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Abstract

The two previous papers in this series introduced a class of infi-
nite binary strings, called two-pattern strings, that constitute a sig-
nificant generalization of, and include, the much-studied Sturmian
strings. The class of two-pattern strings is a union of a sequence of
increasing (with respect to inclusion) subclasses TPλ of two-pattern
strings of scope λ, λ = 1, 2, · · · . Prefixes of two-pattern strings are in-
teresting from the algorithmic point of view (their recognition, gener-
ation, and computation of repetitions and near-repetitions) and since
they include prefixes of the Fibonnaci and the Sturmian strings, they
merit investigation of how many finite two-pattern strings of a given
size there are among all binary strings of the same length. In this pa-
per we first consider the frequency fλ(n) of occurrence of two-pattern
strings of length n and scope λ among all strings of length n on {a, b}:
we show that limn→∞ fλ(n) = 0, but that for strings of lengths n ≤ 2λ,
two-pattern strings of scope λ constitute more than one-quarter of all
strings. Since the class of Sturmian strings is a subset of two-pattern

∗also at School of Computing, Curtin University, Perth WA 6845, Australia, and De-
partment of Computer Science, King’s College London.

1



strings of scope 1, it was natural to focus the study of the substring
complexity of two-pattern strings to those of scope 1. Though pre-
serving the aperiodicity of the Sturmian strings, the generalization
to two-pattern strings greatly relaxes the constrained substring com-
plexity (the number of distinct substrings of the same length) of the
Sturmian strings. We derive upper and lower bounds on C1(k) (the
number of distinct substring of length k) of two-pattern strings of
scope 1, and we show that it can be considerably greater than that
of a Sturmian string. In fact, we describe circumstances in which
limk→∞(C1(k)−k) = ∞.

1 Introduction

This paper is a sequel to [FLS03, FLS04] that we recommend to the atten-
tion of the reader. However, we make this paper self-contained by briefly
reviewing the essential definitions already provided, particularly in [FLS03].
Terminology and notation generally follow [S03]. For the sake of simplic-
ity, string refers to a finite binary string on the alphabet {a, b}; for infinite
binary strings on {a, b} we will use the explicit reference infinite string.

Suppose an integer λ ≥ 1 is given (the scope), together with nonempty
strings p and q on {a, b} such that |p| ≤ λ, |q| ≤ λ. We call p and q patterns

of scope λ, and we suppose that they are suitable (see below for details —
roughly speaking, p and q are constrained to be dissimilar enough that they
can be efficiently distinguished from each other). For any pair of positive
integers i and j, i 6= j, consider the morphism that maps single letters into
blocks :

σ : a → piq, b → pjq. (1)

We call σ an expansion of scope λ and denote it by the 4-tuple [p, q, i, j]
λ

(or just [p, q, i, j] if the scope is clear from the context).
Of course an expansion can be applied to any (finite or infinite) string x

oin {a, b} by defining

σ(x) = σ
(

x[1]
)

σ
(

x[2]
)

· · · σ
(

x[n]
)

· · · · ,

and the composition of two expansions is equally well-defined:

(σ2 ◦ σ1)(x) = σ2

(

σ1(x)
)

.
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Suppose a finite sequence
σ1, σ2, . . . , σk

of expansions of scope λ is given. Then the string

x = (σk ◦ σk−1 ◦ · · · ◦ σ1)(a) (2)

is called a complete two-pattern string of scope λ. (More generally, we
call any substring of x a two-pattern string of scope λ.)

Conversely, if it is known that a (finite or infinite) string x is a con-
catenation of blocks piq and pjq, then a reduction ρ is well-defined on x

by

ρ : piq → a, pjq → b, (3)

and we say that x is reducible by ρ. An infinite string x is called a infinite

complete two-pattern string of scope λ if and only if its every prefix is
a prefix of a complete two-pattern string of scope λ.
Note: (a) if x is an infinite complete two-pattern string of scope λ, and σ
is an expansion of scope λ, then σ(x) is an infinite complete two-pattern
strings of scope λ;
(b) if x is an infinite complete two-pattern string of scope λ, then there exists
at least one reduction of x, and for any reduction ρ of x, ρ(x) is an infinite
complete two-pattern string of scope λ.
More generally, any suffix of a infinite complete two-pattern of scope λ is
called an infinite two-pattern string of scope λ.

