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INDEPENDENT FAMILIES IN COMPLETE BOOLEAN ALGEBRAS 
BY 

B. BALCAR AND F. FRANEK 

ABSTRACT. We present a proof (without any set-theoretical assumptions) that every 
infini te complete Boolean algebra includes a free subalgebra of the same cardinality. 
It follows that the set of all ultrafilters on an infinite complete Boolean algebra B has 
power 21BI. 

1. Problems and results. Let B be a Boolean algebra and St(B) its Stone space, i.e. 
the set of all ultrafilters on B with the usual topology. If B is finite, then obviously 
1 St( B) 1 = log21 B 1 ,1 see [Ma]. The classical result due to Hausdorff [H] and Pospisil 
[PI] states that for a power set Boolean algebra B = 0'(K) for any infinite cardinal K, 
1 St(B) 1= 22K = 21BI. The key role in their proof is played by the notion of an 
independent family of sets and the fact that there is such a family of subsets of K of 
size 2". The very natural problem of whether this can be generalized for all infinite 
complete Boolean algebras was first formulated (as far as we know) by Efimov [E]. 
Partial positive solutions were known from works of Kesl'yakov [K], Koppelberg 
[Ko], Monk [M] and Blaszczyk [Bla]. A short historical survey of this problem can be 
found in [Bla]. Independent systems in complete Boolean algebras are studied ill 

Vladimirov's book. 
We shall present proofs (in ZFC only) of the following theorems. 

THEOREM A. In every infinite complete Boolean algebra B there is an independent 
family §"" ~ B so that 1 §""I = 1 B 1 . 

THEOREM B. If B is an infinite complete Boolean algebra homogeneous in sat, then B 
is well semifree. 

(For precise definitions see §3.) 
Although many partial results concerning Theorem A have been achieved, e.g. 

Monk proved Theorem A under a hypothesis slightly weaker than GCH, we are 
offering a general approach covering all results obtained so far. 

It is not surprising that notions and results about filters and ultrafiIters on power 
set algebras can be translated to ones on complete Boolean algebras. We shall give 
one such example concerning good ultrafilters. Kunen's proof, see [KuI, Ch,K], of 
the existence of good ultrafilters on a power set algebra, can be pushed through in 
this more general situation as well. 
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608 B. BALCAR AND F. FRANEK 

At this point we would like to express our thanks to F. D. Tall and P. Simon for 
stimulating discussions and other help in completing this paper. 

2. Corollaries. Let us summarize some well-known consequences of Theorems A 
and B with sketches of proofs. In what follows Band C denote infinite complete 
Boolean algebras, X and Y denote infinite extremally disconnected compact spaces, 
while w( X) and w( Y) denote their weights. 

COROLLARY 1. I St(B) 1= 21BI , or equivalently I X I = 2w (X). 

PROOF. See Corollary 2. 

COROLLARY 2. There are 21BI ultrafUters on B which have character (i.e. the least 
cardinality of a set of generators) equal to I B I . 

PROOF. Let {{ Xa(O), Xa(1)}: a < I B I} be an independent family of partitions of 
size 2 on B. For any f: I B 1-> 2 the system 

jf= {Xa(f(a)): a <IBI} U {- 1\ Xp(f(!3)):A E [IBlr} 
PEA 

is centered and thus generates a filter Gf on B. Let f *- g be maps from I B I to 2. 
Then Gf *- Gg and every ultrafilter extending Gf is not generated by fewer than I B I 
elements and is distinct from every ultrafilter extending Gg (compare [Kull). 

Corollaries I and 2 solve problems raised by Efimov [E]. 

COROLLARY 3. Let I C I,,;;; I B I . Then there is a homomorphism f: B -> C onto C, or 
equivalently if w( X) ;;;. w( y), then there is an embedding of Y into X. 

PROOF. Let G be a set of free generators of a free sub algebra F of B with 
I G I = I B I . Then every surjection f: G -> C can be extended to a surjective homo-
morphism g: F --> C. By injectivity of C, there is a homomorphism from B onto C 
extending g. 

COROLLARY 4. There is a continuous surjective map f: X --> 2w(X). 

PROOF. This is a topological version of the fact that the complete Boolean algebra 
B, which by Stone duality corresponds to X, includes a free sub algebra of size I B I . 
There is a continuous map from X = St(B) onto St(F) = 21BI. But since B is 
infinite, w(X) = w(St(B)) =1 B I. 

