∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children • ¬(j parent+ this) ) )

≡ � wlp of assertthis∈ Composite, rule (3.10) �
this∈ Composite

⇒⇒⇒
¬(c parent+this)
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⇒
∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children • ¬(j parent+ this) )

≡ � join the last two predicates�
this∈ Composite

⇒⇒⇒
¬(c parent+this)

⇒
∀ i ∈ CompositeCompositeComposite• (∀ j ∈ i.children • ¬(j parent+ i) )∧

⇐ � definition of implication, strengthening�
∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )∧

≡
PPP

Remove Preserves Invariant

The statementassertthis ∈ Compositeis added toRemovedue to the translation from a

method to a procedure.

wlp(Composite.Remove, P)

≡ � definition of Composite.Remove�
wlp(assertthis∈ Composite; this.children := this.children − 〈c〉
,∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) ) )

⇐ � wlp of this.children := this.children − 〈c〉, rule (3.7) �
wlp(assertthis∈ Composite

, (∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )

)[children\ (children; this : this.children− 〈c〉)][children\ (children; this : this.children− 〈c〉)][children\ (children; this : this.children− 〈c〉)] )

≡ � case analysiswith i = this and i 6= this�
wlp(assertthis∈ Composite
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, (∀ i ∈ Composite− {this}Composite− {this}Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children • ¬(j parent+ this) )(∀ j ∈ this.children • ¬(j parent+ this) )(∀ j ∈ this.children • ¬(j parent+ this) )

)[children\ (children; this : this.children− 〈c〉)] )

≡ � substitution, simplification �
wlp(assertthis∈ Composite

,∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children − 〈c〉this.children − 〈c〉this.children − 〈c〉 • ¬(j parent+ this) ) )

≡ � wlp of assertthis∈ Composite, rule (3.10) �
this∈ Composite

⇒⇒⇒
∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children − 〈c〉this.children − 〈c〉this.children − 〈c〉 • ¬(j parent+ this) )

⇐ � definition of implication, strengthening�
∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.children − 〈c〉this.children − 〈c〉this.children − 〈c〉 • ¬(j parent+ this) )

⇐ � logic, (∀i ∈ X− {a}) ⇐ (∀i ∈ X− {a} ∧ a) ≡ (∀i ∈ X) �
∀ i ∈ Composite− {this} • (∀ j ∈ i.children • ¬(j parent+ i) )∧
(∀ j ∈ this.childrenthis.childrenthis.children • ¬(j parent+ this) )

≡ � join the last two predicates�
PPP

GetChild Preserves Invariant

The statementassertthis ∈ Compositeis added toGetChilddue to the translation from a

method to a procedure.

wlp(Composite.GetChild, P)

≡ � definition of Composite.GetChild�
wlp(assertthis∈ Composite; return this.children[i]
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,∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) ) )

⇐ � wlp of return this.children[i], rule (3.11) �
wlp(assertthis∈ Composite, P)

≡ � wlp of assertthis∈ Composite, rule (3.10) �
this∈ Composite

⇒⇒⇒
∀ i ∈ Composite• (∀ j ∈ i.children • ¬(j parent+ i) )

⇐ � definition of implication, strengthening�
PPP

8.3 First Instance

This part of JHotDraw framework allows graphical applications to build composite figures

with a hierarchical structure of components such that all contained components act as one

unit. A common application is programs that draw class diagrams.CompositeFigureis

then sub-classed to be a graphical representation of classes, whileAttributeFigure is a

graphical representation of class attributes [21].

Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

Figure

public interface Figure extends Storable, Cloneable, Serializable {

public void draw(Graphics g);

public abstract class AbstractFigure implements Figure {

...

}

AttributeFigure
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public abstract class AttributeFigure extends AbstractFigure {

...

public void draw(Graphics g) {

Color fill = getFillColor () ;

...

Color frame = getFrameColor ();

if (!ColorMap.isTransparent(frame)) {

g.setColor(frame);

drawFrame(g);

}

}

CompositeFigure

public abstract class CompositeFigure extends AbstractFigure

implements FigureChangeListener {

protected Vector fFigures;

...

public void draw(Graphics g) {

FigureEnumeration k = figures();

while (k.hasMoreElements())

k.nextFigure().draw(g);

}

public Figure add(Figure figure) {

if (!fFigures.contains(figure)) {

fFigures.addElement(figure);

figure.addToContainer(this);

}

return figure;

}

public Figure remove(Figure figure) {

if (fFigures.contains(figure)) {

figure.removeFromContainer(this);

fFigures.removeElement(figure);

}

return figure;

}

public Figure figureAt(int i) {

return (Figure)fFigures.elementAt(i);

}
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public final FigureEnumeration figures() {

return new FigureEnumerator(fFigures);

}

...