Observe that every complete two-pattern string of scope λ is a prefix
of infinitely many infinite complete two-pattern strings of scope δ, for any
δ ≥ λ.

In the case λ = 1, for any expansion, p and q must both be single-
letter strings, and the suitability condition requires that p = a, q = b (or
of course vice versa). If the further restriction that j = i±1 is applied in
every expansion, then the corresponding infinite two-pattern strings are in
fact Sturmian, and vice versa, every infinite Sturmian string is an infinite
two-pattern string of scope 1.

In [FKS00] we showed how to recognize prefixes of infinite Sturmian
strings in time proportional to their length, a result extended in [FLS03]
to complete two-pattern strings. In [FLS04] we described an algorithm to
compute all the repetitions and near repetitions in linear time for complete
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two-pattern strings, again extending the same result on prefixes of infinite
Sturmian strings [FKS00].

In order to make these results intelligible, we now keep our promise to
define a suitable pair of patterns. To do this we first need to define the idea
of “regularity”.

Definition 1 A string q is said to be p-regular if and only if there exist
(possibly empty) strings u, v and integers k ≥ 1, r ≥ 0 such that

q = (wph1)(wph2) · · · (wphk)u,

where

• w = uprv (v empty if r = 0);

• p is neither a prefix nor a suffix of either u or v:

• each hj, j = 1, 2, . . . , k, takes one of only two nonnegative integer
values; that is,

1 ≤
∣

∣{hj : j ∈ 1..k}
∣

∣ ≤ 2.

Thus if q is p-regular, it contains k ≥ 1 occurrences of w, hence at least kr
occurrences of p; furthermore, q has a prefix consisting of “almost regular”

sections wphj , where the jth section contains r+hj occurrences of p. Thus,
in rough terms, if q is p-regular, then it is “built from p in a very particular
and regular way”.

In the definition of suitability for the pair (p, q) it is required that q be
not p-regular, thus the more restrictive the definition of regularity is, the
bigger the number of suitable pairs, and the bigger the class of two-pattern
strings. For technical reasons we used in [FLS03] and [FLS04] a more relaxed
definition of regularity, however here we present a paraphrase of the more
restrictive definition stated at the end of [FLS03] to obatin as large class of
two-pattern strings as possible.

Definition 2 An ordered pair (p, q) of nonempty strings is said to be suit-

able if and only if

• p is primitive (that is, in our use of the term, p has no nonempty
border);

• p is not a suffix of q;
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• q is neither a prefix nor a suffix of p;

• q is not p-regular.

In Section 2 we study the frequency of occurrence of complete two-pattern
strings of length n among all strings of length n; then in Section 3 we go on
to derive upper and lower bounds on the substring complexity of infinite two-
pattern strings of scope 1. Finally, in Section 4, we discuss open problems.

2 Frequency of Occurrence

If Tλ(n) is the number of complete two-pattern strings of scope λ and length
n, then the frequency fλ(n) of such strings among all strings of length n
on {a, b} is defined by

fλ(n) = Tλ(n)/2n.

Our first result is unsurprising:

Theorem 1 For any fixed λ, limn→∞ fλ(n) = 0.

Proof Observe that a complete two-pattern string of scope λ is a concatena-
tion of blocks of two types only: A = piq, and B = pjq. Since |p|, |q| ≤ λ,
there are less than 2λ+1 of distinct p’s and q’s. Therefore there are less
than 22λ+2 of distinct suitable pairs (p,q). It follows that there are less than
n·22λ+2 of distinct A’s and B’s, therefore less than n2·24λ+4 of distinct pairs
(A,B)’s. Since |A|, |B| ≥ 2, the two blocks can be concatenated together in
at most 2

n
2 different ways. Thus, Tλ(n) < 2

n
2 ·n2·24λ+4 for any n, and, con-

sequently, fλ(n) = Tλ(n)
2n ≤ 2

n
2 ·n2·24λ+4

2n = n2·24λ+4

2
n
2

. Since λ is a fixed constant,

fλ(n) → 0 when n → ∞, as n2

2
n
2

→ 0. 2

More interesting, and more descriptive of complete two-pattern strings,
are results describing their frequency of occurrence when λ is large relative to
n. We consider the number of complete two-pattern strings x = pq, where
(p, q) is a suitable pair satisfying |p| ≤ λ, |q| ≤ λ. In order for such strings
to exist, we must have λ ≥ dn/2e, and in fact we suppose λ = dn/2e for the
following discussion.