Corollary 4 solves problem 5 of Ponomarev and Shapiro [P, S]. 

COROLLARY 5. The space X includes a copy of itself as a nowhere dense subset (so X 
is not homogeneous, see [Fl). 

PROOF. It is well known that there is a homeomorphism f from X into 2w(X) and 
onto a nowhere dense D C; 2w(X). By Corollary 4 there is a continuous surjection g: 
X --> 2w(X). Let Y C; X be such that h = g ~ Y is an irreducible map onto 2w(X). Then 
Z = h - '( D) is nowhere dense in Y, and hence in X. Since X is extremally 
disconnected and h is irreducible, Z is homeomorphic to X. 

Corollary 5 solves problem 4 of [P, S]. 
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COMPLETE BOOLEAN ALGEBRAS 

COROLLARY 6. Let B be well semifree. Then there are 21BI good ultra filters on B. 

PROOF. (Compare [eb, K].) 

SUB LEMMA 1. Let (G, <J") be independent (for G ~ B, <J" ~ Part(B» means that 

(Vn < w ) (VPo , ... 'Pn E <J")(Vuo E po) ... (Vu n E Pn) 

(Vu E G)(u 1\ Uo 1\ ... I\u n =1= 0B). 

609 

Let (G, <J") be independent. Let G be closed under finite intersections (CUFf). Let 
bE B - {OB}. Then there is a CUFf G* d G, 1 G* I,,;;;; max(w, 1 G I) and there is an 
<J"* ~ '!f, 1 <J" - <J"* 1 < w so that (G*, <J"*) is independent and either b E G* or (-b) E 
G*. 

PROOF OF SUBLEMMA 1. Let G[X] be the closure under finite intersections of 
G U {X}. 

(a) Let (G[b], <J") be independent. Then G* = G[b], <J"* = '!f. 
(b) Let (G[b], <J") be not independent. Let u E G, Po, ... 'Pn E <J", Uo E Po, ... ,un 

E Pn witness this fact. Then G* = G[ -b] and <J"* = <J" - {Po,···, Pn}. 

SUBLEMMA 2. Let K < sat(B). Let G ~ B be CUFf. Let <J" ~ Part(B). Let P E '!f 
and 1 P 1= K. Let (G, <J") be independent. Let U be the filter generated by G. Let f: 
[K]<w ---> U be monotonic. Then there is a multiplicative refinement g of f so that 
(G*, <J"*) is independent where G* is the closure under finite intersections of G U rng( g) 
and <J"* = <J" - {P}. 

PROOF OF SUBLEMMA 2. Let P = {Pa: a < K}. Let [K]<w = {aa: a < K}. Define 
ha: [K]<w ---> B by 

if s ~ aa' 
otherwise. 

Then ha is multiplicative. Define g: [K]<w ---> B by g(s) = V a<K ha(s). Then g(s)";;;; 
f( s) for each sand g is multiplicative. It is easy to verify that (G*, <J"*) is 
independent. 

PROOF OF COROLLARY 6. Since B is well semifree 1 B l<sal(B) = 1 B I. SO let 
B = {ba : a < v}. Let §) = {f: (3 K < sat(B» (f is a monotonic function with 
domain [K]<w and range ~ B)}. Let §) = {fa: a < v} so that each f is enumerated 
cofinally many times. 

By induction we shall get for each a < v and each </>: a ---> {-I, I} a filter U</> on B 
generated by a CUFI G</>, and a good family <J"a \: Part(B) so that 

(1) </>1 ~ </>2 -> U</>l ~ U</>2' 
(2) </>1' </>2 incompatible -> U</>l U U</>2 is not centered, 
(3) dom( </» = a -> 1 G</> I,,;;;; max(l ai, }-t) for some }-t < sat( B), 
(4) dom(</»";;;; a ->(G</>, <J"a) is independent, 
(5) dom( </» ;;;. a + 1 -> ba E G</> or (-ba) E G</>, and 
(6) if rng( It,.} ~ U</> & dom( </» = a, then there is a multiplicative refinement ga of 

fa such that rng(ga) ~ U", for every If; ::J </>. 
¥ 
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610 B. BALCAR AND F. FRANEK 

Since B is well semifree, there is a good independent family <!f ~ Part(B) of size 
IBI· 

Pick aPE <!f, I P 1= w. Let P = {Pn: n < w}. Let G", = {V n;;.k Pn: k < w}. Let 
U", be generated by G",. Let <!fo = <!f - {Pl. 

