
PROPERTY INFERENCE FOR MAPLE: AN

APPLICATION OF ABSTRACT

INTERPRETATION

By

STEPHEN A. FORREST, B.MATH.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Science
Department of Computing and Software

McMaster University

c© Copyright by Stephen A. Forrest, September 24, 2007

ii

MASTER OF SCIENCE(2007) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE: Property Inference for Maple: An application of abstract interpretation

AUTHOR: Stephen A. Forrest, B.Math.(University of Waterloo)

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: 1, 76

iii

We present a system for the inference of various static properties from source code

written in the Maple programming language. We make use of an abstract interpretation

framework in the design of these properties and define languages of constraints specific

to our abstract domains which capture the desired static properties of the code. Finally we

discuss the automated generation and solution of these constraints, describe a tool for doing

so, and present some results from applying this tool to several nontrivial test inputs.

iv

In preparing this document I should like to acknowledge the patience, guidance and

many helpful suggestions of my advisor, Jacques Carette. As well, I thank Kirsten Bos for

continuing moral support throughout this long period of writing. Lastly, I should also thank

Gordon Uszkay for his technical assistance in the preparation of this document.

Contents

1 Introduction 1

2 Overview of Maple 3
2.1 Data types . 4

2.1.1 Base types . 4
2.1.2 Variables . 4
2.1.3 Container types . 5
2.1.4 Function applications . 6

2.2 Procedures . 7
2.3 Typing . 9
2.4 Statements and control structures . 10

2.4.1 Simultaneous assignment . 10
2.4.2 Loops . 10

2.5 Functional features . 11
2.6 Evaluation levels . 12
2.7 Reflection tools . 12

3 Constraint-based Data Flow Analysis and Abstract Interpretation 14
3.1 Constraint-based Data Flow Analysis . 14

3.1.1 System of constraints . 14
3.1.2 Fixed points . 15

3.2 Abstract interpretation . 16
3.3 Example: Rule of sign . 17
3.4 Sound approximations . 18

3.4.1 Galois connections . 19
3.4.2 Return to data flow analysis . 20

3.5 Collecting semantics . 21
3.6 Widening and narrowing operators . 21

3.6.1 Widening operators . 22
3.6.2 Narrowing operators . 24

v

CONTENTS vi

3.6.3 Comparison of approaches . 24

4 Properties and their domains 26
4.1 Introduction . 26
4.2 Properties of interest . 26

4.2.1 State-based properties . 27
4.2.2 Program-based properties . 28
4.2.3 Value-based properties . 29
4.2.4 Summary . 31

4.3 Modelling the properties . 31
4.3.1 State- and program-based properties 33
4.3.2 Value-based properties . 35

4.4 Refinements . 37
4.4.1 Refinement and Galois insertions 37
4.4.2 Additional value-based properties 40

4.5 Summary . 41

5 Constraints 42
5.1 Introduction . 42
5.2 Constraints in state- and program-based analyses 43

5.2.1 ReachingContexts . 43
5.2.2 NumReads and NumWrites . 45

5.3 Constraints in value-based analyses . 46
5.3.1 ExprseqLength . 46
5.3.2 NumOperands . 47

6 Design 48
6.1 Constraint generation . 48

6.1.1 Opportunistic constraint generation 48
6.1.2 Generation of constraints from Reaching Contexts 50
6.1.3 Generating constraints for “unpartitioning” 51

6.2 Constraint solution . 52
6.2.1 Outline . 53
6.2.2 Flow of information . 54
6.2.3 Termination conditions . 55
6.2.4 Loops . 55
6.2.5 Recurrence relation approach . 57
6.2.6 Function application . 59

6.3 Software specification . 62
6.3.1 Scope . 62

CONTENTS vii

6.3.2 Preprocessing . 62
6.3.3 Property dependencies . 63
6.3.4 Construction of property record 63

7 Results 65
7.1 Examples . 65

7.1.1 Example 1: Primality tester . 65
7.1.2 Example 2: GrowSeq . 66
7.1.3 Example 3: Error detection . 67

7.2 Results from testing . 68
7.2.1 Example from compiler/partial evaluator test base 68
7.2.2 Results from compiler/partial evaluator test base 69
7.2.3 Results from Maple library test base 72
7.2.4 Discussion . 74

8 Conclusion 75

A Inert Form Tags 77
A.1 Inert Forms Corresponding to Statements 77
A.2 Inert Forms Corresponding to Values . 78
A.3 Additional Inert Form Tags . 79

B Surface Type Aliases 81

C Opportunistic constraint rules 83

D Special Function Table 84

Index 105

Chapter 1

Introduction

Our goal is the static inference of properties from Maple code. The motivations we have

for this effort are primarily the traditional arguments for static analysis: better program

comprehension, automated error detection, and general desire for a saner world.
We are also curious to see what consequences the fact that Maple is a computer algebra

system with some unusual and even unique features has on our analysis. Are there features

shared by Maple and other symbolic computer algebra systems such as Mathematica and

MuPAD, but not shared with any other programming languages? Might there be static

properties entirely unique to Maple?
As well, as a dynamic language Maple is considerably more polymorphic than many

authors of Maple programs realize. The “correct” semantics of a program may therefore

differ considerably from the semantics the program author had in mind, and a tool like the

one we propose might aid in detecting these cases of “inadvertent polymorphism”.
In a previous work ([2], with Jacques Carette), we attempted a very naı̈ve type inference

of Maple through a traversal of its library routines. It became clear through this analysis that

more benefits could be obtained with the addition of some Maple-specific “opportunistic”

knowledge.
Our framework for this analysis must be consistent, scaleable, and most importantly,

correct. A major guiding factor in our approach is our desire to avoid the toy problem

syndrome: a static analysis tool that as a consequence of design decisions is artificially

limited in its scope or efficiency.
While in the interests of expediency we will obviously be bound by certain restrictions

on the range of inputs that we can process, we wish to make our analysis as generic as

1

1. Introduction 2

possible. If no information about a particular component can be statically deduced, we

would like to merely note this fact and move on, without this further limiting our analysis.

With these restrictions in mind, our ultimate choice is to employ various techniques

from Data Flow Analysis to generate systems of constraints on values or state, whose cor-

rectness is assured using a framework of abstract interpretation. This gives us, for each

property of interest, a convenient language of constraints in which to express the relation-

ships between program points.

The work has considerable potential, not just for static analysis and overall code com-

prehension but also as as an enabler of automated program transformations. In particular,

it would aid in the breadth and range possible for tools like partial evaluators [20, 4], type

inferencers, and code generation.

For example, a significant problem faced in performing partial evaluation on a Maple

procedure is resolving and residualizing a procedure call. We may be able to greatly sim-

plify the specialized procedure if we know how many arguments were supplied in calling

it; however, in Maple this knowledge generally requires static analysis to compute.

With a longer-term view, one could combine several of these static analyses in an effort

to do static type inference on the code. While the constraint languages here are simple by

design, the language of inferred types would be complex enough to capture all or most of

the information present in each quantity.

In our presentation here, we are guided by the “separation of concerns” described by

Cousot [5], who argued for clear distinctions between identification of the properties one

wishes to estimate, the lattices employed in such estimations, the specification for a solution

strategy, and the details of its actual implementation.

Chapter 2

Overview of Maple

We have opted to direct our efforts here specifically upon the Maple programming lan-

guage. Many of the specific details that will interest and challenge us are not especially

well-known outside Maple circles, so it is necessary to provide a brief survey of the lan-

guage itself.

Our purpose here is threefold: to introduce and give a feeling for the language we shall

be tackling to readers unfamiliar with the Maple programming language, to provide some

motivation for our choice of properties to analyze in Chapter 4, and to chronicle the more

peculiar aspects of the language that will present unique impediments to our analyses. For

a more detailed discussion of the semantics of Maple, the interested reader should refer to

[18].

In the examples below, we shall employ the convention that input to Maple is prefaced

with a > prompt, and the corresponding output is shown on the following line.

In the following, “Maple” will usually refer to the Maple programming language, and

less often to the commercial software package implementing said language. In general, the

details discussed are independent of software version numbers, but whenever this is not the

case, the version referenced is Maple 10.

Maple is an interpreted, untyped, procedural language with lexical scoping and first-

class procedures.

Many of the analyses we wish to attempt are complicated by the particular semantics

of Maple. Some of these, such as basic control structures, are shared with many other

programming languages. Other features, such as support for arbitrary-precision integers,

3

2. Overview of Maple 4

are shared with a much smaller set of other programming languages. Still other features,

such as a symbolic default value for variables, are specific to a CAS or to Maple alone.

Following is a description of some key features.

2.1 Data types

2.1.1 Base types

As one would expect from a mathematical programming language, Maple has a rich variety

of base types. These include arbitrary-precision integers, rationals, hardware and software

floating-point numbers, and complex numbers over all the previously-mentioned domains.

Arbitrary-precision floating-point computations are possible through software.

Here we see an exact computation with rational numbers:

> 2ˆ65 ∗ (1 / 3 ˆ 4 2) + 7 ;

802826412068005617695/109418989131512359209

Arithmetic with integers and rationals is exact by default; floating-point computations

are performed only if specially requested or if a floating-point number is introduced into

the computation. The same example with 7.0 illustrates the significance a single floating-

point number has on the outcome of the computation:

> 2ˆ65 ∗ (1 / 3 ˆ 4 2) + 7 . 0 ;

7 .337176284

In addition to numeric data, strings are a base type with and usual string operations

(concatenation, subselection, pattern-matching, etc.)

2.1.2 Variables

Variables in Maple have a dual role as containers and data. If a variable name is not initial-

ized, but used, its evaluated value is merely itself: or, more correctly, a symbolic reference

to its own name. One might view such symbols as another basic data type.

This example shows that a, a variable with no past history, may be freely used as a

symbol as part of an expression assigned to another variable.

2. Overview of Maple 5

> b := 2∗a ;

b := 2∗a

> 3 ∗ b ˆ2

12∗ a ˆ2

Since any fragment of code may alter the value of a global variable at any time, we

cannot assume that state remains constant when evaluating an expression. Should a in the

above example later be assigned a value, say 7, the variable b will afterwards evaluate to

14, not 2∗a, even though no further writes to b have been made..

2.1.3 Container types

Maple has a wide variety of container types for data. These include lists, sets, expression

sequences, function applications, as well as hash tables, arrays, vectors, and matrices.

It will be helpful to begin with the more familiar datatypes. A list is simply an arbitrary-

sized ordered sequence of Maple objects. Syntactically, a list is a comma-delimited se-

quence of objects enclosed by opening and closing brackets. Lists are ordered and duplicate

elements are allowed. A list may contain any Maple value, including other lists:

> [1 , [4 , 3 , [7 , 7]] , 6] ;

[1 , [4 , 3 , [7 , 7]] , 6]

Sets are similar to lists, but differ in that they are unordered and duplicate elements

are removed. The ordering imposed by Maple is arbitrary, based on an element’s memory

address, and is also session-specific. Syntatically, a set is a comma-delimited sequence of

objects enclosed by opening and closing curly braces:

> {1 , 2 , {1 , 2 , 3} , {2 , 3 , 1} , 2} ;

{1 , 2 , {1 , 2 , 3}}

We proceed now to a less-familiar datatype. An expression sequence (which we shall some-

times abbreviate as expseq) is an arbitrarily-sized list of values. Its values are syntactically

delimited with commas; unlike lists and sets, no left and right braces are necessary.

The sequence of comma-delimited values from which an expseq is built may be any

values, including other expseqs. However, expseqs are self-flattening: that is, the result of

concatenating two expseqs is a single non-nested expseq:

2. Overview of Maple 6

> 1 , (4 , 3 , (7 , 7)) , 6 ;

1 , 4 , 3 , 7 , 7 , 6

There is a unique expression sequence of length 0; it is accessible by the special name

NULL.

> NULL, (1 , 2) , NULL, 3 ;

1 , 2 , 3

In addition to being self-flattening, another notable feature of expression sequences is auto-

matic cast to value: an expression sequence of length 1 automatically evaluates to its only

element. Put another way, an object whose only potential length as an expression sequence

is 1 is not an expression sequence.

(Observe that because of self-flattening and automatic cast to value, NULL is a left and

right identity for the , operator.)

We can therefore partition the set of Maple values such that every value v is either an

expression or an expseq, and in the latter case either v = NULL or the length of expseq v is

≥ 2.

At this point, it is helpful to return to lists and sets. We spoke of lists and sets as

containing values: to be precise, a list or set holds only a single value, which is an expseq.

Lists and sets are merely wrappers; however, because they are expressions, they may be

nested.

> [1 , (4 , 3 , {7 , 7}) , 6 ;

[1 , 4 , 3 , {7} , 6]

2.1.4 Function applications

Function applications deserve special attention as their behaviour is especially unique. A

function application has the form f (a) where f is the function name and a is an expression

sequence of arguments. Following Maple terminology we shall refer to f as the zeroth

operand of f (a).

The fact that a is an expression sequence provides another illustration of the ubiquity of

expression sequences in Maple; one might say that all Maple functions take only a single

argument (an expression sequence). Because the sequence of arguments is an expression

sequence, it may be constructed dynamically, and so even the number of arguments passed

in a function application may not be statically knowable. For example:

2. Overview of Maple 7

> S := 2 , 3 , 7 , 1 1 ;

2 , 3 , 7 , 11

> i g c d (S) ; # same as i g c d (2 , 3 , 7 , 1 1) because o f p r e v i o u s a s s i g n m e n t

1

We are not able to determine the number or type of arguments passed to igcd from the

function application alone; to find this we must examine the preceding computation history.

It is not only the input to function applications which is unusual. When the name f is

assigned to a procedure (see 2.2), the procedure is applied the operands of the function

application, and returns the result, as one would expect.

However, recall from 2.1.2 that an unassigned name has a symbolic default value. If f

is an unassigned name, the application f (a) returns unevaluated, as a function data structure.

If the symbol f later receives a value and this function data structure f (a) is re-evaluated, it

will evaluate as a function application by applying the value of f to the argument a.

2.2 Procedures

As described in 2.1.4 when a function application is not a data structure as described above,

it results in the execution of a procedure.

> p := proc (a , b , c , n)

re turn (a ˆ n + b ˆ n = c ˆ n) ;

end proc :

> p (x , y , z , 3)

x ˆ3 + y ˆ3 = z ˆ3

A procedure body is a sequence of statements (see 2.4) from which a value is returned; if

no value is provided explicitly, the system implicitly returns the last evaluated value.

Certain special variable names are usable in a procedure body and convey dynamic

information about the function application that initiated the procedure. The name args

provides the expression sequence of arguments passed into the procedure, while the name

nargs gives the number of arguments provided (which, as mentioned in 2.1.4, may vary).

> p := proc ()

s p r i n t f (”Number o f a rgumen t s was : %d\n ” , nargs) ;

end proc :

2. Overview of Maple 8

> p (1 , 2 , 4) ;

” Number o f a rgumen t s was 3”

> p () ;

” Number o f a rgumen t s was 0”

Procedures are lexically-scoped, with local variables in their own local scope. Lo-

cal variables have a default symbolic value as do other Maple variables. These symbols,

or structures containing or referencing them, may be freely passed out of the procedure:

Maple thus supports closures.

The following example demonstrates Maple’s support for closures, lexical scoping, and

procedures as first-class values. The procedure in this example is a counter generator pro-

cedure: it initializes a local counter variable, then returns a counter procedure which con-

tains a lexical reference to this counter, increments it upon each function call, and returns

the result.

> C o u n t e r G e n e r a t o r := proc (i n i t i a l V a l u e) l o c a l c o u n t e r ;

c o u n t e r := i n i t i a l V a l u e ;

proc ()

c o u n t e r := c o u n t e r + 1 ;

c o u n t e r ;

end proc :

end proc :

> C o u n t e r P r o c := C o u n t e r G e n e r a t o r (0) :

proc () c o u n t e r := c o u n t e r + 1 ; c o u n t e r end proc

> C o u n t e r P r o c () ;

1

> C o u n t e r P r o c () ;

2

In general procedures usable by Maple may be classified into three groups : kernel,

library, and user-defined. They are distinguished thus:

• Kernel procedures or built-in procedures are those procedures that are not written

in the Maple language but are built in to the system kernel itself. These typically

involve core functionality.

• Library procedures are those written in the Maple language and included in the de-

fault Maple library.

2. Overview of Maple 9

• User-defined procedures are written in the Maple language but are not part of the

default Maple library.

This distinction will become important later on, since we will be unable to perform analysis

on built-in procedures as they are not written in the Maple language.

2.3 Typing

Though Maple is effectively an untyped language in its design, it does have some notion

of type-checking. A particular subset of first-class values are types. (This idea of types

as a subset of values is commonly called “Type:Type” in type theory literature [1] and has

important consequences for type inference in the system, see [24, ch. 30]).

One may dynamically check whether a value conforms to a given type via a function

call of the form type(expression, type expression), which returns a boolean result.

> t y p e (2 / 3 , i n t e g e r) ;

f a l s e

> t y p e ([” pomme” , ” o range ” , ” ananas ”] , l i s t) ;

t rue

One can also put explicit type checks on the formal arguments to a user-defined procedure.

These raise an exception when supplied with non-matching values.

> ThueMorse := proc (n : : n o n n e g i n t)

i f n=0 then 0

e l i f t y p e (n , even) then procname (n / 2)

e l s e 1−procname ((n−1)/2) end i f ;

end proc :

> ThueMorse (−1) ;

E r r o r , (in ThueMorse) i n v a l i d i n p u t : ThueMorse e x p e c t s i t s 1 s t

argument , n , to be of t y p e n o n n e g i n t , b u t r e c e i v e d −1

However, unlike in a statically-typed language, these checks are only performed at runtime

at the moment of function application.

In this sense, Maple types can be regarded effectively as a class of dynamic predicates

on values, and not types in the usual sense.

2. Overview of Maple 10

2.4 Statements and control structures

Many of the control structures of Maple are broadly similar to those encountered in other

procedural languages and do not require special explanation. Maple has an assignment

operator, if-then structures, loops, try/catch blocks, and error statements. We will discuss

those aspects of these control structures which are Maple-specific or otherwise unusual.

2.4.1 Simultaneous assignment

In addition to assignment to a single variable, simultaneous assignment is supported; in the

following example, the assignment to a and b is done simultanously in both steps:

> (a , b) := (1 , 2) ;

(a , b) := (1 , 2)

> (a , b) := (b , a) ;

(a , b) := (2 , 1)

Note that as a consequence, the value of a and b has been swapped without resorting to the

use of temporary variables.

2.4.2 Loops

Maple supports two types of loops. It should be noted, however, that because of Maple’s

functional features (see 2.5) many computations that might otherwise employ loops instead

utilize functional primitives for traversing expressions.

Two types of loop are supported:

• For-from loop: This loop takes a variable v and arguments (a, s, b, c) and steps from

a to b by interval s, assigning each step value to v. This is essentially the standard

procedural for-loop. (Note that infinity is an acceptable value for b, so the fact

that b is given a value does not guarantee termination.)

• For-in loop: This loop takes a variable v and an value e and steps through the

operands of e, assigning v to each in turn. This is the equivalent of the “foreach”

loop in some programming languages.

Both loops have an optional dynamic condition which, if provided, is checked at the start

of each loop iteration.

2. Overview of Maple 11

2.5 Functional features

While still fundamentally a procedural language, Maple has many functional features.

These include first-class procedures, pattern matching, a map command for mapping over

data structures, a functional if operator, functional operators for arithmetic operations,

and library support for currying, composition, and λ-abstraction.

The following example computes the element maximum of two lists using zip and

max:

> z i p (max , [1 , 7 , 5 , 9] , [6 , 6 , 8 , −1]) ;

[6 , 7 , 8 , 9]

The following is a Maple implementation of the function concatMap from the Haskell

Prelude (see [23]).

> concatMap := proc (f , a) l o c a l x ; [seq (op (f (x)) , x=a)] end proc :

The command combinat:-partitions (n) gives a list of all partitions of a positive integer n; in

this sense a partition is a list [a1, . . . , an] such that ai ∈ N and 1 ≤ ai ≤ n for i = 1, . . . , n

and a1 + · · ·+ an = n. This example computes all partitions up to size 3:

> concatMap (combina t:- p a r t i t i o n s , [1 , 2 , 3]) ;

[[1] , [1 , 1] , [2] , [1 , 1 , 1] , [1 , 2] , [3]]

However, we should not overstate our case here: appearance notwithstanding, Maple is

very far from the typical characterization of a functional language. Any procedure can alter

global state at any time, should it opt to do so. An even stronger argument is that because

variables can be passed around as symbols prior to receiving a value, and anything glimpsed

as a symbol can be assigned, this means that an innocuous-looking function application

with an unknown or dynamic function name has the capacity to alter the state of any of its

arguments. Therefore we can not even always trust that any state changes will be confined

to global (and not local) state.
Here is a simple example of a procedure that receives an argument and promptly at-

tempts to write the value 2 to it.

