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a b s t r a c t

Counting the types of squares rather than their occurrences, we consider the problem of
bounding the number of distinct squares in a string. Fraenkel and Simpson showed in 1998
that a string of length n contains at most 2n distinct squares. Ilie presented in 2007 an
asymptotic upper bound of 2n − Θ(log n). We show that a string of length n contains
at most ⌊11n/6⌋ distinct squares. This new upper bound is obtained by investigating the
combinatorial structure of double squares and showing that a string of length n contains
at most ⌊5n/6⌋ particular double squares. In addition, the established structural properties
provide a novel proof of Fraenkel and Simpson’s result.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A square in a string is a tandem repetition of the form u2
= uu. The repeating part, u, is referred to as the generator of

the square u2. If the generator u is primitive, i.e. not a repetition of a string, then the square is called primitively rooted. The
problem of counting the types of squares in a string of length n – later referred to as the number of distinct squares problem –
was introduced by Fraenkel and Simpson [4] in 1998 who showed that the number of distinct squares in a string of length
n is at most 2n. Their proof relies on a lemma by Crochemore and Rytter [1] describing the relationship among the sizes of
three primitively rooted squares starting at the same position. Not using Crochemore and Rytter’s Lemma, Ilie [6] provided
an alternative proof of Fraenkel and Simpson’s result before presenting in [7] an asymptotic upper bound of 2n − Θ(log n)
for sufficiently large n. A d-step approach to this problem introducing the size d of the alphabet as a parameter in addition
to the length n of the string was proposed in [2]. Considering the maximum number σd(n) of distinct primitively rooted
squares over all strings of length n with exactly d distinct symbols, it is conjectured there that σd(n) ≤ n − d. Note that
the number of non-primitively rooted squares, i.e. squares whose generators are repetitions, is bounded by ⌊n/2⌋ − 1, see
Kubica et al. [9].

A configuration of two squares u2 and U2 starting at the same position and so that |u| < |U| < 2|u| < 2|U| has been
investigated in different contexts. For instance, the configuration of such two squares with a third one is investigated in
[5,8] with the intention of providing a position where a third square could not start in order to tackle the maximum number
of runs conjecture. Within the computational framework introduced in [3], such configurations are investigated in [11] to
enhance the determination of σd(n). Such configurations of two squares are unique in the context of rightmost occurrences
of squares since at most two such squares can start at the same position as shown by Fraenkel and Simpson. In [10] Lam
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investigates what he calls double squares, i.e. configurations of two rightmost occurrences of squares starting at the same
position, in order to bound their number and thus bound the number of distinct squares.

We present structural properties of double squares arising in various contexts and coinciding with Lam’s double squares
in the context of rightmost occurrences which we refer to as FS-double squares. The structural properties of double squares
presented in this paper not only give a novel proof of Fraenkel and Simpson’s result, they allow bounding the number of
FS-double squares in a string of length n by ⌊5n/6⌋, which in turn leads to a new upper bound for the number of distinct
squares of ⌊11n/6⌋.

2. Combinatorics of double squares

2.1. Preliminaries

We deal with finite strings over finite alphabets and index strings starting from 1. Thus x[1] refers to the first symbol of
a string x, x[2] to the second, etc. We use . . . as a range symbol, thus x = x[1 . . . n] is a string of length n, and x[i . . . j] refers
to the substring, also often called factor, starting at position i and ending at position j. For a substring y = x[i . . . j], s(y)
respectively e(y) denotes its starting, respectively ending, position, i.e. (s(y), e(y)) = (i, j). A substring y = x[i . . . j] of
x = x[1 . . . n] is called a prefix respectively suffix of x if i = 1 respectively j = n, and is proper if y ≠ x, while we call it trivial
if y is empty. For a string x, a non-trivial power of x is a string xm for some integerm ≥ 2, where xm represents a concatenation
ofm copies of x. In particular, x2 is called a square, and x3 a cube.

Definition 1. A string x is primitive if x cannot be expressed as a non-trivial power of any string. For any string x, there is a
primitive string y so that x = ym for some integerm ≥ 1. Such y andm are unique and y is called the primitive root of x. Two
strings x and y are conjugates if there are strings u and v so that x = uv and y = vu. Note that x is a trivial conjugate of itself.
Often the term rotation is used for conjugates.

Lemmas 2 and 3 are folklore and presented without proofs.

Lemma 2 (Synchronization Principle Lemma). Given a primitive string x, a proper suffix y of x, a proper prefix z of x, and m ≥ 0,
there are exactly m occurrences of x in yxmz.

Note that Lemma 2 implies that a primitive string does not equal to any of its conjugates.

Lemma 3 (Common Factor Lemma). For any primitive strings x and y, if a non-trivial power of x and a non-trivial power of y
have a common factor of length |x| + |y|, then x and y are conjugates.

2.2. Double squares

Definition 4. A configuration of two squares u2 and U2 in a string x starting at the same position is referred to as a double
square. In case that |u| < |U|, we say that (u,U) is a double square, i.e. the smaller generator is listed first.

For a double square (u,U) in a string x, if |u| < |U| < 2|u|, we say that the squares u2 and U2 are proportional and we
call such a double square balanced.

For a double square (u,U), if moreover u2 and U2 are rightmost occurrences in x, we refer to the double square (u,U) as
FS-double square of x.

Note that if (u,U) is a double square, respectively balanced double square, in x and x is a substring of y, then (u,U)
is a double square, respectively balanced double square, in y as well. For FS-double square, due to u2 being a rightmost
occurrence in x, |U| < 2|u|, as otherwise in x would be a farther copy of u2, and so every FS-double square is automatically
balanced. If x is a substring of y, (u,U) need not be a FS-double square in y; on the other hand if x is a suffix of y, then (u,U)
is a FS-double square in y as well. We refer to the balanced double squares of rightmost occurrences as FS-double squares
in recognition of Fraenkel and Simpson’s pioneering efforts in the problem.

In Lemma 6 we shall show that certain types of balanced double squares have a unique factorization consisting of a
nearly periodical repetition of a primitive string. The following Lemma 5 is used in Lemma 6 to prove uniqueness of this
factorization.

Lemma 5. Let u1
pu2 = v1

qv2 where u1, v1 are primitive, u2 is a non-trivial proper prefix of u1, and v2 is a non-trivial proper
prefix of v1. If p ≥ 2 and q ≥ 2, then u1 = v1, u2 = v2, and p = q.

Proof. Since p ≥ 2 and q ≥ 2, and u1
p and v1

q have a common factor of size |u1| + |v1|, then by Lemma 3, u1 = v1. Thus,
u2 = v2 and p = q. �

Note that in Lemma 5, p ≥ 2 and q ≥ 2 are essential conditions. For instance, u1 = aabb, u2 = aa, and p = 2 gives
u1

pu2 = aabbaabbaa, and v1 = aabbaabba, v2 = a, and q = 1 gives v1
qv2 = aabbaabbaa; that is, u1

pu2 = v1
qv2.
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As we often need to refer to the various occurrences of the same factor, we use a special subscript [1], [2], etc. to
distinguish them. For instance,u[1] may refer to the first occurrence ofu inu3, whileu[2] would refer to the secondoccurrence,
etc.

Lemma 6 gives various contexts in which a balanced double square has a unique factorization. While a weaker form of
Lemma 6 is proven in [11], and item (c) and the fact the U2 must be primitively rooted are proven in [10], the uniqueness is
not addressed in either.

Lemma 6. Let (u,U) be a balanced double square. If one of the following conditions is satisfied
(a) u is primitive
(b) U is primitive
(c) u2 has no further occurrence in U2

then there is a unique primitive string u1, a unique non-trivial proper prefix u2 of u1, and unique integers e1 and e2 satisfying
1 ≤ e2 ≤ e1 such that u = u1

e1u2 and U = u1
e1u2u1

e2 . Moreover, U is primitive.

Proof. Let v1 denote the overlap of U[1] with u[2]; that is, u = v1v1 for some v1 and U = uv1, see the diagram below.

Thus, u is a prefix of v1U and u = v1
kv2 for some prefix v2 of v1 and k ≥ 1. Let u1 be the primitive root of v1. Then v1 = u1

e2

for some e2 ≥ 1. Therefore u = u1
e1u2 for some e1 ≥ ke2 and some prefix u2 of u1. The prefix u2 must be non-trivial, as

otherwise:
(a) Let us assume that u2 is the empty string. If e1 ≥ 2, then u = ue1

1 and hence not primitive, a contradiction. If e1 = 1,
then e2 = 1 and so U = u1

2 and u = u1 and so |U| = 2|u|, a contradiction.
(b) U = u1

e1+e2 and e1 + e2 ≥ 2, hence U would not be primitive.
(c) there would be a farther occurrence of u2

= u1
2e1 in U2

= u1
2e1+2e2 .

