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Abstract

This study introduces a formal abstract notation to describe precisely structural and behav-
ioral aspects of design patterns. A pattern description is constructed based on the book
of Gamma et al and is refined through analyzing carefully selected example implementa-
tions. Example implementations come from existing large real-world programs. Produced
pattern descriptions can be used to check the compliance of other instances with intended
patterns.

It is also shown that for some patterns, even the combined structural and behavioral
descriptions are not enough to capture the essence of a pattern. An invariant has to be
introduced to complement the pattern description. Based on components needed to describe
patterns, they can be classified into structure-based patterns, behavior-based patterns, and
invariant-based patterns. The latest require the most comprehensive description and are the
focus of this study.

As a very detail-rich patterriterator is selected as an example to apply the complete
process on it. Invariants are also introduced for three other patterns to show that the need
for invariants is not limited to one pattern.

The study shows that differentiating design patterns in their formal abstract notation
is easier and more precise than when done based on class diagrams and natural language
descriptions. Also, the process of establishing a pattern description can itself give a better
insight about the essence and details of the described pattern.
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Chapter 1
Introduction

The claim of this thesis is that informal approaches for choosing and applying design pat-
terns are not precise enough. The bookzaimma et al[12] presents patterns in a well-
organized form that is based on class diagrams and natural language. A natural language
description can be ambiguous and may not fully capture the essence of a pattern. A designer
may not be able to easily compare similar patterns. For inst@agkler and Strategyare

both intended to provide a group of interchangeable implementations to perform some task.
Therefore, a more precise description may be needed to make a proper distinction between
them. A formal description may also provide an easier way to communicate those differ-
ences between designers. A well-defined formal description may be needed to check the
correctness of a program instance. The correctness of an instance is determined by its com-
pliance with the pattern formal description. Compliance with a pattern formal description
may also maximize the reusability intended by the pattern.

We argue that describing design patterns in a formal abstract notation can improve the
process of dealing with them. Describing patterns using abstract data types such as sets and
bags allow more concise descriptions than code segments. Abstract pattern descriptions
can be constructed after analyzing selected programs that implement them. Analyzing
pattern instances from diverse application domains gives the most general description for
the pattern.

Formal descriptions have the flexibility of integrating structural and behavioral aspects
of patterns. They allow comparisons, verification, and proofs to be done within the same
environment. It is also shown that for some patterns, complementing the description with
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2 1. Introduction

an invariant is essential to fully describe the pattern. Besides the benefit of choosing the
right pattern, a formal description can also be used to check the compliance of a program
instance with the pattern.

Iterator is selected in this study as an example to show the complete process on it.
Invariants are also introduced fAbstract FactoryCompositeandSingleton

1.1 Pattern Description

The language used in this study to describe patterns is an attempt to combine both the
structural and behavioral aspects of each pattern.

The structural aspect may be viewed as a direct translation of the class diagram of the
pattern. Capturing the structural side of a pattern allows checking if an instance complies
with the pattern from the structural point of view. Structural compliance of an instance
with the pattern does not mean that methods of the instance will have the same behavior
expected from pattern methods.

The behavioral aspect provides the behavior expected from pattern methods [25]. Be-
havior is given in an abstract notation [30]. An instance complies with the pattern if it
satisfies all the statements describing the behavior of the pattern. Statements in the pattern
that are not satisfied by the instance usually imply that some behavior or benefits are miss-
ing. An instance may still partially comply with the pattern in this case as long as some
behavior is supported.

Structural and behavioral compliance with the pattern may not be enough to conclude
that a design is an instance of the pattern. In structural and behavioral compliance, we
match the requirements of the pattern with statements in the instance. It is still possible to
have extra statements in the instance contradicting with the expected pattern behavior. To
avoid this kind of problems, we introdudsvariantsto patterns where applicable.

A pattern invariant may be viewed as a condition that needs to hold during the execution
of the program. Unlike the check of structural and behavioral compliance, an instance can
not partially preserve the invariant. A design that violates the invariant is not an instance of
the pattern.

Formal analysis in this study uses common mathematical notation (sets, functions, etc.)
to describe patterns. This allows direct comparisons, verification, and proofs as needed.
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1.2 The Approach

The motivation behind formalization in this study is to:
e provide a way to examine the suitability of using a specific pattern in a design [23];

e provide means of checking compliance of a design instance with a well-defined pat-
tern [14].

An attempt to achieve these goals is done as follows.

Description Components

e Pattern description: For each pattern, we analyze a reasonable number of programs
that are based on the pattern. This is done to confirm our understanding of the pattern
that is based on the book &amma et al [12]. We then try to reach an abstract
description of that pattern that captures both the structural and behavioral aspects of
the pattern. The pattern is introduced as a module. A module is a representation of
one or more classes. We give the formal description of classes involved in the pattern
including special cases if any.

e Data structures: We define the module data structures that may be needed to express
the pattern. A class is expressed as a set of objects. An attribute of ggkned in
classC is expressed as a function from typéjectto typeT. More details about the
formal language used are given in subsequent chapters.

e Pattern invariant: Invariant-based patterns are those patterns whose essence can not
be completely captured without introducing an invariant. If this applies to the pattern
we deal with, then we propose an appropriate invariant. We make sure that a proposed
invariant is neither too strong nor too specific to a certain application. Invariants are
expressed in terms of the defined data structures.

Well-Definedness of a Pattern

A produced pattern description is the basis for checking compliance of instances with the
pattern. Therefore, it is necessary to check that the description is well-defined before using
it. A significant step in case of invariant-based patterns is to show that methods of the
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proposed pattern description preserve the invariant. In practice, these proofs have also led
to finding missing statements in pattern descriptions. We also need to give an appropriate
initialization for pattern data structures and show that this initialization establishes the
invariant.

Checking Compliance of an Instance

A well-defined pattern description is used to check the compliance of instances with
that pattern. This step applies whenever we need to check if a design that we produced
complies with the pattern, or even to evaluate the compliance of existing programs with
the pattern. The process of converting an instance into the introduced abstract notation
can also be applied in the absence of source code. This is illustrated in an instance of
Iterator shown later on. The abstract description of the instance is constructed based on
the interface documentation of the design. This extends the applicability of the approach
to include development based on specification.

The steps involved in checking compliance are as follows:

e Instance description: We start with giving the instance in the same format in which
we have given the pattern itself. That includes the instance invariant if any. An
instance invariant is specific to the instance application and may be stronger than the
pattern invariant.

e Structural compliance: A check is done to see if the instance complies structurally
with the pattern description. This check consists of matching structural statements of
the formalized pattern with statements from the formalized instance.

e Behavioral compliance: A check is done to see if the instance complies behav-
iorally with the pattern description. This check consists of matching statements of
formalized pattern methods with statements from formalized instance methods. It
is required that the expected functionalities be matched in the instance without side
effects that may interfere with them.

e Invariant preservation: A formalized instance has its own invariant. An instance
invariant can be stronger than the proposed pattern invariant. A check is done to see
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if formalized instance methods preserve the invariant. Doing this in an informal way
is the most natural way for such a verification.

e Proof of invariant preservation: Formal proofs for invariant preservation may also
help as a double-checking to make sure that formalized instance methods preserve
the invariant.

1.3 Invariant-Based Patterns

Design patterns are already classified into three main categories, namely creational, struc-
tural and behavioral [12]. This classification follows from the functionality expected from
each pattern. Following the formal analysis introduced in this study, we can classify pat-
terns according to components needed to describe and verify them.

As a pattern has no unique abstract description, one pattern may fall in more than one
category. The classification given below is associated with the pattern description language
introduced in this study.

Structure-Based Patterns

These are patterns that can be completely described without defining class attributes.
Direct translation of class diagrams of these patterns is usually enough to describe them.
They involve no state and usually require no invariant or behavioral description. These
patterns are usually based on call-redirections. An examplalapter which converts

the interface of one class into that of another. Calls to methods iAdagterclass are
simply redirected to methods in thdapteeclass. Structure-based patterns also include
Factory MethodandFacade

Behavior-Based Patterns

These are patterns that cannot be completely described without introducing class attributes.
In addition to a structural description, each of these patterns has methods with specific be-
havior that needs to be behaviorally describ®thbserveris an example of behavior-based
patterns.
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Invariant-Based Patterns

In some cases, both the structural and behavioral descriptions are not enough to capture
the essence of the pattern. Those patterns usually involve implicit assumptions that can
not be described structurally or behaviorally. Those cases are best covered by introducing
invariants. Many patterns can either belong to behavior-based or invariant-based patterns
depending on how general the proposed invariant is. Before concluding that an invariant
is indeed a pattern invariant, a reasonable number of pattern instances need to be ana-
lyzed. The diversity of instance sources is essential to make sure that an invariant is neither
too strong nor too specific to application field. Invariant-based patterns inttierdor,
Abstract FactoryCompositeandSingleton We focus in this study on invariant-based pat-
terns, as the process of analyzing them covers all necessary steps to deal with all types of
patterns.

1.4 Example Sources

Program examples that are used to illustrate the approach are carefully selected from vari-
ous sources. Diversity in sources is a key decision to make sure that any derived conclusion
is based on independent sources and examined on different application fields.

Most of the examples are implementedlava However, a few examples are given in
other programming languages suchGy$. This is to demonstrate that the techniques are
applicable in any programming language that supports object-oriented features. As detailed
below, some of the sources for applications are major, while others are only considered for
diversity.

Design patterns are usually described using examples. That is why the first major ex-
ample source may naturally be a set of learning programsJave Design Patternisook
is one such source [5]. The book illustrates each pattern with a sitaplgprogram that
uses the pattern to solve a design problem. Example programs are given as a learning tuto-
rial, so they are simple, and the main focus of programs is to illustrate patterns rather than
what programs do.

Another major source idHotDraw. It is aJava GUIframework that is intended to
produce programs involving technical and structured graphics. The reason for considering
this framework as a major example source, is that its design relies heavily on many well-
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known design patterns [17]. Another reason is that an original author of the framework,
Erich Gammais one of the authors of the book introducing design patterns [12].

The third major source used is tlavalibraries. Even the early stages ddivalli-
braries were packed with many design patterns [E]ch Gammawrote an interesting
article on this topic in 1996. The article shows how the origif@alateam integrated many
design patterns in thAWT (Abstract Window Toolkit) design. He even shows as an ex-
ample a relationship between five clasgesriponentPeeComponentToolkit, Container
andLayoutManageyinvolving at least five different design patterr@@omposite Strategy
Bridge, Abstract FactoryandSingleton [11, 16].

All other sources used were considered for having a different implementation language,
different application field or different implementation approach.



Chapter 2

Related Work

One related approach uses a specification method cBikdo that can be used to de-
fine a system using three components: classes, relations and actions [26]. Preconditions
and postconditions are expressed in the form of relations and given to specify the actions
within the system. Such a system is used to describe design patterns for@ladigrver
is introduced as an example. The approach is quite simple. However, it does not associate
actions with classes. Therefore, no direct calls can be made to actions as introduced by the
approach. Also, the approach does not consider a module invariant or module initialization.
The authors of [22] argue that many programs using a design patterns can be understood
as formal refinements of a specifications not using the pattern. The approach formalizes
the correctness of the transformation steps and use3lfeet Calculusa temporal logic,
as the framework for reasoning. The paper also highlights key requirements needed by
a system using a design pattern to be a correct refinement of the original system. The
above case is illustrated on many design patterns, including creational patterns, structural
patterns and behavioral patterns. The introduced framework allows adding invariants to
pattern descriptions. An invariant is attached only to @eserverpattern, following the
description of [12]. However, the only invariant introduced in the study is a trivial one.
The approach does not involve invariants in the formal processing of the pattern. Pattern
descriptions given are not justified or refined by comparisons with real examples. There is
also no mention of the well-definedness of the given descriptions.
Another interesting study may be considered as a group of guidelines to find a good
formalization rather than providing a specific approach [13]. Four interesting points are

8
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given to evaluate a theory for design patterns. These points are:

e The possibility of formalizing both the problem and the solution given by the pattern.
This is achieved in our study be giving a consistent representation for both the pattern
and its instances. This is illustrated on all considered patterns as shown later on.

e The constraints for applying each design pattern. This was also addressed in our
study. Formal statements used to describe patterns in our study represent constraints
for applying these pattern in instances.

e The possibility of automating the process of applying a pattern, recognizing a pattern
in a program, and discovering new patterns from repeated problems. Tools for design
patterns manipulation are based on formal models to represent patterns. We introduce
such a model to describe patterns in our study.

e The effective classification for design patterns. Our study even proposed a further
classification for design patterns based on the components needed to describe them
rather than what they do. This is shown latter on in this study.

A detailed method is given in another study using a sophisticated notation [14]. Pat-
terns are abstract in order to be applicable in various domains and to achieve the desired
reusability. Three formalization approaches are briefly introdute# (S DisCo and
RSD. A justification for adopting the third one is given. The approach is to generalize
the model, formally specify how to match a design with a pattern, and then to include in
the model a specification of the behavioral properties in it. It is claimed that the approach
was applied on many common patterns. It has identified ambiguities and incompleteness
in informal pattern descriptions, and has led to proposed new pattern structures [4]. One
such proposed structure is for tBeilder pattern. It is suggested th@lient be added to
the class diagram as an explicit participant in@ient has one proposed methGieate
that makes the responsibilities G@lient explicit. Those responsibilities are: instantiat-
ing ConcreteBuilderandDirector, then, to invokeConstructmethod in clas®irector and
GetResulin classConcreteBuilder The original class diagram does not include these ac-
tions and rather has them in an interaction diagram. However, the analysis of the introduced
approach suggests making these interactions explicitly part of the pattern structure.



10 2. Related Work

A quite different approach proposes a framework to represent patterns as a structured
document based #GML(Structured Generalized Markup Language) [27]. The approach
integrates components of a pattern description (text, charts and pseudo-code) in a single
document. That document will also include links to related documents and source code.
Charts can be generated automatically from that document. A significant motivation for the
approach is to allow the pattern to be effectively processed on a computer and to make a
design patterns catalog available on the computer. All information are enclosed in markup
language tags. For example, the intent of the pattern is enclosed betwestent >
and< /intent > tags. The information needed to generate code and build charts also lie
betweenstructuretags. The description of methods is given in terms of simple abstract
terms that can also be translated to real cddedfor example).

Atechnique is given in a study to formalize design patterns so that they can be identified
in the source code [19]. A check to see if a design pattern is used correctly is also possible.
The approach is to define roles of the pattern, annotate the code with comments that indicate
those roles, and give rules to check the relationship between those roles. Decorator is used
as an example in the study.

The significance of having tools for the application of design patterns is highlighted in
another study [6]. The idea is to allow less experienced programmers to benefit from using
them. The document introduces a method cafd&@V (Abstract Data View) to formalize
patterns ADV is given as the basis for creating such tools. A brief description is also given
to one prototype tool.

An interesting study is motivated by the belief that design patterns are often used to
create code but then they are usually forgotten [31]. It is also likely that modifications
to the code will not conform to design patterns used. The solution proposed here is to
allow programmers to work in terms of design patterns and source code simultaneously.
A suite of tools is suggested to do thBEKOEIs a prototype tool that was developed to
support the idea. Using the tool, patterns can be identified, created, verified, and edited in
conjunction with source code. It is also possible to check if the pattern is still maintained
by code that was modified. To reach these goals, a precise language is used to define design
patterns. This language is based on breaking the pattern into elements and constraints. This
will assist with creating queries to identify instances of patterns.

A study sees design patterns as abstractions that are used to describe portions of systems
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so that designers can learn from them [29]. Some concepts are repeated within the common
design patterns. Those concepts are considered as elementary patterns that can be used as
building blocks to construct the common design patterns. The study provides those basic
units and calls thereDPs(Elemental Design Patterns).

Another study claims that the problem with most formal approaches to describe pat-
terns is the focus on either the structural or the behavioral aspect, but not on both [32].
BPSL (Balanced Pattern Specification Language) is introduced as a balanced, yet simple
approach that integrates both structural and behavioral aspects of a p&Rsh.com-
bines two subsets of logi€OL (First Order Logic) and LA (Temporal Logic of Actions).

