
Arbitrary-rank polymorphism

in (GHC) Haskell

CAS 743

Stephen Forrest

20 March 2006

Damas-Milner Type System

A Damas-Milner type system (also called Hindley-Milner)

is a traditional type system for functional languages,

and arose from an effort to do type reconstruction on

the untyped λ-calculus.

An appealing property of this type system is the guar-

antee of a most general unifier for a set of type expres-

sions, and the fact that the algorithm can deduce types

without any type annotations supplied by the program-

mer. It is the basis of the type system for Haskell98.

However, the system does have limitations. We will

see what these are, and how certain extensions to the

system defined in GHC address these problems.

2

Example 1

Consider the following snippet of Haskell code:

foo :: ([Bool], [Char])
foo = let f x = (x [True, False], x [’a’, ’b’])

in f reverse
main = print foo

We apply reverse to both a list of booleans and a list

of characters. We would like this to “just work”, since

reverse is quite capable of handling each, and return

([False, True], [’b’, ’a’]).

However, the Damas-Milner type system requires that

the λ-bound variable x have a type that is monomorphic,

or free of type variables.

We will generalize this to the idea of the rank of a type.

3

Rank of a Type

The rank of a type describes the depth at which uni-
versal quantifiers appear in a contravariant position, i.e.
to the left of a function arrow.

A rank-0 type has no universal quantifiers at all (it is
a monotype). A function type has rank n + 1 when its
argument has rank n. Formally:

Monotypes: σ0 ::= a | τ1 → τ2
Polytypes: σn+1 ::= σn | σn → σn+1 | ∀.σn+1

Following are some examples of the ranks of types:

Int → Int has rank 0
∀a . a → a has rank 1

Int → (∀a . a → a) has rank 1
(∀a . a → a) → Int has rank 2
∀a .(a → a → Int) has rank 1

4

Exploiting type annotations

Every term in a Damas-Milner type system is rank 1:
there are no quantifiers on the left of a function ar-
row. As we’ve seen, this has limitations. However, it
is known that pure type inference becomes difficult or
intractable for rank ≥ 2.

A system described by Odersky and Läufer (1996) ad-
dresses this by adding type annotations on terms to
guide type inference. Peyton Jones, Shields, et al. de-
scribe the amount of annotation required by this system
as “quite heavy”, but suggest that many of the anno-
tations could be inferred.

f :: (forall a. [a] -> [a]) -> ([Bool], [Char])
f x = (x [True, False], x [’a’, ’b’])

In the above, the signature of f serves to identify the

type of x, removing the need for an explicit type anno-

tation.
5

The Subsumption Relation

Before we go too far in discussing polymorphism and

instantiation of type variables, we must have a way to

compare two type expressions.

In the usual Damas-Milner type system, we have the

expected partial order defined by substitution into type

variables, e.g. we have [a] -> [a] < [Int] -> [Int].

This generalizes to arbitrary ranks: σ1 < σ2 if σ1 is more

polymorphic than σ2.

For higher-order ranks, we must watch out for the fact

that function types are contravariant in the first argu-

ment. Hence σ1 < σ2 implies σ1 → Int > σ2 → Int.

6

Predicativity

After we choose to permit polytypes inside function
types, we soon face a question: do we allow type vari-
ables to be instantiated at polymorphic types?
Example: In GHC, we define the following

poly :: (forall v. v -> v) -> (Int, Bool)
poly f = (f 3, f True)

This is all fine, and poly (\x -> x) returns (3, True) as
expected. However, suppose we also define

revapp :: a -> (a -> b) -> b
revapp x f = f x

Consider the application revapp (\x->x) poly. For this

to be legal, we would need to instantiate the type vari-

able a in revapp with the polytype ∀v . v → v.

7

Predicativity

A type system which only allows a polymorphic function

to be instantiated at a monotype is called predicative.

A type systems which permits a polymorphic function

to be instantiated at a polytype is called impredica-

tive.

