
Type Reconstruction

CAS 706

Stephen Forrest

7 March 2006



Type Variables and Substitutions

Many of the variants of λ-calculi studied already have

featured unspecified and uninterpreted base types. Each

such type is generally assumed to represent a specific

concrete type whose details we don’t care about.

We would like to formalize this idea, and regard these

uninterpreted types as type variables, upon which we

may perform type substitutions to obtain more con-

crete types.

2



Type Substitutions (I)

A type substitution is a finite map from type variables to
types or other type variables. E.g. [X 7→ Nat, Y 7→ U ].

A substitution σ is defined in the expected way against
types:

σ(X) =

{
T if (X 7→ T ) ∈ σ
X if X 6∈ dom(σ)

σ(Nat) = Nat
σ(Bool) = Bool
σ(S → T ) = σ(S) → σ(T )

As with expression substitution, the action is applied
simultaneously, so the substitution [X 7→ Y , Y 7→ X] (if
valid at all) would swap the types X and Y .

3



Type Substitutions (II)

Observe that, unlike expression substitution, we needn’t

have any fear of accidental “type variable capture”,

since there isn’t (yet) any binding context for type vari-

ables.

We define σ on a term t by simply applying σ to all type

annotations appearing in t.

Similarly, we define σ on a context Γ = (x1 : T1, . . . , x2 :

T2):

σ(Γ) = (x1 : σ(T1), . . . , x2 : σ(T2))

We can also define compositions of substitutions σ ◦ γ;

they behave as one would expect, and (σ◦γ)S = σ(γS).

4



Preservation of Typing under Substitution

We need to make sure that type substitution doesn’t

break the well-typedness of our expression!

Fortunately, this is easy to prove. If a term which is a

value is well-typed with respect to the type variable X,

then it must be well-typed for any subsituted type also.

The result follows from induction on typing derivations.

Therefore if σ is a subsitution and Γ ` t : T , then

σΓ ` σt : σT .

5



Parametric Polymorphism and Type
Reconstruction

One powerful tool that types variables offer us is para-

metric polymorphism: we can use type variables to

generalize code that would otherwise be type-specific,

without introducing the complexities of subtyping. An

example from Haskell is map:

map :: (a -> b) -> [a] -> [b]

map f xs = [f x | x <- xs]

(The type variables a and b allow mapping over lists of

any type.)

Parametric polymorphism requires that every substitu-

tion be well-typed. A different but related question is,

given a term t with type variables and context Γ, does

6



there exist a type substitution σ and type T such that

σΓ ` σt : σT?

The process of finding such valid instantiations of type

variables is called type reconstruction.



Type Reconstruction

We will briefly formalize the notion of a valid instanti-

ation.

Let t be a term with associated context Γ. We say that

a solution for (Γ, t) is a pair (σ, T ) such that σΓ ` σt :

σT .

Notice that, just as with satisfying assignments to Boolean

variables, this need not be unique. For example, take

Γ = a : X,b : Y and t = b a. Then both of the following

are solutions:

([Y 7→ X → Z], Z), ([X 7→ Bool, Y 7→ Bool → Bool],Bool)

7



Constraint-Based Typing

To help us towards solving (Γ, t), we would like to com-

pute a set of constraints that must be satisfied by any

solution.

Instead of type-checking the term, we’ll simply record

its constraints, and resolve them later, generating fresh

type variables on the fly.

A constraint set C is a set of equations {Si = Ti : i ∈
1, . . . , n}. A substitution σ unifies the equation S = T if

σS = σT ; also,

σ unifies the constraint set C if it unifies every equation

in C.

The constraint typing relation Γ ` t : T |X C is defined

by the rules in the following page.