Use Sublemmas 1 and 2 to get the induction step from a to a + 1. 
Limit stage: Let <!fa = np<a <!fp, for </>: a --> {-I, I} define G", = Up<aG</>IP' 

U", = U p<a U</>Ip. 
Now final claim: Let X: " --> {-I, I}. Then Dx = U a<v U)(ja is a good ultrafilter on 

B. Since Xl =1= X2 yields DXI =1= DX2 ' there are 21BI = 2V good ultrafilters on B. 

3. Notation and basic definitions. For a Boolean algebra Band C ~ B, let 
C+ = C - {OB}. If u E B+ then Btu is the partial subalgebra of B with the universe 
{xEB:x';;;u}. 

(i) P ~ B is a partition on B (or a partition of I B) if it is a maximal disjoint 
collection of nonzero elements. Part(B) denotes the set of all partitions on B. 

(ii) <!f ~ Part(B) is an independent family of partitions if for any finite subset 
{Po,··· ,Pn} ~ <!fand any selectorf E II;"",n Pi' /\ ;"",n f(i) =1= 0B· 

(iii) C ~ B is an independent family if for any x E C, -x ft C and {{x, -x}: 
x E C} is an independent family of partitions. 

(iv) B is semifree if there is an independent family in B of size I B I (see [K)). 
(v) <!f ~ Part(B) is K-good (for a cardinal K';;; sat(B), K > 2) if ('r;fy E K - 2) 

(I {P E <!f: I P I = y} I = I <!fl). <!f is said to be good if it is sat(B)-good. 
(vi) B is well semifree if there is an independent good family of size I B I of 

partitions on B. 
(vii) D ~ B+ is dense in B if ('r;f bE B+ )(3 dE D)(d';;; b). 
(viii) Density of B, deB) = min{1 D I: D is dense in B}. 
(ix) Saturatedness of B, sat(B) = min{K E card: ('r;f P E Part(B» (I P 1< K)}. 
(x) B is homogeneous in d if ('r;f u E B+ )( d( Btu) = d( B». B is homogeneous in sat 

if ('r;f u E B+ )(sat(B t u) = sat(B». 
(xi) An ultrafilter G on B is K-good (for K';;; sat(B» if it is countably incomplete 

and for every cardinal A < K and every monotonic f: [A] <w = {X ~ A: I X I < w} --> G 
(i.e. s ~ t --> f(s) ;;;. f(t» there is a multiplicative refinement g: [A]<w --> G of f (i.e. 
g(s) ';;;f(s) for each sand g(s U t) = g(s) 1\ get»~. G is said to be good if it is 
sat(B)-good. 

REMARKS. Since in general d( Btu) .;;; d( B tv) and sate Btu) .;;; sate B tv) 
whenever u .;;; v, there is aPE Parte B) such that all Btu's are homogeneous in d 
and sat, for all u E P. If B is complete and P E Parte B) then f: B --> II U E P Btu 
defined by f(x)(u) = x 1\ u is a bijection and hence B ~ IIuEpBt u. 

Recall a well-known result of Erdos and Tarski [E, T], that if B is an infinite 
Boolean algebra, then either sat(B) = K+ for some infinite cardinal K, or sat(B) is a 
weakly inaccessible uncountable cardinal. 

There is another definition of a good ultrafilter on a Boolean algebra due to 
Benda (see [Be]), which gives sufficient and necessary conditions for an ultrafilter so 
that the corresponding Boolean ultrapower is saturated. Our definition is a formal 
analogue of Keisler's definition concerning power set algebras (see [Ch, K]). Our 
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COMPLETE BOOLEAN ALGEBRAS 611 

definition is apparently stronger than Benda's for it implies that even the Boolean 
valued model of set theory modulo a K-good ultrafilter is K-saturated. For power set 
algebras it does not make any difference since any Boolean valued model of set 
theory modulo an ultrafilter is isomorphic to the Boolean ultra power. 

4. Combinatorial facts. Here we state all facts needed to prove the main theorems. 
They form five groups: 4.1 contains results enabling the whole business to start, i.e. 
how to get initial independent families of partitions. 4.2 deals with methods which 
allow one to enlarge a given independent family. 4.3 is devoted to methods for 
making partitions in an independent family bigger. In 4.4 it will be shown how to get 
an independent family in the whole algebra using independent families in partial 
subalgebras. Finally in 4.5 we shall show that some special types of algebras are well 
semifree. 

