ACL2 Theorem
Prover

By Gabe Shelley and Steve
Forrest




Outline

® Introduction

® Logic Overview

® Extension Principles

® Practical Theorem Proving
® Questions

® References




Introduction

¢ ACLZ2 stands for A Computation Logic for
Applicative common LISP (developed by Boyer,
Kaufmann and Moore)
Decendent of Ngthm (Boyer-Moore Logic)
Not scalable
All function definitions must be “proven”

Consists of: functional programming language (Common
LISP), first order logic and mechanical theorem prover

Subset of LISP (side-effect free) and FOL (Quantifier free +
recursive functions)



Introduction

¢* ACL2 Ul

Default
text-based
Interact via a read-val-print loop

DrACulLa

Plugin for Dr.Scheme (Common GUI environment for
scheme and lisp based programming languages)



Logic Overview

® Recursively defined total functions

All' ACL2 functions are total. Functions which correspond to “mathematically
partial” functions (e.g. 1/x, sqrtﬁx)) are total, but their mathematically
undefined arguments are handled via guards.

Partial function macro have been created by Manolios and Moore
® First-order logic with limited support for quantification
defun-sk provides “syntactic sugar” for quantifiers by translating quantifiers
into well-founded recursion.
¢ Untyped (Uni-type)
enforced by guards or checks in function definitions
le. (natp x), (rationalp x)
® Measure:
Every function has a ‘measure’ defined for its input. Arguments to recursive
calls must have strictly decreasing measure.
® Loop-stopper
Ensures that the term-rewriting in ACL2’s proof system is confluent.



Extension Principles

® Definition
In general, functions must be proven to terminate and theorems must be

proven correct. However, using the “skip-proof” tag in definitions waives this
requirement

¢ Encapsulation
“Book” definitions of functions, theorems and references to other books
Information hiding of lemma details while maintaining rules in database

Syntactic checks are made when multiple books are incorporated into one
database to detect name collisions and ensure logical compatibility.



Practical Theorem Proving

® Proofs are generated by supplying hints within a
theorem definition to help guide the theorem prover

Hints are essentially additional instructions applied to a
particular subgoal

® Almost entirely automated.
Define everything before hand and let the system “run”

® Since all definitions are recursive, induction proofs
are the most common type

® Proof trees are generated for a particular theorem



Example

® Here we demonstrate an ACL2 theorem
proven with a customized induction scheme.

® (defun even-induction (x)
"Induct with increment of 2"
(1f (or (zp x) (equal x 1))

(§+ (even-induction (1- (1- x))))))

® (defthm even-square-has-even-base
(implies (and (integerp p) '
<= 0 p) (evenp (* p p)))
. (evenp p))
thints (("Goal _ _
:1nduct_(even-induction p)))
:rule-classes nil)



Questions

® Questions or comments?




References

¢ Kaufmann, M., Moore, J. — ‘Design Goals for ACLZ”,

¢ Kaufmann, M., Moore, J. — ‘A Precise Description of
the ACL2 Logic’,


http://citeseer.ist.psu.edu/cache/papers/cs/284/ftp:zSzzSzftp.cs.utexas.eduzSzpubzSzboyerzSzcli-reportszSz101.pdf/kaufmann94design.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/1068/http:zSzzSzwww.cs.utexas.eduzSzuserszSzmoorezSzpublicationszSzkm97a.pdf/kaufmann98precise.pdf