To prove the uniqueness, consider some primitive w1, its non-trivial proper prefix w2, and integers f1 ≥ f2 ≥ 1 such
that u = w1

f1w2 and U = w1
f1w2w1

f2 . If e1 ≥ 2 and f1 ≥ 2, then by Lemma 5, u1 = w1 and e1 = f1 and it follows that
u2 = w2 and e2 = f2. If e1 = f1 = 1, it follows that u = u1u2 = w1w2. Since U = uu1 = uw1, u1 = w1 and so u2 = w2.
The remaining case corresponds to exactly one of the exponents e1 and f1 being equal to 1. Without loss of generality, we
can assume that e1 = 1 and f1 > 1. We have u = u1u2 = w1

f1w2 and U = u1u2u1 = w1
f1w2w1

f2 . Thus, u1 = w1
f2 . As u1 is

primitive, f2 = 1, and so u1 = w1. Therefore, u1u2 = w1
f1w2 = u1

f1w2 and so f1 = 1, contradicting f1 > 1.
Let us assume that U is not primitive and derive a contradiction. Thus, U = vn for some primitive v and some

n ≥ 2. It follows that |v| ≤
|U|

2 =
|u1e1 |+|u2|+|u1e2 |

2 ≤
|u1e1 |+|u2|+|u1e1 |+|u2|

2 = |u1
e1 | + |u2|. Now consider U2

= v2n
=

u1
e1u2u1

e1+e2u2u1
e2 . It follows that u1

e1+e2u2 is a factor of v2n, 2n ≥ 2 of size ≥ |v| + |u1|, e1 + e2 ≥ 2, and so by Lemma 3,
u1 and v are conjugates, hence u1 = v. Thus U = vn

= u1
n

= u1
e1u2u1

e1 and so n|u1| = (e1 + e2)|u1| + |u2|, which is
impossible as 0 < |u2| < |u1|. Therefore, U must be primitive. �

Definition 7 (Notation and Terminology). If a balanced double square satisfies one of three conditions (a), (b), or (c) of
Lemma 6, we will refer to such double square as factorizable. We use the following notational convention for factorizable
double squares: a double square U consists of two squares u2 and U2, where |u| < |U| and so we refer to u2 respectively
U2 as the shorter respectively longer, square of U, and to the starting position of u2 and U2 as the starting position of U.
The unique exponents are denoted as U(1) and U(2), the repeating primitive part of u is denoted as u1, the prefix of u1
completing u is denoted as u2. Thus u = u1

U(1)u2 and U = uu1
U(2)

= u1
U(1)u2u1

U(2). Since u2 is a non-trivial proper prefix
of u1, there is complement u2 of u2 in u1 so that u1 = u2u2. The conjugate u2u2 of u1 is denoted asu1, i.e.u1 = u2u2.

For instance, a factorizable double square V consists of the shorter square v2 and the longer square V 2, and v = v1
V(1)v2

and V = v1
V(1)v2v1

V(2).Wewould like to point out that for any factorizable double squareU, |U2
| = 2((U(1)+U(2))|u1|+

|u2|) ≥ 2((1 + 1)2 + 1) = 10 since U(1) ≥ U(2) ≥ 1, |u1| ≥ 2, and |u2| ≥ 1. Thus, only strings of length at least 10
may contain a factorizable double square. Note also, that by (c) of Lemma 6, every FS-double square is a factorizable double
square. Lemma 8 further specifies the structure of a factorizable double square, i.e. the fact that the shorter and the longer
squares must have essentially different structures.

Lemma 8. If U is a factorizable double square so that u = v1
iv2 for some primitive v1, some non-trivial proper prefix v2 of v1,

and some integer i ≥ 1; then U ≠ v1
jv2 for any j ≥ 1.

Proof. Clearly, U ≠ v1
jv2 for j ≤ i since |U| > |u|. Thus, consider j > i and assume by contradiction that U = v1

jv2.
Then, for j = i + 1,U = uu1

U(2)
= v1

iv2u1
U(2)

= v1
i+1v2 and so v2u1

U(2)
= v1v2. Denote by v2 the complement of v2

in v1, i.e. v1 = v2v2. Then v2u1
U(2)

= v2v2v2, and so u1
U(2)

= v2v2. Since v2v2 is a conjugate of v1 and hence primitive,
it follows that U(2) = 1 and thus u1 = v2v2. Thus U = v1

i+1v2 = v2(v2v2)
i+1

= v2u1
i+1 and also U = u1

U(1)u2u1, so
u1

U(1)u2u1 = v2u1
i+1 contradicting Lemma 2 as |v2| < |v1| = |u1|. For j > i+1, v1

iv2v1 must be a prefix of v1
j contradicting

Lemma 2. �
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Lemma 9 discusses the case when the shorter square of a factorizable double square is not primitively rooted. It shows
that the size of U is highly constrained.

Lemma 9. Let U be a factorizable double square so that u = vk, for some primitive v and some k ≥ 2. Then U(1) = U(2) = 1
and U = v2k−1v1 for some non-trivial proper prefix v1 of v. Moreover, u1 = vk−1v1 and v1u2 = v.

Proof. Let us assume that U(1) ≥ 2 and derive a contradiction. Then u = u1
U(1)u2 = vk, giving |u1| < |v|. It follows that

u1
U(1)u2 and vk have a common factor of length ≥ |u1| + |v| and by Lemma 3, u1 and v are conjugates, and so u1 = v. But

then |u| = U(1)|u1| + |u2| = k|u1|, which is impossible as 0 < |u2| < |u1|. Therefore, U(1) = 1 and so U(2) = 1.
Since U is a prefix of v2k,U = vtv1 where k ≤ t ≤ 2k − 1 and v1 is a proper prefix of v. Since U must be primitive by

Lemma 6, v1 must be a non-trivial proper prefix. If t = 2k − 1, then we are done and the proof is complete. Let us thus
assume that t < 2k−1. Then 2k− t ≥ 2 and so the suffix v2k−t of u2 starts at the same position p as the suffix v1U = v1v

tv1
of U2. Therefore factors v2 (a subfactor of v2k−t ) and v1v (a subfactor of v1v

tv1) start at the same position p, contradicting
Lemma 2 as v is primitive.

Since U = uu1,U = v2k−1v1 = vkvk−1v1 = uvk−1v1, and so u1 = vk−1v1. Since u = u1u2, v
k

= vk−1v1u2 and so
v1u2 = v. �

Definition 10. A factor u = x[i . . . j] of x can be cyclically shifted right by 1 position if x[i] = x[j + 1]. The factor u can be
cyclically shifted right by k positions if u can be cyclically shifted right by 1 position and the factor x[i + 1 . . . j + 1] can be
cyclically shifted right by k− 1 positions. Similarly for left cyclic shifts. By a trivial cyclic shift we mean a shift by 0 positions.

Note that if v is a right cyclic shift of u, then u and v are conjugates. Similarly for left cyclic shift.
Let x contain a factorizable double square U and let x = y1U2y2. To cyclically shift U to the right means that both u2 and

U2 must be cyclically shifted to the right. Themaximal right cyclic shift of u2 is determined by lcp(u1,u1), while themaximal
right cyclic shift of U2 is determined by the lcp(U2, y2), where lcp(x, y) is the length of the largest common prefix of x and
y. Similarly, to cyclically shift U to the left means that both u2 and U2 must be cyclically shifted to the left. The maximal
left cyclic shift of u2 is determined by lcs(u1,u1), while the maximal left cyclic shift of U2 is determined by the lcs(U2, y1),
where lcs(x, y) is the length of the largest common suffix of x and y. Thus, lcs(u1,u1) represents the maximal potential left
cyclic shift of u2, while lcp(u1,u1) represents the maximal potential right cyclic shift of u2.

Lemma 11. For any factorizable double square U, lcp(u1,u1) + lcs(u1,u1) ≤ |u1| − 2.

Proof. If lcp(u1,u1) + lcs(u1,u1) ≥ |u1|, then u1 = u1 contradicting the primitiveness of u1. So lcp(u1,u1) + lcs(u1,u1) <
|u1|. Assume then that lcp(u1,u1) + lcs(u1,u1) = |u1| − 1. Let i = lcp(u1,u1) and let a be the symbol at position i of
u1, i.e. u1[i] = a. Then u1[1 . . . i − 1] = u1[1 . . . i − 1] as |{1, . . . i − 1}| = lcp(u1,u1), and u1[i + 1 . . . |u1| − 1] =u1[i + 1 . . . |u1| − 1] as |{i + 1, . . . , |u1| − 1}| = lcs(u1,u1). Thus, u1 andu1 coincide in all positions except possibly i.
Therefore u1[1 . . . i − 1][i + 1 . . . |u1| − 1] andu1[1 . . . i − 1][i + 1 . . . |u1| − 1] must have the same number of a’s. Since
u1 andu1 are conjugates, they both have to have the same number of a’s. Thereforeu1[i] = a yielding u1 = u1, and thus
contradicting the primitiveness of u1. �

2.3. Inversion factors

A key combinatorial property of factorizable double squares is the highly constrained occurrences of so-called inversion
factors. The notion of inversion factor is motivated by the two occurrences of the factor u2u2u2u2 in a double square U.
Even though for the purpose of this paper it would be sufficient to define inversion factor as any cyclic shift of u2u2u2u2
which would greatly simplify the proof of the correspondingly simplified Lemma 13, we decided to include a more general
definition of inversion factor and thus a more general version of Lemma 13.

Definition 12. Given a factorizable double square U, a factor of U2 of length 2|u1| starting at position i is called inversion
factor if

U2
[i + j] = U2

[i + j + |u1| + |u2|] for 0 ≤ j < |u2|, and
U2

[i + j] = U2
[i + j + |u2|] for |u2| ≤ j < |u2| + |u2|.

Note that an inversion factor of U has a form v2v2v2v2 where |v2| = |u2| and |v2| = |u2|.

In a factorizable double square U, inversion factors u2u2u2u2 occur at positions N1(U) and N2(U) where

N1(U) = e(u1
U(1)−1u2) + 1 = (U(1) − 1)|u1| + |u2| + 1

N2(U) = e(u1
U(1)u2u1

U(2)+U(1)−1u2) + 1 = (2U(1) + U(2) − 1)|u1| + 2|u2| + 1.