In the entire §4, B stands for an infinite complete Boolean algebra. 
4.l. 

LEMMA I [V; M]. Let 'If C Part(B). For P E'If, let P v = {V R: Rep}. Let 
'lf VA = {/\PEGJf(P): fE IIpEGJP V }. If for every u E U'lf the set {x.;;; u: x E 
('lfVA)+} is not dense in Bt u, then there is a Q E Part(B), Q = {q(O), q(l)} such 
that for any v E U'If, q(O) 1\ v *- 0B and q(l) 1\ v *- 0B. 

PROOF. Let u E U'lf. Since {x .;;; u: x E ('If V A)+ } is not dense in Btu there is 
an x( u) E (B t u) + such that for any z E ('If v A) +, Z 4 x( u). Define y( u) = 
/\PEGJ(V{vEP: v I\x(u)*-0B}). Then x(u).;;;y(u)';;;u. Pick some TC U'lf 
such that {y(u): u E T} is a maximal pairwise disjoint subsystem of {y(u): 
u E U'If}. Let q(O) = V UETX(U) and q(l) = IB - q(O). Then Q = {q(O), q(l)}. If 
u E U 'If then by maximality of T, there is a vET such that y( u) 1\ y( v) *- ° B. SO 
u 1\ xCv) *- 0B and thus u 1\ q(O) *- 0B. For the same v,y(u) 1\ (y(v) - xCv»~ *- 0B' 
otherwise x(v);;;. y(v) I\y(u), which is an element of ('lfVA)+, contradicting the 
definition of x( v). Thus u 1\ q(l) = u 1\ -q(O) ;;;. u 1\ (y( v) - x( v» *- 0B. 

LEMMA 2 [B, V]. Let B be homogeneous in sat. Let p be a cardinal so that 
p+ < sat(B). Then for each family {u(a): a < p} C B+ there is a disjoint refinement, 
i.e. {v( a): a < p} C B+ such that if a < f3 < p then v( a) .;;; u( a) and v( a) 1\ v(f3) = 

°B· 
PROOF. For a detailed proof see [B, V]. For the sake of completeness here is a 

sketch of the proof: If P is a family of pairwise disjoint elements of B and x E B+ , 
define P[x] = {u E P: u 1\ x*- OB}. If we have a disjoint family PC B+ such that 
1 P[u(a)] I;;;. p for every a < P, we can get a disjoint refinement by a straightforward 
recursion. The family P we shall also construct by recursion. So suppose f3 < P, 

Uy<fJP(y) C B+ is a disjoint family and for every a < P, 1 (Uy<fJP(y»[u(a)] I;;;. p 

or = 0. In the first case set P(f3) = 0; otherwise pick a partition Q of u(f3) such 
that 1 Q 1= p+ and set P(f3) = Q - U {Q[u(a)]: a> f3 & 1 Q[u(a)] I.;;; p}. Then 
1 P(f3)[u(f3)] 1 = p+ . 

LEMMA 3. Let B be homogeneous in sat and let sat(B) = K be weakly inaccessible. 
Then there is a good independent family of partitions on B that has size K. 
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612 B. BALCAR AND F. FRANEK 

PROOF. By recursion we shall construct an independent family qf of size K such 
that sup{1 PI: P E qf} = K. It is easy to get a good independent family from qf. So 
suppose X is an independent family of partitions on B, I X I < K. Given T < K. Let T 
be the closure of U X under finite intersection and let T+ = {u( a): a < p} for some 
P. Since K is weakly inaccessible and I XI< K, p+ < K. SO by Lemma 2 there is a 
disjoint refinement {v( a): a < p} of T+ . By homogeneity of B in sat, every v( a) can 
be split into T disjoint elements, say {v(a, 13): 13 < T}. For 13 > 0 define x(f3) = 
V a<v v(a, 13), and x(O) = IE - V O<{1<TX(f3). Then P = {x(f3): 13 < T} E Part(B) 
and Xu {P} is independent, I PI = T. This procedure allows us to carry out the 
whole recursion. 

4.2. 
DEFINITION. Let {X(i): i E I} be a system of sets. A set ~ c; IIiE' X(i) is called a 

finitely distinguished family (FDF for short) if for any finite ~o c; ~ there is an io E I 
so that I {I(io): f E ~o} I = I ~o I . 