> writeTwo := proc (s) i f t y p e (s , name) then a s s i g n (s , 2) end i f ; end proc :

> writeTwo (f re shSymbol) ;

> f r e shSymbol ;

2

2. Overview of Maple 12

2.6 Evaluation levels

As the system permits the creation of deeply-nested expressions containing symbolic quan-

tities, it is necessary to allow some flexibility on how expressions are evaluated. There are

several tools for this purpose:

> T o I n e r t (x−>3∗x ˆ2) ;

Ine r t PROC (

Inert PARAMSEQ (

Inert NAME (” x ”)

) ,

Inert LOCALSEQ () ,

Inert OPTIONSEQ (

Inert NAME (” o p e r a t o r ”) ,

Inert NAME (” arrow ”)

) ,

Inert EXPSEQ () ,

Inert STATSEQ (

Iner t PROD (

Inert POWER (

Inert PARAM (1) ,

Ine r t INTPOS (3)

) ,

Ine r t INTPOS (2)

)

) ,

Inert DESCRIPTIONSEQ () ,

Inert GLOBALSEQ () ,

Inert LEXICALSEQ ()

)

Figure 2.1: ToInert example, formatted

for readability

Maple has a delay evaluation operator: this

is simply a thunk. If e would evaluate to an ex-

pression b, the result of evaluating a when sur-

rounded by the delay operator will be simply a,

rather than its evaluated result b. Additionally,

there are ways of forcing custom evaluation lev-

els. The command eval will evaluate the ex-

pression as far as it can. Though this is often

necessary, it has the potential to become quite

expensive.

2.7 Reflection tools

One of the features of Maple which is especially

interesting and which will prove especially use-

ful is its built-in support for reflection. This sup-

port is provided by a pair of functions which con-

vert “live” code to a so-called inert form.

Concretely, the inert form is a data structure

made of a series of nested function calls with

symbolic function names. Because the names

are symbols, the expression is inert, meaning

it will not evaluate to anything other than its

present value. This use of symbolic function

applications as a customized data structure is a

common pattern in Maple.

However, the key point is the data in the data structure. The symbols used in the inert

form and the arrangement of function calls is a representation of the abstract syntax tree of

2. Overview of Maple 13

the original expression from which the inert form was generated. In general, each function

application in the inert form corresponds to a node in the abstract syntax tree.

The result is that we may freely transform a “live” expression into data which is or-

ganized in a consistent manner and which can be studied and manipulated without fear of

accidentally triggering an evaluation. Once we are finished, the data may be freely trans-

formed back into a “live” expression.

The symbols present as function names in inert form data structures all belong to a finite

set of symbols: they all take the form Inert foo where foo is the name of data type or

control structure. We may think of these as equivalent to labels on nodes in the AST which

qualify which type of expression or statement we are examining.

We will refer to these Inert foo symbols as “inert tags.” The list of inert tags that

may be produced by a call to ToInert is lengthy but finite. For a complete accounting,

see Appendix A.

The built-in procedure ToInert transforms an input expression into an inert form.

Following is a short example; for a lengthier one see figure 2.1.

> T o I n e r t ([−1 , 1]) ;

I n e r t L I S T (Inert EXPSEQ (Ine r t INTPOS (1) , Iner t INTNEG (−1)))

The inverse operation to ToInert is, naturally enough, FromInert, which transforms

an inert form into a “live” Maple object.

> F r o m I n e r t (Iner t SUM (Inert NAME (” a ”) , Iner t INTNEG (5))) ;

a − 5

The inert form shall be an essential low-level tool in our analysis. The abstract syntax

tree as provided by ToInert will be the basic unit upon which all our analyses will be

performed. For this reason, it is ToInert which we shall be using most frequently: there

are however some occasions on which we will be grateful for the capability of transforming

code in either direction.

Chapter 3

Constraint-based Data Flow Analysis

and Abstract Interpretation

In this chapter we present the theoretical underpinnings of our analysis. Here our discussion

is generic and makes no reference to Maple; we intend to motivate our later exposition and

introduce important concepts and terminology which will be used later.

3.1 Constraint-based Data Flow Analysis

Data Flow Analysis is a widely-studied and well-established branch of static analysis, in

heavy use in both the academic and commercial field. Here we briefly summarize a par-

ticular technique, data flow analysis utilizing a constraint-based approach, which we shall

make use of later.

Our somewhat informal presentation is loosely based on [22, pp. 8-10, 41-43]. See also

[28] for a good presentation of Reaching Definitions and other related Data Flow analyses.

3.1.1 System of constraints

Given an input program p, we first obtain its abstract syntax tree AST(p). We are typically

interested in a specific subset of the nodes of AST(p), specific to our particular analysis.

To each of these “nodes of interest” we affix a unique label drawn from some fresh set of

symbols. Let Lab denote the set of labels; clearly Lab will be finite because AST(p) is

finite.

14

3. Constraint-based Data Flow Analysis and Abstract Interpretation 15

At this point we have in mind some lattice (L,v) of values. It is our goal to construct

a map ϕ : Lab → L; that is, to associate with every program point ` ∈ Lab of interest a

value in L.

Let us define the set M as follows:

• If x ∈ Lab or x ∈ L, then x ∈M .

• If f : Ln → L is a monotone function and x1, . . . , xn ∈M , then f(x1, . . . , xn) ∈M .

The central idea is to generate, in a way specific to the input language and lattice L, a

system of constraints. These are predicates of the form ` w x where ` ∈ Lab and x ∈M .

(Without loss of generality we take ` w x; we could have also chosen ` v x, as long as the

direction is consistent across all constraints.)

Given any two constraints ` w x and ` w y for some ` ∈ Lab and x, y ∈ M , we can

unify these into a single constraint with the lattice join operator; that is:

(` w x) ∧ (` w y) =⇒ ` w (x t y)

After all these unifications have been performed, we end with a system of constraints of

the form
`1 w F1(`1, . . . , `N)
...

...
...

`N w FN (`1, . . . , `N)

where N is the (finite) size of Lab, and the `i are all distinct.

We may write this as ~̀w F (~̀) for F ∈ ŁN → LN .

3.1.2 Fixed points

The fact that F is monotone and F (~⊥) w ~⊥ tells us that F n+1(~⊥) w F n(~⊥) for any n ∈ N.

Definition 1 Let (L,v,w) be a lattice. A sequence {ai}
∞
i=1 with ai ∈ L is said to be an

ascending chain if an v an+1 for all n ∈ N.

The L satisfies the Ascending Chain Condition if for every ascending chain {ai}
∞
i=1 there

is some N ∈ N such that ai = aj for i, j > N .

3. Constraint-based Data Flow Analysis and Abstract Interpretation 16

If L is finite or satifies the Ascending Chain Condition, there exists some n ∈ N such

that F n+1(~⊥) = F n(~⊥).

This is in fact also a least solution to our constraint problem ~̀ w F (~̀). Therefore,

starting from ~̀ = ~⊥ we may generate a solution in n steps by successive application of

F to the incremental result, provided of course that the convergence criteria hold. We will

later discuss what to do if they do not hold.

3.2 Abstract interpretation

Abstract Interpretation [9, 11] is a general theoretical framework for the sound approxi-

mation of program semantics. Its generality and applicability to many different domains

makes it particularly well-suited for use as a program analysis methodology.

Here, we provide a brief introduction to the field. The interested reader may learn more

from the many papers of P. Cousot ([14, 6] being particularly relevant for our purposes).

This overview has been adapted from a shorter one by Jacques Carette and this author

(see [3]); this in turn was greatly influenced by the pleasant introduction [26] by Mads

Rosendahl, and by David Schmidt’s lecture notes [27].

While the many approaches that fall under the rubric of “abstract interpretation” differ

in both their theoretical underpinnings and the subjects of their analyses, there is a single

unifying idea.

Given a program p, we assign two distinct semantics to p. The first is the “usual” or

concrete semantics, which models the runtime behaviour of p. The other semantics, the

abstract semantics, is typically chosen because it is easier to compute or reason with. We

require that our two interpretations of p “agree” in a sense, so that we may answer certain

questions about the runtime behaviour of p (i.e. its concrete semantics) by examining its

abstract semantics and translating this back to the concrete world.

More formally, our assignment of semantics to p is an interpretation. We therefore have,

two interpretations I1JpK and I2JpK, where I1JpK is a concrete interpretation and I2JpK an

abstract interpretation.

The entire aim of the technique of abstract interpretation is the judicious selection of

I1JpK and I2JpK in such a way that I1JpK models the “real world”, I2JpK is easier to handle,

and the two are related in such a way that we may infer facts about I1JpK from I2JpK.

3. Constraint-based Data Flow Analysis and Abstract Interpretation 17

3.3 Example: Rule of sign

To make this discussion less “abstract,” let us begin with a standard example, the Rule of

sign (for an early description, see [29]). Consider a simple expression language given by

the grammar

e ::= n | e + e | e ∗ e

(In the above, n is a placeholder for all integers n ∈ Z.)

The standard interpretation is usually given as

EJeK : Z EJe1 + e2K = EJe1K + EJe2K
EJnK = n EJe1 ∗ e2K = EJe1K ∗ EJe2K

We wish to be able to predict the sign of an expression whenever possible, by using

only the signs of the constants in the expression.

Our chosen abstract domain will allow us to distinguish between expressions that are

constantly zero, positive or negative. In fact, however, this is not enough: if we add a

positive integer to a negative integer, we cannot know the sign of the result (without actually

performing the addition). So we also give ourselves a value to express this uncertainty, and

denote that all we know is the result is a ‘number’.

Taking Sign = {zero, pos, neg, num}, we can define an “abstract” version of addition

and multiplication on Sign:
⊕ : Sign× Sign→ Sign

⊕ neg zero pos num

neg neg neg num num

zero neg zero pos num

pos num pos pos num

num num num num num

⊗ : Sign× Sign→ Sign
⊗ neg zero pos num

neg pos zero neg num

zero zero zero zero zero

pos neg zero pos num

num num zero num num
Using these operators, we can define an abstract interpretation for expressions as:

AJeK : Sign AJe1 + e2K = AJe1K⊕ AJe2K
AJnK = sign(n) AJe1 ∗ e2K = AJe1K⊗ AJe2K

where sign(x) = if x > 0 then pos else if x < 0 then neg else zero.

3. Constraint-based Data Flow Analysis and Abstract Interpretation 18

How are the interpretations EJxK and AJxK related? Formally, we can describe the

relation between them as follows (and this is typical):
γ : Sign→ P(Z) \ ∅

γ(neg) = {x | x < 0}

γ(zero) = {0}

γ(pos) = {x | x > 0}

γ(num) = Z

α : P(Z) \ ∅ → Sign

α(X) =

neg X ⊆ {x | x < 0}

zero X = {0}

pos X ⊆ {x | x > 0}

num otherwise
The (obvious) relation between γ and α is:

• For all s ∈ Sign, we have α(γ(s)) = s.

• For all X ∈ P(Z) \ ∅, we have X ⊆ γ(α(X)).

γ is called a concretization function, while α is called an abstraction function. Note these

functions allow a much simpler definition of the operations on signs:

s1 ⊕ s2 = α({x1 + x2 | x1 ∈ γ(s1) u x2 ∈ γ(s2)})

s1 ⊗ s2 = α({x1 ∗ x2 | x1 ∈ γ(s1) u x2 ∈ γ(s2)})

3.4 Sound approximations

From this we get the very important relationship between the two interpretations:

∀e.{EJeK} ⊆ γ(AJeK)

In other words, we can safely say that the abstract domain provides us with a correct ap-

proximation to the behaviour in the concrete domain. This relationship is often called a

safety or soundness condition. So while a computation over an abstract domain may not

give us very useful information (think of the case where the answer is num), it will never

be incorrect, in the sense that the true answer will always be contained in what is returned.

More generally we have the following situation:

3. Constraint-based Data Flow Analysis and Abstract Interpretation 19

3.4.1 Galois connections

Definition 2 Let 〈C,v〉 and 〈A,v〉 be complete lattices, and let α : C → A, γ : A → C

be monotonic and ω-continuous functions. If for all a ∈ A, c ∈ C we have the condition

that

c vC γ(α(c))⇐⇒ α(γ(a)) vA a

then we say we have a Galois connection. If in fact for all a ∈ A, c ∈ C we have the

stronger condition:

c v γ(α(c), α(γ(a)) = a

then we say we have a Galois insertion.

The reader is urged to read [17] for a complete mathematical treatment of lattices and

Galois connections. The main property of interest is that α and γ fully determine each

other. Thus it suffices to give a definition of γ : A → C; in other words, we want to name

particular subsets of C which reflect a property of interest. More precisely, given γ, we can

compute α via α(c) = u{a | c vC γ(a)}, where u is the meet of A.

Given this, we will want to synthesize abstract operations in A to reflect those of C; in

other words for a continuous lattice function f : C → C we are interested in f̃ : A → A

via f̃ = α ◦ f ◦ γ. Unfortunately, this is frequently too much to hope for, as this can easily

be uncomputable. However, this is still the correct goal:

Definition 3 For a Galois connection (as above), and functions f : C → C and g : A →

A, g is a sound approximation of f if and only if

∀c.α(f(c)) vA g(α(c))

or equivalently

∀a.f(γ(a)) vC γ(g(a)).

Then we have that (using the same language as above)

Proposition 1 g is a sound approximation of f if and only if g vA→A α ◦ f ◦ γ.

How do we relate this to properties of programs? To each program transition from point

pi to pj , we can associate a transfer function fij : C → C, and also an abstract version

3. Constraint-based Data Flow Analysis and Abstract Interpretation 20

f̃ij : A→ A. This defines a computation step as a transition from a pair (pi, s) of a program

point and a state, to (pj, fij(s)) a new program point and a new (computed) state. In this

we are performing a kind of pseudo-evaluation,

We always restrict ourselves to monotone transfer functions, i.e. such that

l1 v l2 =⇒ f(l1) v f(l2)

which essentially means that we never lose any information by approximating. This is

not as simple as it sounds: features like uneval quotes, if treated naı̈vely, could introduce

non-monotonic functions.

3.4.2 Return to data flow analysis

We return momentarily to the discussion in Section 3.1 to comment on the implications of

Galois connections for this approach. In Section 3.1, we saw that for L a finite lattice one

could compute the fixed point of ~̀w F (~̀) simply by iterating F , starting from ~̀ = ~⊥ until

a fixedpoint was reached.

It is worth noting now that same is possible with a Galois connection. Briefly, if we

take G to be an operator in the constraint language which is the concrete analogue of the

language described in Section 3.1, our concretization and abstraction functions will induce

a relation
~̀w (~α ◦G ◦ ~γ)~̀

As ~α ◦G ◦~γ is also monotonic, it too has a least fixed point that can be obtained by simple

iteration when the abstract lattice is finite.

How does ~α◦G◦~γ compare to F ? We have placed no conditions on F other than mono-

tonicity; since it simply represents some attempt to approximate the operational semantics

of the program, there is no guarantee that the designer “thought of everything.”

On the other hand, ~α ◦ G ◦ ~γ is defined entirely by the operational semantics of the

program: it cannot therefore fail to be ideal. In fact we have ~α ◦G ◦~γ v F in general. The

condition ~α ◦G ◦ ~γ = F , sometimes provable, indicates that the analysis F is optimal for

its abstract domain.

3. Constraint-based Data Flow Analysis and Abstract Interpretation 21

3.5 Collecting semantics

In general, we are interested in execution traces or collecting semantics, (see [15, 22])

which are (possibly infinite) sequences of the transitions discussed in Section 3.4.1.

A trace corresponds to one particular execution path through the procedure being ana-

lyzed; in some sense, it is a projection of the property of interest into some idealized world

in which we may magically obtain information which in reality is dynamic and inaccessi-

ble. But because every possible execution of the program is captured by some trace, we are

assured of correctness.

Thus, a set of traces is frequently chosen as the concrete semantics when establishing

the correctness of an analysis through a Galois connection.

A typical example is the classical analysis Reaching Definitions (see [22, p. 15]). Here,

the goal is to determine, for a program point `, and for each variable x, the label of the most

recent assignment to x.

Of course in general we will not find a single answer, as there may have been previous

conditional branches prior to ` in which x was written. Our abstract semantics is then

P(Var × Lab). But because a trace corresponds to one particular execution path, there

is always a unique past computation history: that is, tr ∈ (Var,Lab)∗ (the ∗ is a Kleene

star). Our concrete semantics domain is then simply P(Var× Lab)∗.

3.6 Widening and narrowing operators

We have mentioned several times (such as in Section 3.1) the condition that our abstract

domain either be finite or satisfy the Ascending Chain Condition to guarantee convergence

upon a fixed point. We now examine what recourse is left to us when that it not the case.

Here we summarize the presentation in [22, pp. 222-230]. See also [15] for a concise

summary.

3. Constraint-based Data Flow Analysis and Abstract Interpretation 22

3.6.1 Widening operators

Let L be a complete lattice and f : L→ L be a monotone function. We define the following

sets:
Fix(f) = {x : f(x) = x} (x is a fixedpoint of f)

Red(f) = {x : f(x) v x} (f is reductive at x)

Ext(f) = {x : f(x) w x} (f is extensive at x)

We define lfp(f), the least fixed point of f to be the greatest lower bound of Fix(f) in L,

and gfp(f), the greatest fixed point of f to be the least upper bound of f in L.

Tarski’s Fixed Point Theorem (see [10] for a constructive proof due to Cousot) imposes

the condition that
lfp(f) =

d
Fix(f) =

d
Red(f)

gfp(f) =
⊔

Fix(f) =
⊔

Ext(f)

and it may be shown that

fn(⊥) v lfp(f) v gfp(f) v fn(>)

However, all of the above inclusions may be strict for all n ∈ N.

Such problems may be dealt with by the judicious use of widening operators [8, 9]

which ensure termination and convergence upon a safe upper approximation of lfp(f).

Definition 4 Let L be a complete lattice. An operator ť : L × L → L is an upper bound

operator if x1 v (x1ťx2) and x2 v (x1ťx2). That is, ť is guaranteed to be as large or

larger than both its arguments.

Now, let {xn}
∞
n=1 be a sequence in L and take any φ : L × L → L. We can define a

new sequence {xφ
n}
∞
n=1 as follows:

xφ
n =

{

x0 if n = 0

φ(xφ
n−1, xn) if n > 0

It can be shown that whenever ť is an upper bound operator that {xťn}
∞
n=1 is an ascending

chain, and xťn =
⊔

{x1, . . . , xn} for all n ∈ N.

(Observe also, incidentally, that the join operator t acts as an identity on any sequence

that was already an ascending chain.)

3. Constraint-based Data Flow Analysis and Abstract Interpretation 23

Definition 5 An upper bound operator∇ : L×L → L is an widening operator if for every

sequence {xn}
∞
n=1 the ascending chain {x∇n }

∞
n=1 eventually stabilizes.

An example of a nontrivial widening operator is taken from [22, p. 223] on the lattice

I(Z). We pick some s ∈ I(Z) and define ťs : I(Z)× I(Z)→ I(Z) as follows:

xťsy =

{

x t y if x v s or y v x

[−∞..∞] otherwise

If we have an infinite ascending chain like

[0..0], [0..1], [0..2], [0..3], [0..4], . . .

and we ensure the endpoints of s are finite, say s = [0..2], then the widening operator

ť[0..2] transforms this into the ascending chain

[0..0], [0..1], [0..2], [−∞..∞], [−∞..∞], . . .

which of course has stabilized.

Given a widening operator ∇ : L × L → L and a monotone function f : L → L, we

can then define a sequence fn
∇

defined by

fn
∇ =

⊥ if n = 0

fn−1
∇

if n > 0 and f(fn−1
∇

) ⊆ fn−1
∇

fn−1
∇
∇f(fn−1

∇
) otherwise

Speaking roughly, the second case f(f n−1
∇

) ⊆ fn−1
∇

tells us that we have overshot lfp(f),

and that we should stop here. In fact we define lfp∇(f) to be the fm
∇

for the first m that

stabilized the chain, and we have

lfp(f) v lfp∇(f)

giving us our desired safe approximation.

3. Constraint-based Data Flow Analysis and Abstract Interpretation 24

3.6.2 Narrowing operators

The use of widening operators certainly moves us from the realm of danger into safe terri-

tory, but it is perhaps too safe. Perhaps, having leaped ahead past the least fixedpoint, we

can take a few steps back to refine our approximation.

Recall that the triggering condition for stabilization was the fact that f(f n−1
∇

) ⊆ fn−1
∇

,

which is stating that the function f has become reductive. To employ this idea naı̈vely

and apply f repeatedly to lfp∇(f) would be unwise, as we have no idea whether that will

stabilize. The answer is a narrowing operator, defined as follows:

Definition 6 An operator ∆ : L× L→ L is a narrowing operator if

• whenever x v y, then x v (x∆y) v y for all x, y ∈ L, and

• for every descending chain {xn}
∞
n=1, the descending chain {x∆

n }
∞
n=1 stabilizes.

With this narrowing operator we can then define a further approximation of f which

will stabilize downwards and provide a worthy approximation of lfp(f).

[f]n∆ =

{

lfp∇ if n = 0

[f]n−1
∆ ∆f([f]n−1

∆) if n > 0

The sequence [f]n will stabilize for some value m′ ∈ N. We define

lfp∆
∇(f) = [f]m

′

This is our final approximation for f .

3.6.3 Comparison of approaches

The question of the overall utility of widening and narrowing operators is an interesting

one. Some have argued [12, 13] that the results of using such operators can be replicated

or approximated merely by avoiding infinite lattices or lattices without the ascending chain

condition in the first place, and that use of narrowing and widening operators can sometimes

lead to arbitrary loss of information.

In [13], Cousot contrasts the use of widening and narrowing operators with the “Ga-

lois connection approach” of choosing an abstract domain of sufficient simplicity to avoid

3. Constraint-based Data Flow Analysis and Abstract Interpretation 25

infinite chains. He argues that the widening/narrowing approach may give better results,

though he suggests that in many cases widening and narrowing operators are best used in

connection with a Galois connection approach which performs some initial simplification

of the problem domain.

Chapter 4

Properties and their domains

4.1 Introduction

Our goal is the static inference of various properties from Maple source code based on

our knowledge of Maple’s operational semantics. Given our previous discussion about the

unique aspects of Maple, one might expect this distinctness to guide us in our choice of

properties of interest, and indeed that is the case.