Let πk denote the number of primitive binary strings of length k, and let
φk = πk/2

k. It is well known [GO81] that φk is monotone decreasing and
rapidly convergent to the constant φ = 0.26778684 · · · .
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For n ≥ 6 and λ = dn/2e, we consider x = pq for n even and n odd:

• If n is even, then n = 2λ, λ ≥ 3, and |p| = |q| = λ. Observing from
Definition 2 that x will in this case certainly be a two-pattern string
if p is primitive, and observing further that q may therefore be any
string of length λ except p, we write

fλ(n) ≥ πλ(2
λ−1)/2n

= φλ

(

1−
1

2λ

)

(4)

> 7φ/8.

• If n is odd, then n = 2λ−1 and λ ≥ 4. For |p| = λ−1, |q| = λ,
Definition 2 tells us that for primitive p, q can be any string of length
λ that does not contain p as a substring. Thus

fλ(n) ≥ πλ−1(2
λ−4)/2n

= φλ−1

(

1−
1

2λ−2

)

(5)

> 3φ/4.

On the other hand, for |p| = λ, |q| = λ−1, q can be any string of length
λ−1 that is not a substring of p, and so

fλ(n) ≥ πλ(2
λ−1−2)/2n

= φλ

(

1−
1

2λ−2

)

. (6)

Since unfortunately these two cases are not independent, (5) and (6)
are not additive.

Using brute force, one can compute fdn/2e(n) for small n:

n fdn/2e(n)
2 1/2
3 1/2
4 1/2
5 5/8

From (4) and (6) we have then
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Theorem 2 For n ≥ 2,

fdn/2e(n) > φ

(

1−
1

2dn/2e

)

> 7φ/8, n even;

> φ

(

1−
1

2dn/2e−2

)

> 3φ/4, n odd. 2

Thus, for dn/2e ≤ λ < n, fλ(n) ≥ fdn/2e(n), and so fλ(n) is bounded below
by a quantity that is close to φ for both even and odd n. In other words,
over these values of λ, Tλ(n) has a lower bound of roughly 2n/4 — more than
one-quarter of all sufficiently long strings(n ≥ 14, say) are in fact two-pattern
strings of some scope λ.

3 Substring Complexity

The observations of Section 2 encourage us to consider the substring com-

plexity values Cλ(k) of infinite complete two-pattern strings of scope λ; that
is, for every integer k ≥ 0, the number of distinct substrings of length k that
may occur in the string. A Sturmian string is usually defined [L02, p. 45] to
be an aperiodic infinite string that achieves the least complexity C(k) = k+1
for all k ≥ 0.

In this section we obtain upper and lower bounds on C1(k) for infinite
complete two-pattern strings. In the introduction it was disucssed that if x is
an infinite complete two-pattern string, then it is reducible and its reduction
is again an infinite complete two-pattern string.

We are assuming to have an infinite complete two-pattern strings x.
Moreover, we are assuming to have a reduction ρ = [p, q, i, j] of x. To
simplify the proofs, we assume from now on that i < j — the complexity
results are unaffected — and we also assume without loss of generality that
p = a, q = b. Thus, ρ = [a, b, i, j].

For every k ∈ 0..i, x has exactly k+1 distinct substrings of length k,

ak, ak−m−1bam, m = 0, 1, . . . , k−1; (7)

and furthermore exactly one of these substrings, u = ak, is a prefix of two
distinct substrings of x, ua and ub, of length k+1. Thus for every k ∈ 0..i,
C1(k+1) = C1(k)+1 = k+2, just as for the Sturmian strings.

This simple observation leads to a useful notion: we shall say that a finite
substring u of x is prolific if and only if both ua and ub are also substrings
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of x. The use of prolific substrings of x follows from the simple fact that
Cλ(k + 1) = (Cλ(k) − Pk) + 2Pk = Cλ(k) + Pk, where Pk is the number of
distinct prolific substrings of x of length k.

Observe now that, again as for the Sturmian strings, x cannot be periodic,
since in the morphisms ρ−1 that can be thought of as constructing it, it is
true that p 6= q and i 6= j. Thus [L02, p. 22]

Cλ(k+1) ≥ Cλ(k) + 1 (8)

for all k ≥ 1, and since every distinct substring of length k is a prefix of
at least one distinct substring of length k+1, there must exist at least one
prolific substring uk of every length k.