A typical formalization usingBPSLincludes permanent relations, temporal relations, in-
variant, initial conditions, and action®©bserveris formalized as a case study. However,

the invariant introduced is also trivial and is not involved in the formal processing of the
pattern. Our study also achieves a balance between the structural and behavioral aspects
of a pattern. However, our study represents behavior in a programming-like notation rather
than temporal logic of actions. We also make a more precise notion for method calls, in
particular which object triggers a call.



Chapter 3
Formal Pattern Analysis

In this chapter, we give more details about the formal language and techniques used in this
study. The notation used is based on an object-oriented programing language introduced in
a study to describe concurrent systems [28].

We assume that every expressmhas a unique typ&, writtene : T. For a function
f of typeT — U the application to argumesetof type T is written asf (e). Predicates are
expressions of typlkeoolean with valuegrue andfalse On predicates, we use the operators
= (negation) A (conjunction),v (disjunction),=- (implication), ands= (consequence).

3.1 Syntax for Classes

We give first the formal syntax of the language in extenBiBdF. The construca | b stands
for eithera or b, [a] means thaa is optional, anda} means thah can be repeated zero or
more times:

class = classidentifier[ implementsidentifier]
{ attribute | initialization | method}
end
attribute = attr variableList
initialization  ::= initialization (variableList) statement
method == methodidentifier( variableList) [: type] statement
statement = assertexpressiorn

12
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identiferList := expressionList

identiferList :c expressionList

identifier := identifieridentifier( expressionLis} |
identifier := new identifier( expressionList |
return expressior

begin statemen{ ; statemen} end |

if expressiorthen statement elsestatement |
while expressiordo statement

for expressiordo statement

var variableLists statement

variableList ::= identifierList: type{, identifierList: type}
identifierList ::= identifier{, identifier}
expressionList ::= expressiod , expressior}

A class is declared by giving it a name, optionally stating that the class implements another
class, and then listing all the attributes, initializations, and methods. Initializations have
only value parameters, methods may have both value and result parameters. The assertion
statementassertb checks whether boolean expressioholds. If it holds, it continues,
otherwise it aborts. The object creatisn= new C(e) creates a new object of cla€s

and calls its initialization with value parameter We do not further defineentifier and
expression

Bag, Sequence and Set Notation

We use the notatiop| to indicate an empty bag (also known as multi-séx)y, ..., Z
for the bag with elementsy, ....,z, AU B for the union of bag#\ andB, andA — B for
the subtraction of ba@ from A. We use the notatiof) to indicate an empty sequence,
A & B for the concatenation of two sequendeandB, andA — B for the subtraction of
sequencd from sequencd. The predicate € Sevaluates tdrue if the elementx is in
sequence at least once, and evaluatesfatse otherwise. Sequence subtractian— B
removes all the occurrences of any elemerBimnom A. We use the expressidength(s)
to indicate the length of sequenseWe use the notatiof } to indicate an empty set, and
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| A | to indicate the cardinality of sét

Abstract Statements

The nondeterministic assignment operators introduced above as a part of the language
used in this study. The assignment.€ s assigns tax any element from set, bag or
sequencesas long as at least one element exists, otherwiseassigned the valugl. The
assignmenx :¢ sassigns toc any element such that this element is no$.in

Transitive Closure of a Relation

The relationR" is the transitive closure of a binary relatiBn It is defined to be the set of
pairs(u,v) such that there is a path of length one or more frota v. The pair(u, u) is in
R* if and only if there is a cycle of length one or more franto u.

Controlling Access to Members of a Class

The language introduced is intended as a module description language. Therefore, all at-
tributes and methods are publicly accessible. We define the keywivateto give access
privilege to a member only within its own class.

3.2 Classes and Modules

A pattern is represented by a module. A module is equivalent to a package containing one
or more classes. Classes are declared by a class declaration, with every class we associate
a set of objects of that class. A subclass is associated with a subset of its superclass set of
objects. A module declares variables with initial values as well as procedures. Procedures
operate on local variables and possibly variables declared in other modules. We use the
following syntax for defining a module with two variablpsg and a single procedura:

module K
var p: P:=py
varq: Q:=q
procedurem(u: U): T
M

end
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The class defines the attributes and the methods of objects. A class is defined in terms
of a module with one variable for each attribute, one procedure for each method, and an
extra variable for the objects populating that class. Variables map each object of the class
to the corresponding attribute value. We allow variables to be of abstract types such as
sets, bags, etc. Each procedure takes an additional value paraimstéor the object to
which the procedure is applied. We assume the ©pgecthas infinitely many elements
including the distinguished elememit. All objects are of typebject

packageR = moduleR
classC var C,D : set of Object:= {},{}
attr a: A var C.a: Object— A
static attr b: B var D.e: Object— E
initialization (g: G) var C.b: B
I procedure C.new(g : G) : Object
methodm(u: U) : V var this: Object-
M this:¢ CU {nil} ; C:= CU {this} ;
static methodn(s:S) : T | ; return this
N procedure D.newh : H) : Object
end var this: Object.
classD inherits C this:¢ DU {nil} ; C:= CU {this} ;
attr e: E D := DU {this} ; J; return this
initialization (g: G) procedure C.m(this: Objectu: U) : V
J assertthise C ; M
methodl(g: Q) : R procedureC.n(s: S): T
L N
end procedure D.I(this: Objectq: Q) : R
end assertthise D ; L

procedure D.m(this: Objectu: U) : V
assertthise D ; M[C.m\D.m|
procedureD.n(s: S): T
N
end
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Attribute e is introduced as a mapping between objects and elements ofetygeach
object of clas<C maintains its own value for attribute Thereforegis referred to bythis.e
within a method body. The notatid®im\n| stands for stateme@with every occurrence
of mreplaced byn; it is used above to capture the redirection of calls in methods tof
methods overwritten ifD. A static attributeb is introduced as a single element of type
B. Therefore, all objects of class share the same value for attriblde Similarly, static
methodl is not associated with any object, while methods associated with the caller
object, referred to athis. A class name prefix as in the case®hewis dropped whenever
there is no ambiguity. In general, referencigamounts to applying the mappimego x.
Creating a new object of classC with initialization parametee amounts to calling the
newprocedure of clasS. Calling the methodn of an objecix of classC amounts to calling
the proceduren of classC with x as the additional parameter that is bounthigin m:

X.p = p(x

X := newC(e) = x:=C.newe)
z:=x.m(f) = z:=Cm(xf)
z:=p(e) = var v,resulte

V:=¢€Sz:=result
where p is declared by
procedure p(v)
S

3.3 Invariant Notation and Proofs

We express invariants in terms tyfped logic Predicates that we produce are similar in
context to the terminology introduced by common modeling languages. For instance,
OCL (Object Constraint Language) is a formal language used to express constraints. It
is intended to complemetdML descriptions [30]. Even thought it uses a very similar
notation to the one we use, we still prefer our more concise notation with commonly
understood meaning. An example would be &L usesforAll andexistsrather thary

andd respectively. We also avoid the heavy baggage of complexity that may result from
using more comprehensive notations like BixeMethod[1] andZ notation[7].
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Weakest Preconditionwp

For a system denoted t&and having a desired post-condition denotedRpyve denote
the corresponding weakest pre-condition wp(S R) [10]. If the initial state satisfies
wp(S R), the system is certain to establish eventually the trutR.oBecausevp(S R) is

the weakest pre-condition, we also know that if the initial state does not setgfyR),
this guarantee can not be given, iRrmay not hold or the system may even not terminate.

Weakest Liberal Preconditionwlp

The weakest liberal preconditiomlp(S R) is weaker tharwp(S, R) defined above. The
preconditionwlp(S R) only guarantiee that the system will not produce the wrong result,
i.e. will not reach a final state not satisfyifty but nontermination is left as an alterna-
tive. The notion ofwp(S R) andwlp(S, R) also apply when we replace the post-condition
Rwith an invarianP. We relatewvpto wip as follows:wip(S, R) = wp(S true) = wp(S R).

Verifying Invariants
For a moduleM with variablesvl, v2, .. represented ag having initial values/1g, v2, ..

represented a¥, and public procedures represented 8k, .., Sn predicateP is an
invariant of M if:

1. Initial values establisk
V = V() =P

2. Public procedures preserie

p = wip(ml, p)
p = wip(mn p)
The following rule is used in checking of invariant preservation:

Plis aninvariant ofM A P2is an invariant ofM = P1AP2is aninvariant ofM (3.1)
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Weakest Liberal Precondition Rules

The expressiomp [x\€ denotesP, where every occurrence afis replaced bye. The

expressiorna; x : e) denotes containex where the element at positioris replaced by the
valuee. The expressiop [a\(a; x : e)] denoted?, where every occurrence afis replaced
by (a;x: e) [8].

notice that:
(a;x:e)(x)=e (3.2)
(a;x:e)(y)=a(y)if x#y (3.3)

Rules for finding the weakest liberal preconditions are given below [10].

wip(x:=e p) = p[x\€ (3.4)
wip(x:€s p) = Vxesep (3.5)
wip(x:¢s p) = VXESep (3.6)
wip(xa:=e, p) = pla\(a;x:e)] (3.7)
wip(x.a:€s, p) = Vhesepla\(a;x:h)] (3.8)
wip(S; T, p) <« wip(Swip(T,p)) (3.9)
wlp(assertb, p) = b=p (3.10)
wip(return e, p) = p[result\g (3.11)

Rule (3.4) states that the weakest liberal precondition for an assignment staxement
e with respect to an invariamtis equal to the invariant expressipiwheree is substituted
into x.

Rule (3.5) states that the weakest liberal precondition for a nondeterministic assignment
statemenk :€ swith respect to an invariant is a universal quantification that reads: for
every element in containgy the predicat holds.

Rule (3.6) states that the weakest liberal precondition for a nondeterministic assignment
statemenk :¢ swith respect to an invariamt is a universal quantification that reads: for
every element in the complementgfthe predicate holds.
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Rule (3.7) states that the weakest liberal precondition for an assignment statement
x.a := e with respect to an invariarg is equal to the invariant expressipnwhere ele-
mentx at container is replaced by the value

Rule (3.8) states that the weakest liberal precondition for a nondeterministic assignment
statemenk.a :€ s with respect to an invariarg is a universal quantification that reads:
when every element of is substituted into element at containera in predicatep, the
predicate holds.

Rule (3.9) states that to find the weakest liberal precondition for a sequence of state-
mentsS; T with respect to an invariam, we need to find the weakest liberal precondition
wip(T, p) for the latest statement firsip(S, wip(T, p)) is stronger than the weakest liberal
precondition for the sequence of statemehisT.

Rule (3.10) states that the weakest liberal precondition for the stateamseettb with
respect to an invariamtis simply equal td = p.

Rule (3.11) states that the weakest liberal precondition for the statewtenm e with
respect to an invariamtamounts to the invariant expressipitself.

3.4 Example

To illustrate the process introduced in this study, we apply it on a selected portion of the
Iterator pattern where iteration is over a sequence. Both the iterator and the aggregate
are represented by clalisrator given below. We give the translation from a class into a
module and show how the module is used to prove compliance with the invariant [9].

Class Description
We start by giving the class description of that portion of the pattern.

classlterator
attr container: seq ofObject
attr i : integer
initialization
begin
this.container:= ();
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this.i :=0
end
method Next
begin

assertthis.i < lengththis.containe;
this.i := thisi +1
end
end

Module Description

We then give the corresponding module representation.

module Iterator
var lterator : set ofObject:= {}
var container: Object— seq ofObject
var i : Object— integer
procedure new: Object
var this: Objecte
this :¢ Iterator U {nil };
lterator := Iterator U {this};
this.container:= ();

this.i := 0
end
procedure Nex{this : Object
begin

assertthis € Iterator,;
assertthis.i < length(this.containe);
this.i := thisi + 1
end
end

Invariant

(Vk € Iterator « 0 < k.i < length'k.containe)
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Well-Definedness
We finally show how the description dfextpreserves the invariant.

wip(Iterator.Next P)

= < definition of Iterator.Next>>
wlp(assertthis € Iterator; assertthis.i < length(this.containen; this.i := this.i + 1
, (Vk € Iterator « 0 < k.i < length(k.containe))

< < wip of thisi := thisi + 1, rules(3.9) and (3.4) >
wlp(assertthis € Iterator; assertthis.i < length(this.containe
, (Vk € lterator « 0 < k.i < length’k.containe)[this.i \ thisi + 1])

< case analysiwvith k = this and k# this >
wlp(assertthis € Iterator; assertthis.i < lengththis.containe
(Vk € Iterator—{this} < 0 < k.i < length(k.containepA
0 < thisi < length(this.containel)
)[thisi \ thisi + 1])

Y

< substitution >
wlp(assertthis € Iterator; assertthis.i < lengththis.containe
(Vk € Iterator—{this} « 0 < k.i < length(k.containejA

0 < thisi + 1 < length(this.container)))

Y

< < wlp of the two assert statementsules(3.9) and (3.10) >
this € Iterator A this.i < lengththis.containe
=
(Vk € Iterator—{this} « 0 < k.i < length(k.containepA
0 < thisi + 1 < length(this.container)

LKpAg=TrAQg=pAQg=T >
this € Iterator A this.i < lengththis.containe
=
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(Vk € Iterator—{this} « 0 < k.i < length(k.containepA
0 <thisi+1)

< < definition of implication strengthening >
(Vk € Iterator—{this} « 0 < k.i < length(k.containepA
0 < thisi+1)

< < strengthening >
(Vk € lterator—{this} « 0 < k.i < lengthk.containenA
0 < thisi < length(this.containey))
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[terator

As described in the book @@amma et al[12], thelterator pattern is intended to provide a

way to access elements of an aggregate sequentially without exposing its underlying repre-
sentation. The pattern suggests separating the aggregate definition from traversal methods.
The responsibilities to access, traverse, and keep track of the current element are placed
in the iterator interface. This allows traversing elements of the aggregate in different ways
without complicating the aggregate interface. The design is flexible and allows imposing
constraints on which elements of the aggregate are to be visited.

The pattern involves four participantierator defines an interface to access and tra-
verse elements of an aggregatéoncretelteratorimplements thdterator interface, and
keeps track of the current element of the traversed aggreggtpegatedefines an inter-
face for creating afterator object. ConcreteAggregatenplements thdterator creation
interface to return an instance of the pro@ancretelterator

Four methods are introduced in the interfacelterator: First initializes the current
element to the first elementiextadvances the current element to the next elenigdne
checks whether we have advanced beyond the last elemenCuanehtitemreturns the
current element.

The pattern is applicable whenever we need to access elements of an aggregate without
exposing its internal representation. It can also provide a way to traverse objects of the
same aggregate multiple times. Another application for the pattern is when we need a
uniform interface for traversing different aggregate structures.

An iterator object is constructed around a specific aggregate object, and the two objects

23
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Aggregate Iterator

Createlterator() First()

Next()
IsDone()
Currentltem()

ConcreteAggregate Concretelterator

Createlterator() O

return new Concretelterator(this)

Figure 4.1: Iterator Class Diagram

are coupled. An iterator object is returned by metGoelatelteratorin the aggregate object.
Apart from Createlterator other methods of an aggregate are not specified by the pattern.
However, those methods are required to invalidate all associated iterators in case of adding
or removing elements. Invalidating an iterator is represented by setting a boolean flag to
false.

In our study, we relax the sequential access requirement to include unordered aggre-
gates. An unordered aggregate is the basis to generate the most basic form of the pattern.
An ordered aggregate is used to generate a special case of the pattern and is considered to
be a refinement of the basic form. Another refinement of the basic form is the case when
there is a criteria to select elements visited rather than visiting all elements.