Since we have opted to place ourselves in an abstract interpretation framework, we wish

to investigate those properties which can be be approximated using complete lattices. As it

turns out, this requirements is easy to satisfy in various ways.

Many of the classical intraprocedural data-flow analyses described in ([22, pp. 37-

52]), such as Available Expressions, Live Variables, and Very Busy Expressions do not fit

naturally with Maple because of its special semantics, particularly its use of symbolic vari-

ables. We will, however, make extensive use of a modified form of the Reaching Definitions

Analysis.

4.2 Properties of interest

We can divide the properties of interest into those that are state-based, those that are

program-based, and those that are value-based.

A state-based property associates a program point with an approximation of program

state; computing such a property amounts to a pseudo-evaluation of the program statements

26

4. Properties and their domains 27

projected into the space of the property of interest. Statements or other operations affecting

state, such as assignments, induce transfer functions between properties.

A program-based property is an property of the program or procedure which depends

on the source code (specifically the abstract syntax tree) in some direct manner. Some

examples of this category might be various properties of program blocks, such as a property

measuring the number of iterations of a for loop.

A value-based property is one which associates a program point with an approximation

of an expression value. An earlier example illustrating this in the field of abstract interpre-

tation is the classical sign approximation, where we seek to model the sign of an arithmetic

quantity. Here, functions and operations on values induce transfer functions between prop-

erties.

4.2.1 State-based properties

Reaching Definitions

Reaching Definitions, occasionally called Reaching Assignments, is a classical analysis (see

[22, pp. 4-10, 41-44] or [28, p. 26]), the goal of which is to determine, at every program

point, the last assignment made to each “currently active” variable.

Such an analysis conveys a wealth of information about the state and data flow of the

program in question, but we shall need still more (as per the next item).

The Reaching Definitions analysis is closely tied to the Use-Definition and Definition-

Use chains, which link variable instances to their prospective definitions and vice-versa. In

fact, these chains may be easily contructed from a Reaching Definitions analysis; see [22,

pp. 50-52].

Reaching Contexts

Reaching Contexts is a generalization of Reaching Definitions. At some program point,

we seek to determine, for each “currently active” variable, the last statement context which

affected our knowledge about that variable.

This is a somewhat subtler notion than state alone, and will help to discuss what this

means for specific types of statements. Consider the following program:

4. Properties and their domains 28

p := proc (N : : i n t e g e r) l o c a l n , i , s ;

i f [N > 0]1 then n := [N]2 ; e l s e n := −[N]3 ; end i f ;

[s := 0 ;]4

f o r i from 1 to [n]5 do

[s := [s]7 + i ˆ 2 ;]6

end do ;

end proc :

Observe that label 2 corresponds to the first branch of the if-block. The evaluation of the

condition N>0 did not change the state of the variable N, but it does change our knowledge:

within that branch N>0 holds.

Similarly, consider the variable s at position 7 within the for-loop. A Reachings Def-

initions analysis would determine that s last received its value at either label 4 or label 6

(in a previous iteration of the loop). It is perhaps more helpful merely to recognize, at the

beginning of a loop iteration, that s is a variable which may be transformed by the loop.

Informally, the goal of the Reaching Contexts is to determine the last assignment, loop,

or if structure which may have affected our knowledge about a variable. We are interested

only in assignments which write to v, if conditions in which v appears, and loops in which

v may be transformed. We shall make this definition precise in Section 4.3.1.

4.2.2 Program-based properties

Number of variable reads

We wish to estimate how many times each of the ‘active variables’ have been read. For

each label ` corresponding to a program block and each local variable v, can we tell the

number of times v has been read in the scope of `?

Number of variable writes

This is a natural (semantic) dual to the Number of variable reads analysis; it is, however,

operationally independent so we have opted not to try to capture both within a single prop-

erty.

4. Properties and their domains 29

Number of loop steps

Given a program point ` corresponding to a loop, how many times in an execution of the

program will the loop ` iterate before terminating?

One thing to clarify is that we wish to know how many times the loop ` will iterate, not

how many times its body will be executed. This becomes important in the case of nested

loops, where the inner loop is repeatedly re-executed. For example:

s := 0 ;

[f o r i from 1 to 3 do [f o r j from 1 to 5 do s := s + i + j ; od ;]2 od ;]1

Here, our solution for label 2 is 5, not 15, even though the statement body executes 15

times.

The loop-step analysis provide a good example of the interdependence of many of these

properties: clearly, the number of steps of a loop is dependent on the expressions or numer-

ical ranges being traversed, which are the subject of other properties.

4.2.3 Value-based properties

Surface type

An obvious candidate for a property of interest is the type of an value; indeed, type infer-

ence is a frequent goal of static analysis. Rather than attempting to use Maple’s own rather

idiosyncratic system for typing, or inventing our own system, we will allow ourselves to

be guided by Maple’s own inert form. We will construct a quantity we call a surface type

based on the inert form.

As described in section 2.7, any Maple value v may be converted to an inert form with

the command ToInert (v). This inert form is a function data-structure: the root of this struc-

ture (in Maple parlance, the zeroth operand) is always one of the inert tags (see 2.7). This

provides us with a clear and consistent concrete semantics for classifying values into some-

thing resembling types. We say that value v has surface type t if the result of executing

op(0, ToInert (v)) is t.

> op (0 , T o I n e r t (x = 2∗y)) ;

Inert EQUATION

Our aim is therefore to take a program point ` corresponding to a value and determine

the surface type of the dynamic value corresponding to `.

4. Properties and their domains 30

The motivation for the name “surface type” is that the type captures only the root of

the abstract syntax tree: the type of an expression does not capture any information about

leaves or internal nodes.

Expression sequence length

Here we are really doing two inferences at once: given a label ` corresponding to a value,

we seek to determine whether the value is an expression or expression sequence (refer to

2.1.3), and if the latter, what its length is.

From Maple’s semantics, we know that expseqs behave quite differently in many con-

texts than other value, so it is important to know whether a given value is an expression

sequence. This becomes particularly important in the analysis of function applications, for

reasons described in 2.1.3.

Number of operands

In the event that program point ` is an expression, how many operands does this expression

have? That is, if it is a list or set, what is its size? If it is a function application, how

many operands are present? In most cases this is equivalent to asking about the number of

immediate children of the node corresponding to ` in the abstract syntax tree.

This analysis is inspired by the Maple command nops which performs an identical

function on concrete inputs.

Sometimes this information comes “for free” from the expression sequence length anal-

ysis: for example, in the input [1,2,3] , the expression sequence 1,2,3 is part of the input,

and will therefore be “seen” by the Expression sequence length analysis. However, this is

not always the case.

Because we must first know that the value ` is an expression, that is, that its Expression

Sequence length is 1, it is sensible to make the Number of Operands analysis a refinement

of the Expression Sequence analysis.

Literal Value

This is a refinement of the surface type analysis. Here, for certain ‘literal’ quantities like

protected symbols and integers, we attempt to track the actual concrete value of the expres-

4. Properties and their domains 31

sion (in addition to its surface type).

This degree of precision is potentially dangerous: if implemented naı̈vely, one might

enter an expensive or infinite computation while attempting a precise estimate on some

value. We must therefore must take special care in not attempting infinite or hugely expen-

sive operations. However, since this analysis is a refinement of the Surface Type analysis,

we may always fall back to merely having the surface type.

4.2.4 Summary

Summarizing, we seek to infer the following state-based properties (according to the defi-

nitions above) for a program point `: the assignments that reach `, the “statement contexts”

that may affect `. We also seek to infer the following value-based properties for a program

point ` corresponding to a value: its surface type, its variable dependencies, its expression

sequence length, its number of operands, and its literal value. Furthermore, we wish to

measure the number of times that “active” variables have been written or read at point `.

4.3 Modelling the properties

The properties described in Section 4.2 are of course not statically computable in general.

We are therefore obliged to approximate them, and this is precisely where the apparatus of

abstract interpretation will prove greatly useful.

For each property described in Section 4.2, we will provide two lattices: a concrete

domain that accurately captures the quantity that we wish to learn about, and an abstract

domain with which we shall approximate the property in question. As discussed in Defini-

tion 2, our lattices must satisfy the Galois condition:

L

γ
←−
−→

α

M

where L, M are the concrete and abstract domain respectively, α, γ are the abstraction and

concretization functions, respectively, and the following rule holds:

α(X) v Y ⇐⇒ X v γ(Y)

4. Properties and their domains 32

Some of the abstract lattices chosen are infinite and do not satisfy the Ascending Chain

Condition 1. While this might give us some cause for concern, the judicious use of widen-

ing operators will ensure termination, as discussed in Section 3.6.

When we do not explicitly describe the partial orderv on some lattice L, the partial or-

der intended is simply the “obvious” one for this lattice. For example, given P({1, 2, 3})×

N, we would simply take the usual set-inclusion order⊆ on P({1, 2, 3}) and the≤ relation

on on N, and combine these in the natural way through the Cartesian product to define the

partial order on P({1, 2, 3})× N.

Notation

We shall define some terms which we shall use repeatedly in the following sections.
Quantity Description Finite?

AST(p) Abstract syntax tree for program p Yes

Lab Set of fresh labels (typically N, but need not always be) No

Lab? Finite set of labels corresponding to nodes in AST(p) Yes

Var Set of all program variables which Maple may use No

Var? Set of program variables present in input Yes

Val Set of all Maple values No

IK Set of all inert tags (see 2.7) corresponding to values Yes

I(X) Lattice of intervals over a totally ordered set X: Finite if and only

I(X) = {[a..b] : a, b ∈ X} if X is finite

It it worth nothing that we have Var? ⊆ Var and Lab? ⊆ Lab by definition. Of course

there are pratical limitations to the size of Var, since it is defined by the behaviour of a

real-world computer program, but for our purposes Var is unbounded.

The set IK is finite: in fact, its precise size is 59. For a full listing of all tags associated

with values, see Appendix A.2.

Program points and annotated code

From this point forward, we will be talking frequently about program points; it will be

helpful to clarify the meaning of this.

4. Properties and their domains 33

Given a program p, we can construct the abstract syntax tree AST(p) of p. We choose

a set Lab of labels and attach a distinct label to each node of AST(p): we may refer to the

result as an annotated abstract syntax tree. This permits us to define a bijection

ϕ : Lab→ {SubTree(x,AST(p)) : x is a node of AST(p)

where SubTree(x,AST(p)) is the subtree of AST(p) rooted at node x.

As ϕ is a bijection, it is reversible: note, however that merely having access to the data

associated with a node does not in general allow us to identify the node or its label, as

identical values may occur multiple times in an abstract syntax tree.

The reader may observe in the above that we have not said anything about the types

of nodes in the AST that we are labelling: specifically, whether they are statements, ex-

pressions, or both. Many approaches to static analysis concern themselves with only one

of these two (see example in [22, p. 3]). We will sometimes require both, and since we

can always readily distinguish them, will include both statements and expressions in our

labelling.

4.3.1 State- and program-based properties

Reaching Definitions

As this is a classical analysis, the concrete and abstract domains are well-established (see

[8, 22]). Our design here follows closely the description given in [22, p. 15].

The concrete domain for this analysis can be given via a collecting semantics as we de-

scribed in section 3.5: we have a set of traces, where each trace is a list of past assignments

to program variables for some particular execution path of the program.

Our abstract lattice is P(Var? × (Lab? ∪ {?})), ordered by set inclusion. We add the

extra symbol ? to Lab? to signify the state of a variable which has not yet been initialized.

The abstraction and concretization operators are identical to those described in [22, p. 15].

For a program point p, we shall denote the reaching definitions for the entry point and

the exit point of p by RDentry(p) and RDexit(p) respectively.

Lastly, note that we need not worry about inducing fixed points, as the Cartesian product

Var? × (Lab? ∪ {?}) is finite.

4. Properties and their domains 34

Reaching Contexts

Reaching Contexts is a generalization of the Reaching Definitions analysis. That analysis

provides invaluable information about the data flow and even control flow of a program,

which may be usefully employed in other analyses. However, it is limited in some respects:

the only statement type it handles specially is the assignment operator. We would like

access to more statement information.
Let us define Context as follows:

Context = {LoopStep, LoopFinal, Assign, If, ProcedureInitialValue}

For our choice of concrete domain, we shall describe a collecting semantics similar to that

used for Reaching Definitions above. Let us define Trace as follows:

Trace = (Context×Var? × Lab?)
∗

(Here the superscript ∗ denotes the Kleene star.)

Each t ∈ Trace is a sequence of contexts from a particular trace through the procedure.

Starting from the invocation of the procedure, we simply append each “context” encoun-

tered in the execution of the procedure onto a list, in exactly the same manner as a trace for

Reaching Definitions maintains a list of variable assignments.
Following [22] we may define, for a trace tr ∈ Trace and x ∈ Var?, semantically

reaching context SRC where SRC(tr)(x) gives us the rightmost context in which x occurs

in the trace tr.
With these definitions in place, our concrete domain is the set of program traces

P(Trace), and our abstract domain is L = P(Context×Var?×Lab?). Our abstraction

and concretization functions are then simply the following:

α(X) = {SRC(tr)(x) : x ∈ Var? ∧ tr ∈ X}

γ(Y) = {tr : SRC(tr)(x) ∈ Y for all x ∈ Var?)}

Since Context is finite, L must also be finite and the ascending chain condition holds.

Our notation is similar to that employed for Reaching Definitions. We denote the reaching

contexts for a program point p by RCentryp and RCexitp.

4. Properties and their domains 35

Number of variable reads

Let ` be a label corresponding to a program block. Our aim is to determine, for each

active variable v, a nonnegative integer representing the number of times that v was read

while control was in program block `; of course for the static analysis we shall have to

approximate this.

Our concrete domain is simply the formalization of our stated goal, P(Var?×N). Thus

for each program p we have a set of pairs from (Var? × N). Each element (v, n) asserts

that variable v was “read” exactly n times in the context of `. (This of course corresponds

to a particular execution trace.)

For our abstract domain, we simply weaken our measure of the number of reads from

an integer to an integer interval. Our lattice is then L = P(Var? × I(N)): the quantity

(v, [a..b]) ∈ L expresses the fact that the number of times that v was is read in the code

block ` was between a and b inclusive.

Note that this abstract space is infinite and does not satisfy the ascending chain condi-

tion.

Number of variable writes

This is a natural (semantic) dual to the number of reads. The domains used for its concrete

and abstract semantics are identical to those used for the read-counting analysis. However,

the two analyses are operationally independent.

Number of loop steps

The lattices for this property have the simplest description of the lot: given ` a label cor-

responding to a loop, we wish to measure the number of steps the loop will take. Our

concrete domain is simply N and our abstract domain I(N).

4.3.2 Value-based properties

Surface type

In section 4.2.3 we outlined the concrete semantics of the surface type property. With each

Maple value v ∈ Val we can associate a unique inert tag which can be computed (when v

is known) by evaluating op(0, ToInert (v)).

4. Properties and their domains 36

For our concrete lattice take simply Val, the set of all values. Using IK directly as our

abstract lattice will not do; we cannot always be sure to which value a program point ` will

correspond. Therefore we take L = P(IK) as our abstract lattice. The partial order of

P(IK) is the usual subset relation.

It is straightforward to define abstraction α and concretization γ functions between the

complete lattice 〈P(Val),⊆〉 of sets of Maple values Val and L.

Our definition means that each Maple operation mapping values to values induces, as a

consequence of the the Galois connection, a natural transfer function f : L→ L.

As convenient as this characterization is, it is important to note that f is a coarse ap-

proximation. For example, if we encounter code resembling a := L[1], we can say little

about a because it depends on something inside L. Even if we knew that α(L) = LIST,

the best we can do is α(a) ⊆ E, where E = P(IK) \ {EXPSEQ}.

Expression sequence length

For our concrete domain we again take Val. The most natural abstract lattice for expression

sequence length is I(N) (the set of intervals with natural number endpoints) with ⊆ given

by containment.

To a program point ` representing a value we therefore associate a nonnegative interval

[a..b] with a ∈ N, b ∈ N ∪ {∞}.

The abstraction function α maps all values that are not expseqs to the one-point interval

[1..1]; it maps expseq values to a range containing all possible lengths for that program

point. Note that NULL (the empty expression sequence) maps to [0..0], and that unknown

expression sequences map to [0..∞].

Given a program point `, we shall denote the set of expression sequence lengths of its

possible values by ES(`).

The abstract lattice I(N) is illustrated in Figure 4.1, as with several other chosen abstract

lattices; it is neither finite nor does it satify the Ascending Chain Condition. An example

of an an infinite chain is:

[0..∞] ⊂ [1..∞] ⊂ [2..∞] ⊂ · · ·

In Section 6.2.3 we shall see how our analysis copes with this fact.

4. Properties and their domains 37

[0,∞]

{{w
w

w
w

w

$$
HH

HH
HHH

HH

[0, 2]

||xx
xx

xxx
x

##
GG

GG
GG

GG
G

[1,∞]

zzv
v

v
v

v

$$
HHH

HH
HH

HH

[0, 1]

||xxx
xxx

xx

""
FFF

FFF
FF

[1, 2]

{{ww
ww

ww
ww

w

$$
HH

HH
HHH

HH
[2,∞]

zzv
v

v
v

v

""
E

E
E

E
E

[0, 0]

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW [1, 1]

$$
HHHHHHHHH

[2, 2]

zzuuuuuuu
uuu

· · ·

ssg g g g g g g g g g g g g g g g

⊥

Figure 4.1: The lattice I(N)

4.4 Refinements

4.4.1 Refinement and Galois insertions

At this point it is necessary to interrupt the presentation of the properties and their lattices

to build up some infrastructure we shall need before progressing.

As mentioned in section 4.2.3, we have designed our latter two properties, Num-

Operands and LiteralValue, to be refinements of ExprseqLength and SurfaceType re-

spectively. By this we informally mean that NumOperands contains all the information

present in ExprseqLength and some additional information not expressible in Exprse-

qLength.

Clearly this feature is both natural and highly useful. If q is a refinement of p, we may

easily import information into p from q simply by “forgetting” the information specific to

p, and may use p as a coarse approximation of q (as a starting point for computing q by

successive refinement, for example).

Let Lp,Lq be the lattices corresponding to p,q. We should expect the refinement rela-

tionship to carry over into the chosen abstract lattices in the natural way. This is indeed

the case, using an idea we have already seen: Galois connections. We should expect that

if q is a refinement of p, that Lq is a concretization of Lp. That is, there should exist

α(p,q) : Lq → Lp and γ(p,q) : Lp → Lq satisfying the Galois criterion.

However, we want something still stronger: because q is to be a refinement of p,

it must contain all the information that p does. Informally, the copy of p present in q

4. Properties and their domains 38

must be “pristine” without any spurious overapproximations. This implies that we require

α(p,q)(γ(p,q)(x)) = x for all x ∈ Lp, and as described in Section 2 this is the condition for

a Galois insertion.

Special lattice sum

We would like to describe the refined property as some type of lattice sum or product of

the original property, in such as way as the Galois insertion is implicit in the definition. We

could find no tool obviously suited to the task in the lattice theory literature (see [17, 19],

for a very comprehensive list of lattice sums and products applicable to abstract interpreta-

tion, see [16]). We therefore define the following operator which will suffice.

Definition 7 Let 〈P,≤,⊥P ,>P 〉 and let 〈Q,v ⊥Q,>Q〉 be complete lattices. Let β ∈ P

be an atom of P , and ? is some symbol 6∈ Q. Define R as follows:

• If x ∈ P , then (x, ?) ∈ R.

• If y ∈ Q \ {>Q,⊥Q}, then (β, y) ∈ R.

• Define a partial order � on R as follows:

– (x1, ?) � (x2, ?) for all x1, x2 ∈ P with x1 ≤ x2

– (⊥P , ?) � (β, y) for all y ∈ Q \ {>Q,⊥Q}

– (β, y) � (β, ?) for all y ∈ Q \ {>Q,⊥Q}

– (β, y1) � (β, y2) if y1 = y2 = ? or if y1, y2 ∈ Q \ {>Q,⊥Q} and y1 v y2

– (β, y) � (x, ?) for all y ∈ Q \ {>Q,⊥Q} if β ≤ x

• Define ⊥R = (⊥P , ?) and >R = (>P , ?).

We denote R by P ⊕β Q, and call this the “special β-sum” of P and Q.

Informally, we make a copy of the lattice P in which we replace the ideal {⊥P , β} with a

copy of the lattice Q. In the new lattice, all the elements of Q sit below β but above the

bottom element. (See Figure 4.2.)

This bears a resemblance to the linear lattice sum described in [17], but differs in that

the ”lower lattice” is inserted underneath an atom, rather than the bottom element. Notice

that every element in P ⊕β Q is either (β, q) for q ∈ Q or (p, ?) for p ∈ P .

4. Properties and their domains 39

(>P , ?)

zzt
t

t
t

t
t

t
t

t
t

t
t

��
�

�

�

$$
J

J
J

J
J

J
J

J
J

J
J

J

(β, ?)

zzt
t

t
t

t

%%J
J

J
J

J

(p1, ?)

**TTTTTTTTTTTTTTTTTTT (β, q1)

%%JJJJJJJJJ
(β, q2)

zzttttttttt

(p2, ?)

ttjjjjjjjjjjjjjjjjjjj

(⊥P , ?)

Figure 4.2: The lattice P ⊕β Q. Here p1, p2, β are atoms of P and q1, q2 atoms of Q.

It is clear that P ⊕β Q is indeed a lattice. We can show it is a complete lattice quite

easily. Suppose r1, r2 ∈ P ⊕β Q:

• If r1 = (β, y1), r2 = (β, y2), then r1 ∧ r1 = (β, y1 u y2).