In fact, even for λ = 1, there may be several prolific substrings uk in x;
consider, for example,

x = · · · abaaaaaaaaaababaaaaaaaaaababababababaaaaaaaaaab · · · , (9)

reducible by [a, b, 1, 10] to ρ(x) = · · · ababaaaaab · · · , a string that is in turn
reducible by ρ′ = [a, b, 1, 5]. We find that for k = 6, there are actually three
prolific substrings

u6 = aaaaaa, aababa, bababa, (10)

so that in this case C1(7) = C1(6)+3. Indeed, there are three prolific sub-
strings uk for every k ∈ 6..9 and two for every k ∈ 10..11. We shall see below
that this multiplicity of prolific substrings for various values of k occurs be-
cause the substring ababa is “special”.

Reflecting on this example, we are led to

Lemma 3 Suppose that an infinite complete two-pattern string x reducible
by ρ = [a, b, i, j], i < j, contains a nonempty prolific substring u. Then

(a) either u = ak for some k ∈ 1..j −1 or u = vbai for some (possibly
empty) string v;

(b) every suffix of u is prolific;

(c) if u = akbv for some k ∈ 0..i, then aibv is prolific;

(d) if u = akbv for some k ∈ i+1..j, then aibajbv is prolific. 2
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Before embarking on further discussion of prolific strings, we need to
identify two particular types of substrings: if ρ(x) is reducible by [a, b, i′, j′],
we say that

• u = (aib)j′

ai is exceptional in x;

• u = (aib)j′+1w for some substring w is left-extendible in x.

It is clear that if u is exceptional, then it is prolific, since both (aib)j′

aia
(a substring of (aib)j′

(ajb)) and (aib)j′

aib (a substring of (aib)j′

(aib)j′

) exist in
x. In particular, in the example (9) the exceptional string (ab)5a is prolific —
both (ab)5a2 and (ab)(ab)5 occur in x. But note that these two occurrences
are quite different: (ab)5a2 can only occur preceded by b, while (ab)(ab)5

must be preceded by a. Thus, in this case, the fact that (ab)5a is prolific
does not imply that

ρ
(

(ab)5
)

= a5

is prolific in ρ(x). As we shall soon discover, this circumstance is truly
“exceptional”.

The situation is different if the substring u is left-extendible: in this case,
u is not necessarily prolific. However, the following result is easy to prove:

Lemma 4 Suppose a string u is left-extendible in an infinite complete two-
pattern string x of scope 1 reducible by ρ = [a, b, i, j]. Then u is prolific in
x if and only if aibaj−iu is prolific in x. 2

In our following discussion of prolific strings, we shall exclude prolific sub-
strings u = (aib)j′+1w that are left-extendible; Lemma 4 tells us that this
exclusion is unimportant, since u is just a suffix of the prolific string

(aib)(ajb)(aib)j′

w.

This leads us to the notion of standard form:

If any substring u of an infinite complete two-pattern string x has prefix aib
and suffix bai and is neither exceptional nor left-extendible, we say that u is
in standard form.

Observe that by Lemma 3(c)-(d), every prolific substring of x that con-
tains b is a suffix of a prolific substring of x in standard form.
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Theorem 5 Suppose that an infinite complete two-pattern string x is re-
ducible by ρ = [a, b, i, j], i < j. Let u = vai be a substring of x in standard
form. Then

u prolific in x ⇐⇒ ρ(v) prolific in ρ(x).

Proof If u is prolific in x, both ua and ub occur in x. Therefore, since v has
prefix aib and suffix b, and since u is neither exceptional nor left-extendible,
ρ(v) is well-defined and both

ρ(v)b (corresponding to ua)

and
ρ(v)a (corresponding to ub)

occur in ρ(x).
Conversely, if ρ(v) is prolific in ρ(x), both ρ(v)a and ρ(v)b must occur

in ρ(x). Hence for σ = ρ−1, both

vσ(a) = vaib (corresponding to ρ(v)a)

and
vσ(b) = vajb (corresponding to ρ(v)b)

occur in x. Thus u = vai is prolific in x. 2

To better understand the meaning of this result, consider a prolific string
u = aibvai in standard form in an infinite complete two-pattern string x of
scope 1 reducible by ρ = [a, b, i, j], i < j. Let us call aibv the kernel of u.
Observe that by Theorem 5,