LEMMA 4. If all X(i)'s are infinite, then there is an FDF ~ c; IIiE,X(i) of full size, 
i.e. of power I IIiE,X(i) I· 

PROOF. (a) Let I be finite. Then I IIiElX(i) 1=1 X(j) I for somej E I. So ~ can be 
any family of functions distinct at thejth coordinate. 

(b) Let I be infinite, I I I = K. We shall proceed by induction over I I I . Assume 
that the assertion holds for all I of size < K. Let -< be a well-ordering of I such that 
i -<j implies I X(i) 1,,;;;1 X(j) I· Let y be the order type of (/' -< ). Without loss of 
generality assume 1= yand -< = ,,;;; . It is obvious that K ,,;;; Y < K+ • 

Case I. ('v' a < y)(1 y - a 1= K). 
Then there is an injection </>: [y]<w -> y such that </>(s);;;' max(s) for each 

s E [y(W, and there is an injection I/;s: IIiEsX(i) -> X(</>(s» since I IIiEsX(i) I,,;;; 
I X(</>(s» I· Define 

X ( h ) (i) = {I/;/ h ( s ) ) if </> ( s) = i, 
an arbitrary element of X( i) otherwise. 

X IS an injection from IIsEAIIiEsX(i) into IIiEyX(i), where A =[y]<w_ {0}. 
Define an injection 1/: IIiEyX(i) -> IIsEA II iEs XCi) by 1/(/)(s) = (f(i): i E s). 
Then ~ = (X 0 1/ )(II i E y X( i)) is an FD F of desired size. 

Case II. Case I does not hold. 
So (3 a < y)( I y - a 1< K). Let ao be the least such a. Clearly ao ;;;' K and 

lao - a 1= K for all a < ao. By Case I there is an FDF ~o c; II iEao XU) of full size 
and by the induction assumption an FDF ~l c; IIiEA XCi) of full size (where 
A = y - ao). Since either I II iEao X(i) I = I IIiE,X(i) I (so ~o can be extended to an 
FDF ~ c; IIiEIX(i) of the same size), or IIIiEAX(i)I=IIIiEIX(i)1 (so ~I can be 
extended to an FDF ~ c; IIiEIX(i) of the same size), we are done. 

LEMMA 5. Let qfp §'2 c; Part(B), P E Part(B). Let §'2 be infinite and ('v' Q E qf2) 
(I Q 1= p), P ;;;. 2. Let qfl U qf2 U {P} be independent. Then there is a family qf; <: 
Parte B) such that ('v'R E qfD(1 R 1= p), I qf; I = I qf21 1P1 and qfl U qf; is independent. 
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COMPLETE BOOLEAN ALGEBRAS 613 

PROOF. By Lemma 4 there is an FDF ~ C C?fi of full size, i.e. I ~ I = I C?f2 11P1. Pick 
f E ~, u E P. Thenf(u) E C?f2 and hence If(u) 1= P. Letf(u) = {q(f, u, a): a < p}. 
For all a < P define R(f, a) = V UEP(q(f, u, a) /\ u). 

(i) For a < f3 < P, 

R(j,a)/\R(j,f3) = V (q(j,u,a)/\u)/\ V (q(j,v,f3)/\v) 
uEP vEP 

= V (q(j, u, a) /\ qU, v, (3) /\ u /\ v) = 0B; 
u,vEP 

if u =1= v, then u /\ v = 0B' and if u = v, then q(f, u, a), q(f, v, (3) are two distinct 
elements of f( u), and hence disjoint. 

(ii) 

V R(j, a) = V V (q(j, u, a) /\ u) 
a<v a<v uEP 

= V V (q(j, u, a) /\ u) = V u = lB' 
uEP a<v uEP 

Thus R(f) = {R(f, a): a < p} is a partition on B of size P. Let C?f; = {R(f): 
fE ~}. Then C?f; C Part(B) and I C?f; 1=1 C?f2 IIPI. To show that C?fl U C?f; is indepen-
dent, pick n, m < w. Pick PO'''',Pn E C?fl , R(fo), ... ,R(fm) E C?f;. Pick Vo E 
Po, ... 'Vn E Pn, R(fo, ao) E R(fo),'" ,R(fm, am) E R(fm)' Since ~ is an FDF, there 
is a Uo E P such that.t;(uo) =1= fj(u o) whenever i =1= j';;; m. Then 

A Vi /\ A R(/;, a i ) = A Vi /\ A V (q(/;, u, a i ) /\ u) 
i.s;;.n i';;;'m uEP 

i"';;'n i~m 

since (for i,;;; n) Vi E Pi E C?fp (for i,;;; m) q(/;, uo, a;) Ef(uo) E C?f2 , Uo E P and 
C?fl U C?f2 U {P} is independent. 