• If r1 = (x1, ?), r2 = (x2, ?), then r1 ∧ r1 = (x1 ∧ x2, ?).

• Suppose r1 = (x, ?), r2 = (β, y). If β ≤ x, then r1 = (β, y) � (β, ?) � (x, ?) = r2,

so r1 ∧ r2 = r2. Otherwise, r1 ∧ r2 = (⊥P , ?) since β is a atom.

Generalized special lattice sum

Recall that our definition of the special lattice sum P ⊕β Q required that the element β ∈ P

must be an atom. We can extend this approach to non-atoms as well.

Definition 8 Let 〈P,≤,⊥P ,>P 〉 and let 〈Q,v,⊥Q,>Q〉 be complete lattices, and ? some

symbol 6∈ Q.

Let ϕ : Q → P be a monotonic function whose image ϕ(Q) is an ideal of P . Then

define 〈R �〉 as follows:

• If x = >P , x = ⊥P , or x ∈ (P \ ϕ(Q)), then (x, ?) ∈ R.

• If y ∈ Q \ {>Q,⊥Q}, then (ϕ(y), y) ∈ R.

• Define a partial order � on R as follows:

– (x1, y) � (x2, y) for all (x1, y), (x2, y) ∈ R with x1 ≤ x2 in P

4. Properties and their domains 40

– (⊥P , ?) � (ϕ(y), y) for all y ∈ Q \ {>Q,⊥Q}

– (ϕ(y), y) � (ϕ(>Q), ?) for all y ∈ Q \ {>Q,⊥Q}

– (ϕ(y1), y1) � (ϕ(y1), y2) if y1 = y2 = ? or if y1, y2 ∈ Q \ {>Q,⊥Q} and

y1 v y2

– (ϕ(y), y) � (x, ?) for all y ∈ Q \ {>Q,⊥Q} if ϕ(y) ≤ x

• Define ⊥R = (⊥P , ?) and >R = (>P , ?).

We denote R by P ⊕ϕ Q.

It is clear this is a generalization of the previous definition; we can recreate the previous

definition with ϕ : Q→ P defined as ϕ(⊥Q) = ⊥P and ϕ(q) = β for all other values of q.
To show that P ⊕ϕ Q is a complete lattice, suppose r1, r2 ∈ P ⊕ϕ Q:

• If r1 = (x1, y1), r2 = (x1, y2) with y1, y2 ∈ ϕ(Q), then r1∧r1 = (ϕ(y1uy2), y1uy2).

In fact ϕ(y1 u y2) = ϕ(y1)∧ϕ(y2) = x1 ∧ x2 by the definition of P ⊕ϕ Q and by the

fact that ϕ is monotonic and ϕ(Q) is an ideal.

• If r1 = (x1, ?), r2 = (x2, ?), then r1 ∧ r1 = (x1 ∧ x2, ?).

• Suppose r1 = (x1, ?), r2 = (x2, y2). If x2 ≤ x1, then r2 = (x2, y2) � (ϕ(>Q), ?) �

(x1, ?) = r1, so r1 ∧ r2 = r2. Otherwise, r1 ∧ r2 = (⊥P , ?) since ϕ(Q) is a ideal.

We claim that for any ϕ the lattices P ⊕ϕ Q and P have a Galois insertion: the abstraction

function α : (P ⊕ϕ Q)→ P is defined simply as α((p, q)) = p for (p, q) ∈ R.

4.4.2 Additional value-based properties

We now return to cataloguing the abstract and concrete lattices.

Number of operands

Our concrete domain is Val. For the abstract domain, recall that our goal is to estimate the

number of operands of expressions. To model this, we must first know that quantities in

question are expressions, namely that ES(`) = [1..1]. For this reason we will measure two

quantities simultaneously: the expression sequence length as done in ExprseqLength, and

also the number of operands should the quantity in question truly be an expression.
Hence we use the specialized lattice sum defined in Section 4.4.1 at the atom [1..1] ∈

I(N). Our abstract domain is I(N)⊕[1..1] I(N).

4. Properties and their domains 41

Literal Expressions

Our concrete domain is Val. Here we want to do more than in NumOperands and join

the two lattices at more than one point. Specifically, we define a set LitVal of literal ex-

pressions, a subset of Val. LitVal consists of a number of Maple objects whose evaluated

value is independent of program state and which, once evaluated, will never evaluate to

anything different. LitVal includes rational constants, “protected” symbols such as true,

false, and FAIL, and also strings, and lists, sets, expression sequences, and function

applications made purely from objects in LitVal.

Let αST be the abstraction function from the surface type analysis: this maps elements

in Val to sets of inert tags. Let ValTags = αST (LitVal); this is the set of all inert tags

which may correspond to objects in LitVal.

Therefore, αST is actually the map we need to define the special sum defined in 4.4.1.

We therefore define our abstract domain to be P(IK)⊕αST
I(LitVal).

Though LitVal is a set of “simple” values, it is still infinite (the set of integers is

theoretically infinite, as is the set of rationals), so we should handle termination conditions

carefully.

4.5 Summary

Table 4.5 summarizes the quantities of interest. The operator names listed in the table

signify the map between an arbitrary program label ` and the abstract space. That is,

STyp(`) is the surface type abstract estimate for `.

Analysis Operator Abstract Lattice Finite?
ReachingDefinitions RDentry, RDexit P(Var? × (Lab? ∪ {?})) Yes
ReachingContexts RCentry, RCexit P(Context×Var? × Lab?) Yes
NumReads #R P(Var? × I(N)) No
NumWrites #W P(Var? × I(N)) No
LoopSteps LSteps I(N) No
SurfaceType STyp P(IK) Yes
ExprseqLength ES I(N) No
NumOperands NOps I(N)⊕(1,1) I(N) No
LiteralValue LVal P(IK)⊕αST

LitVal No

Table 4.1: Abstract spaces for Properties of Interest

Chapter 5

Constraints

5.1 Introduction

The judicious application of constraints allows us to translate the semantics of Maple into a

much simpler language of relational constraints which relate values in the abstract domain

with variables and operators which resolve to values upon solution.

The choice of decoupling the traversal of the abstract syntax tree (the constraint gener-

ation phase) from the constraint solution phase is very important both for design purposes

and comprehensibility. The constraint system for a given procedure and property presents

the ultimate expression of the projection of Maple semantics into the abstract domain. In

many cases, the constraint system will contain significant information which is not readily

apparent in the solution, because of the need for approximation.

A good example of a simple constraint system is found in ([22] p. 8-11); this is the

blueprint for our design of the constraint systems for ReachingDefinitions and Reaching-

Contexts.

While Chapter 4 was concerned with a presentation of the underlying theory behind

our design, this chapter will be a mixture of the specification of the constraint system and

some details from the actual implementation. Here we present an overview of the constraint

language for each of the properties in question

42

5. Constraints 43

5.2 Constraints in state- and program-based analyses

For each of the properties outlined in Chapter 4, we describe those natural operations upon

those properties that we employ in our analysis. We omit the description of the constraint

language for ReachingDefinitions , as it is more or less the same as that presented in [22].

All lattices must have the usual defined lattice operations of u, t and the constants >

and ⊥. It is important to note that these operations are (by design) forced to be lattice-

specific: that is, the v used for ReachingContexts is distinct from the v used for Exprse-

qLength .

5.2.1 ReachingContexts

The basic operator of ReachingContexts is no different from that of ReachingDefinitions:

it is a simple override operator
⊕

which transforms its argument, a set representing pro-

gram state, and replaces a subset of program state with new state. For example, we have

⊕

({a = b, c = d, e = f} , {a = z, c = h}) = {a = z, c = h, e = f}

The use of the override operator corresponds to assignment. We might observe a constraint

system with entries like these:

{LOCAL(2) = {14, 27}} = RCentry(`1),

RCentry(`1) = RCexit(`1),

RCexit(`1) v RCentry(`2), RCentry(`2) = RCexit(`2)

RCexit(`2) v
⊕

(RCentry(`3), {LOCAL(1) = {`2}})

RCentry(`3) v RCexit(`4),

RCexit(`4) v RCentry(`5)

What is significant about ReachingContexts and the reason why it we widely rely upon

it as an enabler for other analyses, lies not in the operator chosen but in the nature of

the data being overridden. By the description mentioned in Section 4.3.1, the state in

ReachingContexts includes information about the current context of the program point,

which includes information about loop control and conditional structures in addition to the

assignments. The result is an augmented variant of ReachingDefinitions which performs

5. Constraints 44

p := proc (N : : i n t e g e r , a , b) l o c a l n , i , s
i := 1 ;
[n := f (a , b) ;]before state

whi le [n > 0]cond state then
[n := n − N;

i := i + 1]loop state ;
end i f ;
[p r i n t (” R e s u l t i s ” , n) ;]after state

end proc :

Figure 5.1: ReachingContexts Example

control flow as well as data flow analysis. Figure 5.1 provides an example. The annotations

in the body of p in Figure 5.1, labelled from 1 to 4, correspond to the state before the loop,

the state at the execution of the loop condition, the state after the execution of the loop

body, and the state after the loop termination, respectively.

Let ∆ represent the set of variable transformed by the loop at code point ` (in this case,

it is the two local variables n and i. We then introduce the following symbolic quantities

for each variable v ∈ ∆ altered in the loop:

• LoopStepInit(v, `) - the initial value of variable v within a loop step

• LoopFinal(v, `) - the final value of variable v after the loop exits

iv = {v = LoopStepInit(v, `), v ∈ ∆} fv = {v = LoopFinal(v, `), v ∈ ∆}

Our aim is to introduce these symbolic quantities into our relational system for Reaching-

Contexts. The classical, straightforward formulation of ReachingDefinitions will contain

the following:

RDentry(cond) v RDexit(before state), RDentry(cond) v RDexit(loop state),

RDentry(after state) v RDexit(cond), RDentry(after state) v RDexit(loop state)

These merely express the normal statement semantics: evaluation of cond may occur ei-

ther following the preceding statement (when the loop begins) or after a loop iteration; eval-

uation of after state occurs after the loop aborts, either after the condition is checked

or after the statement sequence is executed.

In ReachingContexts, these relations are not generated. Instead, given this input, we

5. Constraints 45

would generate the following:

RCentry(cond) v
⊕

(RCexit(before stat), iv)

RCentry(cond) v
⊕

(RCexit(loop stat), iv)

RCentry(after stat) v
⊕

(RCexit(cond), fv)

RCentry(after stat) v
⊕

(RCexit(loop stat), fv)

The effect of this is that all loop variables are replaced with a symbolic dummy variable,

which indicates the state of the variable is controlled by the loop. Note this happens not

merely with the loop control variable (if there is one) but with every variable which is

altered by the loop.

The effect is to completely partition the loop state from the state of the rest of the pro-

gram. After the rest of the program has been solved or simplified, the loop can be analyzed

independently and the results substituted into the solution. This general approach of iso-

lating and reserving pieces of program state for special treatment is known as partitioned

iteration (see [7]). Note that variables appearing only in a read context will not be overrid-

den thus; however, since they appear only in a read context it is completely safe to leave

them untouched.

The idea of replacing an unknown state with a symbolic one within the constraint lan-

guage is one we shall use several times over.

5.2.2 NumReads and NumWrites

The constraint language here is quite simple. Aside from meet and join there are only two

operations on values: addition and scalar multiplication. All other values are either type

variables NumReads(`), NumWrites(`) or the base, which is a set of ordered pairs

(v, I), where v is a program variable and I records an estimate on how many times it has

been read or written.

Operations on the sets are passed elementwise onto the contents:

∑

({v = [a..b], w = [e..f]} , {v = [c..d]}) = {v = [a + c..b + d], w = [e..f])}d
({v = [2..4], w = [0..∞]} , {v = [3..5]}) = {v = [3..4]}

⊔

({v = [2..4], w = [0..∞]} , {v = [3..5]}) = {v = [2..5], w = [0..∞]}

5. Constraints 46

5.3 Constraints in value-based analyses

The constraint languages for the four valued-based properties (SurfaceType,

ExprseqLength, NumberOfOperands, and LiteralValue) are broadly similar. For

brevity’s sake we shall use ExprseqLength as an example throughout which is charac-

teristic of the lot of them. In addition to the base types (e.g. I(N)) and the constraint

variables corresponding to types, there are several other features to the constraint language.

Most important are lifted operators. These correspond to operators or functions in the con-

crete interpretation (i.e. in Maple) which have been “lifted” via the Galois connection to

functions φ : Xn → X , where X is the abstract domain.

5.3.1 ExprseqLength

One such is example for ExprseqLength is expseq operator (sometimes called the comma

operator), which can be viewed as taking n expression sequences and appending them to

produce a single one.

> (1 , 2 , 3) , (4 , 5 , 6) ;

1 , 2 , 3 , 4 , 5 , 6

Because the ExprseqLength domain is defined as a measure of expression size, in this

domain the lifted expseq function actually behaves as an addition operator on the base type

of intervals

LiftFunction(EXPSEQ)([1..4], [2..3]) = [3..7]

Another important function is the evalb operator. Because Maple implicitly uses different

semantics when evaluating conditional expressions in a loop or if condition, it is necessary

to take this into account and build a special function that accounts for the special semantics.

The evalb operator will force a true/false result from conditional expressions when one

would otherwise not be obtained; this can affect the size or type of the results.

5. Constraints 47

5.3.2 NumOperands

As the base type for NumOperands is an ordered pair, some of the operations need special

care for definition. This is the example of LiftFunction(EXPSEQ) used above:

LiftFunction(EXPSEQ)(([a..b]), ([c..d])) = ([a + c..b + d])

LiftFunction(EXPSEQ)(([1..1], I), ([1..1], I)) = ([2..2])

In NumOperands we also define two new operators to deal specifically with the fact that

the base type is a peculiar kind of cartesian product. We have two primitives for moving

range estimates from one element to the other:

Wrap(([a..b], [c..d])) = ([1..1], [a..b])

Flatten(([a..b], [c..d])) =

{

([c..d], ?) if a = 1, b = 1

⊥ otherwise

The names are inspired by Maple semantics. An expression sequence is “wrapped” inside

a list, while a list may optionally be “flattened” to produce an expression sequence. As we

might expect, they act as inverses:

Wrap(Flatten(a)) = a whenever Flatten(a) is defined

Flatten(Wrap(([a..b], [c..d])) = ([a..b], ?) for [a..b], [c..d] ∈ I(N)

Chapter 6

Design

While the vocabulary we have constructed for capturing the semantics of Maple in our

chosen properties is highly expressive, we have as yet not said much with it. Here we will

discuss details involved in the generation of the constraint systems described in Chapter 5

and describe our approaches for the solutions of these systems. These include the use of

widening operators and a limited form of solution of loop constraints through the use of

recurrence relations.

Finally, we will provide a sketch of the specification for the software system written in

Maple to perform these analyses.

6.1 Constraint generation

Ultimately, all constraints are generated through analysis of the abstract syntax tree for an

input procedure p. State- and program-based analyses simply traverse the abstract syntax

tree and build up a large conjunction of constraints directly as a result of this traversal.

In constrast, the constraints generated for a value-based property are divided into two

classes: opportunistic constraints and constraints generated from ReachingContexts re-

sults.

6.1.1 Opportunistic constraint generation

A so-called “opportunistic” constraint rule is a rule which attempts to match some part of

the input during AST traversal against some particular pre-coded pattern. In the event a

48

6. Design 49

pattern is matched, an constraint is generated and added to the system.
Opportunistic rules are the usual method of constraint generation for all state- and

program-based analyses, and are also used widely in value-based properties. Additionally,

value-based analyses utilize other generated constraints (generated from ReachingCon-

texts, a state-based analysis) in order to save us some work and rely on already-computed

information.
As said earlier, opportunistic constraints are generated directly from a pass through

the AST. Each analysis has a custom ruleset that tests for certain patterns in the AST. For

example, if an integer constant is seen at point ` the generator for ExprseqLength will

produce {ES(`) v [1..1]}, since an integer must always have expseq size 1.

While other generated constraints provide the glue that properly implements the se-

mantics of the Maple language, these opportunistic rules provide the raw material that give

different analyses their unique colour. The design of these rulesets is purely ad hoc, and

the rule designer must be very familiar with the semantics of the language in question: it is

exceedingly easy to miss some boundary case in the formulation of a rule. Even the reader

familiar with the language in question may be surprised by what conclusions may be drawn

from certain code patterns.
Several examples of “opportunistic” rules used by the system are given in Appendix C.

LoopSteps

At this point is it worth revealing that one of our chosen properties, LoopSteps, is es-

sentially a “cheat.” The only effort LoopSteps itself ever makes to generate constraints

restricting the range of possible loop steps is a trivial case when there is a for-loop with

no condition and purely numeric starting, terminating, and increment values. In no other

circumstances does LoopSteps ever generate by itself any constraints.

Why then do we have LoopSteps? The answer is that because our inferred properties

trade data with each other after every iterate, LoopSteps may “learn” loop-step information

from someone else. In particular

• For for-in loops which traverse data structures, ExprseqLength or

NumOperands may provide the size of the data structure in question

• LiteralValue may be able to conclude that the continuation condition for the loop is

exactly “true” or “false” under certain circumstances.

6. Design 50

The idea then is that LoopSteps is a convenient dropping-off point for information any

other analysis may happen to have about loop size.

6.1.2 Generation of constraints from Reaching Contexts

There are clearly limits to what can be obtained from “opportunistic constraints” alone: in

solving constraint systems for value-based properties, we need a way to unite our approx-

imations for variables which have the same assigned value but occur at different program

points. We achieve this using the information from Reaching Contexts as decribed earlier.

The main idea is that, given any two program points `1, `2, we can compute a constraint

set f(`1, `2) as follows:

1. Check if `1 and `2 are both instances of the same program variable, say v. If not or if

`1 = `2, then set f(`1, `2) = ∅ and exit.

2. Otherwise, check RCexit(`1) and RCexit(`2) and look up the reaching contexts of vari-

able v in each. Let S1 = RCexit(`1)〈v〉 and S2 = RCexit(`2)〈v〉.

3. Then define

f(`1, `2) =

{ValProp(`1) v ValProp(`2)} if S1 ⊆ S2

{ValProp(`1) = ValProp(`2)} if S1 = S2

{ValProp(`1) w ValProp(`2)} if S1 ⊇ S2

∅ otherwise

(where ValProp ∈ {ES, STyp, NOps, LVal})

We therefore simply compute C = ∪x,y∈Lf(x, y) and augment the set of “opportunistic”

constraints generated with the newly computed set C.

The central idea here is that the relationship we indicate between the constraint variables

corresponds to the shared past history of the underlying program variables.

Note that this approach might lead to overapproximation. Consider the following:

L i s t O r I n t e g e r T o S e t := proc (x)

i f t y p e (x , i n t e g e r) then

{x}

e l i f t y p e (x , l i s t) then

6. Design 51

c o n v e r t (x , s e t)

end i f ;

end proc :

In this example the variable N is never assigned, therefore its past computation history is

the same everywhere. However, in practice there is no possible situation under which both

one execution path could pass through both program points (as nothing can be both a list

and an integer simultaneously.) This does not affect the correctness of our result, only its

precision, as we merely overapproximate.

6.1.3 Generating constraints for “unpartitioning”

Variables in the constraint language for value-based properties come in two varieties. The

first are the typical kind: these associate a program point ` representing a Maple value with

a value in the abstract domain.

The other sort are “control variables”: they associate a program variable and some

control structure in the AST with a value in the abstract domain. There are three sorts

of these these variables, corresponding to loops, if-then-else conditions, and procedures

respectively.

Only the variables of the first kind are “native” to this analysis in the sense that they are

derived directly from a traversal of the AST that is specific to this analysis. We are capable

of performing the analysis without control variables, but the use of control variables allows

us to better capture the special semantics of various control structures.

The control variables are generated from data in ReachingContexts, and are introduced

into the constraint system by by equating them to combinations of existing variables. We

illustrate the process here for loops; there is an analogous process for conditional structures

and procedure state.

Let ` be some loop and ∆ be the set of program variable transformed by the loop. For

some value-based property VP ∈ {ES, STyp, NOps, LVal} and each v ∈ ∆, we define the

following:

6. Design 52

Quantity Definition Explanation

LoopInit(v, `)
⊔

(VP(w) : w ∈ RCexit(a, v))

where a is the label of the last

statement before the loop.

initial value of v when the

loop begins.

LoopFinal(v, `)
⊔

(VP(w) : w ∈ RCexit(b, v))

where b is the label of the loop

block.

the final value of v when the

loop terminates (note we do

not implicitly assume termi-

nation)
LoopStepInit(v, `)

⊔

(VP(w) : w ∈ RCentry(c, v))

where c is the label of the

conditional block.

value of v at the start of a loop

step (unlike LoopInit(v, `),

this may follow an indeter-

minate number of previous

steps).
LoopStepFinal(v, `)

⊔

(VP(w) : w ∈ RCentryd, v)

where d is the label of the

loop statement block

value of v at the end of

a loop step (analogously to

LoopStepInit(v, `)).

It is important to make a distinction between initial/final states of the loop overall, and

initial/final states of the looping block.

As described earlier for Reaching Contexts, the purpose of the introduction of these

variables is to partition program states in such a way as to make it easier to refine results.

Specifically for loops, we isolate the loop state from the state of the rest of the program,

after which we may attempt to solve the loop iteratively (see [7]).

Clearly we do not want the states permanently partitioned. For assignments and if

structures, we add information back in a controlled manner, imposing certain relations

between generated variables specific to a particular control structure.

6.2 Constraint solution

Our constaint system is always a simple disjunction of relations. We therefore have no need

to worry about disjunctions, or conversion to normal form. The following is a brief outline

of our method of solving constraint systems.