ρ(aibv) = aρ(v)

is prolific in ρ(x), where ρ(x) is reducible by [a, b, i′, j′], i′ < j′. Thus by
Lemma 3(a), aρ(v) either takes the value ak for some k ∈ 1..j′ −1 or has
suffix ai′ and prefix akb for some k ≥ 1. Supposing aρ(v) 6= ak, we may
either replace the prefix ak in aρ(v) by ai′ (if aρ(v) is not left-extendible) or
remove the prefix akb = ai′b (if it is). Either way we get a prolific string

u′ = ai′bv′ai′
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in standard form with kernel ai′bv′. Note that

|ai′bv′| = |aρ(v)|+(i′−k)−i′

≤ |aρ(v)|−1

= |ρ(v)|

≤ |v|/2

= |aibv|/2−(i+1)/2.

Thus the kernel in ρ(x) is less than half the length of the corresponding
kernel in x, and we have proved

Theorem 6 Let x be an infinite complete two-pattern string of scope 1, re-
ducible by [a, b, i, j], and let u be a prolific substring of x in standard form.
At most r = log2(|u|−i) reductions transform the kernel of u into a prolific

substring ak of the rth reduction of x.

As we have seen, it may happen that a prolific string terminates, in the
sense that it can no longer be extended to the left. For example, in (9), the
substring

u = (ab)5a

of length 11 is prolific, with a kernel that transforms into a4, a prolific sub-
string of ρ(x) that is reducible by [a, b, 1, 5]. However, there is no prolific
substring au or bu.

On the other hand, prolific substrings (such as ababa10baba in (9)) may
sometimes be indefinitely extendible to the left to form longer prolific sub-
strings — this must always be true, for instance, in the Sturmian case, where
there is only one prolific substring for each length k.

We can use Theorems 5 and 6 to generalize these observations and to
extablish bounds on C1(k). Let us suppose that an infinite complete two-
pattern string x of scope 1 is reducible by ρ = [a, b, i, j], i < j, and ρ(x)
is reducible by ρ′ = [a, b, i′, j′], i′ < j′. Then we may classify the prolific
substrings of x in the range 0..j−1 as follows:

(C1) For k ∈ 0..j−1, ak is prolific. If i = j−1, this range reduces to 0..i.

(C2) Consider u = (aib)j′

ai = vbai and observe that for every suffix v′ of v,
v′bai is prolific in x. But bu is not prolific, since bub cannot occur in
x, while au is prolific if and only if i′ = j′−1. Thus the substrings in
the sequence bai..vbai are all prolific for k ∈ i+1..i+j′(i+1), and the
sequence can be extended to k = i+j′(i+1)+1 if and only if i′ = j′−1.
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Note also that if both i = j−1 and i′ = j′−1, there will be exactly one
prolific string for every k ∈ 0..i+j′j, while for i < j−1, there will in
view of (C1) be at least two prolific strings for every

k ∈ i+1.. min{j−1, i+j′(i+1)}.

(C3) Consider the substring t = ai+1b(aib)i′ai of length k = i+(i′+1)(i+1)+1.
This substring is prolific and indeed, for i′ = j′ −1, t = au, while
otherwise |t| < |u|. In fact, by Lemma 3(c)-(d), aib(aib)i′aj−i−1t of
length j+2(i′+1)(i+1) is also prolific. Thus if both i = j−1 and i′ = j′−1,
there is exactly one prolific substring for each k ∈ 0..i+2j′j; on the
other hand, if both i < j−1 and i′ < j′−1, then in view of (C1) and (C2)
there will be three prolific substrings for every k ∈ i+(i′+1)(i+1)+1..j−1,
a range that is nonempty whenever i+(i′+1)(i+1) < j−1.