Such inversion factors are referred to as natural.
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Fig. 1. Cyclic shifts of the inversion factor and its environment.

Cyclic shifts of the inversion factor u2u2u2u2 are governed by the values of lcp(u1,u1) and lcs(u1,u1). A cyclic shift of
an inversion factor is again an inversion factor. Thus, at every position of the union of the intervals [L1(U), R1(U)] and
[L2(U), R2(U)] there is an inversion factor of U starting there, where

L1(U) = max{ 1,N1(U) − lcs(u1,u1)}

R1(U) = N1(U) + lcp(u1,u1)

L2(U) = N2(U) − lcs(u1,u1)

R2(U) = min{ e(U2) − 2|u1| + 1,N2(U) + lcp(u1,u1)}.

If it is clear from the context, we omit the U designation from N1(U),N2(U), L1(U), R1(U), L2(U), and R2(U). Note that
L2 − L1 = R2 − R1 = |U| and, by Lemma 11, R1 − L1 = R2 − L2 ≤ |u1| − 2. In addition, L1 ≤ R1 < e(u[1]) < s(u[2]) < e(U2)

and e(u[1]) < s(u[2]) < L2 ≤ R2 ≤ e(U2) − 2|u1| < e(U2). A key fact is that besides the intervals

L1, R1


and


L2, R2


, there

are no further occurrences of an inversion factor in a factorizable double square U. In other words, all inversion factors are
cyclic shifts of the natural ones.

See Fig. 1 for an illustration where u2 = aaab, u2 = aa, U(1) = 4, and U(2) = 2. Consequently, u1 = aaabaa andu1 = aaaaab, and so lcp(u1,u1) = 3 and lcs(u1,u1) = 0. Thus, the inversion factor u2u2u2u2 = aaaaabaaabaa has three
non-trivial right cyclic shifts and no non-trivial left cyclic shift. Note that there are no other inversion factors besides those
highlighted. The configuration of brackets [ ][ ] indicates the shorter square while the configuration [)() indicates
the longer square. Also note that the environments of the inversion factors are shifted along: the inversion factor v2v2v2v2
is always preceded by v2 (solid underline) alternating with v2 (dotted underline). The leftmost piece of the environment,
i.e. starting at the beginning of the string, might just be a suffix of v2 or v2. Similarly, the inversion factor v2v2v2v2 is always
followed by v2 alternating with v2. The rightmost piece of the environment, ending at the end of the string U2, might just
be a prefix of v2 or v2.

Lemma 13 (Inversion Factor Lemma). An inversion factor of a factorizable double square U within the string U2 starts at a
position i if and only if i ∈


L1(U), R1(U)


∪


L2(U), R2(U)


.

The rather technical proof of Lemma 13 is given in Section 5.1.

3. Inversion factors and the problem of distinct squares

When computing the number of distinct squares, one must consider just one representative occurrence from all
occurrences of each square. Fraenkel and Simpson [4] consider only the last, i.e., the rightmost occurrence. We consider
the same context and thus will be investigating FS-double squares. Let us recall that FS-double squares are factorizable
which follows from Lemma 6(c). Fraenkel and Simpson’s theorem states that at most two rightmost occurring squares can
start at the same position using Lemma 14:

Lemma 14 (Crochemore and Rytter [1], Fraenkel and Simpson [4]). Let u2, v2, and w2 be squares in a string x starting at the
same position such that |u| < |v| < |w| and with u primitive, then |w| ≥ |u| + |v|.

Though one could prove Lemma 14 using the inversion factor Lemma 13, we follow Ilie [6] and prove Theorem 15 directly.

Theorem 15 (Fraenkel and Simpson [4], Ilie [6]). At most two rightmost squares can start at the same position.

Proof. Let us assume by contradiction that three rightmost squares start at the same position: u2,U2, and v2 such that
|u| < |U| < |v|. By item (c) of Lemma 6, u2 and U2 form a factorizable double square U and so u = u1

U(1)u2 and U =

u1
U(1)u2u1

U(2). Since v[1] contains an inversion factor, v[2] must also contain an inversion factor. If the inversion factor in
v[2] were from [L2, R2], then |v| = |U|, a contradiction. Hence v[2] must not contain an inversion factor from [L2, R2] and so
u1

U(1)u2u1
U(1)+U(2)−1u2 must be a prefix of v. Therefore v[2] contains another copy of u1

U(1)u2u1
U(1)u2 = u2, contradicting

the assumption that u2 is a rightmost square. �

We often need to investigate the mutual configuration of the shorter squares of two factorizable double squares.
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Definition 16. For two substrings u and v of a string x such that s(u) < s(v), the gap G(u, v) is defined as s(v) − s(u) and
the tail T (u, v) is defined as e(v) − e(u). For two factorizable double squares U and V such that s(U) < s(V), the gap
G(U, V) = G(u, v) and the tail T (U, V) = T (u, v).

Note that T (u, v) could be negative when e(v) < e(u). If T (u, v) ≥ 0, then G(u, v)v = uT (u, v). If it is clear from the
context, we will drop the reference to u and v or U and V and use just G and T . Lemma 17 investigates configurations
consisting of an FS-double square and a single rightmost square. In essence it says that if we have an FS-double square then
the types and starting positions for a possible rightmost square v2 are highly constraint. Lemma 17 is needed for Lemma 19
discussing configurations of two FS-double squares.

Lemma 17. Let x be a string starting with an FS-double square U. Let v2 be a rightmost occurrence in x. Then

(a) If s(v[1]) < R1(U), then there are the following possibilities for v2:
(a1) |v| < |u|: in which case v = u j

1u2 for some 1 ≤ j < U(1) whereu2 is a non-trivial proper prefix of u1 andu1
respectivelyu2 is a cyclic shift of u1 respectively u2 by the same number of positions in the same direction;

(a2) |v| = |u|: in which case v =uU(1)
1 u2 whereu2 is a non-trivial proper prefix of u1 andu1 respectivelyu2 is a cyclic shift

of u1 respectively u2 by the same number of positions in the same direction;
(a3) |u| < |v| < |U|: is impossible;
(a4) |v| = |U|: in which case T (u, v) ≥ 0;
(a5) |v| > |U|: in which case T (u, v) ≥ 0 and either s1u2u2u1

(U(1)+U(2)−1)u2 is a prefix of v for some suffix s1 of u2, or
s1u1

iu2u1
(U(1)+U(2)−1)u2 is a prefix of v for some suffix s1 of u1 and some i ≥ 1.

(b) If e(v[1]) ≤ e(u[1]), then s(v[1]) < R1(U) and either (a1) or (a2) holds.

Definition 18 formalizes the types of relationship implied by Lemma 17.

Definition 18. We say that an FS-double square V is a mate of an FS-double square U in a string x, if s(U) < s(V).

1. V is an α-mate of U if s(V) ≤ s(U) + lcp(u1,u1) and V is a right cyclic shift of U.
2. V is a β-mate of U if s(V) < e(v[1]) < e(u[1]) and v =u i

1u2 for some 1 < i < U(1) whereu2 is a non-trivial prefix ofu1
and whereu1 respectivelyu2 is a cyclic shift of u1 respectively u2 in the same direction by the same number of positions,
and V 2 is a right cyclic shift of U2 by s(V) − s(U) positions.

3. V is a γ -mate of U if s(V) < s(U) + U(1)|u1| and |v| = |U|.
4. V is a δ-mate of U if s(V) < R1(U) and |v| > |U| and either s1u2u2u1

(U(1)+U(2)−1)u2 is a non-trivial prefix of v for some
suffix s1 of u2, or s1u1

iu2u1
(U(1)+U(2)−1)u2 is a non-trivial prefix of v for some s1 suffix of u1 and some i ≥ 1.

5. V is an ε-mate of U if R1(U) ≤ s(V). If, in addition, e(u[1]) < s(V), we will call V a super-ε-mate.

Note that Definition 18 implies that an α-mate of an α-mate of U is an α-mate of U; an α-mate of a β-mate of U is β-
mate of U; a β-mate of a β-mate of U is a β-mate of U; if V is β-mate of U, then |U| = |V |, V = u i

1u2u(U(1)+U(2)−i)
1 , and

U(1) − U(2) ≥ 2 since i ≥ U(1) + U(2) − i. If V is a γ -mate of U, then v2 is right cyclic shift of U2.

Lemma 19. Let x be a string starting with an FS-double square U. Let V be an FS-double square with s(U) < s(V), then either

(a) s(V) < R1(U), in which case either
(a1) V is an α-mate of U, or
(a2) V is a β-mate of U and U(1) > U(2) + 1, or
(a3) V is a γ -mate of U, or
(a4) V is a δ-mate of U,
or

(b) R1(U) ≤ s(V), then
(b1) V is an ε-mate of U and e(v[1]) > e(u[1]).

The rather technical proofs of Lemmas 17 and 19 are given, respectively, in Sections 5.2 and 5.3.

3.1. Some properties of γ -mates

Let an FS-double square V be a γ -mate of an FS-double square U. Then v = s2u1
U(1)−t−1u2u1

U(2)+ts1 or v = u1
U(1)−t

u2u1
U(2)+t for some U(1) − t ≥ 1 and some s1, s2 so that s1s2 = u1. Let us define a type of V:

type(V) =


(U(1) − t, U(2) + t) if v = u1

U(1)−tu2u1
U(2)+t

(U(1) − t, U(2) + t) if s2u1
U(1)−t−1u2u1

U(2)+ts1 and
|s1| ≤ |u1| − lcs(u1,u1)

(U(1) − t − 1, U(2) + t + 1) otherwise.