}

Instance Description

classFigure

method draw(g : Graphics)

end

classAttributeFigureimplementsFigure

method draw(g : Graphics)

end

classCompositeFigureimplementsFigure

attr fFigures: seq ofFigure

method draw(g : Graphics)

for i ∈ fFiguresdo i.draw

method add(figure : Figure) : Figure

begin

fFigures:= fFigures& 〈figure〉;
...

return figure

method remove(figure : Figure) : Figure

begin

fFigures:= fFigures − 〈figure〉;
...

return figure

end
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method figureAt(i : integer) : Figure

return fFigures[i]

end

Data Structures

Figure : set ofObject

CompositeFigure, AttributeFigure⊆ Figure

fFigures: Object→ seq ofObject

Instance Invariant P1

∀ c ∈ CompositeFigure• (∀ ch∈ c.fFigures• ¬(ch parent+ c) )

Invariant P1 Preservation

Invariant P1 is identical to pattern invariantP, except for identifiers. It is given as a

proposed invariant for the instance vs. an invariant that is maintained by the instance.

An example of violating the proposed invariant, which may lead to an infinite loop is:

Figure f0 := new CompositeFigure;

Figure f1 := new CompositeFigure;

Figure f2 := new CompositeFigure;

f1.add(f2);

f0.add(f1);

f2.add(f0)

Apparently any call tof0.draw or f2.draw will cause an infinite loop. As the program

does not preserve the proposed invariant, it may not be considered as an instance of the

Compositepattern.

8.4 Second Instance

Java AWTsupports both components and containers. Components such asButtoncan be

added to containers. Containers can still be added to other containers because they are also
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components [18].

Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

Component

public abstract class Component implements

ImageObserver, MenuContainer, Serializable

{

...

public void update(Graphics g) {

if ((this instanceof java.awt.Canvas) ||

(this instanceof java.awt.Panel) ||

(this instanceof java.awt.Window)) {

g.clearRect(0, 0, width, height);

}

paint(g);

}

...

}

Button

public class Button extends Component implements Accessible {

...

}

Container

public class Container extends Component {

...

Component component[] = new Component[4];

...

public void update(Graphics g) {

if (isShowing()) {

if (! (peer instanceof java.awt.peer.LightweightPeer)) {

g.clearRect(0, 0, width, height);

}
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paint(g);

}

}

public Component add(Component comp) {

addImpl(comp, null, -1);

return comp;

}

public void remove(Component comp) {

if (comp.parent == this) {

Component component[] = this.component;

for (int i = ncomponents; --i >= 0; ) {

if (component[i] == comp) {

remove(i);

}

}

}

}

public Component getComponent(int n) {

if ((n < 0) || (n >= ncomponents)) {

throw new ArrayIndexOutOfBoundsException

("No such child: " + n);

}

return component[n];

}

...

public void paint(Graphics g) {

if (isShowing() &&

(!printing ||

!printingThreads.contains(Thread.currentThread())) ) {

GraphicsCallback.PaintCallback.getInstance().

runComponents(component, g, GraphicsCallback.LIGHTWEIGHTS);

}

}

public void remove(int index) {

Component comp = component[index];

if (peer != null) {

comp.removeNotify();

}

if (layoutMgr != null) {
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layoutMgr.removeLayoutComponent(comp);

}

...

comp.parent = null;

System.arraycopy(component, index + 1,

component, index,

ncomponents - index - 1);

component[--ncomponents] = null;

if (valid) {

invalidate();

}

...

}

}

protected void addImpl(Component comp, Object constraints,

int index) {

...

if (ncomponents == component.length) {

Component newcomponents[] =

new Component[ncomponents * 2];

System.arraycopy(component, 0, newcomponents, 0,

ncomponents);

component = newcomponents;

}

if (index == -1 || index == ncomponents) {

component[ncomponents++] = comp;

} else {

System.arraycopy(component, index, component,

index + 1, ncomponents - index);

component[index] = comp;

ncomponents++;

}

comp.parent = this;

...