6. Design 53

6.2.1 Outline

The process for constraint solution looks something like this. Because of the duality prin-

ciple of lattices, we can freely replace all lattice terminology with ther dual (e.g. replace >

with ⊥, v with w, etc.) without changing the conclusions of the sentence.

1. Gather all equality relations and assemble all constraints into equivalence classes

based on equality constraints. From this point on we need no longer worry about

equality constraints at all: they have been dealt with.

2. We now collect all strict relations ordered by their rightmost quantity. By traversing

all the relational constraints, assemble the sets

SR(y) = {x : x v y is a constraint in the system }

This is in practice equivalent to declaring that the value of y will be approximated by
d

SR(y); this idea may be viewed as a variant of the “no junk rule” which holds that

y should at most be the join of all quantities “under” it; if nothing is constraining y

to be larger, it should not be larger.

3. Initialize all constraint variables to > (the lattice top). Denote the current approxi-

mation of a constraint variable by A[x].

4. Repeatedly traverse every y for which SR(y) is defined. For each x ∈ SR(y):

(a) If x is not a value or variable, but is an operator f(z1, . . . , zn), evaluate r :=

f(A[z1], . . . , A[zn]), where the A[zi] are the latest approximation for zi. Assign

A[x] := A[x] u r.

(b) Set A[y] := A[y] u A[x].

This approach will ultimately succeed as long as there are no infinite chains in our analysis.

It is essentially a simple form of Chaotic Iteration, in which we exert very little effort to

optimize the speed of our solution.

6. Design 54

6.2.2 Flow of information

It is worthwhile to observe that, generally speaking, flow of information in our abstract

analysis will follow the flow of the (concrete) program.

The reason for this should become clear upon examining the graph on constraint vari-

ables which is induced by the partial order between them imposed by constraint relations.

Because the relations are induced by shared past computation history, we have a v b if

constraint variable a has a subset of the past computation history of variable b. This fre-

quently means that b is “from the future”, and has since acquired additional computation

history (e.g. through unification of conditional branches.)

Similarly, in evaluated constraints in which one of the constraint values is not a base

type or variable, but a constraint operator, the pattern is typically xresult v f(x1, . . . , xn) for

some variables x1, . . . , xn. This type of operator effectively behaves as the direct analogue

of a concrete function (indeed, it often is a lifted function) and does not pass information

into its arguments x1, . . . , xn but only its result xresult.

Backward-propagating constraints

The exceptions to this rule of forward propagation are interesting enough to warrant men-

tion. The first example is a subset of lifted library functions whose constraints take the

form

xresult v LiftFunction(FUNCTION, fname)(x1, . . . , xn)

Because these functions type-check their arguments before proceeding, our Function Prop-

erty Table reflects this fact, and the LiftFunction call generates a series of constraints

xi v Ti which correspond to restrictions imposed on the range of inputs to fname as a

result of type-checking. Nevertheless, this backwards propagation is highly limited as the

Ti are always constants, and does not constitute a series counterexample to this trend..

A slightly more convincing example is used in ExprseqLength in handling

LiftFunction(EXPSEQ). As was mentioned in Chapter 5, this operator acts like a sum

on I(N). We therefore have a special case that recognizes the pattern

xresult = LiftFunction(EXPSEQ)(x1, . . . , xn)

If, during the solution phase, the approximation A[xresult] is known to be finite, we actually

6. Design 55

do interval subtraction, computing for each i the quantity

ri = xi −
i−1
∑

j=1

−
N
∑

j=i+1

where the addition and subtraction here are interval addition and subtraction, that is:

[a..b]− [c..d] = [max(a− d, 0)..max(b− c, 0)]

This extra step will never help in the refinement of the result xresult, but may improve the

precision of the xis.

For an exposition on a type of this problem, restricted to the two-variable case, see the

thesis of Antoine Miné [21] .

6.2.3 Termination conditions

The issue of ensuring termination is one that cannot be avoided. By our previous arguments

about the analysis mirroring control flow, it should be apparent that because the only Maple

constructs that allow for the repeated visitation of a single program point are recursive calls

and loops. There are therefore our main concerns as far as termination is concerned.

In a procedure with no loops or recursive calls, we can generally say that all the con-

straints point in the same direction: the constraint graph is a directed acyclic graph, can

therefore never loop, so termination is guaranteed because the code is finite.

6.2.4 Loops

The proper handling of program loops is a major component of our analysis. We have

two distinct strategies for dealing with loops. Both rely on the our ability to recognize

constraint variables used in a loop context using the loop constraint variables described in

Section 6.1.3 and generated by the use of Reaching Contexts.

As described earlier, in all value-based analyses, for every variable v transformed by a

loop ` we have introduced into the language of constraints the four quantities

LoopInit(v, `), LoopFinal(v, `), LoopStepInit(v, `), and LoopStepFinal(v, `) in or-

der to partition the constraint graph of the program to prevent cycles.

6. Design 56

However, this gives us a convenient means of expressing the problem as a recurrence

relation. The constraint systems will induce a symbolic dependency of the final state of a

loop iteration upon the initial state of the iteration. In other words, for a loop ` with loop

variables v1, . . . , vn we have the following:

LoopStepFinal(`, v1) v F1(LoopStepInit(`, v1), . . . , LoopStepInit(`, vn))
...

...

LoopStepFinal(`, vn) v Fn(LoopStepInit(`, v1), . . . , LoopStepInit(`, vn))

or, in matrix form

LoopStepFinal(`, v̌) v F (LoopStepInit(`, v̌))

Since LoopStepInit(`, v̌) = LoopInit(`, v̌) at the beginning, we can therefore simulate

the effect of the loop simply by computing the following, where n is the number of loop

steps:

LoopStepFinal(`, v̌) v F n(LoopInit(`, v̌))

We have two approaches for performing this computation: a partitioned iteration approach

and a recurrence relation approach.

Partitioned iteration approach

The most obvious, most readily used, and most general solution is simply to simulate the

execution of the loop. Using the loop variables introduced in Section 6.1.3, we construct a

mini-procedure consisting only of the constraint variables that are dependent on the loop.
We have some kind of estimate from LoopSteps on the number of steps a given loop

` will take; this may well be [0..∞], which is no great loss. As our goal we simply it-

erate X, F (X), F 2(X), . . . repeatedly until we have hit a fixedpoint or taken more than

max(LSteps(`))) steps.
We are guaranteed to converge provided we employ widening operators (see 3.6.1) in

the case of analyses on infinite lattices; fortunately, we indeed use widening operators in

our analyses for ExprseqLength and NumberOfOperands, both infinite lattices.
The particular operator chosen is a variant, adapted for I(N) of the operator ∇K de-

scribed in [22] (p. 226-227). Essentially, the principle is that in cases of uncontrolled

6. Design 57

growth, the upper bound∇K is widened to the nearest element in a finite set K of integers;

if all elements of K have been exceeded, ∞ is returned. The finiteness of K ensures no

infinite chains are possible.

We do not currently employ narrowing operators to refine our widened results, though

this would not be difficult to implement.

We return the result to the calling procedure, substitute the result for our symbolic quan-

tities LoopInit,LoopFinal,LoopStepInit,LoopStepFinal into our solution, and we are

done.

6.2.5 Recurrence relation approach

An alternate approach investigated and implemented was that of treating the loop as a

recurrence equation. This approach has great utility, chiefly because it does not involve a

potentially expensive simulation of the loop execution within the abstract domain, as the

partitioned iteration approach does. The chief objection to this approach is that number of

cases it can handle are quite small.

Generalized characteristic function

We begin our discussion with a simple analysis to handle the case of whether the loop

executes at all.

Let ` be the label of some loop and v be a variable whose state is transformed by

`. Suppose α is our best approximation of v just before the loop begins, and β is our

approximation at the end of the loop body, after one or more passes through the loop.

Suppose ` executes n times. We can formalize the value of v immediately after the loop

block by the following:

χN(n, α, β) =

{

α if n = 0

β if n ≥ 1

Observe that χN is essentially a simple characteristic function.

However, in static analysis we usually have only an approximation of the value of n.

Let I be such an interval estimate. Then define the generalized characteristic function

6. Design 58

χI(N)(I, α, β) by

χI(N)(I, α, β) =

α if I = [0..0]

β if I v [1..∞] (i.e. I = [a..b] and a ≥ 1)

α t β otherwise

Notice that χI(N) has the useful property:

(α u β) v χI(N)(I, α, β) v (α t β)

The name is motivated by the fact that this is the best-possible generalization of our original

χN to the interval lattice I(N).

Recurrence relations

As above we have

LoopStepFinal(`, v̌) v F (LoopStepInit(`, v̌))

This can be viewed as a recurrence relation, where LoopStepFinal(`, v̌) is the i + 1st

value, LoopStepInit(`, v̌) the ith, and LoopStepInit(`, v̌) the initial condition.

For certain values of F , we can solve this recurrence explicitly. In particular, if we

restrict ourselves to the case when F is diagonal, we need only worry about one loop

variable vi at a time.

We have compiled a rather ad hoc set of patterns for diagonal functions F which we

can handle. We will use one, from ExprseqLength, as an illustrative example:

LoopStepFinal(`, vi) v LiftFunction(EXPSEQ)(LoopInit(`, vi), c)

for some constant c. As was mentioned in Chapter 5, this lifted function acts an addition

operator, so if we knew n we could express a solution simply as

LoopStepFinal(`, vi) = LoopInit(`, vi) + n · c

where + is interval addition and · represents interval scalar multiplication.

6. Design 59

Of course, in general we only ever have an interval bound LSteps(`) on n. In this case,

we can express the explicit solution to the recurrence as

LoopStepFinal(`, vi) = LoopInit(`, vi) + LSteps(`) ∗ c

where all the quantities on the right-hand side have been approximated, and ∗ is interval

multiplication (as distinct from interval scalar multiplication.).

In general, when we can solve the recurrence we will obtain an equation

LoopStepFinal(`, vi) = d which, for convenience, assumes the loop has executed at least

once. We can then solve LoopFinal(`, vi) using χI(N) as defined earlier, by assigning

LoopFinal(`, vi) = χI(N)(LSteps(`), LoopInit(`, vi), d)

This approach conveniently skips the simulation of the loop, and furthermore avoids

any imprecision enforced by the use of widening operators. Nevertheless it is very difficult

to anticipate the types of recurrences that actually come up in practice, many of whose

transfer functions are lifted library functions about which we cannot easily reason. The

recurrence relation approach is highly worthwhile when a solution is possible.

6.2.6 Function application

Function applications pose several problems for our analysis: in understanding what in-

formation is being passed in to the function application, making as precise as possible the

information that is being passed out, and in handling termination issues.

Digesting function arguments

The most immediate problem is finding out how many arguments are being supplied to the

function and what program values they correspond to. This problem probably does not

occur to one unfamiliar with Maple or other languages (this includes Perl) that support the

equivalent of expression sequences.

If we encounter f (a ,b) we must first, before anything else, establish whether a and b

are expression sequences before concluding f is being called with two arguments. Further-

more, even knowing that f is called with two arguments does not uniquely identify a and

6. Design 60

b as the arguments: there are the two spurious cases in which one of the two variables has

expseq length of 2 and the other equal to NULL (the empty expression sequence).
One of our analyses, ExprseqLength, is designed to accomplish this task; this is not

accidental. Nevertheless, even with ExprseqLength there will be many cases in which

we cannot uniquely match values in the function application with procedure parameters,

because not enough is known about the arguments provided or the number of parameters f

will accept.
Currently, we only handle procedure arguments when we can exactly match them to

parameters. This could be generalized to cases where there are a small number of possible

matchings (such the example above with f, a, and b).

Handling built-in functions and special names

As discussed in Chapter 2, many procedures in Maple are not writtenin the Maple language,

but are built into the Maple kernel and usable transparently by programs.
These procedures are entirely outside our reach for analysis, and because they make

up much of the core functionality upon which many programs depend, we shall need our

analyses to recognize and know something about them.
To reconcile these problems, we have built a database of builtin functions and another

for special names, which are symbols with special significance to the system (examples

include true, false, and Pi.)
In these databases, we have encoded by hand the results which our analyses should have

found, had they been able to examine the procedures in question. The properties encoded

in the table were gathered through a combination of reading the formal specification of the

builtin procedure (from the online help system or [18]) and direct experimentation upon

the builtin procedures within a session.

Handling previously-analyzed procedures

So far we have spoken purely of analyzing single procedures, and said little about function

applications except for standard library functions. Yet it is frequently the case that we wish

to analyze large libraries of heavily interdependent code as a whole.
Moreover we would hope that if we have analyzed g and are now analyzing f which

calls upon g, we should be able not only to benefit from our previous analysis but would

hope to specialize it to the context in which g is used within f .

6. Design 61

We have implemented two approaches to dealing with function calls to previously-

analyzed procedures. One is purely superficial. The other is more sophisticated but also

more costly.

Suppose in the context of executing f we encounter a function call to g, which has been

analyzed before with constraint set Cg and solution Sg. (We also assume we can properly

match the parameters of g!) Suppose the function call for g within f has n arguments,

which in the language of the abstract domain are x1, . . . , xn.

Superficial approach: Let p1, . . . , pn be the constraint variables corresponding to the

parameters of g in the abstract domain, and let r be the constraint variable corresponding

to its return value in the abstract domain. The current estimates Sg(p1), . . . , Sg(pn), Sg(r)

were computed when g was previously analyzed. We generate some constraints from the

knowledge of the parameters and return value of g:

Γ1 =

(

(g(x1, . . . , xn) v Sg(r)) ∧
∧

i=1..N

(xi v Sg(pi))

)

We augment our constraint system in f with Γ1, and move on. We do not re-execute g or

examine it further at all.

Specialization approach: In the specialization approach, we make a temporary copy

of the constraints and solution for (Cg, Sg); call this copy (C ′
g, S

′
g). We define a constraint

system which looks very much like the previous, but with all relations reversed:

Γ2 =

(

r v Sf(g(x1, . . . , xn)) ∧
∧

i=1..N

(pi v Sf (xi))

)

Here Sf is the current solution to the outer function f : since we are in the middle of solving

it, there must at least be some solution for f in existence.

We then solve C ′
g ∧ Γ2 and assign the result to S ′g. We have created and solved a

specialized version of g, which we incorporate into our constraint system for f in the

same manner as before. This specialization is somewhat akin to partial evaluation within

the constraint language. Recursive calls present no immediate problem: as with other

procedures, we simply use the most recent complete solution.

While the second approach clearly gives better results, there is an issue of where to

stop. We have no immediate equivalent of dead-code elimination: if the list of dependent

6. Design 62

procedures on f is large, this could be a costly or infinite computation.

While this is probably best handled by a theoretically sound approach like narrowing

and widening, in practice our implementation simply has a preset depth threshold (default

value 1). After specializing every called procedure to a depth of d, we simply use the

superficial results described earlier and return. With this threshold in place we need not

worry about convergence, since the number of called procedures must be finite.

6.3 Software specification

We wish to design a piece of software which accepts as input a procedure p, constructs a

property record for p, and saves the record for p to a property database from which it may

later be retrieved without the need for recomputation.

The property record for p is all the collected and inferred information we have about p,

including its abstract syntax tree, any generated constraints, and any solved properties.

6.3.1 Scope

We have stated that we wish to analyze Maple procedures. We will attach one important

proviso to this claim which slightly restricts the generality of our results. We will not

handle or support the try/catch/finally constraint in Maple.

Because the try/catch system can involve the immediate transportation from almost any

program point to one of several “catching” clauses, supporting this construct would have

serious consequences for our design. Furthermore we would be obligated to abandon our

central assumption that the source code in its present format was expected not to throw an

error.

We do treat procedures with try/catch/finally structures in them, but entirely ignore the

data outside the try block and issue a warning when first encountering such a procedure.

6.3.2 Preprocessing

Prior to any real work, we perform some preprocessing work to gather some basic data

about the input. These steps include the following:

6. Design 63

• A pass to determine whether loops have nontrivial conditions, or are pure for loops.

• A pass to record whether each label is inside an “evalb context”. This is a special

context which Maple implicitly imposes when evaluating conditional expressions;

see section 5.3.1.

• A pass to determine whether a the value at a given label is “concrete”, i.e. whether

it is completely independent of state and could be lifted wholesale out of the proce-

dure body and would resolve to the same expression. Integer and string literals and

protected global symbols fit this description.

6.3.3 Property dependencies

There is a more-or-less natural order in which we must analyze the properties of interest,

for value-based properties, we usually must analyze ExprseqLength, for without being

having solved results about expression sequences, we cannot hope to attempt to analyze

function applications. Thus SurfaceType requires ExprseqLength to be executed first.
However, SurfaceType is also useful to ExprseqLength in certain contexts. Consider

the following:

r := A[x] ;

Suppose ` is the annotation corresponding to A. In general, since A may be a table or array,

little can be said about ES(`). However, if it is known that STyp(`) v {STRING, LIST}, and

that STyp(`) v {INTPOS}, then ES(`) v [1..1].
Thus we have a potential problem with cyclic dependencies. We resolve this in our soft-

ware design by forcing dependencies to be DAG-like, but allow for a special “composite

constraints” phase after all quantities have been analyzed in the current pass. This “com-

posite constraints” phase is an extra traversal of the AST, in which any type of constraint

may be freely used or generated.
Any constraints generated in this phase are included among the generated constraints

in the next iteration.

6.3.4 Construction of property record

The following is a brief outline of the steps needed to turn a procedure p into a property

record.

6. Design 64

1. Check to see if p is a built-in procedure or special procedure; these have results in

a special lookup table since they either cannot be analyzed, or are not analyzed for

efficiency reasons.

2. Check the property database to determine if p has been examined before. If so, read

any previously-analyzed property from the database.

3. Construct the annotated tree AST(p) and perform all preprocessing upon it.

4. Examine the dependency list for each of our analyzed properties, putting dependent

analyses after their dependencies.

5. Analyze each property in turn, in the following way:

(a) For each property p, generate its constraint set. If we have any “composite

constraints” from a previous iteration, we add them now.

(b) Write the constraint set to the property record.

(c) Solution step:

• Solve the constraint system if this is the first iteration or if the constraint

system has changed since the last iteration.

• If we already have a past solution for p, set it as our current solution. Oth-

erwise, we set our solution to the most pessimistic possible (> for every

quantity).

• If we solve the system, we do so with the current solution as an initial

condition.

• Write the solution to the property record.

6. Generate “composite constraints”: these are a special class of opportunistic con-

straints whose triggering condition depends on the results of several different analy-

ses in a complex manner. We must therefore wait until all analyses have been com-

pleted before analyzing them.

7. If no fixed point has been generated, we repeat step 6.

8. If we have reached a fixed point, we return the current state of the property record as

our solution.

Chapter 7

Results

After developing all this theoretical apparatus and design, we can now demonstrate some

tangible examples of its and results on a nontrivial Maple programs.

We will begin with illustrations of the results of our analyses on small comprehensible

Maple programs; some of these examples were also used in [3]. Following this will discuss

two wide-scale deployments of our tool on libraries of Maple procedures.

7.1 Examples

The following three examples illustrate the use of our tool on small inputs which demon-

strate the idea behind their use, the interaction between properties in solving a procedure,

and the suitability of this tool for static error detection.

7.1.1 Example 1: Primality tester

It is helpful to begin with some concrete examples for which the analysis can be replicated

by the reader. Consider the following Maple procedure:

I s P r i m e := proc (n : : i n t e g e r) l o c a l S , r e s u l t ;

S := numtheory:- f a c t o r s e t (n) ;

i f nops (S) > 1 then

r e s u l t := (f a l s e , S) ;

e l s e

r e s u l t := t rue ;

65

7. Results 66

end i f ;

re turn (r e s u l t) ;

end proc :

IsPrime is an combined primality tester and factorizer. It factors its input n, then returns a

boolean result which indicates whether n is prime. If it is composite, the prime factors are

also returned.

This small example demonstrates the results of two of our analyses. For Exprse-

qLength , we are able to conclude, even in the absence of any special knowledge or analysis

of numtheory:-factorset, that S must be an expression because it is used in a call

to the kernel function nops (“number of operands”); we glean this information from our

function database.

Combined with the fact that true and false are known to be expressions, we can

estimate the size of result as [2..2] when the if-clause is satisfied and [1..1] otherwise.

Upon unifying the two branches, our ExprseqLength estimate for result becomes [1..2].

Our results can also be used for static inference of programming errors. We assume that

the code, as written, reflects the programmers’ intent. In the presence of a programming

error which is captured by one of our properties, the resulting constraint system will have

trivial solutions or no solutions at all.

7.1.2 Example 2: GrowSeq

For a more complex example, consider:

GrowSeq := proc (u) l o c a l x , y , i ;

x := 2 , 3 , 4 , 5 ;

y := 1 ;

f o r i in [1 , 2 , 3] do

x := x , u ;

y := y + 1 ;

end do ;

(x , y) ;

end proc :

This example illustrates two key points: our capacity to deal with loop semantics, and

our ability to propagate information between properties.

7. Results 67

Initially, ExprseqLength measures the initial size of x as [4..4], and attempts to solve

the loop. However, it does not yet know how long the loop runs so it uses the extremely

pessimistic estimate of [0..∞] steps. LoopSteps can measure recognize the size of the

expression sequence inside the list [1,2,3]\ as [3..3], but cannot propagate this information

anywhere.

Through the partition iteration approach, LoopSteps can see that the variable x is an

expression sequence whose length is growing by 1 each step. Because of this initial pes-

simistic assessment of the number of loop steps, its first solution for the state of x at the

end of the loop is [3..∞]. ExprseqLength is not capable of doing anything with y because

it only sees y as an expression.