Though we do not know exactly what V 2 is like, we can still determine some of its properties.
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Lemma 20. Let an FS-double square V be a γ -mate of an FS-double square U of type (p, q) where p, q ≥ 2 and p + q ≥ 4.
Then V(1) = V(2) and |v2| ≤ min(p, q)|u1|. Moreover, either |v2| < |u1| or there is a factor (u1

qu2)(u1
qu2) in V 2.

Proof. Let us first assume that v2
= [u1

pu2u1
q
][u1

pu2u1
q
].

(a) Let p ≥ q.
By Lemma 2, the leftmost possible beginning of V[2] can be at |u1

pu2u1
p+qu2|+ 1 and so u1

pu2 is a prefix of v1
V(2) and

v2 is a factor of u1
q. First we prove that |v1| > (p − 1)|u1|:

Assume that |v1| ≤ (p − 1)|u1|. Then u1
p contains a factor of size |v1| + |u1| and the same factor is also contained in

v1
V(2) as u1

pu2 is a prefix of v1
V(2). If V(2) ≥ 2, then by Lemma 3, u1 = v1 and so u1

pu2 is a prefix of u1
V(2) and thus

u1
pu2u1 is a prefix of u1

V(2)+1, which contradicts Lemma 2. ThereforeV(2) = 1 and so |v1| ≥ p|u1|+|u2| > (p−1)|u1|,
a contradiction with the assumption.
Hence |v1| > (p − 1)|u1| ≥ q|u1| and since v2 is a factor in u1

q, V(1) = V(2).
If V[2] begins even more to the right, this makes v2 smaller and v1

V(2) bigger, thus the same argument can be applied.
(b) Let p < q

By Lemma 2 the leftmost possible beginning of V[2] can be at |u1
pu2u1

p+qu2u1
q−p

| + 1 and so u1
pu2u1

q−p is a prefix of
v1

V(2) and v2 is a factor of u1
p. Let r = max(p, q − p). First we prove that |v1| > (r − 1)|u1|:

Assume that |v1| ≤ (r − 1)|u1|. Then either u1
p or u1

q−p contains a factor of size |v1| + |u1| and the same factor is
also contained in v1

V(2) as u1
pu2u1

q−p is a prefix of v1
V(2). If V(2) ≥ 2, then by Lemma 3, u1 = v1 and so u1

pu2u1
q−p

is a prefix of u1
V(2), which contradicts Lemma 2. Therefore V(2) = 1 and so |v1| ≥ q|u1| + |u2| > (r − 1)|u1|, a

contradiction with the assumption.
Hence |v1| > (r − 1)|u1| ≥ p|u1| and since v2 is a factor in u1

p, V(1) = V(2).
If V[2] begins even more to the right, this makes v2 smaller and v1

V(2) bigger, thus the same argument can be applied.

Let us thus assume that v2
= [s2u1

p−1u2u1
qs1][s2u1

p−1u2u1
qs2] and |s1| ≤ |u1| − lcs(u1,u1). Then |s2| > lcs(u1,u1).

(a) Let p ≥ q.
By Lemma 2, the leftmost possible beginning of V[2] can be at |s2u1

p−1u2u1
p+qu2s1| + 1. If it started to the left of this

point, by Lemma 2, s2 would have to be a suffix of u1u2 and so s2 would be a common suffix of u1 andu1, and so |s2| ≤

lcs(u1,u1), a contradiction. Therefore the same arguments as in the case v2
= [u1

pu2u1
q
][u1

pu2u1
q
] can be applied.

(b) Let p < q
By Lemma 2 and by |s2| > lcs(u1,u1), the leftmost possible beginning of V[2] can be at |s2u1

pu2u1
p+qu2u1

q−ps1| + 1.
Again, if it started to the left of this point, by Lemma 2, s2 would have to be a suffix of u1u2 and so s2 would be a
common suffix of u1 andu1, and so |s2| ≤ lcs(u1,u1), a contradiction. Therefore, the same arguments as in the case
v2

= [u1
pu2u1

q
][u1

pu2u1
q
] can be applied.

If |v2| ≥ |u1|, then a prefix of V[2] must align with the last u1 of u1
pu2u1

q+pu2u1
q and so u1

pu2u1
q+pu2u1

q is extended for sure
by another u2, i.e. V 2 contains a factor u1

qu2u1
qu2. �

3.2. Some properties of ε-mates of U

Lemma 21. Let U, V, W be FS-double squares so that s(U) < s(V) < s(W). Let V be a γ -mate of U of type (U(1) −

t, U(2) + t), 2 ≤ p − t and 2 ≤ q + t, and let W be an ε-mate but not a super-ε-mate of V . Then G(U, W) ≥ t|u1| and
T (U, W) ≥ (U(1) + U(2))|u1|.

Proof. The position of v2 is:

u1
ts1


s2u1

U(1)−t−1u2u1
U(2)+ts1


s2u1

U(1)−t−1u2u1
U(2)+ts1


.

Since V is a γ -mate of U, by Lemma 20 V(1) = V(2) and so V cannot have a β-mate, see Lemma 19. Thus w[1] must end
past the end of v[1] and thus by Lemma 2, |w| ≥ |v|. Therefore, G ≥ t|u1| and T ≥ (U(1) + U(2))|u1|. �

Lemma 22. Let V be a super-ε-mate of U. Then either

(a) G(U, V) ≥ (2U(1) + U(2) − 3)|u1| + 2|u2| and T (U, V) ≥ (U(1) + U(2) − 2)|u1| + |u2|, or
(b) G(U, V) ≥ U(1)|u1| + |u2| and T (U, V) ≥ (U(1) + U(2) − 1)|u1| + |u2|.

Proof. If v2 were a factor of u1
U(1)+U(2)−1u2, then there would be a farther copy of v2 in u1

U(1)+U(2)u2—just starting
|u1| positions to the right, which is a contradiction as v2 must be a rightmost occurrence. Hence e(v2) > |u1

U(1)u2
u1

U(1)+U(2)−1u2|.
Let us assume that v[1] is a factor in u1

U(1)u2u1
(U(1)+U(2)−1)u2.

Then u1
(U(1)+U(2))u2 and v2 both contain a common factor of size |v|+ |u1|, and thus by Lemma 3, v = v1

k for some con-
jugate v1 of u1 and some k ≥ 1. If k = 1, then s(v[1]) ≥ |u1

U(1)u2u1
(U(1)+U(2)−3)u2| and so G ≥ |u1

U(1)u2u1
(U(1)+U(2)−3)u2|.

Moreover s(v[2]) = s(v[1]) + |u1| and so T ≥ |u1
(U(1)+U(2)−2)u2|, i.e. (a) holds.
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Let us assume that k ≥ 2. We will discuss two cases:

(i) v[1] starts in u2 and ends in u2 Then there are s1s2 = u2 so that v = (s2u2s1)k and so that v2s2 is a suffix of u1
U(1)

u2u1
(U(1)+U(2)).

(i1) Let |s2| ≤ lcs(u1,u1).
Thenwe can assumewithout loss of generality that v = u1

k as otherwise we can cyclically shift the whole struc-
ture |s2| positions to the left. By Lemma 9, V = u1

2k−1t1 for some non-trivial proper prefix t1 of u1. Let t1t2 = u1.
Then the prefix u1

3 of V[2] must align by Lemma 2 with t2u1u1 and hence t2u2 = u1. Therefore |t2| = |u2| and since
t2 is a suffix of u1 = u2u2, in fact t2 = u2, Hence u1 = u2u2, a contradiction.

(i2) Let |s2| > lcs(u1,u1).
Then by Lemma 9, V = (s2u2s1)2k−1t1 where t1 is a non-trivial proper prefix of s2u2s1. Let t1t2 = s2u2s1. Then the

prefix (s2u2s1)3 of V[2] must align by Lemma 2 with t2u2u2s1s2u2s1s2u2 and so either t2u2 = s2 or t2u2 = ssu2s1s2. In
either case, s2 is a suffix of t2u2 and since s2 is a suffix if u2, s2 is both a suffix of u1 and ofu1. Hence |s2| ≤ lcs(u1,u1),
a contradiction.

(ii) v[1] starts in u2 and ends in u2.
Then there are s1s2 = u2 so that v = (s2u2s1)k and so that v2s2 is a suffix of u1

U(1)u2u1
(U(1)+U(2))u2.

(ii1) Let |s2| ≤ lcs(u1,u1).
Thenwithout loss of generalitywe can assume v = (u2u2)

k and v2 is a suffix of u1
U(1)u2u1

(U(1)+U(2))u2 as other-
wise we could cyclically shift the whole structure |s2| positions to the left. Then a suffix (u2u2)(u2u2)(u2u2)(u2u2)
of v2 must align with (u2u2)(u2u2)(u2u2)(u2u2)(u2u2) giving u2u2 = u2u2, a contradiction.

(ii2) Let |s2| > lcs(u1,u1).
Then v = (s2u2s1)k and by Lemma 9, V = (s2u2s1)2k−1t1 and t1t2 = s2u2s1. Then a prefix (s2u2s1)3 of V[2] must

align by Lemma 2 with t2s1s2u2s1s2u2 and so t2 = s2u2. Since t1t2 = s2u2s1, then t1t2s2 = s2u2s1s2 = s2u2u2,
i.e. t1t2s2 = s2u1 and so s2 is both a suffix ofu1 and a suffix of u2 and hence of u1, and so |s2| ≤ lcs(u1,u1), a
contradiction.

Considering the end of v2 in the next u2 will yield a contradiction using the same argumentation as for (i), and considering
the end of v2 in the next u2 will yield a contradiction using the same argumentation as for (ii).