Iterator is one of the richest invariant-based patterns. Unlike most of design patterns,
it requires a considerable amount of behavioral description for its methods. Therefore,
Iterator is selected to illustrate the complete analysis process introduced in this study.
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As shown earlier, a pattern is introduced as a module. A module is a representation
of one or more classes. In this chapter, we give the formal description of classes involved
in the pattern including special cases. We also give the module variables and invariant.
Methods of a class are translated to module procedures only within the formal proofs. In the
following chapters, we give the formal proofs of the pattern description well-definedness
and show the compliance of a selected instance with the pattern.

4.1 The Pattern

Below we give the formal description for thierator design pattern. As mentioned earlier,
it is based on the description in the book@&mma et al[12]. The description is refined
by analyzing instances that implement the pattern.

classAggregate
method Createlterator: Iterator
end

classConcreteAggregatemplements Aggregate
attr cont: bag of Object
initialization
this.cont:= []
method Createlterator: Iterator
var c : Object.
begin
¢ := new Concretelterator
return c
end
end
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classlterator
method First
method Next
method IsDone: boolean
method Currentltem: Object
end

classConcretelteratoimplements Iterator
attr valid : boolean
attr aggregate Aggregate
attr container: bag of Object
attr visited: bag of Object
attr current: Object
initialization (agg: Aggregate
begin
assertthis.container# [|;
this.valid := true;
this.aggregate= agg
this.container:= aggcont
this.visited:= [|;
this.current: this.container
end
method First
begin
assertthis.valid;
this.visited:= [|;
this.current: e this.container
end
method Next
begin
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assertthis.valid;
assertthis.visited # this.containet
this.visited := this.visitedU |this.current;
this.current:€ this.container— this.visited
end
method IsDone: boolean
begin
assertthis.valid;
return this.visited= this.container
end
method Currentltem: Object
begin
assertthis.valid;
return this.current
end
end

method Client
var ag: Aggregateiter : Iterator °
begin
ag:= new ConcreteAggregate
iter := ag.Createlterator
iter.Next
end

4.2 Data Structures

var Iterator, Aggregate set ofObject:= {}, {}
var cont: Object— bag of Object

var valid : Object— boolean

var aggregate Object— Object
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var container: Object— bag of Object
var visited: Object— bag of Object
var current: Object— Object

4.3 Pattern Invariant

Invariant P

(Vi € Concretelterator i.container= i.aggregatecontV — i.valid)A
(Vi € Concretelterator i.visited C i.containepA
(Vi € Concretelterator i.current € i.container— i.visitedV i.container= i.visited)

The above invariant reads as follows:

e The elements stored in the iterator container should be the same as those in the asso-
ciated aggregate or the iterator is invalid.

¢ Visited elements need to belong to the iterator container.

e The current element in the iterator is an element of the container of the iterator which
was not visited before, or we are at the end of the iteration.

To maintain the elements condition, an iterator may need to:
e Maintain a pointer to the underlying aggregate;
¢ Maintain a copy of the elements in the aggregate container.

We compare the stored copy of container elements with the original elements through the
pointer to the underlying aggregate.

4.4 Special Cases

To formalize a pattern, we need to make a few assumptions about the expected behavior
of methods of the pattern. An assumption used in the above formalizatitterator
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pattern is that the underlying data structure associated with the iterator object behaves as
abag of objects Another assumption is that all elements of the data structure have to be
visited. Below we introduce two special cases:

Sequential Iteration
SeqlteratorandSeqAggregateefineConcretelteratomndConcreteAggregatespectively.
Seglteratoriterates over an ordered container represerségAggregateThe underlying
data structureontis represented abstractly witrsaquenceather than dag

classSegAggregatenplements Aggregate
attr cont: seq ofObject
initialization
this.cont:= ()
method Createlterator: Iterator
return new Seqlteratofthis)
end

classSeqlteratoimplementsIterator
attr valid : boolean
attr aggregate SegAggregate
attr container: seq ofObject
attr i : integer
initialization (agg: SeqAggregate
begin
this.valid := true,
this.aggregate= agg
this.container:= aggcont
thisi :=0
end
method First
begin
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assertthis.valid;
thisi :=0
end
method Next
begin
assertthis.valid;
asserti < length(this.containey;
this.i := thisi + 1
end
method IsDone: boolean
begin
assertthis.valid;
return this.i > lengththis.container
end
method Currentitem: Object
begin
assertthis.valid;
return this.containefi]
end
end

Selective Sequential Iteration

SelectSeqlteratorefinesSeqlterator Seqlteratoralso iterates over an ordered container
represent byseqAggregateSelectSeqlteratowill however be able to impose a criteria on
which elements are to be visited rather than visiting all of them.

classSelectSeqlteratanherits Seqlterator
method Next
var j : integere
begin
assertthis.container= this.aggregatecont
assertthis.i < length(this.containe);
j := thisi;
this.i :€ {x|x > j}
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end
end

Special Cases Data Structures

var Seqlterator SeqAggregate set ofObject:= {}, {}
var aggregate Seqlterator— SeqAggregate
var container: Seqlterator— seq ofObject

Note that:

SegqlteratorC Iterator andSegAggregaté Aggregate

Special Cases InvariantPA
The two introduced special cases share the following invariant:

(Vk € Seqlterator k.container= k.aggregatecontV — k.valid)A
(Vk € Seqlterator 0 < k.i < length’k.containen

The above invariant reads as follows:

e The elements stored in the iterator container should be the same as those in the asso-
ciated aggregate or the iterator is invalid.

e The valid range for attributihis.i which represents the pointer to the current element
atcontaineris betweer andlength(this.container).
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Well-Definedness of the Pattern

The rules for a module to preserve an invariant are given in an earlier chapter. A module
initialization is required to establish the invariant. Class methods and initializations are
only required to preserve the invariar@oncretelteratoris abbreviated t&| throughout

this chapter.

5.1 Module Initialization Establishes Invariant

wip(lterator := {} A Aggregate= {} ,P)

( (Vi € ClI « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl «i.visitedC i.containen A

(Vi € Cl «i.currente i.container— i.visitedV i.container= i.visited)
) [Cl, Aggregate\ { },{ }]

< substitution, replace every occurrence of Iterator with the valye>>
(Vi € { } + i.container= i.aggregatecontV — i.valid) A

(Vi € { } « i.visitedC i.containe A

(Vi € { } «i.currente i.container— i.visitedV i.container= i.visited)

< logic, universal quantification over empty range

32
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true

5.2 Concretelterator Initialization Preserves Invariant

According to the relationship between classes and modules given earlier, the statements
this:¢ Cl U {nil} ; CI := CI U {this} are added t&l initialization.

wip(Cl.new P)

= < definition of Cl.new>>

wip(this :¢ Cl U {nil};
Cl := Cl U {this};
assertthis.container# [|;
this.valid := true,
this.aggregate= agg
this.container:= aggcont
this.visited:= | |;
this.current: € this.container

,P)

< < wlp of thiscurrent:< this.container rules(3.8) and (3.9) >
wip(this :¢ CI U {nil}; Cl := Cl U {this};
assertthis.container# []; this.valid := true; this.aggregate= agg
this.container:= aggcont this.visited:= [ ]
,Vh € this.containere (
(Vi € Cl «i.container= i.aggregatecontV —i.valid) A
(Vi € CI « i.visited C i.containen A
(Vi € Cl «i.currente i.container— i.visitedV i.container= i.visited
) [current\ (current this: h)] )

< < wlp of thisvisited:= [ ], rules(3.7) and (3.9) >
wip(this:¢ Cl U {nil}; Cl := CI U {this};
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assertthis.container# [|; this.valid := true; this.aggregate= agg
this.container:= aggcont
, Vh € this.containers (

(Vi € Cl «i.container= i.aggregatecontV —i.valid) A

(Vi € Cl « i.visited C i.containen A

(Vi € Cl «i.currente i.container— i.visitedV i.container= i.visited
) [current\ (current this: h)] [visited\ (visited this: [])])

< case analysisvith i = this and i+ this >
wip(this :¢ Cl U {nil}; Cl := CI U {this};
assertthis.container# [|; this.valid := true; this.aggregate= agg
this.container:= aggcont
, Vh € this.containers (
(Vi € Cl—{this} - i.container= i.aggregatecontV — i.valid) A
(Vi € Cl—{this} - i.visited C i.containep A
(Vi € Cl—{this} - i.current € i.container— i.visitedV i.container= i.visited) A
(this.container= this.aggregatecontV - this.valid) A
(this.visited C this.containe) A
(this.current € this.container— this.visitedV this.container= this.visited
) [current\ (current this: h)] [visited\ (visited this: [])])

< substitution >
wlp(this :¢ CI U {nil}; Cl := Cl U {this};
assertthis.container# [|; this.valid := true; this.aggregate= agg
this.container:= aggcont
, Vh € this.containers (
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containel A
(Vi € Cl—{this} « i.current e i.container— i.visitedV i.container= i.visited) A
(this.container= this.aggregatecont\ — this.valid) A
(this.(visited this: []) C this.containen A
(this.current € this.container— this.(visited this: [])V
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this.container= this.(visited this: []))
) [current\ (current this: h)] )

< simplification, (f : a;b)(a) = b, therefore (visited this: [ ])(this) =[] >
wip(this :¢ Cl U {nil}; Cl := CI U {this};
assertthis.container# [|; this.valid := true; this.aggregate= agg
this.container:= aggcont
, Vh € this.container- (
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containen A
(Vi € Cl—{this} « i.current e i.container— i.visitedv
i.container= i.visited) A
(this.container= this.aggregatecont\ — this.valid) A
([] C this.containen A
(this.current € this.container— [] V this.container= [])
) [current)\ (current this: h)])

< logic, [ | C this.container >
wip(this :¢ Cl U {nil}; Cl := Cl U {this};
assertthis.container# [|; this.valid := true; this.aggregate= agg
this.container:= aggcont
, Vh € this.containers (
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containen A
(Vi € Cl—{this} « i.current € i.container— i.visited
Vi.container= i.visited) A
(this.container= this.aggregatecontV — this.valid) A
true A
(this.current € this.container— [ ] Vv this.container= [ ])
) [current)\ (current this: h)] )

< substitution, logic, all elements of thisontainer are in thiontainer>
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wip(this :¢ Cl U {nil}; Cl := Cl U {this};

assertthis.container# [|; this.valid := true; this.aggregate= agg
this.container:= aggcont

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containe A

(Vi € Cl—{this} «i.current e i.container— i.visitedV i.container= i.visited) A
(this.container= this.aggregatecontV — this.valid) A true A true) )

< logic, removed true\ true >

wip(this :¢ Cl U {nil}; Cl := CI U {this};

assertthis.container# [|; this.valid := true; this.aggregate= agg
this.container:= aggcont

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containen A

(Vi € Cl—{this} « i.current € i.container— i.visitedV i.container= i.visited) A
(this.container= this.aggregatecontV — this.valid) )

< wlp of the last three assignment statemenikes(3.7) and (3.9) >
wlp(this :¢ CI U {nil}; Cl := Cl U {this}; assertthis.container ||

,  ( (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containef A

(Vi € Cl—{this} « i.current € i.container— i.visitedV i.container= i.visited) A
(this.container= this.aggregatecontV — this.valid)

) [container\ (containet this : aggcont)] [aggregate\ (aggregatethis : agg)]
[valid \ (valid; this : true)] )

< substitution >

wip(this :¢ Cl U {nil}; Cl := CI U {this}; assertthis.container# [|

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containe A

(Vi € Cl—{this} « i.current € i.container— i.visitedV i.container= i.visited) A
(aggcont= aggcontV false) )
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< logic, removed last predicats>

wip(this:¢ Cl U {nil}; Cl := CI U {this}; assertthis.container# [|

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containe A

(Vi € Cl—{this} « i.currente i.container— i.visitedV i.container= i.visited) )

< wlp of ClI := Cl U {this}, rules(3.4) and(3.9) >

wip(this :¢ CI U {nil}; assertthis.container# ||

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containe A

(Vi € Cl—{this} « i.currente i.container— i.visitedV i.container= i.visited)
) [CI'\ Cl U {this}]

< substitution, Cl U {this} —{this} = CI >

wip(this :¢ CI U {nil}; assertthis.container# ||

, (Vi € Cl «i.container= i.aggregatecontV —i.valid) A

(Vi € Cl « i.visited C i.containen A

(Vi € Cl = i.current € i.container— i.visitedV i.container= i.visited) )

< wlp of assertthis.container= [|, rules(3.10) and (3.9) >

wlp(this :¢ CI U {nil}

, (thiscontainer# [| =

(Vi € Cl «i.container= i.aggregatecontV —i.valid) A

(Vi € Cl «i.visitedC i.containen A

(Vi € Cl «i.currente i.container— i.visitedV i.container= i.visited) ) )

< definition of implication strengthening >

wip(this :¢ CI U {nil}

, (Vi € Cl «i.container= i.aggregatecontV — i.valid) A

(Vi € Cl «i.visitedC i.containen A

(Vi € Cl «i.currente i.container— i.visitedV i.container= i.visited) )
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= < wlp of this:¢ Cl U {nil}, rule (3.6) >
vhe CI - (
(Vi € Cl «i.container= i.aggregatecontV —i.valid) A
(Vi € Cl « i.visited C i.containen A
(Vi € Cl «i.currente i.container— i.visitedV i.container= i.visited) )

< ”h” does not appear in predicate-
(Vi € ClI = i.container= i.aggregatecontV — i.valid) A
(Vi € Cl «i.visitedC i.containen A
(Vi € ClI « i.current € i.container— i.visitedV i.container= i.visited)

5.3 First Preserves Invariant

The statemenassertthis € Cl is added tdirst due to the translation from a method to a
procedure.

wlp(Cl.First, P)

< definition of Cl.First >

wip(assertthis € Cl; assertthis.valid;
this.visited:= [ ]; this.current :€ this.container
,P)

< < wilp of thiscurrent:e this.container rules(3.8) and (3.9) >
wlip(assertthis € Cl; assertthis.valid; this.visited:= | |
,Vh € this.containere (
(Vi € CI « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl «i.visited C i.containen A
(Vi € Cl «i.current€ i.container— i.visitedV i.container= i.visited
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) [current\ (current this : h)] )

< wlip of thisvisited:= [ ], rules(3.7) and(3.9) >
wip(assertthis € Cl; assertthis.valid
,Vh € this.containers (

(Vi € ClI = i.container= i.aggregatecontV —i.valid) A
(Vi € Cl «i.visitedC i.containen A
(Vi € Cl «i.currente i.container— i.visitedV i.container= i.visited

) [current)\ (current this: h)] [visited\ (visited this: [])])

< case analysiwith i = this and i# this >
wlp(assertthis € Cl; assertthis.valid
, Vh € this.container- (

(Vi € Cl—{this} - i.container= i.aggregatecontV — i.valid) A

(Vi € Cl—{this} « i.visited C i.containep A

(Vi € Cl—{this} - i.current € i.container— i.visited

Vi.container= i.visited) A

(this.container= this.aggregatecontV - this.valid) A

(this.visited C this.containe) A

(this.current € this.container— this.visitedV this.container= this.visited

) [current)\ (current this: h)] [visited\ (visited this: [])] )

< substitution >
wlp(assertthis € Cl; assertthis.valid
, Vh € this.container- (

(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containen A

(Vi € Cl—{this} « i.currente i.container— i.visited
Vi.container= i.visited) A

(this.container= this.aggregatecont\ — this.valid) A
(this.(visited this: []) C this.container A

(this.current € this.container— this.(visited this: [])V
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this.container= this.(visited this: []))
) [current\ (current this: h)] )

< simplification, (f : a;b)(a) = b,rule (3.2) >
wip(assertthis € CI; assertthis.valid
,Vh € this.containers (
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visited C i.containen A
(Vi € Cl—{this} « i.currente i.container— i.visited
Vi.container= i.visited) A
(this.container= this.aggregatecontV — this.valid) A
([] < this.containel A
(this.current € this.container— [] V this.container=[])
) [current)\ (current this: h)])

< logic >

wlip(assertthis € CI; assertthis.valid

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} - i.visitedC i.containen A

(Vi € Cl—{this} « i.current < i.container— i.visited
Vi.container= i.visited) A

(this.container= this.aggregatecont\ — this.valid) )