Next, SurfaceType is able to solve the loop for y as it sees y as INTPOS and knows that

Maple’s sum operator produces an INTPOS when given two INTPOS expressions as input.

Therefore we know now that y is an INTPOS throughout the loop.

Control passes to NumberOfOperands, which assigns the list [1,2,3]\ the measure

([1..1], [3..3]).

Next, our “composite constraint” pass propagates the information about the size of the

list into LoopSteps: we now know the loop takes exactly [3..3] steps. This information

is passes to ExprseqLength in the second pass, and because SurfaceType inferred that y

was always an INTPOS, ExprseqLength now knows its size is [1..1].

Eventually we exit with the estimate [8..8] for the last expression in the procedure,

having used five different analyses to obtain this result.

7.1.3 Example 3: Error detection

Our results can also be used for static inference of programming errors. We assume that

the code, as written, reflects the programmers’ intent. In the presence of a programming

error which is captured by one of our properties, the resulting constraint system will have

trivial solutions or no solutions at all.

For an illustration of this, consider the following example. The procedure faulty is

bound to fail, as the arguments to union must be sets or unassigned names, not integers.

As Maple is untyped, this problem will not be caught until runtime.

7. Results 68

l o o p t e s t := proc (n : : p o s i n t) : : i n t e g e r ;
l o c a l s : : i n t e g e r , i : : i n t e g e r , T : : t a b l e , f l a g : : t rue ;
(s , i , f l a g) := (0 , 1 , f a l s e) ;
T := t a b l e () ;
whi le i ˆ2 < n do

s := i + s ;
i f f l a g then T [i] := s ; end i f ;
i f t y p e (s , ’ even ’) then f l a g := t rue ; break ; end i f ;
i := 1 + i

end do ;
whi le t y p e (i , ’ p o s i n t ’) do

i f a s s i g n e d (T [i]) then T [i] := T[i] − s ; end i f ;
i f t y p e (s , ’ odd ’) then s := s − i ˆ2 end i f ;
i := i − 1

end do ;
(s , T)

end proc :

Figure 7.1: Procedure looptest from test library
f a u l t y := proc (c) l o c a l d , S ;

d := 1 ;

S := {3 , 4 , 5} ;

S un ion d ;

end proc :

However, SurfaceType can detect this: the two earlier assignments impose the con-

straints STyp(X1) v {INTPOS} and STyp(X2) v {SET}, while union imposes on its

arguments the constraints that X3, X4 v {SET} ∪ Alias(Name).
No assignments to d or S could have occurred in the interim, we also have the con-

straints X1 = X4 and X2 = X3. The resulting solution contains X1 = ∅, which demon-

strates that this code will always trigger an error.

7.2 Results from testing

We have completed two significant runs of our tools against collections of Maple proce-

dures, the results of which we present below.

7.2.1 Example from compiler/partial evaluator test base

We have run our tools against a private collection of Maple functions gathered from earlier

projects (including [4]); this should provide us with a solid test-bed which catches corner

7. Results 69

cases and tests the robustness of our design.

We can analyze 294 of the 301 procedures in this test base. The remaining seven cannot

presently be analyzed by our tool because of technical details involving the manner in

which lexically-scoped variables are retained inside Maple archives; the details of this issue

are unrelated to our analysis.

Figure 7.2.1 is an example of a function present in the test library; we present a brief

description of how our tool regards it.

This rather formidable procedure, while not doing anything particularly useful, is cer-

tainly complex. It contains two successive conditional loops which march in opposite di-

rections, and both of which populate the table T along the way.

Here our analysis recognizes the fact that even though flag is written within the body

of the first while loop, this write event cannot reach the if-condition on the preceding line

because the write event is immediately followed by a break statement. We are also able

to conclude that s is always an integer: though this is easy to see, given that all the write

events to s are operations upon integer quantities.

7.2.2 Results from compiler/partial evaluator test base

We will now discuss the overall results from the test run. Figure 7.2 summarizes key

information about the test run. First, for some point a in the abstract domain (e.g. [1..1] ∈

I(N), we ask the question for each test procedure p “how many times does a occur in our

solution for p?”.

We compute this, and then express it as a a ratio over all constraint variables used in p.

This gives a sense of how frequently this measured value occurs in p. Finally, we compute

the average of all such estimates over all procedures p in our test base, giving us a sense

both of what is in a “typical” procedure and how effective we are at measuring it. Expressed

formally,

The result is a rough guide to our precision. However, there is a significant degree of

complexity in our chosen abstract domains. In the interests of simplifying some of this

complexity and understanding how precise we are able to be, let us informally define a

precision measure on the abstract domain which indicates how far we are from a concrete

solution, independently of what the concrete solution actually is.

7. Results 70

For the interval lattice [a..b], we will define our precision measure to be

µ(z) =

∞ if z = [a..∞] for some a

b− a + 1 if z = [a..b] for a, b ∈ N

0 if z = ⊥

For the lattice of sets, our precision measure will simply be the cardinality of the set:

µ(S) = |S|. Observe in both cases that µ(⊥) = 0 and that µ(x) = 1 corresponds to

an atom, which represents the most concrete solution possible. Quantities in the abstract

domain whose µ values are equal have a comparable level of “concreteness,” and following

this principle we have used the µ results to group related terms in Figure 7.2. In this figure

we present the results from a traversal of the 294 procedures in this test base. We will

proceed property by property:

ExprseqLength

Immediately we notice that on average we have µ(ES(`)) = 0 approximately 0.43% of the

time. These correspond to cases where ES(`) = ⊥, which suggest either errors in the code

or errors in our engine.

Either could be the case. If it is the result of an error in our inferencer, it is likely the

result of a poorly-specified opportunistic rule, or a poorly-formulated entry in the function

database.

We next observe that a huge proportion, an actual majority, of the values encountered

turn out to be expressions. This represents what we can “prove” to be an expression; there

may be other variables which turn out to be expressions but are currently more pessimisti-

cally classfied.

Together with expressions, expression sequences of lengths 0, 2, and 3 represent 70.0%

of all values, and since completely-determined values make up 70.82%, we know there

cannot be many bigger exprseqs in the code.

Next, notice that 28.2% of all values have infinite bounds. Of these 19.8% have [0..∞]

as their bound, which is > in our lattice. These are values upon which we have made no

progress at all. On the other hand, this means we have shown something nontrivial for

80.2% of values.

7. Results 71

ExprseqLength % match
µ(ES(`)) = 0 0.43
µ(ES(`)) = 1 70.82
ES(`) = [0..0] 1.190
ES(`) = [1..1] 66.1
ES(`) = [2..2] 2.68
ES(`) = [3..3] 0.563
µ(ES(`)) = 2 0.508
ES(`) = [0..1] 0.122
ES(`) = [1..2] 0.374
ES(`) = [2..3] 0.016
µ(ES(`)) = 3 0.0146
µ(ES(`)) = 4 0
µ(ES(`)) =∞ 28.2
ES(`) = [0..∞] 19.76
ES(`) = [1..∞] 7.06
ES(`) = [2..∞] 0.92
ES(`) = [3..∞] 0.39

SurfaceType % match
µ(STyp(`)) = 0 7.27
µ(STyp(`)) = 1 25.0
STyp(`) = {INTPOS} 12.77
STyp(`) = {STRING} 0.347
STyp(`) = {INTNEG} 1.56
STyp(`) = {NAME} 1.51
µ(STyp(`)) = 2 0.72
STyp(`) = Alias(Integer) 0.289
µ(STyp(`)) = 3 0.248
µ(STyp(`)) = 4 0.0400
µ(STyp(`)) = 5 0.00
µ(STyp(`)) = 6 3.43
STyp(`) = Alias(Algebraic) 16.50
STyp(`) = Alias(Complex) 21.45
STyp(`) = Alias(Expression) 21.45
STyp(`) = Alias(AnyValue) 21.74

NumOperands % match
NOps(`) = ([a..b], ?) 34.80
NOps(`) = [0..0] 0
NOps(`) = [1..1] 27.8
NOps(`) = [2..2] 2.77
NOps(`) = [3..3] 0.05
µ(NOps(`)) = 2 0
µ(NOps(`)) = 3 0
µ(NOps(`)) = 4 0
µ(NOps(`)) =∞ 34.5
NOps(`) = [0..∞] 32.08
NOps(`) = [1..∞] 0.89
NOps(`) = [2..∞] 0.91
NOps(`) = [3..∞] 0.35

LiteralValue % match
LVal(`) = (x, ?) 77.4
µ(LVal(`)) = 0 0.00
µ(LVal(`)) = 1 22.2
LVal(`) = {true} 2.02
LVal(`) = {false} 0.05
LVal(`) = {−1} 1.667
LVal(`) = {0} 6.23
LVal(`) = { 1

2
} 0.01

LVal(`) = {1} 3.96
LVal(`) = {2} 0.553
LVal(`) = {3} 2.02
LVal(`) = {4} 2.02
µ(LVal(`)) = 2 0.34
LVal(`) = {true, false} 0.31
µ(LVal(`)) = 3 0.04

Figure 7.2: Results using compiler/partial evaluator test base
SurfaceType

Our error-set is much larger here: 7.27%. This is perhaps the result of errors in the code or

a large quantity of dead code; another explanation is an inferencer bug somewhere.

7. Results 72

We see that we can assign a unique surface type to 25% of values, and that positive

integers represent over half of this total: integers are truly ubiquitous in Maple.

Lastly, quite a number of matches come up for our type aliases Algebraic, Complex,

etc. As we use these in the function database, it is likely this information is merely being

propagated from there.

NumOperands

Here we see first that 34% of values are not provably expressions as far as the Num-

Operands analysis is concerned; this accords well with the conclusion from Exprse-

qLength that 66% of values were expressions.

Of the 66% that are expressions, approximately 32% have finite bounds, while the re-

maining do not. Our rate of returning > is higher than it was for ExprseqLength, but

this could also reflect the more complex semantics of NumberOfOperands.

LiteralValue

Lastly, we examine literal values. Unsurprisingly, 77.4% of values cannot be assigned

a literal value; this is hardly shocking news since we are dealing with a very concrete

property.

Almost all the literal value sets that can we have encountered are singletons. This

probably reflects an opportunistic constraint assigning a value to a literal in context, and

that information propagating from there.

We note that the literal values encountered are the integers -1,0,1 and “true” are partic-

ularly well-represented in the results; this is not especially surprising, especially given the

widespread use in the Maple library of the sign and signum commands.

7.2.3 Results from Maple library test base

The obvious candidate for a Maple library to use as a data mine for testing purposes is the

Maple library itself. Figure 7.3 presents the results from a traversal of 116 procedures cho-

sen semi-randomly from the Maple 10 standard library. (We say “semi-randomly” because

we required that the procedures chosen have certain upper bounds on size, complexity, and

level of dependence on other procedures in order that we might analyze them).

7. Results 73

ExprseqLength % match
µ(ES(`)) = 0 0.849
µ(ES(`)) = 1 63.78
ES(`) = [0..0] 3.75
ES(`) = [1..1] 57.5
ES(`) = [2..2] 0.255
ES(`) = [3..3] 1.64
µ(ES(`)) = 2 0.511
ES(`) = [0..1] 0.090
ES(`) = [1..2] 0.399
ES(`) = [2..3] 0.000
µ(ES(`)) = 3 0
µ(ES(`)) = 4 0
µ(ES(`)) =∞ 35.36
ES(`) = [0..∞] 28.09
ES(`) = [1..∞] 4.71
ES(`) = [2..∞] 1.7
ES(`) = [3..∞] 0.45

SurfaceType % match
µ(STyp(`)) = 0 1.07
µ(STyp(`)) = 1 26.07
STyp(`) = {INTPOS} 10.9
STyp(`) = {STRING} 4.01
STyp(`) = {INTNEG} 0.86
STyp(`) = {NAME} 0.01
µ(STyp(`)) = 2 0.12
STyp(`) = Alias(Integer) 0.289
µ(STyp(`)) = 3 0.00
µ(STyp(`)) = 6 1.218
STyp(`) = Alias(Complex) 1.2
STyp(`) = Alias(Expression) 36.16
STyp(`) = Alias(AnyValue) 30.0

NumOperands % match
NOps(`) = ([a..b], ?) 43.56
µ(NOps(`)) = 1 30.15
NOps(`) = [0..0] 0.503
NOps(`) = [1..1] 28.4
NOps(`) = [2..2] 1.19
NOps(`) = [3..3] 0.00
µ(NOps(`)) = 2 0.12
NOps(`) = [1..2] 0.12
µ(NOps(`)) =∞ 26.18
NOps(`) = [0..∞] 26.18

LiteralValue % match
LVal(`) = (x, ?) 79.29
µ(LVal(`)) = 0 0.00
µ(LVal(`)) = 1 20.7
LVal(`) = {true} 0.007
LVal(`) = {false} 0.05
LVal(`) = {−1} 0.983
LVal(`) = {0} 6.23
LVal(`) = { 1

2
} 0.099

LVal(`) = {1} 0.983
µ(LVal(`)) = 2 0
µ(LVal(`)) = 3 0.0431

Figure 7.3: Results using Maple library as a test base
The presentation is identical to that for Figure 7.2. We shall therefore not repeat our-

selves excessively and concentrate on the differences.

ExprseqLength

The results are in the same general bounds, but it is worth observing that the rate of en-

countering ⊥ has doubled. It will require some investigation to determine whether this is a

genuine result or an inferencer error.

7. Results 74

Generally, the results are somewhat poorer: there are more quantities with µ(ES(`)) =

∞, and fewer proven expressions.

SurfaceType

The results are slightly weaker here as well, though the exceptionally high rate of returning

⊥ exhibited in the previous analysis is fortunately not replicated.

NumOperands

Fully 44% of values cannot be proven to be expressions, and of those that can be shown to

be expressions, many of them cannot be given a finite bound.

LiteralValue

The results here are essentially equivalent to those from the previous analysis, with integers,

other numeric literals, and symbols making up the bulk of “literal quantities” we are able

to discover.

7.2.4 Discussion

The results above suggest future directions for this analyzer. A special focus on Surface-

Type would probably be fruitful, as it is clear that many of the constraints visible there are

not being propagated forwards through chains of assignments and disseminated over other

constraint variables.

This suggests we have a phenomenon whereby there is a island of pure concrete knowl-

edge lost in a sea of approximation and uncertainty: the answer is to focus not on the depth

of the quantities we wish to impose, but on their breadth. We should ensure there is nothing

about which the system is largely ignorant.

That said, there is a large body of code we will likely never be able to analyze effec-

tively: this includes such things as dynamic variable generators, and dynamically-generated

procedures. One clearly beneficial addition would be a means of authoritatively knowing

when a symbolic quantity was an assigned value and when it is not.

Chapter 8

Conclusion

We have demonstrated that static analysis and specifically abstract interpretation can be a

highly informative tool for inferring static information about Maple code. Each of the chief

value-based properties of interest have nontrivial amounts of inferred data for even small

input procedures.
Our tool is suitably generic, and can handle a wide class of Maple inputs while gener-

ating nontrivial results. Our efforts at avoidance of the “toy problem” syndrome have, on

balance, succeeded: while the solver is extremely slow for large procedures, this is to prob-

ably be expected for this type of analysis, and the extreme genericity of our implementation

means many efficiency improvements are possible.
The approach of employing a small number of specialized analyses which compose

well has proven to be a very successful strategy, as the example from 7.1.2 illustrates. We

have seen that the techniques of static inference through abstract interpretation permit us to

reclaim some of the knowledge which in other programming languages we get for free.
This tool could be combined with other tools with good results, like compilers, code

optimizers, or partial evaluators. As discussed in the introduction, such tools could make

use of the inferred static data in much the same way as they might make use of inferred

types. Some errors can be caught; some dead code can be eliminated; some specializations

or code transformations are enabled by the existence of such information.
There are many possible directions for future work in this area. An obvious candidate is

efficiency improvements to the constraint solver. The solver is currently extremely generic;

while we do not want to specialize our constraint solution techniques, we can undoubtedly

make the solution engine much, much faster and scaleable.

75

8. Conclusion 76

Another clear target for further improvement is the addition of more static properties;

like the ones described here, these would have to be simple yet compose well with other

existing properties. We might, for instance, have a “integer arithmetic” solver which mod-

els integer-valued variables with intervals. This would scale better than our LiteralValue

analysis, and has the potential for sharing data usefully with the other interval-valued prop-

erties, like ExprseqLength and NumberOfOperands.

Our ability to solve recurrence relations over lattices, even in restricted cases, offers

up intriguing possibilities regarding the potential applicability of symbolic tools in abstract

interpretation. We suspect that the class of solveable recurrences over our abstract domains

can be extended considerably with some further work, and it is possible that this may

permit us to recapture some precision that would otherwise be lost with a straightforward

widening/narrowing approach.

Finally, the rulesets for opportunistic constraint assignment could be vastly intended,

permitting the refinement of existing analyses. The opportunistic rules used thus far are

only a small selection of the data that could be drawn from the code. Furthermore, the

current implementation significantly underutilizes the potential of the so-called “composite

constraints”, that is, opportunistic constraint assignment rules which depend on one or more

existing analyses to be already present.

Appendix A

Inert Form Tags

This is a list of all tag names which occur in Maple’s inert form data structure, with a brief
explanation of each.

We have classified the tags into three groups. The first two groups correspond to state-
ments and expressions respectively. The third corresponds neither to procedures nor ex-
pressions, but merely data within the AST.

A.1 Inert Forms Corresponding to Statements
Table A.1: Inert Form Tags Corresponding to Statements

Inert Form Description Children in AST
ASSIGN Assignment operator 2
BREAK Break out of loop 0

CONDPAIR If condition and associated branch 2
ERROR Raise error 1

FORFROM For-from loop 6
FORIN For-in loop 4

IF If statement Arbitrary
NEXT Jump to next loop iteration 0

STATSEQ Sequence of statements Arbitrary
STOP Terminate session 0
TRY Try/catch/finally block Arbitrary

RETURN Quit procedure and return value 1
READ Read data from external archive 1
SAVE Save data to external archive 1

77

A. Inert Form Tags 78

A.2 Inert Forms Corresponding to Values
Table A.2: Inert Forms Corresponding to Values

Inert Form Description Children in AST
AND Boolean conjunction (∧) 2

ASSIGNEDNAME Assigned name 2 or 3
ARRAY Rectangular array of data 5 or 6
ARGS Expseq of dynamic arguments 0

CACHETAB Special memoization table 3
CATENATE Concatenate two strings or names 2
COMPLEX Complex number 1 or 2
DCOLON Check type of expression 2

EQUATION equation (=) 2
EXPSEQ expression sequence Arbitrary

EXACTSERIES Mathematical series w/no order term Arbitrary
FLOAT Floating-point number 2

FUNCTION Function application 2
HASHTAB Hash table Arbitrary

INTPOS Nonnegative integer 0
INTNEG Negative integer 0

INEQUAT Inequation (6=) 2
IMPLIES Boolean implication (⇒) 2
LESSEQ Less than or equal to (≤) 2

LESSTHAN Less than (<) 2
LIST List of expressions 1

LOCAL Local variable in module or procedure 1
LOCALNAME Local value 2

LEXICAL LOCAL Local variable from higher lexical scope 1
LEXICAL PARAM Procedure parameter from higher lexical scope 1

MATRIX Matrix data structure 5 or 6
MEMBER Module member reference 2
MODDEF Software module definition 9
MODULE Software module 3

NAME Variable name 1 or 2

A. Inert Form Tags 79

NARGS Number of dynamic procedure arguments 0
NOT Boolean negation (¬) 1

NRESULTS Number of results expected from 0
application of procedure

OR Boolean disjunction (∨) 2
PARAM Procedure parameter 1
POWER Exponent data structure 2
PROC Procedure 9 or 10
PROD Product data sructure Arbitrary

PROCNAME Special name for procedure self-reference 0
RANGE A range [a..b] 2

RATIONAL Fractional number 2
SDPOLY Special data structure for sparse 7

distributed multivariate polynomial
SERIES A mathematical series approximation Arbitrary

SET Set of expressions 1
STRING String 0

SUM Sum data structure Arbitrary
TABLE Hash table 2

TABLEREF Indexed expression 2
UNEVAL Evaluation delay operator 1

VECTOR COLUMN Column vector 5 or 6
VECTOR Vector of unspecified orientation 5 or 6

VECTOR ROW Row vector 5 or 6
XOR Boolean exclusive or (⊕) 2

ZPPOLY Special polynomial structure for 7
computations modulo p

So as not to make the table excessively verbose, we no not list those tags which relate
to the special parameter processing rules introduced in Maple 10. Because these features
are so new, they are effectively never encountered in analysis of existing code.

Nevertheless, for completeness’ sake, the names of the omitted tags are:
NOPTIONS NPARAMS NREST OPTIONS PARAMS REST

A.3 Additional Inert Form Tags

There are a small number of remaining inert form tags. These tags can neither be regarded
as statements or values, but serve as supplemental data to some other type of inert form.
One demonstration of this is that fact that these additional tags occur within extremely spe-
cific contexts, such as an inert procedure, module, or hash table. They have no parallel by

A. Inert Form Tags 80

themselves in the world of “live expressions”.

Table A.3: Unclassified Inert Form Tags

Inert Form Description Context Appearing
ATTRIBUTE Container for Maple attributes NAME,

ASSIGNEDNAME
DESCRIPTIONSEQ Container for descriptive text MODULE, PROC

EOP Parameter order evaluation data PROC
EXPORTSEQ Names exported from a module MODULE
GLOBALSEQ Global names used in MODULE, PROCS

module or procedure body
HASHPAIR Key/value pairs in hashtable HASHTAB
LOCALSEQ Local variable names MODULE, PROC

LEXICALPAIR A lexical binding MODULE, PROC
LEXICALSEQ List of lexical bindings MODULE, PROC
OPTIONSEQ List of options specified MODULE, PROC
PARAMSEQ Procedure parameter names MODULE, PROC

RETURNTYPE Return type for procedure PROC

Appendix B

Surface Type Aliases

In the design of the system for opportunistic constraint generation (see Section 6.1), which
relies on analysis of inert forms, it frequently became necessary to refer repeatedly to par-
ticular sets of inert tags which had similar semantics or characteristics.