}

Auxiliary Class

abstract class GraphicsCallback extends SunGraphicsCallback {

static final class PaintCallback extends GraphicsCallback {
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private static PaintCallback instance = new PaintCallback();

private PaintCallback() {}

public void run(Component comp, Graphics cg) {

comp.paint(cg);

}

static PaintCallback getInstance() {

return instance;

}

}

...

}

Instance Description

classComponent

method update(g : Graphics)

end

classButtonimplementsComponent

end

classContainerimplementsComponent

attr component: seq ofComponent

method update(g : Graphics)

for i ∈ componentdo i.update

method add(comp: Component) : Component

component:= component& 〈comp〉
method remove(comp: Component)

component:= component− 〈comp〉
method getComponent(n : integer) : Component

return component[n]

end

Notes:
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• ClassButtondoes not implementupdatebut rather calls the parent method.

• Method updatein classContainercalls paint in the same class. The later call is

forwarded to methods of classGraphicsCallback. However, the actual work is done

by classSunGraphicsCallbackin the internal packagesun.awt.

• Methodadd in classContainercallsaddImplin the same class, which does the actual

addition.

• Methodremove(comp: Component) in classContainercallsremove(index: integer)

in the same class. The first determines the index of the component to be removed,

and the later does the actual removal.

Data Structures

Component: set ofObject

Container, Button⊆ Component

component: Object→ seq ofObject

Instance Invariant P2

∀ c ∈ Container• (∀ ch∈ c.component• ¬(ch parent+ c) )

Invariant P2 Preservation

InvariantP2 is identical to pattern invariantP, except for identifiers. It is also given as a

proposed invariant for the instance vs. an invariant that is maintained by the instance.

A similar argument to the one used in the first instance can be used here to show that

failure to comply with this invariant may cause infinite loops. In that instance, this can

occur when containers directly or indirectly contain each others.

8.5 Third Instance

The program can be used to represent a company’s organizational chart with employees

and bosses. Methods likegetSalariessimply return an employee’s salary if a regular
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employee, and include salaries of all managed employees in case of a boss [5].

Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

AbstractEmployee

public abstract class AbstractEmployee {

protected String name;

protected long salary;

protected Employee parent = null;

protected boolean leaf = true;

public abstract long getSalary();

public abstract String getName();

public abstract boolean add(Employee e) throws NoSuchElementException;

public abstract void remove(Employee e);

public abstract Enumeration subordinates();

public abstract Employee getChild(String s);

public abstract long getSalaries();

public boolean isLeaf() {

return leaf;

}

}

Employee

public class Employee extends AbstractEmployee {

public Employee(String _name, long _salary) {

name = _name;

salary = _salary;

leaf = true;

}

public Employee(Employee _parent, String _name, long _salary) {

name = _name;

salary = _salary;

parent = _parent;

leaf = true;

}
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public long getSalary() {

return salary;

}

public boolean add(Employee e) throws NoSuchElementException {

throw new NoSuchElementException("No subordinates");

}

public void remove(Employee e) throws NoSuchElementException {

throw new NoSuchElementException("No subordinates");

}

public Employee getChild(String s) throws NoSuchElementException {

throw new NoSuchElementException("No children");

}

public long getSalaries() {

return salary;

}

...

}

Boss

public class Boss extends Employee {

Vector employees;

public Boss(String _name, long _salary) {

super(_name, _salary);

leaf = false;

employees = new Vector();

}

public boolean add(Employee e) throws NoSuchElementException {

employees.add(e);

return true;

}

public void remove(Employee e) throws NoSuchElementException {

employees.removeElement(e);

}

public Employee getChild(String s) throws NoSuchElementException {

Employee newEmp = null;

if (getName().equals(s))

return this;

else {

boolean found = false;
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Enumeration e = subordinates();

while (e.hasMoreElements() && (! found)) {

newEmp = (Employee)e.nextElement();

found = newEmp.getName().equals(s);

if (! found) {

if (! newEmp.isLeaf ()) {

newEmp = newEmp.getChild(s);

} else

newEmp = null;

found =(newEmp != null);

}

}

if (found)

return newEmp;

else

return null;

}

}

public long getSalaries() {

long sum = salary;

for (int i = 0; i < employees.size(); i++) {

sum += ((Employee)employees.elementAt(i)).getSalaries();

}

return sum;

}

...

