
Maple as a Theorem Prover

November 23, 2006

Stephen Forrest

Department of Computing & Software
McMaster University

A theorem prover?

● How can a CAS like Maple possibly be
regarded as a theorem prover?

● There are several ways:
– Computation

● Computation with assumptions
● Computation as term-rewriting

– The assume facility
– Miscellaneous other features

Theorem Proving through Computation

● Many computations can be regarded as
theorems.

● Any simplification or evaluation routine f (x)
~> y (e.g. eval, normal, expand,
simplify, radnormal) can be regarded as
a theorem asserting the equality of x and y.

● Domain of discourse is usually implicit in the
choice of simplifier used (e.g. evalc). This
makes it easy for the “wrong” command to
be accidentally used.

● Some commands make use of assumptions.

Theorem Proving through Computation

● Issues
– Domain of variables and operating

theory implicitly specified
– Implicit injections between theories:

e.g. result from algebra used in an
analytic computation

– Soundness, robustness depend
everywhere on correct implementation
by programmers.

Theorem Proving through Computation

Issues (cont)
● Hard or impossible to see intermediate steps
● Conditions on results are inconsistently

specified. Results can be provided:
● With a side condition (proviso)
● As a piecewise function
● With no condition, provided “exceptions”
occur on a set of measure zero
(whatever this means!)

● Examples: int(x^n, x):
● what happens at n = -1?

Maple's Logic system

● In general, Maple's logic system is ternary:
possible values are true, false, and FAIL.

● The value FAIL indicates that the
computation of the boolean value was
unsuccessful.

● In practice, large parts of Maple are two-
valued (e.g. the type system).

Maple's Type System

● Maple types are predicates on expressions
which are applied at runtime.

● The system has a hierarchy of
subtypes,which means a value may have
multiple types, e.g.
 type(1, integer); # true
 type(1, positive); # true

● Most types are “structural”, i.e. the typing rule
is syntactic and doesn't depend on significant
computation. (Not all, though!)

The assume facility

● Maple's assume facility allows checking of
propositions subject to assumptions.

● Assumptions consist of boolean predicates
or properties.

● Two main commands exist:
– is: equivalent of ∀
– coulditbe: equivalent of ∃

● General form (fV stands for “free variables”):
– is(p) assuming q fV(q,p) (q => p)→ ∀
– coulditbe(p) assuming q fV(q,p) (q => p)→ ∃

The assume facility

● All Maple types are automatically properties;
however, we must now admit FAIL as a
possible answer.

● Issues:
– domain of variables still ill-defined
– no way to “guide” computations other than providing

assumptions
– assumptions that are not understood are ignored
– successes do not compose: getting true results from

 is(q) assuming p
 is(r) assuming q
does not imply that is(r) assuming p will succeed.

References

● Maple 10 help system (see ?is, ?property)

● Weibel, Trudy, and Gonnet, Gaston. An Algebra of
Properties. Proceedings of the ISSAC-91 Conference,
Bonn July 1991, pp. 352-359.

● Weibel, Trudy and Gonnet, Gaston. An assume facility
for CAS with a sample implementation for Maple.
Conference Presentation at DISCO '92, Bath, England,
April 14, 1992.

● Corless, Robert, and Monagan, Michael. Simplification
and the Assume Facility. Maple Technical Newsletter,
Vol. 1, No. 1, Birkhauser, 1994.