< wlp of assertthis.valid, rules(3.10) and(3.9) >
wlp(assertthis € CI
, thisvalid
=
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visited C i.containe A
(Vi € Cl—{this} « i.currente i.container— i.visited
Vi.container= i.visited) A
(this.container= this.aggregatecontV — this.valid) )
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< merging the last predicats>

wlp(assertthis € CI

., this.valid

=
(Vi € Cl = i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visited C i.containen A
(Vi € Cl—{this} « i.currente i.container— i.visited
Vi.container= i.visited) )

< wlp of assertthis € Cl, rule (3.10) >
this € CI
=
this.valid

(Vi € CI « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visited C i.containef A

(Vi € Cl—{this} « i.current < i.container— i.visited
Vi.container= i.visited)

< definition of implication strengthening >

(Vi € Cl « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} - i.visitedC i.containen A

(Vi € Cl—{this} « i.current i.container— i.visitedV i.container= i.visited)

< logic, (Vie X—{a}) « (Vie X—{a} na)=(Vie X) >
< predicates having CH{this} are weaker than those having Iteratoy
P
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5.4 Next Preserves Invariant

The statemenassertthis € Cl is added td\Nextdue to the translation from a method to a
procedure.

wip(CIl.Next P)

< definition of Cl.Next>>

wlp(assertthis € Cl; assertthis.valid;
assertthis.visited # this.containet
this.visited:= this.visitedU [this.current;
this.current:€ this.container— this.visited

,P)

< < wlp of thiscurrent:e this.container— this.visited rules (3.8) and (3.9) >
wlp(assertthis € ClI; assertthis.valid;
assertthis.visited # this.containet
this.visited := this.visitedU [this.current
,Vh € this.container— this.visited« (
(Vi € CI « i.container= i.aggregatecontV — i.valid) A
(Vi € Cl «i.visitedC i.containen A
(Vi € ClI « i.current € i.container— i.visitedV i.container= i.visited)
) [current\ (current this: h)] )

< case analysisvith i = this and i+ this >

wlp(assertthis € Cl; assertthis.valid;
assertthis.visited # this.containet
this.visited := this.visitedU [this.current

, Vh € this.container— this.visited. (
(Vi € Cl—{this} - i.container= i.aggregatecontV — i.valid) A
(Vi € Cl—{this} « i.visited C i.containep A
(Vi € Cl—{this} « i.current € i.container— i.visited
Vi.container= i.visited) A
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(this.container= this.aggregatecontV - this.valid) A

(this.visited C this.containei A

(this.current € this.container— this.visitedV this.container= this.visited
) [current)\ (current this: h)])

< substitution, logic, quantification>>
wip(assertthis € Cl; assertthis.valid;
assertthis.visited # this.containet
this.visited := this.visitedU [this.current
, (Vi € Cl—{this} « i.container= i.aggregatecontV — i.valid) A
(Vi € Cl—{this} « i.visited C i.containe A
(Vi € Cl—{this} «i.currente i.container— i.visitedV i.container= i.visited A
(this.container= this.aggregatecont\ — this.valid) A
(this.visited C this.containen A
true)

< wlp of thisvisited:= this.visitedU [this.current, rules(3.7) and (3.9) >
wlp(assertthis € ClI; assertthis.valid; assertthis.visited # this.container

. ((Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containel A

(Vi € Cl—{this} « i.current € i.container— i.visitedV i.container= i.visited) A
(this.container= this.aggregatecontV — this.valid) A

(this.visited C this.containe

)|visited\ (visited;this: this.visitedU [this.curreni )] )

< substitution, simplification >

wip(assertthis € Cl; assertthis.valid; assertthis.visited # this.container

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containe A

(Vi € Cl—{this} «i.current i.container— i.visitedV i.container= i.visited) A
(this.container= this.aggregatecont\ — this.valid) A

(this.visitedU [this.curreni C this.containey) )
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= <logic,Xu{a} CY=XCYAac, split thisvisitedU [this.currenf >

wip(assertthis € Cl; assertthis.valid; assertthis.visited # this.container

, (Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

(Vi € Cl—{this} « i.visited C i.containef A

(Vi € Cl—{this} «i.currente i.container— i.visitedV i.container= i.visited A
(this.container= this.aggregatecont\ — this.valid) A
(this.visited C this.containen A
(this.current € this.container) )

< < wlp of assertthis.visited# this.container rules(3.10) and (3.9) >

wlp(assertthis € Cl; assertthis.valid

, this.visited # this.container

=
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containen A
(Vi € Cl—{this} « i.currente i.container— i.visited
Vi.container= i.visited) A
(this.container= this.aggregatecont\ — this.valid) A
(this.visited C this.containen A
(this.current € this.container) )

< < wlp of assertthis.valid, rule (3.10) >
wlp(assertthis € CI
, this.valid
=
this.visited # this.container

(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containen A

(Vi € Cl—{this} «i.currente i.container— i.visited
Vi.container= i.visited) A
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(this.container= this.aggregatecont\V — this.valid) A
(this.visited C this.containen A
(this.current € this.container) )

= < wlp of assertthis € Cl, rule (3.10) >
this € ClI
=
this.valid

this.visited # this.container

(Vi € Cl—{this} «i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containen A

(Vi € Cl—{this} « i.current € i.container— i.visited
Vi.container= i.visited) A

(this.container= this.aggregatecontV — this.valid) A
(this.visited C this.containen A

(this.current € this.container

< <« definition of implication strengthening removed first two predicates

this.visited # this.container
=

(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visitedC i.containen A
(Vi € Cl—{this} « i.current € i.container— i.visited
Vi.container= i.visited) A
(this.container= this.aggregatecontV — this.valid) A
(this.visited C this.containen A
(this.current € this.container

= <« definition of implication>>
this.visited= this.container
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Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A

Vi € Cl—{this} « i.visited C i.containep A

Vi € Cl—{this} « i.current € i.container— i.visitedV i.container= i.visited) A
this.container= this.aggregatecontV — this.valid) A

this.visited C this.containen A

this.current € this.container

e e D N N

= < distributivity of vV over A >
this.visited = this.container\ (Vi € Cl—{this} « i.container= i.aggregatecont
Vv=ivalid) A
this.visited= this.containerV (Vi € ClI—{this} « i.visited C i.containen A
this.visited= this.containerV (Vi € ClI—{this} «
I.current € i.container— i.visited
Vi.container= i.visited) A
this.visited= this.container\V (this.container= this.aggregatecont
V= this.valid) A
this.visited= this.container\V (this.visited C this.containe A
this.visited = this.container\ (this.current € this.containen

< < strengthening removed thisisited = this.container from predicates>
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
(Vi € Cl—{this} « i.visited C i.containe A
(Vi € Cl—{this} « i.current € i.container— i.visitedv
i.container= i.visited) A
(this.container= this.aggregatecont\ — this.valid) A
(this.visited C this.containen A
this.visited = this.container\/ (this.current € this.containe

< <« strengtheningae X<=aeX-Y >
< replace thiscontainer with thiscontainer— this.visited >
(Vi € Cl—{this} « i.container= i.aggregatecontV —i.valid) A
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(Vi € Cl—{this} « i.visited C i.containef A

(Vi € Cl—{this} «i.current € i.container— i.visitedv

i.container= i.visited) A

(this.container= this.aggregatecontV — this.valid) A

(this.visited C this.containen A

(this.current € this.container— this.visited) \ this.visited = this.container

= <« Cl = Cl—{this} U {this} >
P

5.5 IsDone Preserves Invariant

The statemenassertthis € Cl is added tdsDonedue to the translation from a method to
a procedure.

wlp(Cl.IsDone P)

= <« definition of Cl.IsDone>>
wlp(assertthis € Cl; assertthis.valid; return this.visited= this.container
,P)

< < wlp of return visited= containerrules(3.9) and (3.11) >
wlp(assertthis € Cl; assertthis.valid
,P)

< < wlp of assertthis.valid, rule (3.10) >
wlip(assertthis € ClI
, this.valid
=
(this.container= this.aggregatecont\ — this.valid) A
(this.visited C this.containen A
(this.current € this.container— this.visitedV this.container= this.visited) )
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= <« wlp of assertthis € Cl, rule (3.10) >
this € CI
=
this.valid

(this.container= this.aggregatecont\V — this.valid) A
(this.visited C this.containen A
(this.current € this.container— this.visitedV this.container= this.visited)

< < definition of implication strengthening >
P

5.6 Currentltem Preserves Invariant

The statementssertthis € Cl is added toCurrentltemdue to the translation from a
method to a procedure.

wlp(Cl.CurrentltemP)

< definition of Cl.Currentltem>>
wlp(assertthis € Cl; assertthis.valid; return this.current
,P)

< < wlp of return this.current rules(3.9) and(3.11) >
wip(assertthis € Cl; assertthis.valid
,P)

< wlp of assertthis.valid, rule (3.10) >
wip(assertthis € ClI

., this.valid

=
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(this.container= this.aggregatecont\ — this.valid) A
(this.visited C this.containen A

(this.current € this.container— this.visitedV this.container= this.visited) )

= < wlp of assertthis € ClI, rule (3.10) >
this € ClI
=

this.valid

(this.container= this.aggregatecontV — this.valid) A
(this.visited C this.containen A

(this.current € this.container— this.visitedv
this.container= this.visited)

< <« definition of implication strengthening >
P



Chapter 6
Instance Compliance with the Pattern

The instance given is a simple program found in the C# documentation as an example
for iteration over an ordered aggregate [24]. The program iterates over an aggregate of
type ArrayList using an iterator of typéEnumerator Note that since iteration in this
instance is sequential, it is matched with the first special case of the pattern introduced
earlier. Sources given below féEnumerable ArrayList and IEnumeratorare extracts

from the C# documentation for each of these parts. No specific implementations exist for
these parts. Source given for the client part is an actual C# program that is included in the
documentation for clas&rrayListas an example on how to use this class. This instance is
selected to show that the approach of the study applies both in presence and in absence of
the source code provided that good documentation exists.

6.1 Instance Source

Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.
IEnumerable

System.Collections.|IEnumerable Interface

Summary
Implemented by classes that support a simple iteration over instances of the collection.

Description

[Note: System.Collections.IEnumerable contains the System.Collections.IEnumerable.
GetEnumerator method. The consumer of an object should call this method to obtain

50
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an enumerator for simple iteration over an instance of a collection.Implement this
interface to support the foreach semantics of C#.]

IEnumerable.GetEnumerator() Method

Summary
Returns a System.Collections.IEnumerator that can be used for simple iteration
over a collection.

Return Value
A System.Collections.IEnumerator that can be used for simple iteration over
a collection.

ArrayList

System.Collections.ArrayList Class
Implements:
System.Collections.IList
System.Collections.ICollection
System.Collections.|[Enumerable
System.ICloneable

Summary
Implements a variable-size System.Collections.IList that uses an array of objects to
store its elements.

Description

System.Collections.ArrayList implements a variable-size System.Collections.IList
that uses an array of

objects to store the elements. A System.Collections.ArrayList has a
System.Collections.ArrayList.Capacity, which is the allocated length

of the internal array. The total number of elements contained by a list

is its System.Collections.ArrayList.Count. As elements are added to

a list, its capacity is automatically increased as required by reallocating
the internal array.

ArrayList.GetEnumerator() Method

Summary
Returns a System.Collections.IEnumerator for the current instance.

Return Value
A System.Collections.|[Enumerator for the current instance.

Description

If the the current instance is modified while an enumeration is in progress,
a call to System.Collections.|[Enumerator.MoveNext or
System.Collections.|[Enumerator.Reset throws System.InvalidOperationException.

|[Enumerator
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System.Collections.|[Enumerator Interface

Summary
Implemented by classes that support a simple iteration over a collection.

Description

[Note: System.Collections.IEnumerator contains the System.Collections.
IEnumerator.MoveNext and System.Collections.|[Enumerator.Reset methods

and the System.Collections.IEnumerator.Current property. The consumer

of an object should call these methods or use this property when iterating

over or reading the elements of a collection.When an enumerator is
instantiated or a call is made to System.Collections.I[Enumerator.Reset, the
enumerator is positioned immediately before the first element of the collection
and a snapshot of the collection is taken. When the enumerator is in this
position, a call to System.Collections.|[Enumerator.MoveNext is necessary

before reading System.Collections.|[Enumerator.Current from the collection.

If changes are made to the collection(such as adding, modifying or deleting
elements) the snapshot may get out of sync, causing the enumerator to throw
a System.InvalidOperationException if the System.Collections.|[Enumerator.MoveNext
or System.Collections.IEnumerator.Reset are invoked. Two enumerators
instantiated from the same collection at the same time can have different
snapshots of the collection. Enumerators are intended to be used only to

read data in the collection.An enumerator does not have exclusive access to the
collection for which it was instantiated.]

IEnumerator.Reset() Method

Summary
Positions the enumerator immediately before the first element in the collection.

Description

[Note: When the current instance is constructed or after System.Collections.
IEnumerator.Reset is called, the current instance is positioned immediately
before the first element of the collection, use
System.Collections.IEnumerator.MoveNext to position

the current instance over the first element

of the collection.]

Behaviors

A call to System.Collections.IEnumerator.Reset is required to position the

current instance immediately before the first element of the collection. If elements are added,
removed, or repositioned in the collection after the current instance was instantiated,

it is required that a call to System.Collections.IEnumerator.Reset throw a
System.InvalidOperationException.

IEnumerator.MoveNext() Method

Summary
Advances the current instance to the next element of the collection.
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Return Value

true if the current instance was successfully advanced to the next element;
false if the current

instance has passed the end of the collection.

Description

[Note: When the current instance is constructed or after System.Collections.

IEnumerator.Reset is

called, the current instance is positioned immediately before the first element
of the collection. Use System.Collections.|[Enumerator.MoveNext to position it

over the first element of the collection.]

Behaviors

A call to System.Collections.IEnumerator.MoveNext is required to position the
current instance over the next element in the collection and return true if the
current instance was not positioned

beyond the last element of the collection when System.Collections.|[Enumerator.
MoveNext was called. If the current instance is already positioned immediately
after the last element of the collection, a call to
System.Collections.|[Enumerator.MoveNext is required to return false, and

the current instance is required to remain in the same position. If elements
are added, removed, or repositioned in the collection after the current
instance was instantiated, it is required that a call to
System.Collections.|[Enumerator.MoveNext throw System.InvalidOperationException.

IEnumerator.Current Property

Summary
Gets the element in the collection over which the current instance is positioned.

Property Value
The element in the collection over which the current instance is positioned.

Description

[Note: When the current instance is constructed or after System.Collections.
IEnumerator.

Reset is called, use System.Collections.IEnumerator.MoveNext to

position the current

instance over the first element of the collection.]

Behaviors

It is required that System.Collections.|[Enumerator.Current return the

element in the collection over which the current instance is positioned

unless it is positioned before the first or after the last element of the
collection. If the current instance is positioned before the first element or

after the last element of the collection, System.Collections.IEnumerator.Current
is required to throw System.InvalidOperationException If elements were added,
removed, or repositioned in the collection after the current instance was
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instantiated, System.Collections.|[Enumerator.Current returns the value it would

have returnedbefore the collection was modified.

It is also required that System.Collections.|[Enumerator.Current not

change the position of the current instance: consecutive calls to System.Collections.
IEnumerator.Current are required to return the same object until either
System.Collections.|[Enumerator.MoveNext or

System.Collections.|[Enumerator.Reset is called.

Client

using System;
using System.Collections;

public class SamplesArrayList {
public static void Main() {

/I Create and initialize a new ArrayList.
ArrayList myAL = new ArrayList();
myAL.Add("Hello");

myAL.Add("World");

myAL.Add("");

/I Display the properties and values of the ArrayList.
Console.WriteLine( "myAL" );

Console.WriteLine( "Count: {0}', myAL.Count );
Console.WriteLine( "Capacity: {0}", myAL.Capacity );
Console.Write( "Values:" );

PrintValues( myAL );

}

public static void PrintValues( IEnumerable myList ) {

IEnumerator myEnumerator = myList.GetEnumerator();
while ( myEnumerator.MoveNext() )
Console.Write( " {0}", myEnumerator.Current );
Console.WriteLine();

Notes:
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e The output for the above program is:

myAL

Count: 3

Capacity: 16
Values: Hello World !