}

Instance Description

classAbstractEmployee

attr salary : long

attr name: String

method getSalaries: long

method add(e : Employee) : boolean

method remove(e : Employee)

method getChild(s : String) : Employee

end
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classEmployeeimplementsAbstractEmployee

method getSalaries: long

return salary

end

classBossimplementsEmployee

attr employees: seq ofEmployee

method getSalaries: long

begin

for i ∈ employeesdo salary := salary+ i.getSalaries

return salary

end

method add(e : Employee) : boolean

employees:= employees& 〈e〉
method remove(e : Employee)

employees:= employees− 〈e〉
method getChild(s : String) : Employee

var e : Employee•

begin

result :∈ {e∈ employees∧ e.name= s};
return result

end

end

Data Structures

AbstractEmployee: set ofObject

Employee⊆ AbstractEmployee

Boss⊆ Employee

employees: Object→ seq ofObject
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Instance Invariant P3

∀ c ∈ Boss• (∀ ch∈ c.employees• ¬(ch parent+ c) )

Invariant P3 Preservation

InvariantP3 is identical to pattern invariantP, except for identifiers. It is also given as a

proposed invariant for the instance vs. an invariant that is maintained by the instance.

A similar argument to the one used in the first instance can be used here to show that

failure to comply with this invariant may cause infinite loops. In that instance, this can

occur when bosses directly or indirectly manage each others.

Unlike the class diagram describing the pattern, here the composite class extends leaf and

the leaf extends the component.
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Singleton

The Singletonpattern is introduced in the book ofGamma et al. [12] as a way to ensure

that a class only has one instance, and provides a global point of access to it. The pattern is

an improvement over global variables. It avoids complicating the name space with global

variables that store sole instances.

ClientSingleton

static Instance() return uniqueInstance  
SingletonOperation()
GetSingletonData()

static uniqueInstance
singletonData

Figure 9.1: Singleton Class Diagram

Singletonpattern has only one participant.Singletonclass defines astatic method

Instance that returns the only object of the class. The class uses astatic attribute

singletonDatato store the only object of the class.

The pattern is applicable whenever there must be exactly one instance of a class, and it

must be accessible to clients from a well-known access point. The pattern is also applicable
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when the sole instance of a class should be extensible by subclassing.

9.1 The Pattern

classSingleton

static attr uniqueInstance: Singleton:= nil

attr SingletonData: Type

private initialization

...

static method Instance: Singleton

if uniqueInstance= nil then uniqueInstance:= new Singleton;

Singleton:= {uniqueInstance};
return uniqueInstance

method SingletonOperation

...

method GetSingletonData

return SingletonData

end

method Client

var singleton: Singleton•

begin

singleton:= Singleton.Instance;

singleton.SingletonOperation

end

Notes:

• SingletonData: Typeis used to indicate thatSingletonDatacan be of any type.

• SingletonData, SingletonOperationandGetSingletonDatarepresent any data or op-

erations that can be added to classSingleton.



9. Singleton 117

• The return ofuniqueInstancein the initialization ofSingletonis equivalent to adding

the instance to setSingleton. This is represented bySingleton:= {uniqueInstance}.

Data Structures

var Singleton: set ofObject:= {}

Pattern Invariant P

| Singleton|≤ 1

The above invariant reads as follows:

The cardinality of setSingletonshould be less than or equal to one.

Making the cardinality of setSingletonless than or equal to one gives the flexibility to

instantiateuniqueInstanceas it is declared or only when needed (lazy initialization). The

later option is an advantage of using singletons rather than static class members [15].

9.2 Well-Definedness of the Pattern

A module initialization is required to establish the invariant. Class methods and ini-

tializations are only required to preserve the invariant. MethodsGetSingletonData, and

SingletonOperationrepresent functionalities to be decided by pattern instances. They are

not involved in proofs. The empty class constructor is also not involved in proofs.