Thus, the only remaining case iswhen v[1] is not a factor inu1
U(1)u2u1

(U(1)+U(2)−1)u2, i.e. e(v[1]) > u1
U(1)u2u1

(U(1)+U(2)−1)

u2 and so G ≥ |u1
U(1)u2| and T ≥ |u1

(U(1)+U(2)−1)u2|, i.e. case (b) holds. �

4. An upper bound for the number of FS-double squares

In this section, we only consider strings containing at least one FS-double square. Let δ(x) denote the number of FS-
double squares in x. We prove by induction that δ(x) ≤

5
6 |x|−

1
3 |u|where u is the generator of the shorter square of the first

FS-double square in x. We first need to investigate the relationship between two FS-double squares of x as the induction
hypothesis is applied to the substring starting at some FS-double square and extended to the string starting with the first
FS-double square.

Lemma 23. Let x be a string starting with an FS-double square U and let V be another FS-double square of x with e(u[1]) ≤

e(v[1]). Let x′ be the suffix of x starting at the same position as V . Let d be the number of FS-double squares between U and V

including U but not including V . Then, δ(x′) ≤
5
6 |x

′
| −

1
3 |v| implies δ(x) ≤

5
6 |x| −

1
3 |u| + d −

1
2 |G(U, V)| −

1
3 |T (U, V)|.

Proof. As |G| + |v| = |u| + |T |, we have −
1
3 |v| = −

1
3 |u| −

1
3 |T | +

1
3 |G|. Thus, δ(x) ≤ d + δ(x′) ≤ d +

5
6 |x

′
| −

1
3 |v| =

d+
5
6 |x

′
| −

1
3 |u| −

1
3 |T | +

1
3 |G|. Thus, δ(x) ≤

5
6 (|x

′
| + |G|) −

1
3 |u| + d−

5
6 |G| +

1
3 |G| −

1
3 |T | =

5
6 |x| −

1
3 |u| + d−

1
2 |G| −

1
3 |T |

since |x| = |x′
| + |G|. �

Lemma 23 yields a straightforward induction step whenever 1
2 |G| +

1
3 |T | ≥ d. By Lemma 19, this condition always

holds except for the two cases: either V is a right cyclic shift of U by 1 position and hence an α-mate of U, since then
1
2 |G| +

1
3 |T | =

1
2 +

1
3 =

5
6 ≠ 1, or V is a β-mate of U and such that e(v[1]) < e(u[1])—hence Lemma 23 is not applicable.

Therefore the whole group of α-mates and β-mates ofUmust be dealt together in the induction rather than carrying it from
one FS-double square to another. Since a γ -mate of U does not provide a sufficiently large tail to offset all of the α-mates
and β-mates of U preceding it, we have to include them in the special treatment as well—this is all precisely defined and
explained in Section 4.1. First we need to strengthens the bound on the length of the maximal right cyclic shift of U when
U(1) = U(2).

Lemma 24. Let x be a string starting with an FS-double square U such that U(1) = U(2), i.e. x = U2y for some, possibly
empty, y, then lcp(u, y) < min{|y|, |u2|}.

Proof. Lemma 24 trivially holds if |y| ≤ |u2|. Let us assume |y| > |u2| and lcp(u, y) ≥ |u2|. Let e = U(1) = U(2).
Then x = U2u2z for some z and thus, x = u1

eu2u1
eu1

eu2u1
eu2z, i.e. there is a farther occurrence of u2 (underlined), a

contradiction. �
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Fig. 2. Example of an α-family of U with U(1) = U(2).

Fig. 3. Example of an α-family of U with U(1) > U(2).

4.1. Handling α, β , and γ mates

The basic unit for our induction is what we callU family, or equivalently family of U, which is presented in Definition 25.

Definition 25. Let x be a string starting with an FS-double square U. If all FS-double squares in x are α-mates of U, then
U family consists of U and all its α-mates. Otherwise, let V be the rightmost FS-double square that is not an α-mate of U.
If V is not a β-mate of U, then U family consists of U and its α-mates. In all other cases U family consists of U and all its
α-mates, β-mates, and γ -mates.

In the following sections we discuss the possible formats and sizes of U family.

4.1.1. The case U family consists only of α-mates
We call such a family an α-family. The family is either followed by no other FS-double square, or it is followed by a γ -

mate, a δ-mate, or an ε-mate. If it were followed by aβ-mate, it would be an (α+β)-family or an (α+β+γ )-family discussed
in the following sections.

IfU(1) = U(2), then u2 can be non-trivially cyclically shifted to the right at most |u2|−1 times by Lemma 24, and so the
size of theU family is atmost |u2|. SinceU2 must be non-trivially cyclically shifted aswell,U2 must be followed by a prefix of
u2 of the same size. See Fig. 2 for an illustration of an α-family where u1 = aaabaa, u2 = aaab, u2 = aa, U(1) = U(2) = 2.
The solid underline indicates u2, and the dotted underline indicates u2. The extension of U2 is the final suffix not in
bold. The FS-double square U can be non-trivially cyclically shifted to the right by lcp(u1,u1) = lcp(u2u2, u2u2) =

lcp(aaabaa, aaaaab) = 3 as the extension of U2 is aaawhich is a prefix of u2 of size 3. Thus, the family has a size of 4 which
equals |u2|. Note that if the string were extended by the next symbol of u2 which is b, U would cease to be an FS-double
square as its shorter square would have a farther occurrence.

If U(1) > U(2), then by Lemma 11, u2 can be non-trivially cyclically shifted at most |u1| − 2 times, therefore, the size
of the U family is at most |u1| − 1. Since U2 must be non-trivially cyclically shifted as well, U2 must be followed by a prefix
of u1 of the same size. See Fig. 3 for an illustration where u2 = aaab, u2 = aa, U(1) = 2, and U(2) = 1. The extension of
U2 is the final suffix not in bold. Therefore u1 = aaabaa,u1 = aaaaab, lcp(u1,u1) = 3, and lcs(u1,u1) = 0. Thus, U can be
non-trivially cyclically shifted 3 times to the right as the extension of U2 is aaawhich is a prefix of u1 of size 3, and not at all
to the left. The size of the family is 4 and equals |u1| − 2. Note that if we extend the string by the next symbol of u1, which is
b, we do not gain yet another FS-double square since the maximal shift of u2 to the right is exhausted and so only U2 would
be cyclically shifted.
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Claim 26. Let x be a string starting with an α-family of an FS-double square U with no additional FS-double squares in x, then
δ(x) ≤

5
6 |x| −

1
3 |u|.

Proof. Let f be the size of the U-family. It follows that f < |u1|. Note that |u| = U(1)|u1| + |u2|. Since |x| ≥ |U2
| + f =

2(U(1)+U(2))|u1|+ 2|u2|+ f , we get 5
6 |x|−

1
3 |u| ≥

5
6 (2U(1)+U(2))|u1|+

5
62|u2|−

2
3p|u1|−

1
3 |u2| =

6U(1)+5U(2)
6 |u1|+

8
6 |u2| > 11

6 |u1| > f = δ(x). �

Claim 27. Let x be a string starting with an α-family of an FS-double square U. Let V be the first FS-double square that is not a
member of theU family. If δ(x′) ≤

5
6 |x

′
|−

1
3 |v|where x′ is a suffix of x starting at the same position asV , then δ(x) ≤

5
6 |x|−

1
3 |u|.

Proof. Let f be the size of the U family, then f ≤ |u1|. Let W be the last member of the α-family of U. Note that W = U
when the U family consists only of U. We apply Lemma 19 to W and V: since V is neither an α-mate nor a β-mate of W ,
then either it is a γ -mate or a δ-mate, or an ε-mate of W . If it is a γ -mate or a δ-mate, then |v| ≥ |W | and so the size of
the tail between W and V is at least W(2)|u1|. Since W(2) = U(2) ≥ 1, the size of the tail is at least |u1|. Therefore, the
size of the gap G between U and V is at least f , the size of the tail T between U and V is at least f + |u1| ≥ 2f . Therefore,
1
2 |G| +

1
3 |T | ≥

1
2 f +

1
32f =

7
6 f > f . If V is an ε-mate of W , then the gap between W and V is at least u1 and the tail exists.

Hence, the gap betweenU andV is at least f +|u1| ≥ 2f and the tail exists. Therefore, 1
2 |G|+

1
3 |T | ≥

1
22f = f . By Lemma 23,

δ(x) ≤
5
6 |x| −

1
3 |u|. �

4.1.2. The case U family consists of both α-mates and β-mates with no γ -mates
A U family consisting entirely of α-mates and β-mates of U is called an (α + β)-family and has the following structure:

· The first so-called α-segment consists of U and possibly its right cyclic shifts, i.e. its α-mates. The size of the segment is
≤ lcp(u1,u1) ≤ |u1|−2, see Lemma 11. All the FS-double squares in this segments have the first exponent equal toU(1)
and the second exponent equal to U(2), thus we say that the type of the segment is (U(1), U(2)).

· Then there must be a β-mate of U and possibly its right cyclic shifts. All the FS-double squares in the segment have the
first exponent equal to U(1) − i1 and the second exponent equal to U(2) + i1 for some 1 ≤ i1 < (U(1) − U(2))/2, thus
we say that the type of the segment is (U(1)− i1, U(2)+ i1). This so-called β-segment has size ≤ lcp(u1,u1) ≤ |u1|− 2
if U(1) − i1 > U(2) + i1, see Lemma 11, or ≤ |u2| − 1 ≤ |u1| − 2 if U(1) − i1 = U(2) + i1.