As these particular sets of tags were often large, it became convenient and ultimately
necessary to invent a system of aliases to abbreviate them. The names chosen reflect the
meaning attached to this class of inert forms in Maple; in many cases the name is identical
in name and meaning to identical to one of Maple’s built-in types (see Section 2.3).

Table B.1 catalogues the important aliases used in Section 6. They should not be re-
garded as “results” per se, but the fact that they were created out of necessity to capture the
semantics shows they have some significance.

Figure B.1 illustrates the hierarchical relationship between several of the aliases.

Expression

ExprSizeOne Boolean Assignable Arithmetic

Name

symbol

global local

indexable

sequential

Literal relation

logicalrational

integer

�������)
�

��	

HHHHHj

XXXXXXXXXXz

����� ?
@

@@R

? ?

?

?

?

�
��	

@
@@R

�
��	

?

A
A
A
A
A
A
A
AAU

Figure B.1: Relationships between type aliases

81

B. Surface Type Aliases 82

Table B.1: Type Alias Names

Alias Name Definition
integer {INTPOS,INTNEG}
rational {RATIONAL} ∪ integer

float {FLOAT,HFLOAT}
Numeric float ∪ rational
Literal {COMPLEX,STRING} ∪ Numeric
relation {EQUATION,INEQUAT,LESSEQ,LESSTHAN}
logical {IMPLIES,AND,NOT,OR,XOR}
Bool {NAME} ∪ relation ∪ logical

global {NAME,ASSIGNEDNAME}
local {LOCALNAME,ASSIGNEDLOCALNAME}

symbol local ∪ global
Name {TABLEREF} ∪ symbol

Assignable {FUNCTION} ∪ Name
Arithmetic {PROD,SUM,POWER}
sequential {SET,LIST}

last name eval {PROC,MODULE,TABLE}
WeirdAlgebraic {ZPPOLY,SDPOLY,EXACTSERIES,SERIES}

Algebraic WeirdAlgebraic ∪ Assignable ∪ Arithmetic
Vector {VECTOR,VECTOR COLUMN,VECTOR ROW}
tabular {ARRAY,MATRIX,TABLE} ∪ Vector

indexable tabular ∪ sequential ∪ {STRING}
ExprSizeOne {DCOLON,RANGE,MODDEF} ∪WeirdAlgebraic ∪ indexable

∪Literal ∪ relation ∪ last name eval
Expression {UNEVAL} ∪ Bool ∪ ExprSizeOne ∪ Assignable ∪ Arithmetic

EvalAwaySymbol {PROCNAME,MEMBER,PROCNAME,MEMBER,

LOCAL,LEXICAL LOCAL,PARAM,LEXICAL PARAM}
ProcOps {ARGS,RESULTS,OPTIONS,PARAMS,REST}

NumProcOps {NARGS,NRESULTS,NOPTIONS,NPARAMS,NREST}
EvalAway EvalAwaySymbol ∪ ProcOps ∪ NumProcOps
AnyValue Expression ∪ EvalAway
Statement {ASSIGN,BREAK,CONDPAIR,ERROR,FORFROM,FORIN,

IF,NEXT,RETURN,READ,SAVE,STATSEQ,STOP,TRY}

Appendix C

Opportunistic constraint rules

Here we list a few of the “opportunistic rules” for constraint generation while traversing
the AST. As the system has hundreds of such rules, this listing should not be regarded as
anywhere near complete.

Example Rule Trigger Constraint Description

x,y,z := e;
Simultaneous assign-
ment to n variables
with n ≥ 2

ES(e) = [n..n]

Right-hand side
must have size
n or assignment
will fail.

PARAM(7)
Occurrence of nth
procedure parameter

ES(ARGS) v [n..∞]
of arguments
must be ≥ n.

r := [e]; List construction NOps(r) = ([1..1], ES(e))

Size of list is size
of underlying
expseq.

for x in L do
Loop iteration over
expression

LSteps(`) v NOps(L)

of loop steps
bounded by # of
operands of L.

if c then If condition STyp(c) v Alias(Bool)

Conditional ex-
pression must
have “boolean”
surface type.

x := a; Assignment #W(x) = [1..1] x is written to

83

Appendix D

Special Function Table

Following is included the source code for our database of built-in functions. Though some
the content is infrastructure for fetching and retrieving data, a typical entry looks something
like the following:

T [” a s s i g n e d ”] : = {”ES” = {” r ” = 1 . . 1 , 0 = 1 . . 1 } ,
”ST” = {” r ” = {MIF (NAME)}} ,
”LV” = { ” r ” = { Inert NAME (” t r u e ”) ,

Inert NAME (” f a l s e ”)}} ,
” Pure ” = f a l s e , ” B u i l t i n ” = t r u e } :

The abbreviations ES, ST, PV indicate specific static properties (namely ExprseqLength,
SurfaceType, and LiteralValue). These abbreviations appear in the entry in the form
prop name=S, where S is a set which contains information relevant to property prop name.

In the set S are additional equations, whose left-hand side consists of the string “r” or
nonnegative integers. These refer to quantities in a function call:

• “r” refers to the return value

• 0 returns to the argument expseq as a whole

• A positive integer n refers to the nth argument

The right-hand side of this inner quantity refers to the value by which the function argument
or return value should be constrained.

Therefore, the first line {”ES” = {”r” = 1..1, 0 = 1..1} of our example states that
when encountering the function “assigned”, its return value and argument sequence should
each be v [1..1] for expseq size.

N.B. the name MIF(foo) is an abbreviation for Inert foo, while TA(bar) refers
to the “type alias” bar (see Appendix B).

84

D. Special Function Table 85

FunctionData := module() export Get , Set , Select , Defined , Data ;
local

T, classtab , defaultval ,
GenST, EStoST,
u , v ;

Data := proc (fname : : s t r ing) local es , st , na , lv , i ,
L st , L na , L lv ;

es := table (Get (fname , ”ES”)) ;

s t := table (Get (fname , ”ST”)) ;
L st := select (type , DataMap:−Keys(s t) , ’ posint ’) ;

na := Get(fname , ”NA”) ;
na := table (‘ i f ‘ (na=FAIL, [] , na)) ;
L na := select (type , DataMap:−Keys(na) , ’ posint ’) ;

lv := Get(fname , ”LV”) ;
lv := table (‘ i f ‘ (lv=FAIL, [] , lv)) ;
L lv := select (type , DataMap:−Keys(lv) , ’ posint ’) ;

table ([
”AT” = Annotate(eval (convert (fname , ’symbol’))) ,

”S ES” = table ([
ProcFV(0) = ’CL ExprSize’ (es [” r ”]) ,
ProcIV(Inert ARGS(0) ,0) = ’CL ExprSize’ (es [0])

]) ,

”S NA” = table ([
ProcFV(0)=’CL ExprNopsSize ’ (

es [” r ”] ,
‘ i f ‘ (assigned (na[” r ”]) , na[” r ”] ,NULL)

) ,
ProcIV(’ Inert ARGS ’(0) ,0) =

CL ExprNopsSize(es [0]) ,
seq (

ProcIV(’ Inert PARAM’(i ,0) ,0)
= CL ExprNopsSize(es [i]) ,

i = L na

D. Special Function Table 86

)
]) ,

”S ST” = table ([
ProcFV(0) = ’CL SurfaceType’ (s t [” r ”]) ,
ProcIV(’ Inert ARGS’(0) ,0)= ’CL SurfaceType’ (s t [0]) ,
seq (

ProcIV(’ Inert PARAM’(i ,0) ,0)
=’CL SurfaceType’ (s t [i]) ,

i = L st
)

]) ,

”S LV” = table ([
ProcFV(0) = ’CL LiteralValue ’ (

s t [” r ”] ,
‘ i f ‘ (assigned (lv [” r ”]) , lv [” r ”] ,NULL)

) ,
ProcIV(Inert ARGS(0) ,0) =

’CL LiteralValue ’ (s t [0]) ,
seq (

ProcIV(Inert PARAM(i ,0) ,0) =
’CL LiteralValue ’ (s t [i]) ,

i = L lv
)

])
])

end proc :

Tell whether a given name exists in our ’database ’
Defined := proc (fname : : s t r ing) assigned (T[fname]) end proc :

Get := proc (fname : : string , quan : : s t r ing) local v , cls , fdata ;
i f not assigned (T[fname]) then return (FAIL) ; end i f ;
fdata := table (T[fname]) ;

v := ADataMap:−Lookup(quan , T[fname]) ;
i f v <> FAIL then return (v) ; end i f ;

c ls := ADataMap:−Lookup(”class ” , T[fname]) ;

D. Special Function Table 87

i f c ls <> FAIL then
v := ADataMap:−Lookup(quan , classtab [cls]) ;
i f v <> FAIL then return (v) ; end i f ;

else
ADataMap:−Lookup(quan , defaultval) ;

end i f ;
end proc :

Set := proc (fname : : string , quan : : string , data)
T[fname] := ADataMap:− Inser t (quan , data , T[fname]) ;

end proc :

Select := proc (quan : : string , val) local p ;
p := (fname)−>‘i f ‘ (val=Get(fname , quan) , fname ,NULL) :
map(p , DataMap:−Keys(T)) ;

end proc :

EStoST := proc (es : :Or(range , ident ica l (FAIL)) , st1) local s t ;
s t := ‘ i f ‘ (nargs > 1 , st1 , TA(” Expression”)) ;
i f es =0..0 or lhs (es) >= 2 then {MIF(EXPSEQ)}
e l i f es=1..1 then s t
else {MIF(EXPSEQ)} union s t ; end i f ;

end proc :

GenST := proc (fname : : s t r ing)
local es , esr , es0 , st , s t r , st0 ;

es := Get(fname , ”ES”) ;
esr := ADataMap:−Lookup(”r ” , es) ;
i f esr=’FAIL’ then esr := 0 . . i n f in i ty ; end i f ;
i f esr =0..0 then

Set (fname , ”LV” , {”r” = { Inert EXPSEQ()}}) ;
end i f ;
es0 := ADataMap:−Lookup(0 , es) ;
i f es0=’FAIL’ then es0 := 0 . . i n f in i ty ; end i f ;

s t := Get(fname , ”ST”) ;
s t r := ADataMap:−Lookup(”r ” , s t) ;
s t r := ‘ i f ‘ (s t r <> FAIL, EStoST(esr , s t r) , EStoST(esr)) ;

D. Special Function Table 88

st0 := ADataMap:−Lookup(1 , s t) ;
st0 := ‘ i f ‘ (st0 <> FAIL, EStoST(es0 , st0) , EStoST(es0)) ;

s t := ADataMap:−Inser t (0 , st0 , s t) ;
s t := ADataMap:−Inser t (” r ” , s t r , s t) ;

Set (fname , ”ST” , s t) ;
end proc :

classtab := table ([]) ;
T := table ([]) ;

classtab [” Hyperbolic Trig”] :={”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = TA(” Algebraic”) ,

1 = TA(” Algebraic”)} ,
”Pure” = true , ”Built in” =false }:

classtab [” Trigonometric”] := {”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = TA(” Algebraic”) ,

1 = TA(” Algebraic”)} ,
”Pure” = true , ”Built in” =false }:

classtab [”Elementary”] := {”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = TA(” Algebraic”) ,

1 = TA(” Algebraic”)} ,
”Pure” = true , ”Built in” =false }:

classtab [” relat ion ”] := {”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”Pure” = true , ”Built in” =true }:

classtab [” logical ”] := {”Pure” = true , ”Built in” =true }:

th is i s the default when something is ent i re ly unspecified .
defaultval := { ”Pure” = false ,

”IO” = false ,
”Built in” = false ,
”ES” = {”r” = 0 . . in f in i ty , 0 = 0 . . i n f in i ty} ,
”ST” = {”r” = TA(”AnyValue”) } }:

T[”$”] := { ”ES” = {”r ”=0.. in f in i ty , 0=1..2} ,
”ST” = {”r”=TA(”AnyValue”) ,

1 = {MIF(RANGE)} ,
2 = TA(” Assignable”) union

TA(” integer ”) union

D. Special Function Table 89

{MIF(EQUATION)}} ,
”Pure” = false , ”Built in” = true }:

T[”ˆ”] := { ”ES” = {”r ”=1.. in f in i ty , 0 = 2..2} ,
”Pure” = true , ”Built in” = true }:

T[”∗”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[”∗∗”] := { ”ES” = {”r” = 1 . . in f in i ty , 0 = 2..2} ,
”Pure” = true , ”Built in” = true }:

T[”+”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[” . . ”] := { ”ES” = {”r ”=1..1 , 0=2..2} ,
”ST” = {”r”={MIF(RANGE)}} ,
”Pure” = true , ”Built in” = true }:

T[”<”] := { ”ST” = {”r”={MIF(LESSTHAN)}} ,
” class ” = ” relat ion ” }:

T[”<=”] := { ”ST” = {”r”={MIF(LESSEQ)}} ,
” class ” = ” relat ion ” }:

T[”<>”] := { ”ST” = {”r”={MIF(INEQUAT)}} ,
” class ” = ” relat ion ” }:

T[”=”] := { ”ST” = {”r”={MIF(EQUATION)}} ,
” class ” = ” relat ion ” }:

T[”>”] := { ”ST” = {”r”={MIF(LESSTHAN)}} ,
” class ” = ” relat ion ” }:

T[”>=”] := { ”ST” = {”r”={MIF(LESSEQ)}} ,
” class ” = ” relat ion ” }:

T[”?()”] := { ”ES” = {”r ”=0.. in f in i ty , 0=1.. i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[”?[]”] := { ”ES” = {”r ”=0.. in f in i ty , 0=2..3} ,
”Pure” = true , ”Built in” = true }:

T[” abs”] := { ”ES” = {”r” = 1. .1 , 0=1..2} ,
”Pure” = true , ”Built in” = true }:

T[”add”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 2..2} ,
”ST” = {”r” = TA(” Algebraic”) ,

2 = {MIF(EQUATION) ,

D. Special Function Table 90

MIF(FUNCTION)}} }:

T[”and”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”ST” = {”r” = TA(” Assignable”)

union TA(”Boolean”) ,
1 = TA(” Assignable”)

union TA(”Boolean”) ,
2 = TA(” Assignable”)

union TA(”Boolean”)} ,
” class ” = ” logical” }:

T[” arcsin ”] := { ” class” = ”Trigonometric” }:
T[” arccos ”] := { ” class” = ”Trigonometric” }:
T[” arctan ”] := { ” class” = ”Trigonometric” }:
T[” arcsec ”] := { ” class” = ”Trigonometric” }:
T[” arccsc ”] := { ” class” = ”Trigonometric” }:
T[” arccot ”] := { ” class” = ”Trigonometric” }:
T[” arcsinh ”] := { ” class” = ”Trigonometric” }:
T[” arccosh”] := { ” class” = ”Trigonometric” }:
T[” arctanh ”] := { ” class” = ”Trigonometric” }:
T[” arcsech ”] := { ” class” = ”Trigonometric” }:
T[” arccsch ”] := { ” class” = ”Trigonometric” }:
T[” arccoth ”] := { ” class” = ”Trigonometric” }:
T[” arctan ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,

”ST” = {”r” = TA(” Algebraic”) ,
1 = TA(” Algebraic”) ,
1 = TA(” Algebraic”)} ,

”Pure” = true , ”Built in” = false }:

should handle in RD
T[” array ”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,

”ST” = {”r” = {MIF(TABLE)}} , # t ruefa lse
”Pure” = true , ”Built in” = true }:

T[”Array”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,
”ST” = {”r” = {MIF(ARRAY)}} , # t ruefa lse
”Pure” = true , ”Built in” = true }:

T[” assign ”] := { ”ES” = {”r” = 0. .0 , 0 = 0 . . i n f in i ty} ,
”Pure” = false , ”Built in” = true }:

T[” assigned ”]:= {”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = {MIF(NAME)}} ,

D. Special Function Table 91

”LV” = { ” r” = { Inert NAME(” true ”) ,
Inert NAME(” false ”)}} ,

”Pure” = false , ”Built in” = true }:

T[”ASSERT”] := { ”ES” = {”r” = 0. .0 , 0 = 0 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[” cat ”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”ST” = {”r” = TA(”name/ str ing ”)

union {MIF(CATENATE)}}}:

ST imp (acts l ike ident i ty on in ts)
T[” ce i l ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,

”ST” = {”r” = {MIF(FUNCTION)} union TA(” integer ”)} ,
”Pure” = true , ”Built in” = true }:

T[” coeff ”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,
”Pure” = true , ”Built in” = true }:

T[” convert ”] := { ”ES” = {”r” = 1. .1 , 0 = 2 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[” cos”] := { ”class ” = ”Trigonometric” }:
T[”cosh”] := { ”class ” = ”Hyperbolic Trig” }:
T[” cot ”] := { ”class ” = ”Trigonometric” }:
T[” coth”] := { ”class ” = ”Hyperbolic Trig” }:
T[” csc ”] := { ”class ” = ”Trigonometric” }:
T[” csch ”] := { ”class ” = ”Hyperbolic Trig” }:

T[” currentdir ”] := {
”ES” = {”r” = 1. .1 , 0 = 0..1} ,
”ST” = {”r” = {MIF(STRING)} ,

1 = TA(”name/ str ing ”)} ,
”IO” = true }:

ST imp (di f f of rat ional)
T[” ldegree ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,

”ST” = {”r” = {MIF(NAME) ,MIF(PROD) ,
MIF(INTPOS) ,MIF(INTNEG)} ,

1 = TA(” Expression ”) ,
1 = TA(” Expression”)} ,

D. Special Function Table 92

”Pure” = true }:
T[” degree”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,

”ST” = {”r” = {MIF(NAME) ,MIF(PROD) ,
MIF(INTPOS) ,MIF(INTNEG)} ,

1 = TA(” Expression ”) ,
1 = TA(” Expression”)} ,

”Pure” = true }:
T[” di f f ”] := { ”ES” = {”r” = 1. .1 , 0 = 2 . . i n f in i ty} ,

”Pure” = true }:

T[” entr ies ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..1} ,
”ST” = {”r” = {MIF(LIST)} ,

1 = {MIF(TABLE)}
union TA(”Name”)} ,

”Pure” = true , ”Built in” = true }:

T[” eval ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”Pure” = true , ”Built in” = true }:

T[” evalb”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = { 1 = TA(”Boolean”)

union TA(” Assignable”)} ,
”Pure” = true , ”Built in” = true }:

T[” evalf ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”ST” = {”r” = {MIF(COMPLEX)}

union TA(” Assignable”)
union TA(” f loa t ”) ,
2 = {MIF(INTPOS)}} ,

”Pure” = true , ”Built in” = true }:
T[”exp”] := { ”class ” = ”Elementary” }:

T[” exports ”]:= { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..2} ,
”ST” = {”r” = TA(”Name”) ,

1 = TA(”Name”)
union {MIF(MODULE)} ,

2 = TA(” global ”)} ,
”LV” = { 2 = { Inert NAME(” instance ”) ,

Inert NAME(” typed”)}} ,
”Pure” = true , ”Built in” = true }:

D. Special Function Table 93

T[” fac to r i a l ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”Pure” = true , ”Built in” = true }:

T[” fclose ”] := { ”ES” = {”r” = 0. .0 , 0 = 1 . . i n f in i ty} ,
”IO” = true }:

T[” floor ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”ST” = {”r” = {MIF(FUNCTION)}

union TA(” integer ”)} ,
”Pure” = true , ”Built in” = true }:

T[” fopen”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,
”ST” = {”r” = {MIF(INTPOS)} ,

1 = TA(”name/ str ing ”) ,
2 = {MIF(NAME)} ,
3 = {MIF(NAME)}} ,

”IO” = true }:

T[” fp r in t f ”] := { ”ES” = {”r” = 1. .1 , 0 = 2 . . i n f in i ty} ,
”ST” = {”r” = {MIF(INTPOS)} ,

2 = TA(”name/ str ing ”) } ,
”IO” = true }:

T[” FromInert ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..1} ,
”ST” = {”r” = TA(”AnyValue”) ,

1 = {MIF(FUNCTION)} ,
2 = {MIF(EQUATION)} ,
3 = {MIF(EQUATION)}} ,

”Pure” = true , ”Built in” = true }:

T[” getenv”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = {MIF(STRING)} ,

1 = TA(”name/ str ing ”)} ,
”IO” = true }:

T[” has”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”ST” = {”r” = { Inert NAME}} , # t ruefa lse
”LV” = {”r” = { Inert NAME(” true ”) ,

Inert NAME(” false ”)}} ,
”Pure” = true , ”Built in” = true }:

D. Special Function Table 94

T[” i f ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 3..3} ,
”ST” = { 1 = { Inert NAME}} ,
”LV” = { 1 = { Inert NAME(” true ”) ,

Inert NAME(” false ”) ,
Inert NAME(”FAIL”)}} ,

”Pure” = true , ”Built in” = true }:
T[” igcd”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,

”ST” = {”r” = {MIF(FUNCTION)}
union TA(” integer ”)} ,

”Pure” = true , ”Built in” = true }:
T[” ilog”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,

”ST” = {”r” = {MIF(FUNCTION)}
union TA(” integer ”)} ,

”Pure” = true , ”Built in” = true }:
T[” ilog2 ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,