8



Constraint-Based Typing Rules

CT-Var:

x : T ∈ Γ

Γ ` x : T |∅ {}
CT-Abs:

Γ, x : T1 ` t2 : T2 |X C

Γ ` λx : T1.t2 : T1 → T2 |X C

CT-App:

Γ ` t1 : T |X1
C1,

Γ ` t2 : T |X2
C2,

X1 ∩ X2 =
X1 ∩ FV (T2) = X2 ∩ FV (T1) = ∅,
X 6∈ X1,X2, T1, T2, C1, C2,Γ, t1, t2

C′=C1∪C2∪{T1=T2→X}
Γ ` t1 t2:X|X1∪X2∪{X} C′

CT-Zero:

Γ ` 0 : Nat |∅ {}

CT-Succ, CT-Pred, CT-

IsZero:

Γ`t1:T |X C, C′=C∪{T=Nat}
Γ`succ t1:Nat |X C′

Γ`t1:T |X C, C′=C∪{T=Nat}
Γ`pred t1:Nat |X C′

Γ`t2:T |X C, C′=C∪{T=Nat}
Γ`iszero t1:Bool |X C′

CT-True, CT-False:

Γ ` true : Bool |∅ {}
Γ ` false : Bool |∅ {}

(CT-IF)

9



Constraint-Based Typing

This algorithm and the constraint typing relation to-

gether motivate a new definition:

Suppose that Γ ` t : T |X C. We say that a solution

for the problem (Γ, t, S, C) is a pair (σ, T ) such that σ

satisfies the constraints C and σS = T .

How does this relate to our definition of “solution”s

to the problem (Γ, t) from before? One is “existential”

and independent of our constraint machinery; the other

is algorithmic.

It is analogous to a theorem and its proof from logic,

and as in logic there are both soundness and complete-

ness results.
10



Constraint-Based Typing

Soundness of Constraint Typing:

Suppose that Γ ` t : T |X C. If (σ, T ) is a solution for

(Γ, t, S, C), then it is a solution for (Γ, t).

Write σ \X for the substitution which is not defined for

each variable in X , but is otherwise identical to σ.

Completeness of Constraint Typing:

Suppose that Γ ` t : T |X C. If (σ, T ) is a solution for

(Γ, t) and the domain of σ is disjoint from X , then there

is some σ′ with σ′ \X = σ such that (σ′, T ) is a solution

for (Γ, t, S, C).

11



Unification

We’ve seen an algorithm for computing constraints: we

would now like to solve them. As we have seen, we have

no reason to believe there is a unique solution, and in

general there is not.

Partial order on substitutions:

We want the most general solution possible. With that

in mind, we define a partial order on substitutions. We

say that σ is less specific than σ′, and write σ v σ′, if

there exists γ such that σ′ = γ ◦ σ.

(The intuitive idea here makes sense: the fewer substitutions σ

makes, the more general it is, since each substituted variable acts

to “specialize” a type.)

12



Let C be a constraint set. Let σ be the infimum (great-

est lower bound) of all the substitutions which satisfy

C, with respect to v. If σ itself satisfies C, then it is

called a principal unifier of C.



Unify algorithm

The algorithm unify always halts. It either returns a
principal unifier of C or fails, for non-unifiable constraint
sets.

unify(C) = if C = ∅ then []
else let {S = T} ∪ C′ = C in
if S = T then

unify(C′)
else if S = X and X 6∈ FV (T ) then

unify([X 7→ T ] C′) ◦ [X 7→ T ]
else if T = X and X 6∈ FV (S) then

unify([X 7→ S] C′) ◦ [X 7→ S]
else if S = S1 → S2 and T = T1 → T2 then

unify(C′ ∪ {S1 = T1, S2 = T2})
else

fail

13



Principal Types

Earlier, when discussing parametric polymorphism, the

idea of a most general type which is still well-typed was

mentioned.

With the tools we’ve built thus far, we can be precise

about the meaning of this. Given a constraint problem

(Γ, t, S, C), a principal solution for this problem is a pair

(σ, T ), where σ is smaller than any other solution ac-

cording to v.

The type T above is then called a principal type.

From results about unification, it follows that if there

is any solution to (Γ, t, S, C), there is a principal one.

14



Exercise

Find a principal type for

λx : X . λy : Y . λz : Z . (x z) (y z)

Let’s look at the arguments:

y accepts a z, so Y = Z → B for some new type B.

x also accepts a z, so X = Z → D for some new type

D.

(x z), of type D, accepts (y z), of type B, so D = B → C

for some new type C.

For simplicity, rename Z to A. Then we have:

x : (A → B → C), y : (A → B), and z : A.

(It can be shown this is the most general solution.)

15



Reference

Pierce, Benjamin C., Types and Programming Lan-

guages, The MIT Press, Cambridge (Massachusetts),

London (England), 2002.

16


