Maple as a Theorem Prover

November 23, 2006

Stephen Forrest

Department of Computing & Software
McMaster University

I A theorem prover?

* How can a CAS like Maple possibly be
I regarded as a theorem prover?

* There are several ways:

- Computation
e Computation with assumptions
* Computation as term-rewriting

- The assume facility
- Miscellaneous other features

I Theorem Proving through Computation

theorems.

* Any simplification or evaluation routine f (x)
~>y (e.g. eval, normal, expand,
simplify, radnormal) can be regarded as
a theorem asserting the equality of x and y.

* Domain of discourse is usually implicit in the
choice of simplifier used (e.g. evalc). This
makes it easy for the "wrong” command to
be accidentally used.

e Some commands make use of assumptions.

I * Many computations can be regarded as

Theorem Proving through Computation

* Issues

- Domain of variables and operating
theory implicitly specified

- Implicit injections between theories:
e.g. result from algebra used in an
analytic computation

- Soundness, robustness depend
everywhere on correct implementation
by programmers.

I Theorem Proving through Computation

Issues (cont)
I * Hard or impossible to see intermediate steps

* Conditions on results are inconsistently
specified. Results can be provided:
* With a side condition (proviso)
* As a piecewise function
* With no condition, provided “exceptions’
occur on a set of measure zero
(whatever this means!)
e Examples: int(x"n, x):
* what happens at n = -17

)

I Maple's Logic system

* In general, Maple's logic system is ternary:
I possible values are true, false, and FATL.

* The value FAIL indicates that the
computation of the boolean value was
unsuccessful.

* |n practice, large parts of Maple are two-
valued (e.g. the type system).

I Maple's Type System

which are applied at runtime.

* The system has a hierarchy of
subtypes,which means a value may have
multiple types, e.q.

type(1, integer); # true
type(1, positive); # true

* Most types are “structural’, i.e. the typing rule
Is syntactic and doesn't depend on significant
computation. (Not all, though!)

I * Maple types are predicates on expressions

I The assume facility

propositions subject to assumptions.

* Assumptions consist of boolean predicates
or properties.

* Two main commands exist:

- is: equivalent of V
- coulditbe: equivalent of

* General form (fV stands for “free variables”):
- is(p) assuming q — V fV(q,p) (0 =>p)
- coulditbe(p) assuming g — 3 V(q,p) (Q=>p)

I * Maple's assume facility allows checking of

I The assume facility

however, we must now admit FAIL as a
possible answer.

* |[ssues:
- domain of variables still ill-defined
- no way to “guide” computations other than providing
assumptions
- assumptions that are not understood are ignored
- successes do not compose: getting true results from
1s(g) assuming p
is(r) assuming q
does not imply that is (r) assuming p will succeed.

I * All Maple types are automatically properties;

References

Maple 10 help system (see ?is, ?property)

Welbel, Trudy, and Gonnet, Gaston. An Algebra of
Properties. Proceedings of the ISSAC-91 Conference,
Bonn July 1991, pp. 352-359.

Weibel, Trudy and Gonnet, Gaston. An assume facility
for CAS with a sample implementation for Maple.
Conference Presentation at DISCO '92, Bath, England,
April 14, 1992.

Corless, Robert, and Monagan, Michael. Simplification
and the Assume Facility. Maple Technical Newsletter,
Vol. 1, No. 1, Birkhauser, 1994.