· Then there may be another β-segment of type (U(1) − i2, U(2) + i2) for some 1 ≤ i1 < i2 < (U(1) − U(2))/2, etc.
· Either there is no other FS-double square in x, or the first FS-double square after the last member of the last β-
segmentmust be either a δ-mate or an ε-mate ofU, since if it were a γ -mate, then theU family would be an (α+β +γ )-
family discussed in the following section.

There may be t such β-segments where 2t ≤ U(1) − U(2). Let the last β-segment be of type (U(1) − t, U(2) + t). If
U(1) − t = U(2) + t (which implies that U(1) is odd and U(1) − U(2) is even), then 2t = U(1) − U(2) and there are
≤ (U(1)−U(2))/2 segments of size≤ |u1| and 1 segment of size≤ |u2| and so the size of the family f ≤

U(1)−U(2)
2 |u1|+|u2|.

If U(1) − t > U(2) + t , there are two cases, either U(2) = 1 and then f ≤


U(1)−U(2)
2


|u1|, or U(2) > 1 and

f ≤
U(1)−U(2)

2 |u1|.
See Fig. 4 for an illustration of an (α +β)-family where u2 = aaab, u2 = aa, U(1) = 5, and U(2) = 1. The configuration

of square brackets [ ][ ] indicates the shorter square while the configuration [)() indicates the longer square. The
solid underline indicates u2 while the dotted underline indicates u2. The extension of U2 is the final suffix not in bold.
The FS-double square U can be non-trivially cyclically shifted to the right by at most lcp(u1,u1) = lcp(u2u2, u2u2) =

lcp(aaabaa, aaaaab) = 3 positions, thus every subfamily has at most 4 FS-double squares. Note, however, that the inversion
factor aaaaabaaabaa – highlighted in Fig. 4 – cyclically shifts within a subfamily and then returns to the original position for
the first FS-double square of each segment. There is 1 α-segment and 2 β-segments since (U(1) − U(2))/2 = 2, t can take
the 3 values 0, 1, or 2. For each new segment, the size of the shorter square decreases by a multiple of |u1| while the size of
the longer square remains constant.

Claim 28. Let x be a string starting with an (α + β)-family of an FS-double square U and let V be the last member of the U
family. Let every FS-double square W after V be so that R1(U) ≤ s(W) ≤ e(u[1]). Then δ(x) ≤

5
6 |x| −

1
3 |u|.

Proof. Let the type ofV be (U(1)−t, U(2)+t). Then 2t ≤ U(1)−U(2). Since every FS-double squareW afterV starts after
R1 but ends before e(u[1]), the total number of FS-double squares in x is the number of FS-double squares in theU family plus
possibly≤ |u1| additional FS-double squares, i.e. f ≤ (t+2)|u1|. Since |x| ≥ |U2

|+f = 2(U(1)+U(2))|u1|+2|u2|+f , we get
5
6 |x|−

1
3 |u| ≥

5
62(U(1)+U(2))|u1|+

5
62|u2|−

1
3U(1)|u1|−

1
3 |u2| =

4U(1)+5U(2)
3 |u1|+

4
3 |u2| > 4U(1)−4U(2)

3 |u1|+
9U(2)

3 |u1| >
8t
3 |u1| + 2|u1| > t|u1| + 2|u1| ≥ f = δ(x). �

Claim 29. Let x be a string starting with an (α + β)-family of an FS-double square U and let there be some FS-double squares
in x that are not members of the U family. Let for any V that is not a member of the U family, δ(x′) ≤

5
6 |x

′
| −

1
3 |v| where x′ is a

suffix of x starting at the same position as V . Then δ(x) ≤
5
6 |x| −

1
3 |u|.
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Fig. 4. Example of an (α + β)-family of U.

Proof. Let the last β-segment be of type (U(1) − t, U(2) + t). Then U(1) − t ≥ U(2) + t and so 2t ≤ U(1) − U(2) and
the size of the U family is ≤ (t + 1)|u1|. By Lemma 19, V is either a δ-mate, or a γ -mate, or an ε-mate of U. Since U family
is an (α + β)-family, V cannot be γ -mate of U. The size of the U family is f ≤ (t + 1)|u1|.

Let us first discuss the case when V is a δ-mate of U. Then T (U, V) ≥ f , T (U, V) ≥ (U(1) + U(2) − 1)|u1| + |u2| and
so 1

2 |G| +
1
3 |T | > 1

2 f +
U(1)+U(2)−1

3 |u1| > 1
2 f +

U(1)−U(2)
3 |u1| +

2U(2)−1
3 |u1| ≥

1
2 f +

2t
3 |u1| +

1
3 |u1| > 1

2 f +
2t+1
3 |u1| >

1
2 f +

t+1
2 |u1| ≥

1
2 f +

1
2 f = f . Thus, by Lemma 23, δ(x) ≤

1
2 |x| −

1
3 |u|.

Let us assume that V is an ε-mate of U.
If there were no super-ε-mate of U, then by Claim 28, δ(x) ≤

5
6 |x| −

1
3 |u|. So let us assume that there is a super-

ε-mate, and let V be the first super-ε-mate of U. Between the first ε-mate of U and V there are at most |u1| FS-double
squares, δ(x) ≤ δ(x′) + (t + 2)|u1|. By the assumption of this lemma, δ(x′) ≤

1
2 |x

′
| −

1
3 |v|. By Lemma 22, there are two

cases:

(a) G(U, V) ≥ (2U(1) + U(2) − 3)|u1| + 2|u2| and T (U, V) ≥ (U(1) + U(2) − 3)|u1| + |u2|.
Since U(2) ≥ 1 and t ≥ 2, then 1

2 |G| +
1
3 |T | > 2U(1)+U(2)−3

2 |u1| +
U(1)+U(2)−2

3 |u1| =
8U(1)+5U(2)−13

6 |u1| =

8U(1)−8U(2)
6 |u1| +

13U(2)−13
6 |u1| > 16t

6 |u1| = t|u1| +
10t
6 |u1| ≥ t|u1| +

20
6 |u1| ≥ t|u1| + 2|u1| as t ≥ 2.

(b) G(U, V) ≥ U(1)|u1| + |u2| and T (U, V) ≥ (U(1) + U(2) − 1)|u1| + |u2|.
Then 1

2 |G| +
1
3 |T | > U(1)

2 |u1| +
U(1)+U(2)−1

3 |u1| =
5U(1)+2U(2)−2

6 |u1| =
5U(1)−5U(2)

6 |u1| +
7U(2)−2

6 |u1| ≥
10t
6 |u1| +

5
6 |u1| = t|u1| +

4t
6 |u1| +

5
6 |u1| ≥ t|u1| +

8
6 |u1| +

5
6 |u1| = t|u1| +

13
6 |u1| > t|u1| + 2|u1| as t ≥ 2. �

4.1.3. The case U-family consists of all three α-mates, β-mates, and γ -mates
Wemust first estimate the size of the family.We proceed by investigating its structure. Since theremust be someβ-mates

of U, U(1) ≥ U(2) + 2. The family consists of segments.
The first segment consists of U and possibly its right cyclic shifts, i.e. its α-mates. The size of the segment is≤ lcp(u1,u1)

≤ |u1| − 2, see Lemma 11. All the FS-double squares in this segments have the first exponent equal to U(1) and the second
exponent equal to U(2), thus we say that the type of the segment is (U(1), U(2)).

Then there must be a β-mate of U and possibly its right cyclic shifts. All the FS-double squares in the segment have the
first exponent equal to U(1) − i1 and the second exponent equal to U(2) + i1 for some 1 ≤ i1 < (U(1) − U(2))/2, thus
we say that the type of the segment is (U(1) − i1, U(2) + i1). This so-called β-segment has size ≤ lsp(u1,u1) ≤ |u1| − 2 if
U(1) − i1 > U(2) + i1, see Lemma 11, or ≤ |u2| − 1 ≤ |u1| − 2 if U(1) − i1 = U(2) + i1. Hence the β-segment has size
≤ |u1| − 2.

Then there may be another β-segment of type (U(1) − i2, U(2) + i2) for some 1 ≤ i1 < i2 < (U(1) − U(2))/2, etc.
There may be t such β-segments where 2t ≤ U(1) − U(2). Let the last β-segment have type (p, q); then p ≥ q.

Then theremust beG, a γ -mate ofU. Consider all the γ -mates ofU ofwhichG is the first one. They formwhatwe call a γ -
segment. Since all the FS-double squares in the γ -segment have the short square of the same length |U2

| and since they have
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Fig. 5. Example of a (α + β + γ )-family of U.

equal exponents by Lemma 20, by Lemma 19 they are all α-mates of G. Thus, the γ -segment consists of a γ -mate of U and
its right cyclic shifts. See Fig. 5. The shorter square of G has a form [s1u1

iu2u1
(U(1)+U(2)−i−1)s2][s1u1

iu2u1
(U(1)+U(2)−i−1)s2] for

some 1 ≤ i ≤ p and some s1 and s2 such that s2s1 = u1. In order to estimate the size of the γ -segment, we have to estimate
how many right cyclic shifts G can have. First we need to discuss the difference between a double square structure and an
FS-double square: it is quite possible to have a double square structure in a string that is not an FS-double square as there
is a farther occurrence of the shorter or the longer square of the double square structure. Thus, we always overestimate
the sizes of U families, as we really count the double square structures and up to |u1| cyclic shifts for each α-segment or
β-segment. We know that actually every segment can have at most lcs(u1,u1) + lcp(u1,u1) ≤ |u1| − 2 members. So, we
can imagine every segment to have a ‘‘hole’’. So if there is a farther factorizable double square that can be assigned to the
hole, we will say that it complements the segment and thus does not need to be counted as its count was already part of the
overestimation. If there is a farther factorizable double square V containing a farther copy of u1

ru2u1
ru2 and thus implying

that though there is a structure of a double square of type (r, r ′), it is not an FS-double square, we will say that V replaces
the double square structure of type (r, r ′).