Module Initialization Establishes Invariant

wlp(Singleton:= { }, P)

≡ � wlp of Singleton:= { }, rule (3.4) �
(| Singleton|≤ 1) [Singleton\ { }]

≡ � substitution �



118 9. Singleton

(| { }{ }{ } |≤ 1)

≡ � logic�
truetruetrue

Instance Preserves Invariant

The statementassertthis ∈ Singletonis added toInstancedue to the translation from a

method to a procedure.

wlp(Singleton.Instance, P)

≡ � definition of Singleton.Instance�
wlp(assertthis∈ Singleton;

if uniqueInstance= nil then uniqueInstance:= new Singleton;

Singleton:= {uniqueInstance}; return uniqueInstance

, | Singleton|≤ 1)

⇐ � wlp of return uniqueInstance, rule (3.11), substitution �
wlp(assertthis∈ Singleton;

if uniqueInstance= nil then uniqueInstance:= new Singleton;

Singleton:= {uniqueInstance}
, | Singleton|≤ 1)

⇐ � wlp of Singleton:= {uniqueInstance}, rule (3.4), substitution �
wlp(assertthis∈ Singleton;

if uniqueInstance= nil then uniqueInstance:= new Singleton

, | {uniqueInstance}{uniqueInstance}{uniqueInstance} |≤ 1)

≡ � logic, the cardinality of a set of one element= 1 �
wlp(assertthis∈ Singleton;

if uniqueInstance= nil then uniqueInstance:= new Singleton

, truetruetrue)

≡ � wlp of any statement with respect to true≡ true�
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truetruetrue

9.3 First Instance

A simple program in which we need to have only one instance of classPrintSpoolerto

handle print jobs [5].

Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

PrintSpooler

public class PrintSpooler {

private static PrintSpooler spooler;

private PrintSpooler () {

}

public static synchronized PrintSpooler getSpooler () {

if (spooler == null)

spooler = new PrintSpooler ();

return spooler;

}

public void print(String s) {

System.out.println(s);

}

}

Client

public class finalSpool {

public finalSpool () {

PrintSpooler spl = PrintSpooler.getSpooler () ;

spl.print ("Printing data");

}

static public void main(String argv[]) {

new finalSpool ();
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}

}

Instance Description

classPrintSpooler

static attr spooler: PrintSpooler:= nil

private initialization

...

static methodgetSpooler: PrintSpooler

begin

if (spooler= nil) then spooler:= new PrintSpooler;

return spooler

end

method print(s : String)

System.out.println(s)

end

classfinalSpool

initialization

var spl : PrintSpooler•

begin

spl := PrintSpooler.getSpooler;

spl.print(”Printingdata”)

end

end

Data Structures

PrintSpooler: set ofObject

Instance Invariant P1

| PrintSpooler|≤ 1
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Invariant P1 Preservation

InvariantP1 is identical to pattern invariantP, except for identifiers. InvariantP1 is pre-

served by this instance. This is done by making the only constructor of classSingletonpri-

vate. Therefore, the only way to create an instance of this class is through a call to method

getSpooler. Such a call will returnspooler, the only instance of classPrintSpooler, which

was declared as a static attribute.

9.4 Second Instance

Another simple program in which we need to have only one instance of a class. The

only instance of classMySingletonis instance. It is instantiated at class-loading time [15].

Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts

that are specific to the application are left out.

MySingleton

public class MySingleton {

private static MySingleton _instance =

new MySingleton ();

private MySingleton () {

// construct object . . .

}

public static MySingleton getInstance () {

return _instance;

}

// Remainder of class definition . . .

Instance Description

classMySingleton

static MySingleton instance := new MySingleton

private initialization
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...

static methodgetInstance: MySingleton

return instance

end

Notes:

• In this case, instanceis declared and initialized in the same line.

Data Structures

MySingleton: set ofObject

Instance Invariant P2

| MySingleton| = 1

Invariant P2 Preservation

Since| Singleton| = 1 ⇒| Singleton| ≤ 1, then clearlyP2 ⇒ P.

The instance preserves the invariant the same way as in the first instance introduced above.

The only difference is that the only instance of the class is initialized with the declaration

vs. when needed.

It was not needed to introduce any other instances of the pattern, this is because most

implementing programs follow closely one of the two introduced instances.
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Future Work

Limitations of the Approach

Procedures introduced in this study look after most of the issues related to using natural

language to describe patterns [19].

Yet, the approach needs to make more balance between the structural side and the be-

havioral side of a pattern [32]. A balanced formal language could also describe frameworks

in the same abstract notation.