We observe that the cases (C1)-(C3) exhaust all the possibilities for the
range 0..j−1: in the Sturmian case, both i = j−1 and i′ = j′−1, so that as
expected exactly one prolific string occurs for each k; while if both i < j−1
and i′ < j′−1, there may be as many as three prolific strings for certain values
of k. We observe further that the same result is true for any reduction of x;
since by Theorem 5 there must exist in x a corresponding range determined
by the inverse expansions, we see that there may be ranges of values of k in
x for which there exist three prolific strings. More than three is not possible,
because the range must after a finite number of reductions reduce to 0..j −1.
Thus for every k ≥ i+1,

C1(k)+1 ≤ C1(k+1) ≤ C1(k)+3,

and with a little calculation we can establish

Theorem 7 Let x be an infinite complete two-pattern string of scope 1 re-
ducible by ρ = [a, b, i, j], i < j. Then

(a) for k ∈ 1..i, C1(k) = k+1;

(b) for k ∈ i+1..j, 2k−i ≤ C1(k) ≤ 3k−(2i+1);

(c) for k ≥ j+1, k+(j−i) ≤ C1(k) ≤ 3k−(2i+2). 2

See also [J01].
If u is a nonempty substring of a string x such that both au and bu are

prolific in x, we say that u is special in x. It is then easy to prove

12



Lemma 8 Suppose that x is an infinite complete twopattern string of scope
1 reducible by ρ = [a, b, i, j], i < j. Then ak is special in x if and only if
k = i and j > i+1. 2

Lemma 9 Let u be a special substring of length k of an infinite complete
two-pattern string x of scope 1. Then

C1(k+2) ≥ C1(k+1)+2. 2

To illustrate Lemma 9, consider again the example (9) with three prolific
substrings (10): observe that in this case u = ababa of length 5 is special, so
that C1(7) ≥ C1(6)+2.

Theorem 5 extends naturally to special strings, where now the exclusion
of exceptional and left-extendible strings is no longer of interest, since neither
of these can be special:

Theorem 10 Suppose that an infinite complete two-pattern string x is re-
ducible by ρ = [a, b, i, j], i < j. Let u = aibvai be a substring of x in standard
form. Then

u special in x ⇐⇒ ρ(v) special in ρ(x). 2

For example, the special substring u = ababa in (9) reduces to the special
substring a in ρ(x).

We shall say that a reduction ρ = [a, b, i, j] is Sturmian if j = i+1,
otherwise non-Sturmian.

Theorem 11 Let x be an infinite complete itwo-pattern string of scope 1
reducible by ρ = [a, b, i, j], i < j. The number of special substrings u in x is
exactly equal to the number of non-Sturmian reductions of x.

Proof Suppose that u is special in x, so that both au and bu are prolific
in x. If u = ai, then by Lemma 8, ρ is non-Sturmian.

Suppose then that u 6= ai. By Lemma 3(b) u is also prolific, and moreover
must have prefix aib. Furthermore by Lemma 3(a) u has suffix bai, and so
is in standard form. It is easily verified that if u = aibai, then au and bu
cannot both be prolific, and so we may suppose that u = aibvbai for some
nonempty v.
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Since au is prolific, it follows from Lemma 3(c) that uaai = aibaj−iu is
prolific; since bu is prolific, so also is uba

i = aibu. Because both uaai and
uba

i are in standard form, it follows from Theorem 5 that

ρ(ua) = abρ(vb),

ρ(ub) = aaρ(vb)

are both prolific in x′ = ρ(x). Hence we have identified a nonempty string
u′ = ρ(vb) such that both au′ and bu′ are prolific in x′, with |u′| < |u|. Thus
u′ is special in x′. Either u′ = ai′ , where ρ′ = [a, b, i′, j′] is the reduction for
x′, or else the transformation can be repeated. Since u is of finite length,
we must ultimately transform into u′ = ai′ , a special substring of an infinite
complete two-pattern string of scope 1, say x′, reducible by ρ′ = [a, b, i′, j′].

But by Lemma 8, ai′ is special if and only if j′ > i′+1; in other words, if
and only if ρ′ is non-Sturmian. Thus, corresponding to every special substring
of x, there exists a non-Sturmian reduction of x.

Conversely, if ai′ is special in any string, it must by Theorem 10 map
into a special string u in x. Thus, corresponding to every non-Sturmian
reduction of x, there exists a special substring of x. 2

When there exist only Sturmian reductions of x, Theorem 11 tells us that
there exist no special strings, and hence provides an alternate proof of the
fact that for Sturmian strings, C(k) = k+1 for all k. But in view of Lemma 9,
Theorem 11 has a much more significant consequence:

Theorem 12 If an infinite sequence of reductions of an infinite complete
two-pattern string x of scope 1 contains an infinite number of non-Sturmian
reductions, then

lim
k→∞

(C1(k)−k) = ∞.