Now back to estimating the size f of an (α +β + γ )-family. We shall show that f ≤
2
3 (U(1)+ 1)|u1|. There are basically

two cases:

(i) G, the first member of the γ -segment, is of type (U(1) − t, U(2) + t) and U(1) − t > 2(U(2) + t).
SinceU(1)−t > 2(U(2)+t), 3t < U(1)−2U(2) and so 3t ≤ U(1)−2U(2)−1 and thus 6t ≤ 2U(1)−4U(2)−2.

By Lemma 20 and Lemma 24, G has ≤ (U(2) + t) − 1 cyclic shifts. Thus, we start with U of type (U(1), U(2)) and end
with the last member of the γ -segment that is of type (U(1) − t − (U(2) + t − 1)), (U(2) + t + (U(2) + t − 1)),
thus there are at most (2U(2) + 2t − 1) − U(2) + 1 = U(2) + 2t members in the (α + β + γ )-family. Then
3f = 3U(2) + 6t ≤ 3U(2) + 2U(1) − 4U(2) − 2 = 2U(1) − U(2) − 2 ≤ 2U(1) − 3 < 2U(1) + 2 = 2(U(1) + 1)
as q ≥ 1. Thus, f < 2

3 (U(1) + 1)|u1|.
(ii) G, the first member of the γ -segment, is of type (U(1) − t, U(2) + t) and U(1) − t ≤ 2(U(2) + t).

(ii1) U(1) − t ≤ U(2) + t
By Lemma 20, G2 of G contains a further copy of u1

U(2)+tu2u1
U(2)+tu2 and so G either ‘‘replaces’’ a possible

member of the α-segment or a β-segment, or it ‘‘complements’’ the α-segment or a β-segment. Thus, f ≤
1
2 (U(1) − U(2))|u1| < 2

3 (U(1) + 1)|u1|.
(ii2) U(1) − t > U(2) + t .

Either g2 ofG is small, i.e. |g2| < |u1| and thenG has less than |u1| shifts, and so f ≤
1
2 (U(1)−U(2))|u1|+|u1| ≤

2
3 (U(1) + 1)|u1|, or |g2| ≥ |u1|.
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Thus assume that |g2| ≥ |u1|. We can further assume by Lemma 20 that the last member of the γ -segment is
of type (U(2) + t, U(1) − t), since if it were shifted any further, it would start ‘‘replacing’’ or ‘‘completing’’ the
members of the α-segment or the β-segments, so we do not need to count them.

Since U(1) − t ≤ 2(U(2) + t), then U(1) − 2U(2) ≥ 3t . Thus 3f = 3(U(1) − t − U(2) − 1)|u1| =

(3U(1) − 3t − 3U(2) + 3)|u1| ≤ (3U(1) − 3U(2) + 3 + 2U(2) − U(1))|u1| = (2U(1) − U(2) + 3)|u1| ≤

(2U(1) + 2)|u1| = 2(U(1) + 1)|u1|. Therefore, f ≤
2
3 (U(1) + 1)|u1|.

Claim 30. Let a string x start with an (α +β + γ )-family of an FS-double square U and let there be no other FS-double squares.
Then δ(x) ≤

5
6 |x| −

1
3 |u|.

Proof. The size of the family f ≤
2
3 (U(1)+1)|u1| and so 1

6 f ≤
2
18 (U(1)+1)|u1|. |x| ≥ f +|U2

| = f +2(U(1)+U(2))|u1|+

2|u2|, and so 5
6 |x|−

1
3 |u| ≥

5
6 f +

5
62(U(1)+U(2))|u1|+

5
62|u2|−

1
3U(1)|u1|−

1
3 |u2| =

5
6 f +

8
6p|u1|+

10
6 U(2)|u1|+

3
6 |u2| >

5
6 f +

30
18p|u1| ≥

5
6 f +

2
18p|u1| +

28
18p|u1| ≥

5
6 f +

2
18 (p + 1)|u1| ≥

5
6 f +

1
6 f = f = δ(x). �

Claim 31. Let a string x start with an (α + β + γ )-family of an FS-double square U. Let V be the first FS-double square not in
the U family. Let x′ be the suffix of x starting at the same position as V . Let δ(x′) ≤

5
6 |x

′
| −

1
3 |v|. Then δ(x) ≤

5
6 |x| −

1
3 |u|.

Proof. V can be either a δ-mate or an ε-mate of U. Let G be the last member of the γ -segment and let its type be
(U(1) − t, U(2) + t). Then g2 has the format u1

ts1[s2u1
(U(1)−t−1)u2u1

U(2)s1][s2u1
(U(1)−t−1)u2u1

U(2)s1]. If e(v[1]) ≤ e(g[1]),
then by Lemma 19 U would be a β-mate of G, which is impossible as by Lemma 20, G(1) = G(2). Thus e(v[1]) > e(g[1]).
(a) Let V be a δ-mate.

Then we are assured that T (U, V) ≥ (U(1) + U(2) − 1)|u1|. But a little bit more is true. Clearly, v[1] contains an in-
version factor from


L1(U), R1(U)


. If s(v[2]) ≤ R2(U), then v[2] would contain an inversion factor from


L2(U), R2(U)


,

giving |v| = |w|, a contradiction. Hence s(v[2]) > R2(U) and by Lemma 2, T (U, V) ≥ (U(1) + U(2))|u1|.
Since G(U, V) ≥ f , we have 1

2 |G| +
1
3 |T | ≥

1
2 f +

1
3 (U(1) + U(2))|u1| ≥

1
2 f +

1
3 (U(1) + 1)|u1| ≥

1
2 f +

1
2 f = f as

U(2) ≥ 1 and 1
2 f ≤

1
3 (U(1) + 1)|u1|.

(b) Let V be an ε-mate of U, but not a super-ε-mate.
So s(v[1]) ≤ e(u[1]) and e(v[1]) > e(g[1]). By Lemma 2, T (U, V) ≥ (U(1) + U(2))|u1| and so 1

2 |G| +
1
3 |T | ≥

1
2 f +

1
3 (U(1) + 1)|u1| ≥

1
2 f +

1
2 f = f .

(c) Let V be a super-ε-mate of U.
By Lemma 22, there are two possibilities:

(c1) G ≥ (2U(1) + U(2) − 3)|u1| and T ≥ (U(1) + U(2) − 2)|u1|

Then 1
2 |G| +

1
3 |T | ≥

6U(1)+3U(2)−9+2U(1)+2U(2)−4
6 |u1| =

8U(1)_5U(2)−13
6 |u1| =

4U(1)+4U(1)+5U(2)−13
6 |u1|. Since

U(1) ≥ 4 and U(2) ≥ 1, 1
2 |G| +

1
3 |T | ≥

4U(1)+16+5−13
6 |u1| =

4U(1)+8
6 |u1| > 4U(1)+4

6 |u1| = f .
(c2) G ≥ U(1)|u1| and T ≥ (U(1) + U(2) − 1)|u1|

1
2 |G| +

1
3 |T | ≥

3U(1)+2U(1)+2U(2)−2
6 |u1| =

2U(1)+3U(1)+2U(2)−2
6 |u1| ≥

2U(1)+16+2−2
6 |u1| =

2U(1)+12
6 |u1| >

2U(1)+2
6 |u1| ≥ f , since U(1) ≥ 4 and U(2) ≥ 1. �

4.2. New upper bounds

Theorem 32. The number of FS-double squares in a string of length n is bounded by ⌊5n/6⌋.

Proof. We prove by induction the following, a slightly stronger, statement: δ(x) ≤
5
6 |x| −

1
3 |u| for |x| ≥ 10 where u is the

generator of the shorter square of the first FS-double square of x. We do not have to consider strings of length 9 or less, as
such strings do not contain FS-double squares. Since a string of length 10 contains at most one FS-double square (see the
note after Definition 7), the statement is true for strings of size 10. Assuming the statement is true for all |x| ≤ n, we shall
prove it holds for all |x| ≤ n + 1.

If x = x[1 . . . n + 1] does not start with an FS-double square, then δ(x) = δ(x[2 . . . n + 1]) ≤
5
6 |x[2 . . . n + 1]| −

1
3 |u| ≤

5
6 |x[1 . . . n + 1]| − 1

3 |u|. Thus, we can assume that x starts with an FS-double square U. If U is the only FS-double square of
x, then |x| ≥ 2|u|, thus the statement is obviously true. Therefore, we can assume that x starts with a FS-double square U
and δ(x) ≥ 2.

Case (a) assume that x starts with an α-family of U.
If there is no further FS-double square in x, by Claim 26, the assertion is true. Otherwise, we carry out the induction step

by Claim 27.
Case (b) assume that x starts with an (α + β)-family of U.
If there is no further FS-double square in x, by Claim 28, the assertion is true. Otherwise, we carry out the induction step

by Claim 29.
Case (c) assume that x starts with an (α + β + γ )-family of U.
If there is no further FS-double square in x, by Claim 30, the assertion is true. Otherwise, we carry out the induction step

by Claim 31. �
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Corollary 33. The number of distinct squares in a string of length n is bounded by ⌊11n/6⌋.

