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Complete Lattices

Let (X,≤) be a be partially ordered set, and let S ⊆ X.

Then
∨

S (“the meet of S”) denotes the least upper

bound of S with respect to ≤, if it exists. Similarly,
∧

S

(“the join of S”) denotes the greatest lower bound of

S with respect to ≤.

We say that X is a complete lattice if, for every S ⊆ X,

then both
∨

S and
∧

S exist in X.

Example 1: Take (N∪ {0},�), where a � b if a divides

b. This is a complete lattice, where a ∧ b = gcd(a, b),

a ∨ b = lcm(a, b), ⊥ = 1, and > = 0.

Example 2: Take (P(X),⊆) for any set X. This is a
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complete lattice, where
∨

S =
⋃

S,
∧

S =
⋂

S, ⊥ = ∅,
and > = X.



Definitions

Let (X,≤X) and (Y,≤Y ) be partially ordered sets.

A function ϕ : X → Y is monotone or order-preserving

if x1 ≤X x2 implies f(x1) ≤Y f(x2).

A point x ∈ X is a fixed point of a function ϕ : X → Y if

ϕ(x) = x. Denote the set of fixed points of ϕ by fix(ϕ).
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Knaster-Tarski Fixed-Point Theorem for
Complete Lattices

Let L be a complete lattice and Ψ : L → L be mono-

tone. Then ∨
{x ∈ L | x ≤ Ψ(x)} ∈ fix(Ψ)

Proof: Let H = {x ∈ L | x ≤ Ψ(x)} and α =
∨

H. For

all x ∈ H we have x ≤ α, so then x ≤ Ψ(x) ≤ Ψ(α) by

monotonicity. Therefore Ψ(α) is an upper bound for

H, hence α ≤ Ψ(α).

Then, by monotonicity, we have Ψ(α) ≤ Ψ(Ψ(α)), so

Ψ(α) ∈ H, and therefore Ψ(α) ≤ α. Hence by antisym-

metry, α = Ψ(α).
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Knaster-Tarski (cont’d)

The Knaster-Tarski theorem can be generalized to state

that fix(Ψ) is itself a complete lattice, hence a smallest

fixed-point of Ψ can be chosen. We will state a further

generalization to complete partial orders. First, some

more definitions:

Let (X,≤) be a partially ordered set. Let S ⊆ X with

S 6= ∅.
S is a directed subset if whenever x, y ∈ S there exists

z ∈ S such that x ≤ z and y ≤ z.

Example: Take (N ∪ {0}, �) as before, i.e. a � b if

a divides b. Then {2,3} is not a directed subset of X,

but {2,3,6} is.
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Complete Partially Ordered Sets

Let (X,≤) be a partially ordered set. We say that X is
a complete partially ordered set (CPO) if:

• X has a bottom element ⊥.

•
∨

D exists for each directed subset D of X.

Any complete lattice is a CPO, as is any finite partially
ordered set with a least element (⊥).

Example: Take the set of all partial functions defined
on some set S, where f ≤ g if dom(f) ⊆ dom(g) and
f(x) = g(x) for all x ∈ dom(f). This is a CPO, with
the least element being the function defined nowhere.
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Knaster-Tarski Fixed-Point Theorem for
Complete Partial Orders

Let X be a CPO and Ψ : P → P be an order-preserving

map. Then fix(Ψ) is a CPO.

In particular, this means that we can choose a smallest

element from fix(Ψ).
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Consequences

The Knaster-Tarski theorem has many applications and

consequences.

In mathematics, it provides a short proof of the Schröder-

Bernstein Theorem. In computer science, it is used

heavily in the field of denotational semantics and ab-

stract interpretation, where the existence of fixed points

can be exploited to guarantee well-defined semantics for

a recursive algorithm.
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Fixed Points and Program Semantics

The semantics of recursive functions are difficult to
specify: to use a function name before it is defined.
The factorial function can be specified as the unique
fixed point of the function

F = λf . λx . if x = 0 then 1 else x ∗ f(x− 1)

It is clear that factorial is a fixed point, since

F factorial = λx . if x = 0 then 1 else x∗factorial(x−1) = factorial

The factorial can be represented in lambda-calculus as
Y F , with F as above and Y given by

Y = λG . (λg . G(g g))(λg . G(g g))

Y is the Y combinator discovered by Haskell Curry. It
finds a fixed point of its argument if it exists.
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The Schröder-Bernstein Theorem

Let f : A → B and g : B → A be injections. Then there

exists a bijection h between A and B.

Proof: As stated earlier P(A) is a complete lattice. For

any S ⊆ A, define ϕ : P(A) → P(A) by ϕ(S) = A \ g(B \
f(S)). Since f, g are injective, then ϕ is monotone.

Hence ϕ has a fixed point C ⊆ A, therefore A \ C =

g(B \ f(C)).

Then we can define a bijection h : A → B simply by

setting h(x) = f(x) if x ∈ C, and h(x) = g−1(x) if

x ∈ A \ C.
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