4.3. 

LEMMA 6. Let C?fp C?f2 C Parte B). Let ("if P E C?f2 )(1 P I = 2), I C?f2 1;;. w, and let C?fl U C?f2 

be independent. Then there is an C?f; C Parte B) so that I C?f; I = I C?f2 1 and ("if P E C?f;> 
(I P I = w) and C?fl U C?f; is independent. 

PROOF. Let I C?f2 1 = P ;;. w. Let C?f2 = {P( a): a < p}. Let P( a) = {pc a, 0), p( a, I)}. 
There is a system of mutually disjoint sets {Ap: f3 < p} such that p = U p<v Ap and 
I Ap I = w. Let Bp be the least sub algebra of B containing {pc a, 0): a E Ap}. Clearly 
sat(Bp) = WI' Pick some Rp E Part(Bp) of size w. Pick some up E Rp. Define 
Rp = (Rp - {up}) U (up V - V Rp). Then Rp E Part(B) and has power w. Finally 
define C?f; = {Rp: f3 < p}. Then I C?f; 1= p and ("if P E C?f;>(1 P I = w). So it remains to 
show that C?fl U C?f; is independent. 

Pick any n, m < w, Qo, ... ,Qn E C?fp Uo E Qo,···,un E Qn' f3o, ... ,f3m -< P, Vo E 
Rpo" .. , Vm E RL For each i ,;;; m there is a finite set Di C {p( a, 0): a E Ap) U 
{pea, 1): a E Ap) such that Vi;;' ADi =1= 0B' since {p(a,O): a E Ap) generate Bp: 
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Hence 

for all D/s are disjoint (as all Afi's are disjoint) and elements of D/s are elements of 
partitions from <!f2, and <!fl U <!f2 is independent. 

LEMMA 7. Let <!fp <!f2, <!f3 C Part(B). Let 1 <!f21 = wand ('if P E <!f2)(1 P 1 = T), T;;;;' w. 
Let (V Q E <!f3)(1 Q 1 = w). Let <!fl U <!f2 U <!f3 be independent. Then there is an <!f; C 
Parte B) of size 1 <!f31 so that (V R E <!f{)(1 R 1 = T) and <!fl U <!f; is independent. 

PROOF. Let <!f2 = {Q(n): n < w} and Q(n) = {q(n, y): y < T}. Let <!f3 = {R(/3): 
/3 < v} and R(/3) = {r(/3, n): n < w}. Define for every /3 < v, y < T, s(/3, y) = 
V n<wCq(n, y) 1\ r(/3, n», and S(/3) = {s(/3, y): y < T}. 

(i) Since <!f2 U <!f3 is independent, s(/3, y) * 0B for all /3 < v, y < T. 

(ii) s(/3, YI) 1\ s(/3, Y2) = 0B if Yl * h For 

s(/3, Yl) 1\ s(/3, Y2) = V (q(n, Yl) 1\ r(/3, n)) 1\ V (q(m, yJ 1\ r(/3, m)) 
n<w m<w 

V (q(n, Yl) 1\ r(/3, n) 1\ q(m, Y2) 1\ r(/3, m)) = 0B 
n,m<w 

since if n = m then q(n, Yl) 1\ q(m, Y2) = 0B' and if n * m then r(/3, n) 1\ r(/3, m) 

= °B' 
(iii) 

VS(/3) = Vs(/3,Y)= V V (q(n,y)l\r(/3,n)) 
Y<'Tn<w 

= V (r( /3, n) 1\ V q( n, y)) = V (r( /3, n) 1\ 1 B) 
n<w Y<T n<w 

= V r(/3, n) = lB' 
n<w 

Thus <!f; = {S(/3): /3 < v} is a family of partitions of size v =1 <!f31 ' each partition is 
of size T. 

To show <!fl U <!f; is independent, pick n, m < w, Po, ... 'Pn E <!fp Vo E Po,··· ,vn 
E PIl , /30"" ,/3m < v, Yo,"" Ym < T. We must show that /\ i""n Vi 1\ /\ i""m s(/3i' yJ 
* °B' 

i~n i~m 

since <!fl U <!f2 U <!f3 is independent (and no, .. . , n m are chosen pairwise distinct). 
4.4. 