6.2 Instance Description

classlEnumerable
method GetEnumerator IEnumerator
end

classArrayListimplementsIEnumerable
attr cont: seq ofObject
initialization
cont:= ()
method GetEnumerator IEnumerator
return new Enumeratofthis)
end

classlIEnumerator
method Reset
method MoveNext boolean
method Current: Object
end

classEnumeratorimplements IEnumerator
attr valid : boolean
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attr aggregate ArrayList
attr container: seq ofObject
attr i : integer
initialization (agg: ArrayList)
begin
this.valid := true,
this.aggregate= agg
this.container:= aggcont
thisi := —1
end
method Reset
begin
assertthis.valid;
thisi := —1
end
method MoveNext boolean
begin
assertthis.valid;
if this.i < length(this.containey then this.i := this.i + 1;
return this.i < length(this.container)
end
method Current: Object
begin
assertthis.i > —1;
assertthis.i < length(this.containe);
return this.containefi
end
end

method Client
var myAL: ArrayList myEnumerator IEnumerators
begin
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myAL:= new ArrayList
myEnumerator= myListGetEnumerator
myEnumerataMoveNext

end

Notes:

¢ In this instance, source code is only available for the client part. It is given as an
example of constructing the description based on design documentation rather than
the source code. The attributes used in the above instance description follow those
introduced in the pattern description itself.

e Enumeratoris not part of the instance. It is added based on the requirements of
classes that implemetEnumeratoras in theC# documentation [24].

e The elements otontainer start with elementontainef0] and end with element
containeflength'container — 1].

e Variablei is initialized to—1 because a call tMoveNexis required befor€urrent
can be called. The first call tdloveNexwill advancei to 0. Note thatcontainer0]
is the first element ofontainet

e C# documentation foResetand MoveNextrequire that if the original container is
edited, an exception should be raised. However, this is not requir€tLifoent

e Exceptions required by th€# documentation are represented in the instance de-
scription usingassertstatements.

Data Structures

var IEnumerator IEnumerable set ofObject:= {}, {}
var EnumeratorArrayList: set of Object

var aggregate Object— Object

var container: Object— seq ofObject
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Note that:

EnumeratorC IEnumeratorandArrayList C IEnumerable

Instance Invariant P1

(Vk € Enumerator- k.container= k.aggregatecontV — k.valid) A (6.1)
(Vk € Enumeratorr — 1 < k.i < lengthk.containe (6.2)

The above invariant reads as follows:

e The elements stored in the iterator container should be the same as those in the asso-
ciated aggregate or the iterator is invalid.

e The valid range for attributewhich represents the pointer to the current element at
containeris between-1 andlengthcontainey.

We notice that the instance invariant is weaker than the relevant pattern inV@#anst
P1). This is an early indication of a potential mismatch of the instance with the pattern.
This is going to be illustrated in the behavioral compliance given later on.

6.3 Structural Compliance

The pattern description given above involves both structural and behavioral statements. To
check the structural compliance of the instance with the pattern, we need to match each
structural statement in the pattern with an equivalent statement in the instance.

classAggregate
method Createlterator: Iterator
end
is matched by
classlIEnumerable
method GetEnumeratot IEnumerator
end
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classSegAggregatanplements Aggregate
is matched by
classArrayListimplementsIEnumerable

classlterator

method First

method Next

method IsDone: boolean

method Currentltem: Object
end
is matched by
classlEnumerator

method Reset

method MoveNext boolean

method Current: Object
end

Note that we do not need to match each method in the pattern with one in the instance. This
is because we are going to compare the behavior of instance methods with the behavior of
pattern methods. Methods in the implementing instance can be split or merged.

classSeqlteratorimplements Iterator
is matched by
classEnumeratorimplements|Enumerator

method Client
var ag: Aggregateiter : Iterator °
begin
ag:= new ConcreteAggregate
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iter := ag.Createlterator
iter.Next
end
is partially matched by
method Client
var myAL: ArrayList myEnumerator IEnumerators
begin
myAL:= new ArrayList
myEnumerator= myListGetEnumerator
myEnumerataMoveNext
end

The first statement is clearly not matched by the instance. VariaglelL should be
declared adEnumerablerather thanArrayList Failure to use the more abstract type
IEnumerableremoves the flexibility of using different aggregate with a minimal code
changes.

6.4 Behavioral Compliance

An instance complies behaviorally with the pattern if the behavior suggested by pattern
methods is supported by instance methods. An instance that misses one or more function-
alities in its methods may still partially comply with the pattern.

e Initialization: Seglteratorinitialization is partially matched b¥numeratorinitial-
ization. In both cases,represents a pointer to an elementohftainer In case of
Seqlterator i in initialized to 0 to point at the first element afontainer In case
of Enumerator i in initialized to —1 to point immediately before the first element
of container In the later case, a call tdoveNexis necessary before being able to
access the first element cbntainer

e First: This method provides the ability to reuse the same iterator. Similar to the
argument used with initialization, this method is partially matched by meftesebt
Notice that it is only thanks to formalization that we realize tRasetandFirst are
intended to do the same thing. Method names do not imply this.
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e Next This method provides the ability to advance the pointer to current element. It
is matched by metholoveNextn the instance. The only difference between the
two methods is the return type. This neither affects the functionality nor adds side
effects.

e IsDone This method provides the ability to verify if we have more elements, with-
out changing the state of the iterator. Even though the functionality expected from
IsDoneis included in the functionality dloveNextwe see thadtloveNextloes more
than that simple check. In casebveNextthe pointer to the current element will
be advanced as a side effect. Therefore, the functionality of checking if we are at the
end of the container without side effects is not supported by the instance.

e Currentltem This method provides the ability to retrieve the current element without
changing the state of the iterator. It is partially matched by methodent C#
documentation does not require a check if the original container is edited. That check
is specified in the pattern description and is missing in the instaGcerentltem
has two extra assertions that are not in the pattern description. These assertions are
required by theC# documentation. However, they do not cause side effects and are
not affecting the compliance.

6.5 Instance Invariant Preservation

We use rule (3.1) introduced earlier to check invariant preservation of the instance.

e Module initialization establishes the invariant as the universal quantification in both
predicates is over an empty range.

e Concretelteratorinitialization preserves the invariant because:
1. First predicate (6.1) of the instance invariant is directly established by the first two
statement of the initialization.
2. Second predicate (6.2) of the instance invariant is also established as the initial-
ization sets to —1, a value within the valid range for

e Resepreserves the invariant because:
1. First predicate (6.1) holds as the method asserts that the copy of container main-



62

6. Instance Compliance with the Pattern

tained by the iterator is still equal to the associated aggregate’s cont&ifetloc-
umentation requires that if the original container is edited, an exception should be
raised.

2. Second predicate (6.2) holds as the methodidets-1, a value within the valid
range forn.

MoveNexpreserves the invariant because:

1. First predicate (6.1) holds as shown above.

2. Second predicate (6.2) holds as the valueisfonly increments after checking
that it is less thatength(containel). Therefore, the maximum possible value ifdg
equal tolengthcontainer), which is within the valid range far

Currentpreserves the invariant because:
The method does not change the value of any attribute in the program.

Based on the information given above, we see that the given program is indeed an

instance of thédterator pattern. This is because the program preserves the invariant and it
provides at least some of the functionalities described by the pattern. We also see that some
functionalities described by the pattern are missing from the program. Therefore, it only
complies partially with the pattern.



Chapter 7
Abstract Factory

The book ofGamma et al[12] describes thébstract Factorypattern as an interface for
creating families of related objects without specifying their concrete classes. The pattern
makes exchanging product families easy and promotes consistency among products.

Abstract Factorypattern involves five participant®\bstractFactorydeclares methods
that create abstract product objec@oncreteFactorymplements methods to create con-
crete product objectsAbstractProducteclares an interface for a type of product object,
and is implemented by @oncreteProductA Clientdeclares and deals with abstract prod-
ucts. Concrete product objects are only returned by factory objects.

The pattern is applicable whenever we need a system to be independent of how its
products are created, composed, and represented. Itis also applicable in systems that should
be configured with one of many families of products. Another application for the pattern is
to enforce using a family of related product objects together, or to reveal only the interfaces
of a library of products.

An instance of the pattern will typically need only one objecCaincreteFactoryper
product family. ThereforeConcreteFactoryis best implemented as @ingleton This
pattern is an example to demonstrate that combining patterns may amount to conjoining
their invariants. The introduced invariant fAbstract Factoryinvolves the invariant for
Singleton The invariant forSingletons introduced later on in this study.

The description given below captures the essence of the pattern and does not necessarily
map to a direct implementation of the pattern. For example, the initializers of concrete
products assign every set of product to an empty set. This is done to make sure that all

63
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AbstractFactory < Client
CreateProductA()
CreateProductB()

| AbstractProductA |<7

ProductA2 ProductA1

ConcreteFactory1 ConcreteFactory?2
CreateProductA() CreateProductA()
CreateProductB() CreateProductB()

| AbstractProductB I‘i

ProductB2 ProductB1

Figure 7.1: Abstract Factory Class Diagram

products will belong to one family of products.

7.1 The Pattern

classAbstractFactory
method CreateProductA AbstractProductA
method CreateProductB AbstractProductB
end

classConcreteFactory implements AbstractFactory
initialization
AbstractProductA= {};
AbstractProductB= {};
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ConcreteFactory := {this};
AbstractFactory= ConcreteFactory
method CreateProductA AbstractProductA
var ¢ : Objecte
begin
C :¢ ProductAl U {nil};
ProductAl := ProductAl U {c};
return c
end
method CreateProductB AbstractProductB
var ¢ : Objecte
begin
C :¢ ProductBl U {nil};
ProductBl := ProductBl U {c};
return c
end
end

classConcreteFactory implements AbstractFactory
initialization
AbstractProductA= {};
AbstractProductB= {};
ConcreteFactory := this;
AbstractFactory= ConcreteFactory
method CreateProductA AbstractProductA
var ¢ : Objecte
begin
C :¢ Product® U {nil};
Product” := Product” U {c};
return c
end
method CreateProductB AbstractProductB
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var c : Object
begin
c :¢ Product® U {nil};
Product® := Product® U {c};
return c
end
end

classAbstractProductA
method AnyOperation
end

classProductAl implements AbstractProductA
method AnyOperation
end

classProduct” implements AbstractProductA
method AnyOperation
end

classAbstractProductB
method AnyOperation
end

classProductBl implements AbstractProductB
method AnyOperation
end
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classProduct® implements AbstractProductB
method AnyOperation
end

method Client
var factory: AbstractFactoryproduct: AbstractProductA
begin
factory:= new ConcreteFactory;
product:= factory CreateProductA
productAnyOperation
end

The return of a new product instance in meth@isateProductfand CreateProductBs
equivalent to adding the new product instance to the set of all this product objects. For
example ProductAl := ProductAl U { new ProductAl }.

Data Structures

var AbstractFactoryAbstractProductAAbstractProductB set of Object
={h{H{}

var ProductAl, ProductA, ProductBl, Product® : set of Object

var ConcreteFactory, ConcreteFactory : set of Object

ProductAl, Product® C AbstractProductA

ProductBl, Product® C AbstractProductB

ConcreteFactory, ConcreteFactory C AbstractFactory

Pattern Invariant P

| AbstractFactory|< 1 A (
(AbstractProductA= ProductAl) A
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(AbstractProductB= ProductBl)A

(AbstractFactory= ConcreteFactory)
V

(AbstractProductA= Product/)A

(AbstractProductB= Product®)A

(AbstractFactory= ConcreteFactory) )

The above invariant reads as follows:
e Only one factory instance is allowed.

¢ In case the only factory object is of tyggoncreteFactory, all objects declared as
AbstractProductAare in ProductAl, and all objects declared @dbstractProductB
are inProductBl.
In case the only factory object is of tyfgoncreteFactory, all objects declared as
AbstractProductAare in Product®, and all objects declared #sbstractProductB
are inProductB®.

7.2 \Well-Definedness of the Pattern

A module initialization is required to establish the invariant. Class methods and initializa-
tions are only required to preserve the invariant. We apply the prod®oaoreteFactory.
ConcreteFactory is identical except for identifiers. Withi@oncreteFactory, it is also
sufficient to give proofs fomitialization and CreateProductA Proof for CreateProductB

is identical toCreateProductAexcept for identifiers. Concrete product classes are not
involved in proofs.

Module Initialization Establishes Invariant

wlp(AbstractFactory:= { } A AbstractProductA= { } A AbstractProductB= { } , P)

= (| AbstractFactory< 1 A (
(AbstractProductA= ProductAl) A
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(AbstractProductB= ProductBl)A
(AbstractFactory= ConcreteFactory)
V
(AbstractProductA= Product/2)A
(AbstractProductB= ProductB)A
(AbstractFactory= ConcreteFactory) )
) [AbstractFactoryAbstractProductAAbstractProductB, { },{ },{ }]

= <« substitution, ProductAl C AbstractProductAetc >

({}I=1A(
{}={bHA
{r={bn
{}={}

Vv
{}={DHA
{}={DHA
{}r={}H)

= < logic>
true

ConcreteFactoryl Initialization Preserves Invariant
The statemerthis :¢ ConcreteFactory U {nil }is added taConcreteFactory initialization
due to the translation to a procedure.

wlp(ConcreteFactory.new P)

< definition of ConcreteFactory.new>

wip(this :¢ ConcreteFactory U {nil}; ConcreteFactory := {this};
AbstractProductA= {}; AbstractProductB= {};
AbstractFactory= ConcreteFactory

,P)

< < wlp of AbstractFactory= ConcreteFactory, rule (3.4), rule (3.9) >
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<, substitution >
wip(this :¢ ConcreteFactory U {nil }; ConcreteFactory := {this};
AbstractProductA= {}; AbstractProductB= {};

.| ConcreteFactory |[< 1 A (
(AbstractProductA= ProductAl)A
(AbstractProductB= ProductBL)A
(ConcreteFactory = ConcreteFactory)

V
(AbstractProductA= Product/A2) A
(AbstractProductB= ProductB)A
(ConcreteFactory = ConcreteFactory) )

)

< wlp of the last two statements respectivelyfe (3.4), rule (3.9) >
<, Substitution >
wip(this :¢ ConcreteFactory U {nil }; ConcreteFactory := {this}
,| ConcreteFactory |< 1 A (

({} = ProductAl)A

({} = ProductBl)A

(ConcreteFactory = ConcreteFactory)
V

({} = Product®)A

({} = Product®)A

(ConcreteFactory = ConcreteFactory) )

)

< logic, ProductAl C AbstractProductAProductBl C AbstractProductB>
wip(this :¢ ConcreteFactory U {nil }; ConcreteFactory := {this}
,| ConcreteFactory |< 1 A (

{3 ={bA
({3 ={bA

(ConcreteFactory = ConcreteFactory)
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V
({} = Product®)A
({} = Product®)A
(ConcreteFactory = ConcreteFactory) )

< logic >

wip(this :¢ ConcreteFactory U {nil }; ConcreteFactory := {this}
,| ConcreteFactory |< 1A

true )

< logic, the cardinality of a set of one element 1 >
wip(this :¢ ConcreteFactory U {nil }; ConcreteFactory :=
ConcreteFactory U {this}

,true)

< < wlp of any statement with respect to true true >
P

CreateProductA Preserves Invariant
The statemenassertthis € ConcreteFactory is added tcCreateProductA

wlp(ConcreteFactory.CreateProductAP)

< definition of ConcreteFactory.CreateProductAs-
wlp(assertthis € ConcreteFactory; ¢ :¢ ProductAl U {nil};
ProductAl := ProductAl U {c}; return C,P)