Proof By Theorem 11, corresponding to each non-Sturmian reduction r =
1, 2, . . . . , there exists a substring of length kr such that, by Lemma 9,

C1(kr) ≥ C1(kr−1)+2.

Since every right extension of a distinct string is distinct, it follows that for
sufficiently large k, C1(k)−k is unbounded. 2
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Of course this result holds also for scope λ > 1: the complexity of two-
pattern strings can be arbitrarily large.

A more precise result is available in the case that the sequence of reduc-
tions of x contains only a finite number r of non-Sturmian reductions. Recall
that by Lemma 3(a), every prolific substring u 6= ak, k ∈ 1..j−1, has suffix
bai, itself a prolific substring of x. Thus a new prolific substring of length
k+1 can be formed only using an existing prolific substring of length k. As
we have seen, it is the special substrings that provide the means of creating
two distinct prolific substrings of length k+1 out of a single prolific substring
of length k.

Suppose that x is reducible by ρ = [a, b, i, j] to y = ρ(x), itself in turn
reducible by a non-Sturmian reduction ρ′ = [a, b, i′, j′]. Then in x there exists
the special substring

u = aib(aib)i′ai

of length (i′+1)(i+1)+i, giving rise to two prolific substrings

au = ai+1b(aib)i′ai & bu = b(aib)i′+1ai

of length (i′+2)(i+1). (Note that for j′ = i′+1, bu is not prolific, and so u

is not special.)
Considering first au, observe that the sequence

ai+1b(aib)i′ai, . . . , (aib)i′ajb(aib)i′ai

is entirely prolific (and indeed may perhaps be extended). Thus correspond-
ing to au, there exists a sequence of at least (i′ −1)(i+1)+(j +1) prolific
substrings in x of lengths k ∈ (i′+2)(i+1)..(2i′+1)(i+1)+j.

Considering bu, we find that the sequence of substrings

b(aib)i′+1ai, . . . , (aib)j′

ai

is entirely prolific, while µ(aib)j′

ai is not prolific for any µ ∈ {a, b}, since

ai+1b(aib)j′−1aib & b(aib)j′

ai+1

are the only possibile extensions. Thus corresponding to bu, there exists
a sequence of exactly (j′ − i′ −1)(i+1) prolific substrings in x of lengths
k ∈ (i′+2)(i+1)..j′(i+1)+i.

Putting these two cases together, we have
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Lemma 13 Let x be an infinite complete two-pattern string of scope 1 re-
ducible by ρ = [a, b, i, j], i < j. Let ρ(x) be reducible by ρ′ = [a, b, i′, j′],
j′ > i′+1. Then for x,

C1(k+1) ≥ C1(k)+2

for every

k ∈ (i′+2)(i+1).. min
{

j′(i+1)+i, (2i′+1)(i+1)+j
}

.

The minimum range of values of k is i+1 ≥ 2, attained for j′ = i′+2. 2

Since the expansion of any collection of distinct substrings yields another
distinct collection, we have

Theorem 14 Let x be an infinite complete two-pattern string of scope 1
with a sequence of reductions containing exactly r non-Sturmian reductions.
Then for sufficiently large k,

C1(k)−k ≥ 4r+1.

Proof For each of the r reductions, there must by Lemma 13 be at least
two consecutive values, say k′ ∈ k+1..k+2, for which C1(k

′) ≥ C1(k
′−1)+2,

so that C1(k+2) ≥ C1(k)+4. The result follows. 2

4 Conclusion & Open Problems

The most striking result of this paper is that the rather slight generaliza-
tion of the Sturmian strings to infinite complete two-pattern strings of scope
λ = 1 gives rise to strings whose substring complexity C1(k) can become
arbitrarily large for arbitrarily long substrings of length k. Since for λ = 1
the only possible patterns are a and b, this means that the result holds quite
independent of the elaborate definition of suitable patterns given in Section 1
for the general case λ > 1. In the case λ = 1, the only way to differ from
the Sturmian case is to have non-Sturmian reductions (where |j−i| > 1).
It follows that the Sturmian strings are, indeed, optimal with respect to
minimality of substring complexity.

We believe that more precise complexity results can be formulated for
scope 1 than we have been able to achieve in this paper. Also, it would be of
interest to investigate the complexity of two-patterns strings in the general
case.
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