LEMMA 8. Let P E Parte B). Let there be for every u E P an infinite K-good 
independent family <!fu of partitions on B I u, K > 2. Then there is a K-good independent 
family '?f C Part(B) of size II uEP 1 <!fu I· 
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PROOF. Let ~u = U 2<;;y<K ~U,y for every u E P, and 1 ~u 1=1 ~U,y 1= Pu' Let ~U,y = 
{Pu,i a ): a < pu} and Pu,/a) = {PU,y(a, /3): /3 < 'Y}. Pick an FDF ~ ~ Il uEP Pu of 
full size (by Lemma 4). Pick an f E~. For /3 < 'Y, 2,;;; 'Y < K, define Py(f, /3) = 
V uEPPu,y(f(u), /3). Let Py(f) = {Pif, /3): /3 < 'Y} and ~y = {Pi!): f E ~}. Fi-
nally let ~ = U 2 <;;y<K ~Y' 

(i) If /31 =1= /32 then Pif, /31) /\ Pif, /32) = 0B' For 

Py(J,/3I)/\Py(J,/32) = V PU,y(J(U),/3I)/\ V PV,y(J(V),/32) 
uEP vEP 

= V (pU,y(J(U),/3I) /\PV,y(J(V),/32)) = 0B 
u,vEP 

since if u = v then Pu,/f(u), /31) /\ PV,y(f( v), /32) = 0B as they are distinct elements 
of PU,y(f( u )), if u =1= v then Pu,if( u), /31) ,;;; u and Pv,i f( v), /32) ,;;; v and u /\ v = 0B' 

(ii) V Py(f) = lB' For 

V Py(J) = V Py(J, f3) = V V PU,y(J(u), f3) = V u = lB' 
p<y p<y uEP uEP 

Therefore ~y is a family of partitions of size 'Y on B, 1 ~y 1 = 1 ~I = 1 ~ 1 . So ~ is a 
K-good family. We shall show that ~is independent. 

Pick n, m < w. Pick 'Yo,··., 'Yn < K, fo,' . ·,fm E ~, /30 < 'Yo,·· . ,/3n < 'Yn' We shall 
show that /\ i<;;n /\ j<;;m Py;(fj, /3J =1= 0B' Pick u E P so that all fj(u)'s are distinct 
(possible since f E ~ and ~ is an FDF). Then 

/\ /\ p(J., /3) ~ /\ /\ P (J" /3) =1= 0B "'1, } I U,y, } I 
i-s;;;,n j~m i~n j~m 

since ~u is independent. 
4.5. 

LEMMA 9 [E, K). Let B be atomic. Then B is well semifree. 

PROOF. Let sat(B) = K+ ~ WI' Then B ~ 0'(K). Since every set of size K can be 
split into K disjoint sets of size K, it is easy to get (by induction) a countable 
independent family of partitions on B, each of size K. Denote this family ~. Then 
there is aPE ~, ~2 ~ ~ so that ~ = {P} U ~2' 1 P 1 = K and 1 ~21 = w. By Lemma 5 
there is a family ~{ ~ Part( B) of size 1 ~211P1 = wK = 2K = 1 B 1 such that ("i/ R E ~{) 
<I R 1= K) and ~{is independent. Now it is easy to get a K-good independent family 
from ~{. 

LEMMA 10. Let B be homogeneous in sat and d. Let sat(B) = K be weakly 
inaccessible. Then B is well semifree. 

PROOF. Let d(B) = A. Then w';;; K';;; A. Notice that 1 B 1= A<K = SUp{AY: 'Y < K}. 

For pick a dense subset D ~ B of size A. Since every element of B can be expressed 
as a sum of fewer than K elements from D, 1 B I,;;; A <K. If 'T < K, there is a 
P E Part(B) of size 'T. Since B is complete, B ~ Il uEP Btu. By homogeneity of B in 
d, for each u E P, 1 Bt u I~ d(Bt u) = d(B) = A. Hence 1 B I~ N. Since this is true 
for all 'T < K, 1 B 1 ~ A <K. 
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Now let JL be the least cardinal so that A <K = JL<K. Then if T < JL, T<K < A 
(otherwise T<K = (T<K)<K ;;;;. A <K) and JL = 2 or JL > 2<K. 

If JL = 2, then by Lemma 3 there is a good independent family ~ C; Part(B) of size 
K ;;;;. w. If JL > 2<K then a good independent family of size K given by Lemma 3 can 
be extended by recursion to a good independent family ~ C; Part(B) of size JL. 