A pattern formalization language should also be the basis for creating tools to create

and verify the correctness of patterns in a design [2]. The use of such tools can address

the usual problem that design patterns are usually used to create code, but then they are

forgotten. Patterns within the code are not maintained as code changes [31].

It is also noted that many patterns use basic delegation, encapsulation and other

repeated concepts. This suggests factoring out these concepts as smaller building blocks to

describe patterns [29].

Suggested Features

• To design a formal language that can describe patterns in terms of pre-defined struc-

tures. Such language can cover all types of patterns in a consistent representation.

• Extend the formalization approach to include frameworks such asJava Swingand

JHotDraw.
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• To use the grammar of the formal description language to create a tool to manipulate

patterns, such that code is always associated with its underlying pattern.



Chapter 11

Conclusion

The study introduces a formal approach to choose and apply design patterns. It is shown

how dealing with patterns becomes more precise when it is guided by a formal approach.

The same uniform notation is used to describe patterns and their instances. Examples given

clearly show that comparing different patterns or comparing a pattern with an instance is

much easier and more precise than when done using informal approaches.

The study also introduces a way of checking compliance of an instance with a pattern,

a task that can be challenging without following a formal approach.

Pattern descriptions are general enough as they are constructed after analyzing care-

fully selected instances. Produced descriptions include structural and behavioral aspects of

patterns.

The applicability of the process introduced in this study is not limited to design patterns.

It can also be extended to deal with frameworks and concurrent systems. Frameworks can

be described in the same introduced notation. Concurrency may be expressed by extending

classes with actions and allowing methods to be guarded [28]. Concurrent systems can be

described in the same introduced notation. All methods and actions of a concurrent system

will have to preserve the invariant if one exists.

Patterns are classified in the study based on components needed to describe them. They

are classified into structure-based patterns, behavior-based patterns, and invariant-based

patterns. In case of invariant-based patterns, invariants are introduced to complement the

description. It is shown that these invariants capture restrictions that are implicit otherwise.

The process of establishing a pattern description gives much better insight about the
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essence and details of the pattern. Such insight can ensure much better use of the pattern in

a design.

Analyzing Iterator design pattern demonstrates the complete process of describing a

pattern, verification of the description, and checking compliance of an instance with the

pattern.

It is shown that the need for an invariant is not limited to one pattern. The introduced

invariants forAbstract Factory, Composite, andSingletonare based on analyzing instances

from diversified sources. The weakest possible invariants are given, such that they are not

specific to an application. Instances can have stronger invariants than the pattern invariant.



Glossary

[ ][ ][ ] An empty bag (also known as multi-set).

〈〉〈〉〈〉 An empty sequence.

{ }{ }{ } An empty set.

A∪ BA∪ BA∪ B The union of bagsA andB.

A− BA− BA− B The subtraction of bagB from bagA, or the subtraction of sequenceB from
sequenceA. Sequence subtractionA − B removes all the occurrences of any element inB
from A.

A & BA & BA & B The concatenation of two sequencesA andB.

length(A)length(A)length(A) The length of sequenceA.

| A || A || A | The cardinality of setA.

x :∈ sx :∈ sx :∈ s The nondeterministic assignmentx :∈ s assigns tox any element from set,
bag or sequences as long as at least one element exists, otherwise,x is assigned the value
nil.

x :∈ sx :∈ sx :∈ s The nondeterministic assignmentx :/∈ s assigns tox any element such that
this element is not ins.

R+R+R+ The transitive closure of a binary relationR. It is defined to be the set of pairs
(u, v) such that there is a path of length one or more fromu to v.

P [x \ e]P [x \ e]P [x \ e] An expression denotingP, where every occurrence ofx is replaced by the
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valuee.

(a; x : e)(a; x : e)(a; x : e) Containera where the element at positionx is replaced by the valuee.

wpwpwp For a system denoted byS and having a desired post-condition denoted
by R, we denote the corresponding weakest pre-condition bywp(S, R). It means that if
the initial state satisfieswp(S, R), the system is certain to establish eventually the truth ofR.

wlpwlpwlp The weakest liberal preconditionwlp(S, R) is weaker thanwp(S, R) defined
above. wlp(S, R) only guaranties that the system will not produce the wrong result, i.e.
will not reach a final state not satisfyingR, but nontermination is left as an alternative.
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