< < wlp of return c,rules(3.9) and (3.11) >
wlip(assertthis € ConcreteFactory; ¢ :¢ ProductAl U {nil };
ProductAl := ProductAl U {c}, P)

< < wip of ProductA := ProductAl U {c},rules(3.9) and(3.4) >
wlp(assertthis € ConcreteFactory; ¢ :¢ ProductAl U {nil }
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, (| AbstractFactory|< 1 A (
(AbstractProductA= ProductAl)A
(AbstractProductB= ProductBl)A
(AbstractFactory= ConcreteFactory)

Y
(AbstractProductA= Product®2)A
(AbstractProductB= Product®)A
(AbstractFactory= ConcreteFactory) )

)[ProductAl \ ProductAl U {c}]

< substitution, ProductAl C AbstractProductAs>
wlp(assertthis € ConcreteFactory; ¢ :¢ ProductAl U {nil }
,| AbstractFactory|< 1 A (

(AbstractProduct®&{c} = ProductAlU{c})A

(AbstractProductB= ProductBl)A

(AbstractFactory= ConcreteFactory)
Y

(AbstractProductA= Product®)A

(AbstractProductB= Product®)A

(AbstractFactory= ConcreteFactory) ) )

< < logic> ,rule (3.9)
wip(assertthis € ConcreteFactory; ¢ :¢ ProductAl U {nil }
, (| AbstractFactory|< 1 A (
(AbstractProductA= ProductAl)A
(AbstractProductB= ProductBl)A
(AbstractFactory= ConcreteFactory)
v
(AbstractProductA= Product&)A
(AbstractProductB= Product®)A
(AbstractFactory= ConcreteFactory) )
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= < wlp of c:¢ ProductAl U {nil}, rule (3.6) >
wlp(assertthis € ConcreteFactory

,Vh € ConcreteFactory « (

(| AbstractFactory|< 1 A (
(AbstractProductA= ProductAl)A
(AbstractProductB= ProductBl)A
(AbstractFactory= ConcreteFactory)

Y
(AbstractProductA= Product/2)A
(AbstractProductB= ProductB)A
(AbstractFactory= ConcreteFactory) )

))

< empty range”c” does not appear in predicate-
wip(assertthis € ConcreteFactory, P)

< wlp of assertthis € ConcreteFactory, rule (3.10) >
this € ConcreteFactory
=P

< < definition of implication strengthening >
P

7.3 First Instance

This example represents a solution to a common design problem. That problem is the need
to have programs making use of persistent data, such that the underlying data storage is
subject to change from one implementation to another. The example uses as a solution a
DAO (Data Access Obiject) to abstract access to data source. Changing the underlying data
storage fromOracle to Cloudscapdor example should then be done with minimal client
code changes [3].
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Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

DAOFactory

public abstract class DAOFactory {

public static final int CLOUDSCAPE = 1,
public static final int ORACLE = 2;
public static final int SYBASE = 3;

public abstract CustomerDAO getCustomerDAO();
public abstract AccountDAO getAccountDAO();
public abstract OrderDAO getOrderDAO();

public static DAOFactory getDAOFactory(
int whichFactory) {

switch (whichFactory) {
case CLOUDSCAPE:
return new CloudscapeDAOFactory();
case ORACLE
return new OracleDAOFactory();
case SYBASE
return new SybaseDAOFactory();

default
return null;

}
CloudscapeDAOFactory

public class CloudscapeDAOFactory extends DAOFactory {
public static final String DRIVER=
"COM.cloudscape.core.RmiJdbcDriver";
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}

public static final String DBURL=
"jdbc:cloudscape:rmi://localhost:1099/CoreJ2EEDB";

/I method to create Cloudscape connections

public static Connection createConnection() {
/l Use DRIVER and DBURL to create a connection
/l Recommend connection pool implementation/usage

}

public CustomerDAO getCustomerDAO() {
/I CloudscapeCustomerDAO implements CustomerDAO
return new CloudscapeCustomerDAO();

}

public AccountDAO getAccountDAO() {
/I CloudscapeAccountDAO implements AccountDAO
return new CloudscapeAccountDAO();

}

public OrderDAO getOrderDAO() {
/I CloudscapeOrderDAO implements OrderDAO
return new CloudscapeOrderDAQO();

CustomerDAO

public interface CustomerDAO {

}

public int insertCustomer(...);

public boolean deleteCustomer(...);
public Customer findCustomer(...);
public boolean updateCustomer(...);
public RowSet selectCustomersRS(...);
public Collection selectCustomersTO(...);

CloudscapeCustomerDAO

public class CloudscapeCustomerDAO implements CustomerDAO {

public int insertCustomer(...) {
/I Implement insert customer here.
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/I Return newly created customer number
/l or a -1 on error

}

Auxiliary Class

public class Customer implements java.io.Serializable {
/[ member variables
int CustomerNumber;
String name;
String streetAddress;
String city;

/I getter and setter methods...

}

Client

/I create the required DAO Factory
DAOFactory cloudscapeFactory =
DAOFactory.getDAOFactory(DAOFactory. DAOCLOUDSCAPE);

/I Create a DAO
CustomerDAO custDAO =
cloudscapeFactory.getCustomerDAQ();

/I create a new customer
int newCustNo = custDAO.insertCustomer(...);

/I Find a customer object. Get the value object.
Customer cust = custDAO.findCustomer(...);

/I modify the values in the value object.
cust.setAddress(...);

cust.setEmail(...);

/I update the customer object using the DAO
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custDAO.updateCustomer(cust);

/I delete a customer object

custDAO.deleteCustomer(...);

/I select all customers in the same city

Customer criteria=new Customer();

criteria.setCity("New York");

Collection customersList =
custDAO.selectCustomersVO(criteria);

/I returns customersList - collection of Customer

/I value objects. iterate through this collection to

/I get values.

Notes:

¢ Client does not instanciateGloudscapeDAOFactorgirectly, but rather makes a call
to methodgetDAOFactorywhich returns one concrete factory based on the value of
passed argument.

Instance Description

classDAOFactory
method getCustomerDAO CustomerDAO
method getAccountDAQ AccountDAO
end

classCloudscapeDAOFactorynplements DAOFactory
method getCustomerDAO CustomerDAO
return new CloudscapeCustomerDAO
method getAccountDAQO AccountDAO
return new CloudscapeAccountDAO
end

classOracleDAOFactoryimplements DAOFactory
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method getCustomerDAO CustomerDAO
return new OracleCustomerDAO
method getAccountDAQ AccountDAO
return new OracleAccountDAO
end

classCustomerDAO
method insertCustomer integer

end

classCloudscapeCustomerDA@plements CustomerDAO
method insertCustomer integer

end

classOracleCustomerDA@Mplements CustomerDAO
method insertCustomer integer

end

method Client
var cloudscapeFactory DAOFactory custDAO: CustomerDAG
begin
cloudscapeFactory= new CloudscapeDAOFactory
custDAO:= cloudscapeFactorgetCustomerDAO
custDAQinsertCustomer
end
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Data Structures

DAOFactory CustomerDAQAccountDAQ: set of Object
CloudscapeCustomerDAQOracleCustomerDACC CustomerDAO
CloudscapeAccountDA@racleAccountDACC AccountDAO
CloudscapeDAOFactorpracleDAOFactoryC DAOFactory

Instance Invariant P1

| DAOFactory|< 1 A (
(CustomerDAO= CloudscapeCustomerDA®
(AccountDAO= CloudscapeAccountDAQ
(DAOFactory= CloudscapeDAOFactoly

Vv
(CustomerDAC= OracleCustomerDAQ\
(AccountDAO= OracleAccountDAQN
(DAOFactory= OracleDAOFactory )

Invariant P1 Preservation

InvariantP1 is identical to pattern invariam, except for identifiers. Invariamtl is weekly
preserved in this instance, this is done implicitly through the naming convention. We see
that the only instance dd)AOFactoryin the client application isloudscapeFactoryThat

name suggests that it can only be assigned objec@laidscapeDAOFactorgnd that

there is no need to change the type at runtime as it is the case with GUI applications for
example. That application still gets the benefit of applyiigstractFactorypattern. In

case the application needs to use a different database connection type, then all we need to
change is the line where the factory object is instantiated.

7.4 Second Instance

The pattern is applied in this program that is used to plan garden layouts. Different types
of gardens (vegetable gardens, annual gardens, etc.) are considered. Gardens contain
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different types of plants (center, border, etc.). Different garden types have different
suitable center plants and different suitable border plants. User Interface has radio buttons
representing the different garden types (vegetable, annual, etc.), buttons representing plant
types (center, border, etc.), and an area to display the suitable plant name. Program user
selects at runtime the garden type using radio buttons and clicks on a plant type to display
the suitable plant name [5].

Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

Garden

public interface Garden {
public Plant getShade();
public Plant getCenter();
public Plant getBorder();

}
VeggieGarden

public class VeggieGarden implements Garden {
public Plant getShade() {
return new Plant("Broccoli");
}
public Plant getCenter() {
return new Plant("Corn");
}
public Plant getBorder() {
return new Plant("Peas");
}
}

AnnualGarden

public class AnnualGarden implements Garden {
public Plant getShade() {
return new Plant("Coleus");

}
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public Plant getCenter() {

return new Plant("Marigold");
}
public Plant getBorder() {

return new Plant("Alyssum");

}

Plant

public class Plant {
private String name;
public Plant(String pname) {
name = pname; /[save name
}
public String getName() {
return name;

}

Client

public class Gardener extends Frame
implements ActionListener {
private Checkbox Veggie, Annual, Peren;
private Button Center, Border, Shade, Quit;
private Garden garden = null;
private String borderPlant = "

y CenterP|ant = , Shadeplant - |l||;

public Gardener() {
super("Garden planner");
setGUI();

}
private void setGUI() {
Veggie = new Checkbox("Vegetable", grp, false);

Veggie.addltemListener(new VeggieListener());
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public void actionPerformed(ActionEvent e) {
Object obj = e.getSource();
if (obj == Center)
setCenter();

}

private void setCenter() {
if (garden != null) centerPlant = garden.getCenter().getName();
gardenPlot.repaint();

}

private void clearPlants() {
shadePlant=""; centerPlant=""; borderPlant = ™
gardenPlot.repaint();

}

static public void main(String argv[]) {
new Gardener();

}

class GardenPanel extends Panel {
public void paint (Graphics g) {

}

class VeggieListener implements ItemListener {
public void itemStateChanged(ltemEvent e) {
garden = new VeggieGarden();
clearPlants();

}

} /lend of Gardener class

Instance Description

classGarden
method getCenter: Plant
method getBorder: Plant
end
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classVeggieGardemmplements Garden
method getCenter. Plant
return new Plant(”Corn”)
method getBorder: Plant
return new Plant(”Pea$)
end

classAnnualGardenmplements Garden
method getCenter: Plant
return new Plant(” Marigold”)
method getBorder: Plant
return new Plant(” Alyssuri)
end

classPlant
attr name: String
initialization (pname: String)
name:= pname
method getName String
return name
end

method Client
var centerPlantborderPlant: String garden: Gardens

begin
garden:= new VeggieGarden
centerPlant= ""; borderPlant="";

centerPlant= gardengetCentergetName



84 7. Abstract Factory

end

Notes:

¢ ResettingcenterPlantandborderPlantis done in auxiliary methodlearPlants

e The callcenterPlant:= gardengetCentergetNameis done in methodsetCenter
which is called by the event handler of buttons. That event handler checks
which button(Center Border, etc) was clicked and calls the appropriate method
(setCentersetBorderetc) accordingly.

e A similar technique is followed with the assignmeyarden:= new VeggieGarden
Radio buttons representing different garden types (vegetable, annual, etc.) are im-
plemented using &heckboxor each garden type. All these are grouped together
to form a set of radio buttons such that only one can be selected at a time. Each
Checkboxis mapped to an inner class event handler that actually does the above
assignment based on the garden type selected.

Data Structures

This example is a simple one, no significant work is done by product instances. That is
why the same clasBlantis used to represent more than one product. Different products
may be viewed here as subsetsRiant with different values for theString attribute

name Plantwas also not sub-classed based on different concrete factories. However, the
program still follows the same spirit as suggested by the pattern. This is because sub-
classes oPlantare also viewed as subsetsRdantwith different values for attributeame

GardenPlant: set of Object

e Let VeggieCenterPlant C Plant be the set of allplant : Plant where
plantgetName= "Corn’

e Let AnnualCenterPlant C Plant be the set of allplant : Plant where
plantgetName= "Marigold”
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e Let VeggieBorderPlant C Plant be the set of allplant : Plant where
plantgetName= "Pea$

e Let AnnualBorderPlant C Plant be the set of allplant : Plant where
plantgetName= " Alyssuni

Instance Invariant P2

| Garden|< 1 A (
(centerPlant="Corn”)A
(borderPlant= "Peas ) A
(Garden= VeggieGardeh

V
(centerPlant= "Marigold”)A
(borderPlant= " Alyssuri)A
(Garden= AnnualGarden)

Invariant P2 Preservation

InvariantP2 is still equal to pattern invaria®, except for identifiers AbstractProductA
defined with pattern invariant contains exactly one element in that example,
namely centerPlant Similarly AbstractProductB contains only borderPlant
Classes ProductAl, Product”, ProductBl and ProductB can be viewed as
VeggieCenterPlanAnnualCenterPlantVeggieBorderPlant and AnnualBorderPlant
respectively. The distinction between those is based on the value of attnbuote
defined in clas®lant. InvariantP2 is preserved in this instance by reseting the values for
centerPlantandborderPlantto an emptyString after an assignment or a reassignment to
the factory instancgarden

7.5 Third Instance

This example introduces an interfab®/Deviceas the abstract factory. A factory can
create audio and video objects as products. Concrete factories are "cd” and dvd”. The
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program can deal with both audio and video files, and manipulate them on different media
types, namely "cd” and "dvd” [20].

Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

|AVDevice

public interface |AVDevice
{

IAudio GetAudio();
IVideo GetVideo();

}
CCd

class CCd:lIAVDevice
{

public lAudio GetAudio()
{

return new CCdAudio();
}

public IVideo GetVideo()
{

return new CCdVideo();

}
}

CDvd

class CDvd:IAVDevice

{
public 1Audio GetAudio()

{

return new CDvdAudio();

}
public 1Video GetVideo()

{
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return new CDvdVideo();

}
}
lAudio
public interface lAudio
{
string GetSoundQuality();
}
CCdAudio
class CCdAudio:lAudio
{
public string GetSoundQuality()
{
return "CD Audio is better then DVD Audio";
}
}
CDvdAudio
class CDvdAudio:lAudio
{
public string GetSoundQuality()
{
return "DVD Audio is not as good as CD Audio";
}
}

Auxiliary Class

class CAVMaker

{
public IAVDevice AVMake(string xWhat)

{
switch (xWhat.ToLower())

{

case "cd"

return new CCd();
case "dvd"
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}

return new CDvd();
default:
return new CCd();

}

}

Client

public class AbstractFactory

{

}

static void Main(string[] args)
{

CAVMaker objFactMaker = new CAVMaker();
IAVDevice objFact;

IAudio objAudio;

IVideo objVideo;

string strWhat;

strWhat = args[0];

objFact = objFactMaker.AVMake(strWhat);
objAudio = objFact.GetAudio();

objVideo = objFact.GetVideo();
Console.WriteLine(objAudio.GetSoundQuality());

Console.WriteLine(objVideo.GetPictureQuality());

}

Instance Description

classlAvDevice
method GetAudio: 1Audio
method GetVideo: IVideo
end

classCCdimplements|AVDevice
method GetAudio: |IAudio
return new CCdAudio
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method GetVideo: Video
return new CCdVideo
end

classCDvd implementsIAVDevice
method GetAudio: 1Audio
return new CDvdAudio
method GetVideo: IVideo
return new CDvdVideo
end

classlAudio
method GetSoundQuality String
end

classCCdAudioimplementslAudio

method GetSoundQuality String

end

classCDvdAudioimplementslAudio

method GetSoundQuality String

end

method Main(args: seq ofString)
var objFact: IAVDevice objAudio: IAudio
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begin
if (argg0] = ”cd”) then objFact:= new CCd,
else if(argg0] = ”dvd’) then objFact:= new CDvd,
objAudio:= objFactGetAudio
objAudiaGetSoundQuality

end

Notes:

e InstantiatingCCdor CDvdis done in methodVMakeof auxiliary classCAVMaker
e Thecasestatement in the above auxiliary method is translated b atatement.

e argg0] is the value passed to main application metidain as a command line
argument.