Sketch of the recursion: Suppose we have X = {P(a): aCT}, an independent 
family so that sup{1 P(a) I: a < T} = K and K";; T < JL. Then 1 P(a) v I..;; 2<K since 
1 P(a) 1< K. Thus 1 Ua<TP(a) V 1= P < JL. Therefore 1 XVAI= p<K < A = d(B) = 
d( Btu) for every u E U X. So all assumptions of Lemma 1 are fulfilled and hence 
thereis aP(T) E Part(B) so that {P(a): a";; T} is independent.2 

Thus in both cases (JL = 2 or JL> 2<K) we have a good independent family 
~ C; Part(B) of size max(JL, K). Let ~ = U 2<;;Y<K ~y and 1 ~ 1 = 1 ~I = max(JL, K) and 
('V P E ~y )(1 PI=; y). By recursion using Lemma 5, every ~y can be replaced by ~; of 
size max(JL, K)<K such that~' = U2<;;Y<K~; is independent and good. The size of~' 
is K<K;;;;. 2<K = JL<K = A<K =1 B 1 (if JL = 2) or JL<K = A<K =1 B 1 (if JL> 2<K), so 
1 ~' 1 = 1 B 1 . Thus B is well semifree. 

LEMMA 11. Let B be homogeneous in sat and d. Let sat(B) = K+ . Then B is well 
semifree. 

PROOF. Let d( B) = A. Notice that 1 B 1 = AK (see proof of Lemma lO). Let JL be the 
least cardinal such that JLK = AK. Then if T < JL, TK < A and JL = 2 or JL > 2K. 

One can easily obtain an independent countable family of partitions on B, each of 
size K, denote it ~l. If JL > 2 <K, then as in the previous proof we can extend (by 
recursion) ~l by a family ~2 of size JL such that ('V P E ~2)(1 P 1 = 2). By Lemma 6 
there is a family ~{ C; Part(B), 1 ~{I = 1 ~21 = JL such that ('V P E ~{)(I P 1 = w) and 
~l U ~{ is independent. By Lemma 7 there is a family ~; C; Part(B) of size 1 ~{I 
such that ('V P E ~;)(I P 1 = K) and ~; is independent. Thus in every case we have a 
good independent family ~ C; Part(B) of size max(JL, K). Hence ~ = U 2<;;Y<;;K ~y and 
1 ~I = 1 ~y 1 = max(JL, K), and ('V P E ~y)(1 P 1 = y). Now, by recursion using Lemma 
5, each ~y can be replaced by a family~; of size max(JL, Kt such that~' = U2<;;y<;;K~; 

is independent and hence good and of size max(JL, K t = 1 B 1 . So B is well semifree. 

5. Main theorems. 

THEOREM A. Let B be an infinite complete Boolean algebra. Then B is semifree. 

PROOF. Let A be the set of all atoms of B. Let u = V A, v = -u. Then B ~ Btu 
X Bt v. 

If 1 B 1 = 1 Btu 1 ' we are done, since Btu is atomic and by Lemma 9 there is a 
good independent family in Btu of full size, i.e. of size 1 B 1 . One can easily obtain a 
good independent family of size 1 B 1 in B. 

So assume that 1 B I> 1 Btu 1 . Then 1 B 1 = 1 B t vi. Denote B t v by C. Since C is 
atomless, there is aPE Part(C) so that for every w E P, Ct w is homogeneous in 

2 Using Lemmas 6 and 7 we obtain a good independent family of size fL· 
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sat and d. C ~ IIwEPCt w for C is complete. By Lemmas 10 and 11 every Ct w is 
well semifree, hence semifree. By Lemma 8 C is semifree, since all independent 
families in Ct w's generate an independent family in C of size IIwEPI Ct wl=1 CI 
since C is complete. Thus B is semifree, too. 

THEOREM B. Let B be an infinite complete Boolean algebra homogeneous in sat. 
Then B is well semifree. 

PROOF. Since B is homogeneous in sat, B is atomless. Thus there is aPE Part(B) 
such that for each U E P, Btu is homogeneous in d (and in sat, also). By Lemmas 10 
and 11 all Btu's are well semifree. Let '!fu witness well-semifreeness of Btu. By 
Lemma 8 there is a good independent family '!f in B of size 

II l'!ful= II IBtUI=/ II Btu/=IBI 
uEP uEP uEP 

since B is complete. Hence B is well semifree. 
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