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I A theorem prover?

* How can a CAS like Maple possibly be
I regarded as a theorem prover?

* There are several ways:

- Computation
e Computation with assumptions
* Computation as term-rewriting

- The assume facility
- Miscellaneous other features



I Theorem Proving through Computation

theorems.

* Any simplification or evaluation routine f (x)
~>y (e.g. eval, normal, expand,
simplify, radnormal) can be regarded as
a theorem asserting the equality of x and y.

* Domain of discourse is usually implicit in the
choice of simplifier used (e.g. evalc). This
makes it easy for the "wrong” command to
be accidentally used.

e Some commands make use of assumptions.

I * Many computations can be regarded as



Theorem Proving through Computation

* Issues

- Domain of variables and operating
theory implicitly specified

- Implicit injections between theories:
e.g. result from algebra used in an
analytic computation

- Soundness, robustness depend
everywhere on correct implementation
by programmers.



I Theorem Proving through Computation

Issues (cont)
I * Hard or impossible to see intermediate steps

* Conditions on results are inconsistently
specified. Results can be provided:
* With a side condition (proviso)
* As a piecewise function
* With no condition, provided “exceptions’
occur on a set of measure zero
(whatever this means!)
e Examples: int(x"n, x):
* what happens at n = -17

)



I Maple's Logic system

* In general, Maple's logic system is ternary:
I possible values are true, false, and FATL.

* The value FAIL indicates that the
computation of the boolean value was
unsuccessful.

* |n practice, large parts of Maple are two-
valued (e.g. the type system).



I Maple's Type System

which are applied at runtime.

* The system has a hierarchy of
subtypes,which means a value may have
multiple types, e.q.

type( 1, integer ); # true
type( 1, positive ); # true

* Most types are “structural’, i.e. the typing rule
Is syntactic and doesn't depend on significant
computation. (Not all, though!)

I * Maple types are predicates on expressions



I The assume facility

propositions subject to assumptions.

* Assumptions consist of boolean predicates
or properties.

* Two main commands exist:

- is: equivalent of V
- coulditbe: equivalent of

* General form (fV stands for “free variables”):
- is(p) assuming q — V fV(q,p) (0 =>p)
- coulditbe(p) assuming g — 3 V(q,p) (Q=>p)

I * Maple's assume facility allows checking of



I The assume facility

however, we must now admit FAIL as a
possible answer.

* |[ssues:
- domain of variables still ill-defined
- no way to “guide” computations other than providing
assumptions
- assumptions that are not understood are ignored
- successes do not compose: getting true results from
1s(g) assuming p
is(r) assuming q
does not imply that is (r) assuming p will succeed.

I * All Maple types are automatically properties;
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