Data Structures

IAVDevice lAudio, IVideo: set of Object
CCdAudig CDvdAudioC IAudio
CCdVideoCDvdVideoC IVideo

CCd, CDvd C IAVDevice

Instance Invariant P3

| IAVDevice|< 1 A (
(IAudio = CCdAudigA
(IVideo= CCdVidegA
(IAVDevice= CCd)

Vv
(IAudio = CDvdAudigA
(IVideo= CDvdVidegA
(IAVDevice= CDvd) )

Invariant P3 Preservation
InvariantP3 is identical to pattern invariarR, except for identifiers. InvariarR3 is also
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implicitly preserved by this instance. This is done by making the decision of which con-
crete factory to instantiate based on a command line argument. This suggests that the
program will typically have only one factory instance, and that the value of this instances
should never be changed at runtime. That application gets the full benefit of applying
AbstractFactorypattern, and no changes are required to client code when switching from
"cd” to "dvd”.
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Composite

As described in the book @amma et al[12], theCompositgattern composes objects into

tree structures to represent containment hierarchies. The pattern lets clients treat individual
and composite objects uniformly. In the class diagr@mmponents a common interface
betweerLeaf andComposite

Component

Operation()

Add (Component) o<
Remove (Component)
GetChild (int)
| | children
Leaf Composite <>
) . forall g in children
Operation() Operation() 0 g.Operation();

Add (Component)
Remove (Component)
GetChild (integer)

Figure 8.1: Composite Class Diagram

92
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The pattern involves four participant€omponenteclares the interface for objects
in the composition and also for accessing and managing child componrssdaé repre-
sents leaf objects in the composition. A leaf has no child@ompositedefines behavior
for components having children. It stores child compone@tent declares and deals
uniformly with the common interfacEomponent

The pattern is applicable whenever we want to present a part-whole hierarchies of ob-
jects. It is also applicable when we need a client to be able to treat all objects in the
composite structure uniformly.

8.1 The Pattern

classComponent

method Operation

method Add(c : Component

method Removéc : Component

method GetChildi : integen : Component
end

classLeaf implements Component
method Operation
end

classCompositémplements Component
attr children: seq ofObject

initialization
this.children:= ()
method Operation

for i € this.childrendo i.Operation
method Add(c : Component
assert—c parent this;
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this.children:= this.children& (c)
method Removéc : Component
this.children:= this.children — (c)
method GetChildi : integen : Component
return this.childreni]
end

Notes:

In this study, we relax the requirement that object composition is a tree structure as
explained later on.

We abstractly represent the children of a composite as a sequence. This allows the
existence of the same object multiple times in the same container of children. This
assumptions extends the applicability of the pattern. An example would be to repre-
sent components of a machine@smponentA machine may contain multiple parts

of the same component, in which case it may not be efficient to represent each as a
different object.

The relationparentis defined as follows:

X parent y=y € x.children

It maps objects o€omponento objects ofComposite x parent ymeans thaxk is a
parent ofy.

The relationparent® is the transitive closure gfarent x parent” y means thak is
an ancestor of.

Data Structures

var ComponentCompositeLeaf : set ofObject:= {}, {}, {}
var children: Object— seq ofObject

Note that:

CompositeLeaf C Component
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Pattern Invariant P

Vi € Composite (V] € i.children+ —(j parent” i) )

The above invariant reads as follows:
Compositeobjects contain no ancestor objects within tlebildren containers.
The above invariant allows any object@omponentwithin the containment hierarchy to
be contained by multiple objects Gomposite Therefore, the containment hierarchy does
not need to be a balanced tree, or even a tree.

8.2 Well-Definedness of the Pattern

A module initialization is required to establish the invariant. Other parts of the system are
only required to preserve the invariant. MethOgerationrepresents a functionality to be
decided by pattern instances. It is not involved in proofs.

Module Initialization Establishes Invariant

wip(Component= { } A Composite= { } A Leaf:={ },P)

< wlp of Component= { },rule (3.4) >
Vi € Composite (V| € i.children« —(j parent’ i) )[Component { }]

< substitution, CompositeC Components>
Vie{}-(V]jei.childrens —(j parent i) )

< logic, universal quantification over empty range
true

Composite Initialization Preserves Invariant
The statementthis :¢ CompositeJ {nil} ; Composite= CompositeJ {this} are added to
Compositenitialization due to the translation to a procedure.

wlp(Compositenew P)
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< definition of Compositanew>>

wip(this :¢ CompositeJ {nil} ; Composite= CompositeJ {this};
this.children:= ()

,V'i € Composite (V] € i.childrens —(j parent” i) ) )

< wlp of thischildren:= (), rule (3.7) >

wip(this :¢ CompositeJ {nil} ; Composite= CompositeJ {this}
,(Vi € Composite (V| € i.childrens —(j parent’ i) )
)[children) (children this: ())] )

< case analysisvith i = this and i+ this >

wlp(this :¢ CompositeJ {nil} ; Composite= CompositeJ {this}
, (Vi € Composite- {this} « (V] € i.childrens —(j parent" i) )A
(Vj € thischildren+ —(j parent" this) )

)[children)\ (children this: ())] )

< substitution, simplification, rules(3.2) and (3.3) >

wip(this :¢ CompositeJ {nil} ; Composite= CompositeJ {this}
,V i € Composite- {this} « (V] € i.children+ —(j parent" i) )A
(Vj € ()« —(j parent" this) ) )

< logic >
wlp(this :¢ CompositeJ {nil} ; Composite= CompositeJ {this}
,V i € Composite- {this} « (V] € i.children- —(j parent" i) ) )

< wlp of Composite= CompositeJ {this}, rules(3.4) and (3.9) >
wlp(this :¢ CompositeJ {nil }

,V i € Composite- {this} « (V] € i.children+ —(j parent i) )

) [Composité, Composite {this}|

< substitution, CompositeJ {this} — {this} = Composites>
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wip(this :¢ CompositeJ {nil }
,V'i € Composite (V] € i.childrens —(j parent™ i) ) )

< wlp of this:¢ CompositeJ {nil}, rule (3.6) >
Vh € Composite (
Vi € Composite (V| € i.childrens —(j parent" i) ) )

< empty range "this’ does not appear in predicate
Vi € Composite (V] € i.children« —(j parent” i) )

P

Add Preserves Invariant
The statementissertthis € Compositeis added toAdd due to the translation from a
method to a procedure.

wlp(CompositeAdd, P)

< definition of CompositeAdd >
wlip(assertthis € Compositeassert—(c parent this);
this.children:= this.children& (c)
,V'i € Composite (V] € i.childrens —(j parent” i) ) )

< < wlp of thischildren:= this.children& (c), rule (3.7), rule (3.9) >
wlip(assertthis € Compositeassert—(c parent this)
, (Vi € Composite (V| € i.childrens —(j parent’ i) )
)[children\ (children;this: this.children& (c))] )

< case analysisvith i = this and i this >

wlp( assertthis € Compositeassert—(c parent'this)

, (Vi € Composite- {this} « (V] € i.children —(j parent" i) )A
(V] € thischildren+ —(j parent" this) )

)[children)\ (children;this: this.children& (c))] )
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= < substitution, simplification >
wlip(assertthis € Compositeassert—(c parent this)
,V i € Composite- {this} * (V] € i.children« —(j parent" i) )A
(V] € this.children& (c) « —(j parent’ this) ) )

< < wlp of assert—(c parent'this), rule (3.10) >
wlp(assertthis € Composite
., —(c parent'this)
=
Vi € Composite- {this} « (Vj € i.childrens —(j parent" i) )A
(V] € this.children& (c) » —(j parent" this) ) )

< logic, range split >

wlp(assertthis € Composite

., —(c parent'this)

=
Vi € Composite- {this} « (Vj € i.childrens —(j parent i) )A
(V| € thischildren- —(j parent" this) )A
—(c parent" this) )

< logic,foranypq: (p=qAp) =(p=0q) >

wlip(assertthis € Composite
—(c parent'this)

=
Vi € Composite- {this} « (Vj € i.children+ —(j parent' i) )A
(V] € this.children+ —(j parent” this) ) )

< wlp of assertthis € Compositerule (3.10) >
this € Composite
=
—(c parent'this)
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Vi € Composite- {this} « (V] € i.childrens —(j parent” i) )A
(V] € this.childrens —(j parent® this) )

= < join the last two predicates>
this € Composite
=
—(c parent this)

Vi € Composite (V| € i.children+ —(j parent' i) )A

< < definition of implication strengthening >
Vi € Composite (V| € i.children« —(j parent’ i) )A

P

Remove Preserves Invariant
The statemenassertthis € Compositas added taRemovelue to the translation from a
method to a procedure.

wlp(CompositeRemoveP)

< definition of CompositcRemoves-
wlp(assertthis € Compositethis.children := this.children — (c)
,V'i € Composite (V] € i.childrens —(j parent™ i) ) )

< < wlp of thischildren:= this.children — (c), rule (3.7) >
wlip(assertthis € Composite
, (Vi € Composite (V] € i.childrens —(j parent’ i) )
)[children) (children;this: this.children— (c))] )

< case analysisith i = this and i+ this >
wlp(assertthis € Composite
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, (Vi € Composite- {this} - (V] € i.children —(j parent” i) )A
(Vj € this.children+ —(j parent" this) )
)[children)\ (children; this: this.children— (c))] )

< substitution, simplification >

wlp(assertthis € Composite

,V i € Composite- {this} « (V] € i.children+ —(j parent” i) )A
(V] € thischildren — (c) « —(j parent" this) ) )

< wlp of assertthis € Compositerule (3.10) >
this € Composite

=
Vi € Composite- {this} « (Vj € i.childrens —(j parent’ i) )A
(V] € this.children — (c) « —(j parent" this) )

< < definition of implication strengthening >
Vi € Composite- {this} « (V| € i.children+ —(j parent' i) )A
(V] € thischildren — (c) - —(j parent" this) )

< <logic, (Vie X—{a}) < (Vie X—{a} na)=(Vie X) >
Vi € Composite- {this} « (V] € i.childrens —(j parent" i) )A
(V] € this.children+ —(j parent’ this) )

< join the last two predicates>
P

GetChild Preserves Invariant
The statemenassertthis € Compositas added tdGetChilddue to the translation from a
method to a procedure.

wip(CompositeGetChild P)

= <« definition of CompositéGetChild >
wlp(assertthis € Compositereturn this.childreri]
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,V'i € Composite (V] € i.childrens —(j parent™ i) ) )

< < wlp of return this.children(i], rule (3.11) >
wlip(assertthis € CompositeP)

< wlp of assertthis € Compositerule (3.10) >
this € Composite
=
Vi € Composite (V| € i.children« —(j parent' i) )

< < definition of implication strengthening >
P

8.3 First Instance

This part of JHotDraw framework allows graphical applications to build composite figures
with a hierarchical structure of components such that all contained components act as one
unit. A common application is programs that draw class diagra@@npositeFiguras

then sub-classed to be a graphical representation of classes, AttiiliteFigureis a
graphical representation of class attributes [21].

Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

Figure

public interface Figure extends Storable, Cloneable, Serializable {
public void draw(Graphics g);

public abstract class AbstractFigure implements Figure {

}
AttributeFigure
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public abstract class AttributeFigure extends AbstractFigure {

public void draw(Graphics g) {
Color fill = getFillColor () ;

Color frame = getFrameColor ();

if (!ColorMap.isTransparent(frame)) {
g.setColor(frame);
drawFrame(g);

}

CompositeFigure

public abstract class CompositeFigure extends AbstractFigure
implements FigureChangeListener {
protected Vector fFigures;

public void draw(Graphics g) {
FigureEnumeration k = figures();
while (k.hasMoreElements())
k.nextFigure().draw(g);
}
public Figure add(Figure figure) {
if ('fFigures.contains(figure)) {
fFigures.addElement(figure);
figure.addToContainer(this);
}

return figure;
}
public Figure remove(Figure figure) {
if (fFigures.contains(figure)) {
figure.removeFromContainer(this);
fFigures.removeElement(figure);

}

return figure;

}
public Figure figureAt(int i) {

return (Figure)fFigures.elementAt(i);
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public final FigureEnumeration figures() {
return new FigureEnumerator(fFigures);

}

}

Instance Description

classFigure
method draw(g : Graphics
end

classAttributeFigureimplements Figure
method draw(g : Graphics
end

classCompositeFiguremplements Figure
attr fFigures: seq ofFigure
method draw(g : Graphics
for i € fRiguresdo i.draw
method add(figure : Figure) : Figure
begin
fRigures:= fRigures& (figure);

return figure
method removéfigure : Figure) : Figure
begin
frigures:= fFigures — (figure);

return figure
end
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method figureAti : integen : Figure
return fFiguredi]
end

Data Structures

Figure : set of Object
CompositeFigureAttributeFigureC Figure
fFigures: Object— seq ofObject

Instance Invariant P1

V ¢ € CompositeFigure (v ch € c.fFigures+ —(ch parent c) )

Invariant P1 Preservation

Invariant P1 is identical to pattern invariar®®, except for identifiers. It is given as a
proposed invariant for the instance vs. an invariant that is maintained by the instance.
An example of violating the proposed invariant, which may lead to an infinite loop is:

Figure f0 := new CompositeFigure

Figure f1 := new CompositeFigure
Figure f2 := new CompositeFigure
fl.add(f2);
f0.add(f1);
f2.add(f0)

Apparently any call td0.draw or f2.draw will cause an infinite loop. As the program
does not preserve the proposed invariant, it may not be considered as an instance of the
Compositeattern.

8.4 Second Instance

Java AWTsupports both components and containers. Components siBittag can be
added to containers. Containers can still be added to other containers because they are also
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components [18].

Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

Component

public abstract class Component implements
ImageObserver, MenuContainer, Serializable

{
public void update(Graphics g) {
if ((this instanceof java.awt.Canvas) ||
(this instanceof java.awt.Panel) ||
(this instanceof java.awt.Window)) {
g.clearRect(0, O, width, height);
}
paint(g);
}
}
Button

public class Button extends Component implements Accessible {

}

Container

public class Container extends Component {
Component component]] = new Component[4];

public void update(Graphics g) {
if (isShowing()) {
if (! (peer instanceof java.awt.peer.LightweightPeer)) {
g.clearRect(0, 0, width, height);
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paint(g);

}

public Component add(Component comp) {
addimpl(comp, null, -1);
return comp;
}
public void remove(Component comp) {
if (comp.parent == this) {
Component component[] = this.component;

for (int i = ncomponents; --i >= 0; ) {
if (component[i] == comp) {
remove(i);
}
}

}

public Component getComponent(int n) {
if (n < 0) ]| (h >= ncomponents)) {
throw new ArraylndexOutOfBoundsException
("No such child: " + n);
}

return component[n];

}

public void paint(Graphics g) {
if (isShowing() &&
('printing ||
IprintingThreads.contains(Thread.currentThread())) ) {
GraphicsCallback.PaintCallback.getinstance().
runComponents(component, g, GraphicsCallback.LIGHTWEIGHTS);

}

public void remove(int index) {
Component comp = component[index];
if (peer != null) {
comp.removeNotify();

}
if (layoutMgr !'= null) {
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}

}

layoutMgr.removelLayoutComponent(comp);

comp.parent = null;
System.arraycopy(component, index + 1,
component, index,
ncomponents - index - 1);
component[--ncomponents] = null;
if (valid) {
invalidate();

protected void addimpl(Component comp, Object constraints,
int index) {

if (ncomponents == component.length) {

}

Component newcomponents|[] =

new Component[ncomponents * 2];
System.arraycopy(component, 0, newcomponents, 0,
ncomponents);

component = newcomponents;

if (index == -1 || index == ncomponents) {

component[ncomponents++] = comp;

} else {

}

System.arraycopy(component, index, component,
index + 1, ncomponents - index);
component[index] = comp;

ncomponents++;

comp.parent = this;

Auxiliary Class

abstract class GraphicsCallback extends SunGraphicsCallback {
static final class PaintCallback extends GraphicsCallback {
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private static PaintCallback instance = new PaintCallback();

private PaintCallback() {}
public void run(Component comp, Graphics cg) {
comp.paint(cg);

}

static PaintCallback getinstance() {
return instance;

}

}

Instance Description

classComponent
method updatég : Graphics
end

classButtonimplements Component
end

classContainerimplements Component
attr component seq ofComponent
method updateg : Graphics
for i € componento i.update
method add(comp: Component: Component
component= component; (comp
method removécomp: Component
component= component— (comp
method getComponeifh : integen : Component
return componerjh]
end

Notes:
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e ClassButtondoes not implemenipdatebut rather calls the parent method.

e Method updatein classContainercalls paint in the same class. The later call is
forwarded to methods of clasdraphicsCallback However, the actual work is done
by classSunGraphicsCallback the internal packagsunawt.

e Methodaddin classContainercallsaddimplin the same class, which does the actual
addition.

e Methodremovécomp: Componentin classContainercallsremoveindex: integer)
in the same class. The first determines the index of the component to be removed,
and the later does the actual removal.