”ST” = {”r” = {MIF(FUNCTION)}
union TA(” integer ”)} ,

”Pure” = true , ”Built in” = true }:
T[” ilcm”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,

”ST” = {”r” = {MIF(FUNCTION)}
union TA(” integer ”)} ,

”Pure” = true , ”Built in” = true }:

T[” io l ib ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1 . . i n f in i ty} ,
”ST” = { 1 = {MIF(INTPOS)}} ,
”IO” = true , ”Pure” = false , ”Built in” = true }:

T[” implies”]:= { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”ST” = {”r” = TA(” Assignable”)

union TA(”Boolean”) ,
1 = TA(” Assignable”)

union TA(”Boolean”) ,
2 = TA(” Assignable”)

union TA(”Boolean”)} ,
” class ” = ” logical” }:

T[” i sq r t ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = {MIF(FUNCTION)} union TA(” integer ”) ,

1 = {MIF(NAME)} union TA(” integer ”)} ,
”Pure” = true , ”Built in” = true }:

D. Special Function Table 95

T[”Im”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”Pure” = true , ”Built in” = true }:

T[” indets ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”ST” = {”r” = {MIF(SET)}} ,
”Pure” = true , ”Built in” = true }:

T[” indices ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..1} ,
”ST” = {”r” = {MIF(LIST)} ,

1 = {MIF(TABLE)} union TA(”Name”)} ,
”Pure” = true , ”Built in” = true }:

T[” iquo”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,
”ST” = {”r” = {MIF(FUNCTION)} union TA(” integer ”) ,

1 = TA(” Assignable”) union TA(” integer ”) ,
2 = TA(” Assignable”) union TA(” integer ”) ,
3 = TA(”Name”)} ,

”Pure” = false , ”Built in” = true }:
T[” irem”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,

”ST” = {”r” = {MIF(FUNCTION)} union TA(” integer ”) ,
1 = TA(” Assignable”) union TA(” integer ”) ,
2 = TA(” Assignable”) union TA(” integer ”) ,
3 = TA(”Name”)} ,

”Pure” = false , ”Built in” = true }:

T[” in t ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 2 . . i n f in i ty} ,
”ST” = { 2 = {MIF(EQUATION)} union TA(”Name”)} ,
”Pure” = false , ”Built in” = false }:

T[” in te rsec t ”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,
”ST” = {”r” = {MIF(SET)}

union TA(” Assignable”) } ,
”Pure” = true }:

T[” isprime ”]:= { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = {MIF(NAME) ,MIF(FUNCTION)} ,

1 = {MIF(INTPOS)}
union TA(” Assignable”)} ,

”Pure” = true }:

D. Special Function Table 96

T[” kernel / transpose ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = {MIF(LIST)} ,

1 = {MIF(LIST)}} ,
”Pure” = true , ”Built in” = true }:

T[” kernelopts”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 0 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[” ln ”] := { ”class ” = ”Elementary” }:
T[” log”] := { ”class ” = ”Elementary” }:
T[” log10”] := { ”class ” = ”Elementary” }:

T[” lhs ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..1} ,
”ST” = { 1 = TA(” relat ion ”) union {MIF(RANGE)}} ,
”Pure” = true , ”Built in” = true }:

T[” lp r in t ”] := { ”ES” = {”r” = 0. .0 , 0 = 0 . . i n f in i ty} }:

#ST imp
T[”map”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 2 . . i n f in i ty} ,

”Pure” = true , ”Built in” = true }:

T[” Matrix”] := { ”ES” = { ” r” = 1. .1 } ,
”ST” = { ” r” = {MIF(MATRIX)} } ,
”Pure” = true }:

T[”max”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[”member”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,
”ST” = {”r” = {MIF(NAME)}} }:

T[”min”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[”minus”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”ST” = {”r” = { Inert SET}

union TA(” Assignable ”) ,
1 = { Inert SET}

union TA(” Assignable ”) ,
2 = { Inert SET}

union TA(” Assignable”)} ,

D. Special Function Table 97

”Pure” = true , ”Built in” = true }:

T[”mkdir”] := { ”ES” = {”r” = 0. .0 , 0 = 1..1} ,
”ST” = { 1 = TA(”name/ str ing ”)} ,
”IO” = true }:

T[”modp”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”ST” = {”r” = TA(” integer ”)

union TA(” Assignable”)} ,
”Pure” = true , ”Built in” = true }:

T[”mods”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”ST” = {”r” = TA(” integer ”)

union TA(” Assignable”)} ,
”Pure” = true , ”Built in” = true }:

T[”mul”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 2..2} ,
”ST” = {”r” = TA(” Algebraic”) ,

2 = {MIF(EQUATION) ,MIF(FUNCTION)}} }:

T[”nops”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = {MIF(INTPOS)}} ,
”Pure” = true , ”Built in” = true }:

T[” not”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = TA(” Assignable”)

union TA(”Boolean”) ,
1 = TA(” Assignable”)

union TA(”Boolean”)} ,
” class ” = ” logical” }:

T[” nprintf ”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,
”ST” = {”r” = TA(” global ”) ,

1 = TA(”name/ str ing ”) } ,
”IO” = false }:

T[”op”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..2} ,
”ST” = {”r” = TA(”AnyValue”)} ,
”Pure” = true , ”Built in” = true }:

T[” or ”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,

D. Special Function Table 98

”ST” = {”r” = TA(” Assignable”)
union TA(”Boolean”) ,

1 = TA(” Assignable”)
union TA(”Boolean”) ,

2 = TA(” Assignable”)
union TA(”Boolean”)} ,

” class ” = ” logical” }:

T[” parse ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..1} ,
”ST” = { 1 = TA(”name/ str ing ”) } ,
”Pure” = false , ”Built in” = true }:

T[” print ”] := { ”ES” = {”r” = 0. .0 , 0 = 0 . . i n f in i ty} }:
T[” pr in t f ”] := { ”ES” = {”r” = 0. .0 , 0 = 1 . . i n f in i ty} ,

”ST” = { 1 = TA(”name/ str ing ”) } ,
”IO” = true }:

T[”Re”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”Pure” = true , ”Built in” = true }:

T[”remove”] := { ”ES” = {”r” = 0. .1 , 0 = 2 . . i n f in i ty} ,
”ST” = {”r” = TA(”AnyValue”)} ,
”Pure” = true , ”Built in” = true }:

T[” rmdir”] := { ”ES” = {”r” = 0. .0 , 0 = 1..1} ,
”ST” = { 1 = TA(”name/ str ing ”)} ,
”IO” = true }:

T[”round”] := { ”ES” = {”r ”=1..1 , 0 = 1..2} ,
”ST” = {”r”={MIF(FUNCTION)} union TA(” integer ”)} ,
”Pure” = true , ”Built in” = true }:

T[” rhs ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..1} ,
”ST” = { 1 = TA(” relat ion ”) union {MIF(RANGE)}} ,
”Pure” = true , ”Built in” = true }:

T[” r table ”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”ST” = {”r” = {MIF(ARRAY)}} ,
”Pure” = true , ”Built in” = true }:

T[” rtable dims ”] := {
”ES” = {”r” = 0 . . in f in i ty , 0 = 1 . . i n f in i ty} ,
”ST” = {”r” = {MIF(RANGE) ,MIF(EXPSEQ)} ,

1 = TA(”Name”) union {MIF(ARRAY)}} ,

D. Special Function Table 99

”Pure” = true , ”Built in” = true }:
T[” rtable elems ”] := {

”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,
”ST” = {”r” = {MIF(SET)} ,

1 = TA(”Name”) union {MIF(ARRAY)}} ,
”Pure” = true , ”Built in” = true }:

T[” rtable num dims”] := {
”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,
”ST” = {”r” = {MIF(INTPOS)} ,

1 = TA(”Name”) union {MIF(ARRAY)}} ,
”Pure” = true , ”Built in” = true }:

T[” rtable num elems ”] := {
”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”ST” = {”r” = {MIF(INTPOS)} ,

1 = TA(”Name”) union {MIF(ARRAY)}} ,
”Pure” = true , ”Built in” = true }:

T[” searchtext”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,
”ST” = {”r” = {MIF(INTPOS)} ,

1 = TA(”name/ str ing ”) ,
2 = TA(”name/ str ing ”) ,
3 = {MIF(RANGE)}} ,

”Pure” = true , ”Built in” = true }:
T[” SearchText”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,

”ST” = {”r” = {MIF(INTPOS)} ,
1 = TA(”name/ str ing ”) ,
2 = TA(”name/ str ing ”) ,
3 = {MIF(RANGE)}} ,

”Pure” = true , ”Built in” = true }:
T[” sec ”] := { ”class ” = ”Trigonometric” }:
T[” sech ”] := { ”class ” = ”Hyperbolic Trig” }:
T[” select ”] := { ”ES” = {”r” = 0. .1 , 0 = 2 . . i n f in i ty} ,

”Pure” = true , ”Built in” = true }:
T[” selectremove”] := { ”ES” = {”r” = 1. .2 , 0 = 2 . . i n f in i ty} ,

”Pure” = true , ”Built in” = true }:
T[” seq”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 1..3} ,

”Pure” = false , ”Built in” = true }:
T[” ser ies ”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,

”ST” = {”r” = {MIF(SERIES) ,MIF(EXACTSERIES)} ,
2 = TA(”Name”) union {MIF(EQUATION)} ,

D. Special Function Table 100

3 = {MIF(INTPOS)}} ,
”Pure” = false , ”Built in” = true }:

T[” se t a t t r i bu te ”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,
”Pure” = true , ”Built in” = true }:

T[” sign”] := { ”ES” = {”r” = 1. .1 , 0 = 1..3} ,
”ST” = {”r” = TA(” integer ”) ,

2 = {MIF(LIST)} ,
3 = TA(”Name”)} ,

”LV” = {”r” = { Inert INTPOS(1) ,
Inert INTNEG(1)}} ,

”Pure” = false , ”Built in” = true }:
T[”signum”] := { ”ES” = {”r” = 1. .1 , 0 = 1..3} ,

”Pure” = false , ”Built in” = true }:
T[” sin ”] := { ” class” = ”Trigonometric” }:
T[” sinh”] := { ” class” = ”Hyperbolic Trig” }:
T[” spr in t f ”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,

”ST” = {”r” = {MIF(STRING)} ,
1 = TA(”name/ str ing ”) } ,

”IO” = false }:
T[” ssystem”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,

”ST” = {”r” = {MIF(STRING)} ,
1 = TA(”name/ str ing ”)} ,

”IO” = true , ”Pure” = false , ”Built in” = true }:
T[” subs”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,

”Pure” = true , ”Built in” = true }:
T[” subset ”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,

”ST” = {”r” = {MIF(NAME) ,MIF(FUNCTION)} ,
1 = {MIF(SET)} union TA(” Assignable ”) ,
2 = {MIF(SET)} union TA(” Assignable”)} ,

”Pure” = true , ”Built in” = true }:
T[”subsop”] := { ”ES” = {”r” = 1. .1 , 0 = 1 . . i n f in i ty} ,

”Pure” = true , ”Built in” = true }:
T[” subtype”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,

”ST” = {”r” = {MIF(NAME)}} ,
”LV” = { ”r” = { Inert NAME(” true ”) ,

Inert NAME(” false ”) ,
Inert NAME(”FAIL”)}} ,

”Pure” = true , ”Built in” = false }:
T[” substring ”]:= { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,

”ST” = {”r” = TA(”name/ str ing ”) ,

D. Special Function Table 101

1 = TA(”name/ str ing ”) ,
2 = {MIF(RANGE)} union

TA(” integer ”)} ,
”Pure” = true , ”Built in” = true }:

T[”sum”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 2..2} ,
”ST” = {”r” = TA(” Algebraic”) ,

2 = TA(”Name”) union {MIF(EQUATION)}} ,
”Pure” = false , ”Built in” = false }:

T[”symmdiff”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”ST” = {”r” = {MIF(SET)} union

TA(” Assignable”) } ,
”Pure” = true }:

T[”system”] := { ”ES” = {”r” = 1. .1 , 0 = 1..1} ,
”ST” = {”r” = {MIF(INTPOS)} ,

1 = TA(”name/ str ing ”)} ,
”IO” = true , ”Pure” = false , ”Built in” = true }:

T[” table ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”ST” = {”r” = {MIF(TABLE)} ,

2 = TA(” sequential ”)} ,
”Pure” = true , ”Built in” = true }:

T[” tan ”] := { ” class” = ”Trigonometric” }:
T[” tanh”] := { ” class” = ”Hyperbolic Trig” }:
T[” taylor ”] := { ”ES” = {”r” = 1. .1 , 0 = 2..3} ,

”ST” = {”r” = {MIF(SERIES) ,MIF(EXACTSERIES)} ,
2 = {MIF(EQUATION)} ,
3 = {MIF(NAME) ,MIF(INTPOS)}} ,

”Pure” = false , ”Built in” = true }:
T[” ToInert ”] := { ”ES” = {”r” = 0 . . in f in i ty , 0 = 0 . . i n f in i ty} ,

”ST” = {”r” = {MIF(FUNCTION)}} ,
”Pure” = true , ”Built in” = true }:

T[” trunc ”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”ST” = {”r” = {MIF(FUNCTION)} union TA(” integer ”)} ,
”Pure” = true , ”Built in” = true }:

T[” type”] := { ”ES” = {”r” = 1. .1 , 0 = 1..2} ,

D. Special Function Table 102

”ST” = {”r” = {MIF(NAME)}} , # t ruefa lse
”LV” = { ” r” = { Inert NAME(” true ”) ,

Inert NAME(” false ”)}} ,
”Pure” = true , ”Built in” = true }:

T[” typematch”] := {
”ES” = {”r” = 1. .1 , 0 = 1..2} ,
”ST” = {”r” = {MIF(NAME)}} , # t ruefa lse
”LV” = {”r” = { Inert NAME(” true ”) ,

Inert NAME(” false ”)}} ,
”Pure” = false , ”Built in” = true }:

T[”union”] := { ”ES” = {”r” = 1. .1 , 0 = 0 . . i n f in i ty} ,
”ST” = {”r” = {MIF(SET) , MIF(FUNCTION)}} ,
”Pure” = true , ”Built in” = true }:

T[” userinfo ”]:= { ”ES” = {”r” = 0. .0 , 0 = 3 . . i n f in i ty } ,
”ST” = { 1 = {MIF(INTPOS)} } ,
”Pure” = true , ”Built in” = true }:

T[” vector ”] := { ”ES” = { ” r” = 1. .1 , 0=1.. i n f in i ty } ,
”ST” = { ” r” = {MIF(TABLE)} } ,
”Pure” = true }:

T[” Vector”] := { ”ST” = { ” r” = TA(”Vector”) } ,
”Pure” = true }:

T[” xor”] := { ”ES” = {”r” = 1. .1 , 0 = 2..2} ,
”ST” = {”r” = TA(” Assignable”) union TA(”Boolean”) ,

1 = TA(” Assignable”) union TA(”Boolean”) ,
2 = TA(” Assignable”) union TA(”Boolean”)} ,

” class ” = ” logical” }:
end module:

Bibliography

[1] Luca Cardelli. A polymorphic λ-calculus with Type:Type. Technical Report 10,
DECSRC, May 1986.

[2] J. Carette and S. Forrest. Mining Maple code for contracts. In Ranise and Bigatti
[25].

[3] J. Carette and S. Forrest. Property inference for Maple. Technical report, University
of Linz, Austria, 2007. in RISC Technical Report 07–06.

[4] J. Carette and M. Kucera. Partial Evaluation for Maple. In ACM SIGPLAN 2007
Workshop on Partial Evaluation and Program Manipulation, 2007.

[5] P. Cousot. Program analysis: The abstract interpretation perspective. ACM Comput-
ing Surveys, 28A(4es):165–es, December 1996.

[6] P. Cousot. Types as abstract interpretations, invited paper. In Conference Record of
the Twentyfourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 316–331, Paris, France, January 1997. ACM Press, New
York, NY.

[7] P. Cousot. A tutorial on abstract interpretation. In VMCAI’05 Industrial day on
Automatic Tools for Program Verification, Maison des Polytechniciens, Paris, France,
January 20 2005.

[8] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106–
130. Dunod, Paris, France, 1976.

[9] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

103

BIBLIOGRAPHY 104

[10] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 81(1):43–57, 1979.

[11] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM
Press, New York, NY.

[12] P. Cousot and R. Cousot. Comparison of the Galois connection and widening/narrow-
ing approaches to abstract interpretation. JTASPEFL ’91, Bordeaux. BIGRE, 74:107–
110, October 1991.

[13] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation, invited paper. In M. Bruynooghe and M.
Wirsing, editors, Proceedings of the International Workshop Programming Language
Implementation and Logic Programming, PLILP ’92,, Leuven, Belgium, 13–17 Au-
gust 1992, Lecture Notes in Computer Science 631, pages 269–295. Springer-Verlag,
Berlin, Germany, 1992.

[14] P. Cousot and R. Cousot. Compositional and inductive semantic definitions in fix-
point, equational, constraint, closure-condition, rule-based and game-theoretic form,
invited paper. In P. Wolper, editor, Proceedings of the Seventh International Con-
ference on Computer Aided Verification, CAV ’95, pages 293–308, Liège, Belgium,
Lecture Notes in Computer Science 939, 3–5 July 1995. Springer-Verlag, Berlin, Ger-
many.

[15] P. Cousot and R. Cousot. Basic Concepts of Abstract Interpretation, pages 359–366.
Kluwer Academic Publishers, 2004.

[16] Patrick Cousot. Abstract interpretation. MIT course 16.399, http://web.mit.
edu/16.399/www/, Feb.–May 2005.

[17] Brian A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2002.

[18] P. DeMarco, K. Geddes, K. M. Heal, G. Labahn, J. McCarron, M. B. Monagan, and
S. M. Vorkoetter. Maple 10 Advanced Programming Guide. Maplesoft, 2005.

[19] George Grätzer. General Lattice Theory. Birkhäuser Verlag, Basel und Stuttgart,
1978.

[20] M. Kucera and J. Carette. Partial evaluation and residual theorems in computer alge-
bra. In Ranise and Bigatti [25].

BIBLIOGRAPHY 105

[21] Antoine Miné. Representation of two-variable difference or sum constraint sets
and application to automatic program analysis. Master’s thesis, Laboratoire
d’Informatique de l’ENS, 2000.

[22] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[23] S. L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press,
April 2003.

[24] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge,
MA, USA, 2002.

[25] Silvio Ranise and Anna Bigatti, editors. Proceedings of Calculemus 2006, Electronic
Notes in Theoretical Computer Science. Elsevier, 2006.

[26] Mads Rosendahl. Introduction to abstract interpretation. DIKU, Computer Science,
University of Copenhagen, 1995.

[27] David Schmidt. Abstract interpretation and static analysis. Lectures at the Winter
School on Semantics and Applications, WSSA’03, Montevideo, Uruguay., July 2003.

[28] Michael Schwartzbach. Lecture notes in static analysis. Basic Research in Computer
Science, University of Aarhus, Denmark.

[29] Michel Sintzoff. Calculating properties of programs by valuations on specific models.
In Proceedings of ACM conference on Proving assertions about programs, pages 203–
207, New York, NY, USA, 1972. ACM Press.

Index

abstract syntax tree, 12, 32
abstraction function, 18, 31
ascending chain, 15
Ascending Chain Condition, 15, 21
atom (lattice theory), 38, 70
automatic cast to value, 6

built-in procedure, 64

cardinality, 70
Cartesian product, 33
collecting, 21
concretization function, 18, 31
constraints, 2

composite, 64
generated from ReachingContexts, 50
opportunistic, 48, 64

Cousot, Patrick, 16

data flow analysis, 14
database of built-in functions, 60
delay evaluation, 12

evalb, 46, 63
evaluation, 12

Galois connection, 19, 31, 37
Galois insertion, 19, 37
generalized characteristic function, 57

inert form, 29

Kleene star, 21, 34

loops

as recurrence relations, 55, 57
enforcing termination, 55

Maple, 3–13
datatypes, 4

expression sequence, 5
hash table, 5
list, 5
set, 5

function application, 6
functional features of, 11
inert form, 12, 77

FromInert, 13
tags, 13, 77–80
ToInert, 13

procedure, 7
statements, 10

loops, 10
types, 9
version, 3

Miné, Antoine, 55

narrowing operator, 24
no junk rule, 53

partial evaluation, 2, 61
partitioned iteration, 45, 56
preprocessing, 62
procedure, 62
program point, 26
properties

inferred

106

INDEX 107

ExprseqLength, 37, 40, 41, 43, 46, 49,
54, 56, 58, 60, 63, 66, 67, 70–73,
76, 84

LiteralValue, 37, 41, 46, 49, 71–74,
76, 84

LoopSteps, 41, 49, 50, 56, 67
NumOperands, 37, 41, 47, 49, 71–74
NumReads, 41, 45
NumWrites, 41, 45
NumberOfOperands, 46, 56, 67, 72,

76
ReachingContexts, 41–44, 48, 49, 51
ReachingDefinitions, 41–44
SurfaceType, 37, 41, 46, 63, 67, 68,

71, 73, 74, 84
program-based, 26
state-based, 26
value-based, 26, 46, 48, 51

property record, 62
pseudo-evaluation, 20, 26

recurrence relations, 57
refinement, 30, 37
reflection, 12
rule of sign, 17

simultaneous assignment, 10, 83
Specialization of constraints, 61

Tarski’s Fixed Point Theorem, 22
thunk, 12
toy problem syndrome, 1
transfer functions, 27

upper bound operator, 22

widening operator, 22, 23, 56

zeroth operand, 6

PROPERTY INFERENCE FOR MAPLE