Understandably, predicative systems are much easier to

deal with. The classical Damas-Milner system used in

Haskell98 is predicative. So is the Odersky-Läufer sys-

tem which is the basis of the Haskell implementation in

this talk.

An example of an impredicative system is System F,

which extends λ-calculus with type abstractions and

type applications.

8

Overview of Damas-Milner type inference
rules

Γ ` t : σ

Int:

Γ ` i : Int
Abs:

Γ, (x : τ) ` t : ρ

Γ ` (\x.t) : (τ → ρ)
Let:

Γ ` u : σ
Γ,x:σ`t:ρ

Γ`let x=u in t:ρ

Gen:

a 6∈ ftv(Γ)
Γ`t:ρ

Γ`t:∀a.ρ

Var:

Γ, (x : σ) ` x : σ

App:

Γ ` t : τ → ρ
Γ`u:τ
Γ`tu:ρ

Annot:

Γ ` t : σ

Γ ` (t :: σ) : σ

Inst:

Γ ` t : ∀a.ρ

Γ ` t : [a 7→ τ]ρ
9

Syntax-directed form of Damas-Milner

An issue with the previous slide lies in the fact that the
Gen and Inst rules may be applied at any time. We
want a set of rules which we can transform into an al-
gorithm. In fact, we can rewrite the rules (somewhat
more verbosely) as a syntax-directed rule set, which
transforms naturally into the Damas-Milner algorithm.

Among the tools necessary for this is an inference rule
`subs which is related to the subsumption relation de-
fined earlier and is important for our ultimate general-
ization of the Damas-Milner method. There are three
rules for `subs:

a 6∈ ftv(σ)
`subsσ≤ρ

`subsσ≤∀a . ρ

SKOL
`subs[a 7→τ]ρ1≤ρ2
`subs∀a . ρ1≤ρ2

SPEC `subsτ≤τ
MONO

10

Syntax-directed form of Damas-Milner

The task that these rules accomplish is the following:

given σ1 = a . ρ1 and σ2 = a . ρ2, we are asked to prove

that

∀b ∃a such that ρ1 ≤ ρ2

The rule SKOL serves the purpose of instantiating the

outermost type variables of σ2 to arbitrary, completely

fresh type constants, called skolem constants. If after

this operation, it is still possible to match σ1 against

σ2, then σ1 is at least as polynorphic as σ2.

11

Odersky-Läufer type inference

We now direct our attention to the Odersky-Läufer type
system (1996). The critical difference between the two
is that in this new system, a polytype may appear in
both the argument and the result of a function type,
and therefore polytypes may be of arbitrary rank.

The new system differs from Damas-Milner in a num-
ber of ways:

In addition to the usual lambda-abstractions, we add a
new sort of beast, an annotated abstraction, \(x::σ) .

t, where the bound variable is annotated with a poly-
type. Along with this new structure we have a new
rule, AABS.

We have replaced rule INST (instantiation) with sub-
sumption (SUBS) to reflect the new generality of the
operation.

12

Overview of Odersky-Läufer type inference
rules (1/2)

Γ ` t : σ

Int:

Γ ` i : Int

Abs:

Γ, (x : τ) ` t : σ

Γ ` (\x.t) : (τ → σ)

App:

Γ ` t : (σ → σ′)
Γ`u:σ
Γ`tu:σ′

Var:

Γ, (x : σ) ` x : σ

AAbs:

Γ, (x : σ) ` t : σ′

Γ ` (\(x :: σ) . t) : (σ → σ′)

Let:

Γ ` u : σ
Γ,x:σ`t:ρ

Γ`let x=u in t:ρ

13

Overview of Odersky-Läufer type inference
rules (2/2)

Γ ` t : σ

Annot:

Γ ` t : σ

Γ ` (t :: σ) : σ

Gen:

a 6∈ ftv(Γ)
Γ`t:ρ

Γ`t:∀a.ρ

Fun:

`subs σ3 ≤ σ1
`subsσ2≤σ4

`subs(σ1→σ2)≤(σ3→σ4)

Subs:

Γ ` t : σ′

`subsσ′≤σ
Γ`t:σ

Skol:

a 6∈ ftv(σ)
`subsσ≤ρ

`subsσ≤∀a . ρ

Spec:

`subs [a 7→ τ]ρ1 ≤ ρ2

`subs ∀a . ρ1 ≤ ρ2

Mono:

`subs τ ≤ τ

14

Problem with Generalizing Damas-Milner

We have the same problem with Odersky-Läufer that

we did with the first presentation of Damas-Milner: the

inference rules do not in themselves lead directly to

an algorithm. The rule Gen allows generalization any-

where, and Subs allows specialization anywhere.

We might attempt to extend the Damas-Milner idea to

this problem. The idea there is that we specialize every

time a variable occurrence is encountered, and gener-

alize in let expression. Peyton Jones and Shields give

the following example. Suppose f has the type

f :: ∀a . a → (∀b . b → (a, b)) → Int

15

Then consider the application f (\x . \y . (x, y)) .
We infer

(\x.\y.(x, y)) :: a → b → (a, b)

for some types a, b. Trying the obvious generalization
to polymorphic arguments, we get

(\x.\y.(x, y)) :: ∀ab . a → b → (a, b)

The problem is that this is a rank 1 type, while our
original type was rank 2, and is not true that

∀ab . a → b → (a, b) ≤ ∀a . a → (∀b . b → (a, b))

So we cannot allow ourselves to infer this type. Oder-
sky and Läufer solve this problem by “early generaliza-
tion” at every node in the syntax tree and then use the
rule SUBS at every function application. This becomes
quite expensive at runtime.

Prenex-form Polytypes

Peyton Jones and Shields amend this flaw with the

approach of Odersky and Läufer by a simplifying as-

sumption. Consider the two functions matching these

signatures:

h1 :: ∀a . a → (∀b . b → (a, b))
h2 :: ∀ab . a → b → (a, b)

Without type annotations, these two functions are in-

distinguishable by any program context. In general,

(σ1 → (∀a . σ2)) and ∀a . (σ1 → σ2) cannot be distin-

guished.

For this reason, one can simply choose to forbid the

latter case. This is done by GHC, which automatically

converts any instances of the latter into the former

16

(which is in prenex form). This is called “for-all hoist-

ing” (see Section 7.4.3.2 of the user manual).

Propogating Types Inwards

A serious limitation to this design so far is the manner

in which we introduced the higher-rank terms: a func-

tion can only have a higher rank if its argument has

a polymorphic type, which is true (so far) only if it is

explicitly annotated with a type.

For example, consider the following:

foo = (\i . (i 3, i True)) :: (∀a . → a) → (Int,Bool)

Peyton Jones and Shields argue it is “plain as a pike-

staff” that i should have the type ∀a . a → a. They

employ a system of partial type inference introduced by

Pierce and Turner, and construct a bidirectional version

of the Odersky-Läufer method. This system is able to

17

work from annotations present somewhere else in the

expression to infer the type of both the λ-argument and

the entire expression.

Example 2

With this power, we can define Monads directly without
recourse to classes:

data MonadT m = MkMonad \{ return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b

\}

The constructor MkMonad has the following type:

MkMonad :: forall m. (forall a. a -> m a)
-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m

(Example from the Haskell User’s Guide.)

18

References

• Peyton Jones S, Weirich S, Vytiniotis D, Shields M,

Practical type inference for arbitrary-rank types, to

appear in the Journal of Functional Programming.

• GHC User Manual, section 7.4.9. (Arbitrary-rank

polymorphism), accessed online 19 March 2006.

• Pierce BC, Types and Programming Languages,

The MIT Press, Cambridge (Massachusetts), Lon-

don (England), 2002.

19