Data Structures

Component set of Object
Container ButtonC Component
component Object— seq ofObject

Instance Invariant P2

V ¢ € Containers (V ch € c.component —(ch parent c) )

Invariant P2 Preservation

InvariantP2 is identical to pattern invariarR, except for identifiers. It is also given as a
proposed invariant for the instance vs. an invariant that is maintained by the instance.

A similar argument to the one used in the first instance can be used here to show that
failure to comply with this invariant may cause infinite loops. In that instance, this can
occur when containers directly or indirectly contain each others.

8.5 Third Instance

The program can be used to represent a company’s organizational chart with employees
and bosses. Methods likgetSalariessimply return an employee’s salary if a regular
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employee, and include salaries of all managed employees in case of a boss [5].

Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

AbstractEmployee

public abstract class AbstractEmployee {
protected String name;
protected long salary;
protected Employee parent = null;
protected boolean leaf = true;
public abstract long getSalary();
public abstract String getName();
public abstract boolean add(Employee e) throws NoSuchElementException;
public abstract void remove(Employee e);
public abstract Enumeration subordinates();
public abstract Employee getChild(String s);
public abstract long getSalaries();
public boolean isLeaf() {

return leaf;

}
Employee

public class Employee extends AbstractEmployee {
public Employee(String _name, long _salary) {

name = _name;
salary = _salary;
leaf = true;
}
public Employee(Employee _parent, String _name, long _salary) {
name = _name;
salary = _salary;
parent = _parent;
leaf = true;
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}

public long getSalary() {
return salary;

}

public boolean add(Employee e) throws NoSuchElementException {
throw new NoSuchElementException("No subordinates™);

}

public void remove(Employee e) throws NoSuchElementException {
throw new NoSuchElementException("No subordinates”);

}

public Employee getChild(String s) throws NoSuchElementException {
throw new NoSuchElementException("No children");

}

public long getSalaries() {
return salary;

Boss

public class Boss extends Employee {

Vector employees;

public Boss(String _name, long _salary) {

super(_name, _salary);
leaf = false;
employees = new Vector();
}
public boolean add(Employee e) throws NoSuchElementException {
employees.add(e);
return true;
}
public void remove(Employee e) throws NoSuchElementException {
employees.removeElement(e);
}
public Employee getChild(String s) throws NoSuchElementException {
Employee newEmp = null;
if (getName().equals(s))
return this;
else {
boolean found = false;
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Enumeration e = subordinates();
while (e.hasMoreElements() && (! found)) {
newEmp = (Employee)e.nextElement();
found = newEmp.getName().equals(s);
if (! found) {
if (! newEmp.isLeaf ()) {
newEmp = newEmp.getChild(s);
} else
newEmp = null;
found =(newEmp != null);

}
if (found)

return newkEmp;
else

return null;

}
public long getSalaries() {
long sum = salary;
for (int i = 0; i < employees.size(); i++) {
sum += ((Employee)employees.elementAt(i)).getSalaries();

}

return sum;

}
Instance Description

classAbstractEmployee

attr salary: long

attr name: String

method getSalaries long

method add(e : Employe¢ : boolean

method removée : Employeg

method getChilds : String) : Employee
end
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classEmployeamplements AbstractEmployee
method getSalaries long
return salary
end

classBossimplements Employee
attr employees seq ofEmployee
method getSalaries long
begin
for i € employeeslo salary := salary+ i.getSalaries
return salary
end
method add(e : Employee¢ : boolean
employees= employeed: (e)
method removée : Employe¢
employees= employees— (e)
method getChilds : String) : Employee
var e: Employee
begin
result:c {e € employees\ e.name= s};
return result
end
end

Data Structures

AbstractEmployee set of Object
EmployeeC AbstractEmployee
BossC Employee

employees Object— seq ofObject
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Instance Invariant P3

V ¢ € Boss* (V ch € c.employees —(ch parent c) )

Invariant P3 Preservation

InvariantP3 is identical to pattern invariarR, except for identifiers. It is also given as a
proposed invariant for the instance vs. an invariant that is maintained by the instance.

A similar argument to the one used in the first instance can be used here to show that
failure to comply with this invariant may cause infinite loops. In that instance, this can
occur when bosses directly or indirectly manage each others.

Unlike the class diagram describing the pattern, here the composite class extends leaf and
the leaf extends the component.
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Singleton

The Singletonpattern is introduced in the book &amma et al[12] as a way to ensure

that a class only has one instance, and provides a global point of access to it. The pattern is
an improvement over global variables. It avoids complicating the name space with global
variables that store sole instances.

Singleton

static Instance() O return uniquelnstance

SingletonOperation()
GetSingletonData()

static uniquelnstance

singletonData

Figure 9.1: Singleton Class Diagram

Singletonpattern has only one participantSingletonclass defines atatic method
Instancethat returns the only object of the class. The class usegatic attribute
singletonDatéao store the only object of the class.

The pattern is applicable whenever there must be exactly one instance of a class, and it
must be accessible to clients from a well-known access point. The pattern is also applicable
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when the sole instance of a class should be extensible by subclassing.

9.1 The Pattern

classSingleton
static attr uniguelnstance Singleton:= nil
attr SingletonData Type
private initialization

static methodInstance: Singleton
If uniquelnstance= nil then uniquelnstance= new Singleton
Singleton:= {uniquelnstancg
return uniguelnstance

method SingletonOperation

method GetSingletonData
return SingletonData
end

method Client
var singleton: Singletore
begin
singleton:= Singletoninstance
singletonSingletonOperation
end

Notes:

e SingletonData Typeis used to indicate th&ingletonDatacan be of any type.

e SingletonDataSingletonOperatiomnd GetSingletonDataepresent any data or op-
erations that can be added to cl&sgleton
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e The return ofuniquelnstancén the initialization ofSingletonis equivalent to adding
the instance to s&ingleton This is represented §ingleton:= {uniquelnstanck

Data Structures

var Singleton: set ofObject:= {}

Pattern Invariant P

| Singleton|< 1

The above invariant reads as follows:

The cardinality of seSingletonshould be less than or equal to one.

Making the cardinality of seSingletonless than or equal to one gives the flexibility to
instantiateuniquelnstances it is declared or only when needed (lazy initialization). The
later option is an advantage of using singletons rather than static class members [15].

9.2 Well-Definedness of the Pattern

A module initialization is required to establish the invariant. Class methods and ini-
tializations are only required to preserve the invariant. Meth®dtSingletonDataand
SingletonOperatiomepresent functionalities to be decided by pattern instances. They are
not involved in proofs. The empty class constructor is also not involved in proofs.

Module Initialization Establishes Invariant

wlp(Singleton:= { }, P)

< wlp of Singleton= { },rule (3.4) >
(| Singleton|< 1) [Singleton\ { }|

< substitution >
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({}I<D

= < logic>
true

Instance Preserves Invariant
The statemenassertthis € Singletonis added tdnstancedue to the translation from a
method to a procedure.

wlip(SingletoninstanceP)

< definition of Singletorinstance>

wlp(assertthis € Singleton

if uniquelnstance= nil then uniquelnstance= new Singleton
Singleton:= {uniquelnstancg return uniquelnstance

,| Singleton|< 1)

< < wlp of return uniquelnstancgule (3.11), substitution >
wlp(assertthis € Singleton
if uniquelnstance= nil then uniquelnstance= new Singleton
Singleton:= {uniquelnstancg
,| Singleton|< 1)

< < wlp of Singleton= {uniquelnstancg rule (3.4), substitution >
wlp(assertthis € Singleton
if uniquelnstance= nil then uniquelnstance= new Singleton
.| {uniquelnstancg |< 1)

< logic, the cardinality of a set of one element 1 >
wlp(assertthis € Singleton

if uniquelnstance= nil then uniquelnstance= new Singleton
,true)

= <« wlp of any statement with respect to true true >
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true

9.3 First Instance

A simple program in which we need to have only one instance of &asgSpoolerto
handle print jobs [5].

Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

PrintSpooler

public class PrintSpooler {
private static PrintSpooler spooler;
private PrintSpooler () {

}
public static synchronized PrintSpooler getSpooler () {
if (spooler == null)
spooler = new PrintSpooler ();
return spooler;
}

public void print(String s) {
System.out.printIn(s);

}
Client

public class finalSpool {
public finalSpool () {
PrintSpooler spl = PrintSpooler.getSpooler () ;
spl.print ("Printing data");
}
static public void main(String argv[]) {
new finalSpool ();
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}

Instance Description

classPrintSpooler
static attr spooler: PrintSpooler:= nil
private initialization

static methodgetSpooler PrintSpooler
begin
if (spooler= nil) then spooler:= new PrintSpooler
return spooler
end
method print(s : String)
Systenout printin(s)
end

classfinalSpool
initialization
var spl: PrintSpoolers
begin
spl:= PrintSpoolergetSpooler
spl.print(” Printingdata’ )
end
end

Data Structures

PrintSpooler: set of Object

Instance Invariant P1

| PrintSpooler|< 1
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Invariant P1 Preservation

InvariantP1 is identical to pattern invariarR, except for identifiers. InvariarRl is pre-
served by this instance. This is done by making the only constructor of$lagketonpri-

vate. Therefore, the only way to create an instance of this class is through a call to method
getSpooler Such a call will returrspooler, the only instance of clag3rintSpooler which

was declared as a static attribute.

9.4 Second Instance

Another simple program in which we need to have only one instance of a class. The
only instance of classlySingletoris _instance It is instantiated at class-loading time [15].

Instance Source
Sources are given only for the parts that appear in the instance formal description. Parts
that are specific to the application are left out.

MySingleton

public class MySingleton {

private static MySingleton _instance =
new MySingleton ();

private MySingleton () {

/I construct object . . .

}
public static MySingleton getinstance () {

return _instance;

}

/I Remainder of class definition . . .

Instance Description

classMySingleton
static MySingletoninstance := new MySingleton
private initialization
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static method getinstance MySingleton
return _instance
end

Notes:
e In this case.instances declared and initialized in the same line.

Data Structures

MySingleton set of Object

Instance Invariant P2

| MySingleton =1

Invariant P2 Preservation

Since| Singleton| =1 =| Singleton| < 1, then clearlyP2 = P.

The instance preserves the invariant the same way as in the first instance introduced above.
The only difference is that the only instance of the class is initialized with the declaration
vs. when needed.

It was not needed to introduce any other instances of the pattern, this is because most
implementing programs follow closely one of the two introduced instances.
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Future Work

Limitations of the Approach
Procedures introduced in this study look after most of the issues related to using natural
language to describe patterns [19].

Yet, the approach needs to make more balance between the structural side and the be-
havioral side of a pattern [32]. A balanced formal language could also describe frameworks
in the same abstract notation.

A pattern formalization language should also be the basis for creating tools to create
and verify the correctness of patterns in a design [2]. The use of such tools can address
the usual problem that design patterns are usually used to create code, but then they are
forgotten. Patterns within the code are not maintained as code changes [31].

It is also noted that many patterns use basic delegation, encapsulation and other
repeated concepts. This suggests factoring out these concepts as smaller building blocks to
describe patterns [29].

Suggested Features

e To design a formal language that can describe patterns in terms of pre-defined struc-
tures. Such language can cover all types of patterns in a consistent representation.

e Extend the formalization approach to include frameworks suchaga Swingand
JHotDraw.
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e To use the grammar of the formal description language to create a tool to manipulate
patterns, such that code is always associated with its underlying pattern.



Chapter 11
Conclusion

The study introduces a formal approach to choose and apply design patterns. It is shown
how dealing with patterns becomes more precise when it is guided by a formal approach.
The same uniform notation is used to describe patterns and their instances. Examples given
clearly show that comparing different patterns or comparing a pattern with an instance is
much easier and more precise than when done using informal approaches.

The study also introduces a way of checking compliance of an instance with a pattern,
a task that can be challenging without following a formal approach.

Pattern descriptions are general enough as they are constructed after analyzing care-
fully selected instances. Produced descriptions include structural and behavioral aspects of
patterns.

The applicability of the process introduced in this study is not limited to design patterns.

It can also be extended to deal with frameworks and concurrent systems. Frameworks can
be described in the same introduced notation. Concurrency may be expressed by extending
classes with actions and allowing methods to be guarded [28]. Concurrent systems can be
described in the same introduced notation. All methods and actions of a concurrent system
will have to preserve the invariant if one exists.

Patterns are classified in the study based on components needed to describe them. They
are classified into structure-based patterns, behavior-based patterns, and invariant-based
patterns. In case of invariant-based patterns, invariants are introduced to complement the
description. Itis shown that these invariants capture restrictions that are implicit otherwise.

The process of establishing a pattern description gives much better insight about the
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essence and details of the pattern. Such insight can ensure much better use of the patternin
a design.

Analyzing Iterator design pattern demonstrates the complete process of describing a
pattern, verification of the description, and checking compliance of an instance with the
pattern.

It is shown that the need for an invariant is not limited to one pattern. The introduced
invariants forAbstract FactoryCompositeandSingletorare based on analyzing instances
from diversified sources. The weakest possible invariants are given, such that they are not
specific to an application. Instances can have stronger invariants than the pattern invariant.



Glossary

[] Anempty bag (also known as multi-set).

() Anempty sequence.

{} Anempty set.

AUB The union of bag#\ andB.

A — B The subtraction of baB from bagA, or the subtraction of sequenBdrom
sequenc@. Sequence subtractighi — B removes all the occurrences of any elemer in
from A.

A& B The concatenation of two sequendeandB.

length A) The length of sequend®

| A| The cardinality of seA.

X:€S8 The nondeterministic assignmente s assigns tok any element from set,
bag or sequenceas long as at least one element exists, otherwigeassigned the value
nil.

X:€S8 The nondeterministic assignment¢ s assigns tox any element such that
this element is not is.

Rt  The transitive closure of a binary relatiéh It is defined to be the set of pairs
(u,v) such that there is a path of length one or more froto v.

P[x\ € An expression denoting, where every occurrence gfis replaced by the
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valuee.
(a;x:e) Containerawhere the element at positioris replaced by the value

wp For a system denoted b$ and having a desired post-condition denoted
by R, we denote the corresponding weakest pre-conditiompis R). It means that if
the initial state satisfiesp(S R), the system is certain to establish eventually the trufR of

wilp  The weakest liberal preconditiomnlp(S R) is weaker tharwp(S R) defined
above. wip(S R) only guaranties that the system will not produce the wrong result, i.e.
will not reach a final state not satisfyii®) but nontermination is left as an alternative.
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