Proof. The number of distinct squares in a string is the sum of the number of FS-double squares plus the number of single
rightmost squares. Since, for a string of length n, the number of FS-double squares is bounded by ⌊5n/6⌋, the number of
distinct squares is bounded by ⌊(2 · 5/6 + 1/6)n⌋; that is, by ⌊11n/6⌋. �

5. Proofs

5.1. Proof of Lemma 13

Assume, in order to derive a contradiction, that an inversion factor v2v2v2v2 occurs to the left of L1. Consider the inversion
factor w2w2w2w2 starting at the position L1. Then w1, w2 and w2 are left cyclic shifts of, respectively u1, u2 and u2. Since
w2w2w2w2 cannot be further cyclically shifted to the left, lcs(w2w2, w2w2) = 0. Since v2v2v2v2 is occurring to the left of
w2w2w2w2, there are non-empty strings a and c and a string b so that |a| > |b| and aw2w2w2w2 = bv2v2v2v2c . We split
the argument into several cases depending on where the inversion factor v2v2v2v2 ends.

1. Case when v2v2v2v2 ends in the second copy of w2 in the inversion factor w2w2w2w2:

Let s1 be the overlap ofw2[2] and v2[2]. Then s1 is a non-trivial proper prefix of v2 and anon-trivial proper suffix ofw2. There
is a copy s2 of s1 as a suffix ofw2[1], and it must be a prefix of v2[2] as |w2| = |v2|. Consequently, there is a copy s3 of s2 as a
prefix of v2[1], and it must be a suffix ofw2[1] as |s3| = |s1| ≤ |w2| and |v2[1]|+|v2[2]|+|v2[2]| = |w2[1]|+|w2[2]|+|w2[2]|.
Thus, s1 is a suffix of both w2 and of w2, contradicting the fact that lcs(w2w2, w2w2) = 0.

2. Case when v2v2v2v2 ends in the second copy of w2 of w2w2w2w2:

Let s1 be the overlap of w2[2] and v2[2]. Then s1 is suffix of w2 and a prefix of v2. There is a copy s2 of s1 as a prefix of v2[1].
Consequently, s2 must be a suffix of w2[1] since |v2[1]| + |v2[1]| + |v2[2]| = |w2[1]| + |w2[2]| + |w2[2]|. Thus, s1 is a suffix
of both w2 and w2, contradicting the fact that lcs(w2w2, w2w2) = 0.

Note that the whole of w2[1] might not be a part of the string (and that is why in the diagram it is depicted in gray), in
which case a is a non-trivial proper suffix of w2[1], and the argument holds.

3. Case when v2v2v2v2 ends in the first copy of w2 of w2w2w2w2:

Let s1 be the overlap ofw2[1] and v2[1]. Then s1 is a suffix ofw2 and a prefix of v2. There is a copy s2 of s1 as a prefix of v2[2].
It must be a suffix of w2[1] since |v2[1]| + |v2[1]| = |w2[1]| + |w2[1]|. Thus, s1 is a suffix of both w2 and w2, contradicting
the fact that lcs(w2w2, w2w2) = 0.

4. Case when v2v2v2v2 ends in the first copy of w2 of w2w2, w2w2, or lies completely outside of w2w2w2 of w2w2w2w2
and ends in w2:
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Let s1 be the overlap of w2[3] and v2[2]. Then s1 is a suffix of w2 and a prefix of v2. There is a copy s2 of s1 as a prefix of
v2[1]. It must be a suffix of w2[1] as |w2[2]| + |w2[2]| + |w2[3]| = |v2[1]| + |v2[1]| + |v2[2]|. Thus, s1 is a suffix of both w2 and
w2, contradicting the fact that lcs(w2w2, w2w2) = 0.

Note that the whole of w2[1] might not be a part of the string (and that is why in the diagram it is depicted in gray), in
which case a is a non-trivial proper suffix of w2[1], and the argument holds.

5. Case when v2v2v2v2 lies completely outside of w2w2w2w2 and ends in w2:

Let s1 be the offset of aw2w2w2w2 and bv2v2v2v2, i.e. aw2w2w2w2 = bv2v2v2v2s1. Then s1 is a suffix of w2. There is a
copy s2 of s1 as a suffix of w2[2]. It must be a prefix of v2[2] as |w2[2]| + |w2[3]| = |v2[2]| + |v2[2]|. There is a copy s3 of s2 as
a prefix of v2[1]. It must be a suffix of w2[1] as |w2[2]| + |w2[2]| + |w2[3]| = |v2[1]| + |v2[2]| + |v2[2]|. Thus, s1 is a suffix of
both w2 and w2, contradicting the fact that lcs(w2w2, w2w2) = 0.

As a second step of the proof, let us investigate whether an inversion factor v2v2v2v2 can occur to the right of R1 while
ending before L2. The proof of this step is essentially the same argumentation as for the first one, so though added for the
sake of completion, it is presented in an abbreviated form, i.e. we just present the diagrams and the conclusions.

Consider the inversion factorw2w2w2w2 starting at the position R1. Thenw1 respectivelyw2, w2 are right cyclic shifts of
u1 respectively u2, u2. Moreover, lcp(w2w2, w2w2) = 0 asw2w2w2w2 cannot be shifted right. Since v2v2v2v2 is occurring to
the right of w2w2w2w2, there are non-empty strings b and c and a string a so that |a| < |b| and aw2w2w2w2c = bv2v2v2v2.
We split the argument into several cases depending on where the inversion factor v2v2v2v2 starts.
1. Case when v2v2v2v2 starts in the first copy of w2 in the inversion factor w2w2w2w2:

Then s1 is both a prefix of w2 and w2, contradicting the fact that lcp(w2w2, w2w2) = 0.
2. Case when v2v2v2v2 starts in the first copy of w2 in the inversion factor w2w2w2w2:

Then s1 is both a prefix of w2 and w2, contradicting the fact that lcp(w2w2, w2w2) = 0.
3. Case when v2v2v2v2 starts in the w2 of w1:

Note that this covers also the case when v2v2v2v2 starts in the second copy of w2 in w2w2w2w2.

Then s1 is both a prefix of w2 and w2, contradicting the fact that lcp(w2w2, w2w2) = 0.
4. Case when v2v2v2v2 starts in the w2 of w1:

Note that this covers also the case when v2v2v2v2 starts in the second copy of w2 in w2w2w2w2.

Then s1 is both a prefix of w2 and w2, contradicting the fact that lcp(w2w2, w2w2) = 0.
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Note that the whole of w2[3] might not be a part of the string (and that is why in the diagram it is depicted in gray), but
then t is a non-trivial proper prefix of w2 and the argument holds.

5. Case when v2v2v2v2 does not at all overlap with w2w2w2w2.
That case is argued identically as for an inversion factor occurring to the left of L2.

The third step of the proof is to assume by contradiction that an inversion factor occurs to the left of L2 which follows the
same line of argumentation as the first step. The fourth and last step of the proof is to assume that an inversion factor occurs
to the right of R2 which follows the same line of argumentation as for the second step. �

5.2. Proof of Lemma 17

(a) Case s(v[1]) < R1.
Without loss of generality we can assume that lcp(u1,u1) = 0 and hence R1 = N1. If it is not, instead of doing

the argument with u1
U(1)u2u1

(U(1)+U(2))u2u1
U(2) we can do the argument with s2w1

U(1)w2w1
(U(1)+U(2))w2w1

(U(2)−1)s1
where w1 respectively w2 is a right cyclic shift of w1 respectively w2 by lcp(u1,u1) positions, s1s2 = w1, and |s1| =

lcp(u1,u1). Then lcp(w1, w1) = 0. The proof is carried out by a discussion of all possible cases of the ending point of
v[1].
(A) Case e(v[1]) ≤ e(u[1])

Note that e(v2) > e(U[1]) = e(u1
U(1)u2u1

U(2)), for otherwise there would be a farther copy of v2 in U[2]. By
the inversion factor Lemma 13, v[1] does not contain the whole of any inversion factors. Thus, v[2] cannot contain
either the whole of any inversion factors, and in particular cannot contain the inversion factor at N1. Therefore, v[1]
must end in the suffix u2u2 of u[1]. Let s be the offset of v[1] in u[1] and let s1 be the overlap between u[1] and v[2], i.e.
svs1 = u = u1

U(1)u2, see the diagram below for an illustration.

Then s1 is both a prefix of v and a suffix of u. Since s1 is the overlap of u1 and v1, |s1| < |u1| and s1 is a suffix of u2u2.
It follows that v = t1u1

it2 for some suffix t1 of u1, some prefix t2 of u1, and some i ≥ 0.
On the other hand, U[1] = u1

U(1)u2u1
U(2)

= uu1
U(2) is a non-trivial proper prefix of sv2, and so svs1u1

U(2) is a
non-trivial proper prefix of sv2, implying that s1u1

U(2) is a non-trivial proper prefix of v and, therefore, v = s1u
j
is2

for some prefix s2 of u1 and some j ≥ 1.
Thus, v = t1u1

it2 = s1u1
js2. Since t1 is a suffix of u1 and t2 a prefix of u1, by Lemma 2, t1 = s1 and t2 = s2.

Therefore, s1 is a suffix of u1.
Since s2s1 is a suffix of u, then s2s1 = u1

iu2 for some i ≥ 0. Since |s2| + |s1| < 2|u1|, either i = 0 or i = 1, which
proves that either s2s1 = u1u2 or s2s1 = u2.

In the former case, |v| = (j + 1)|u1| + |u2| and so v =u(j+1)
1 u2, while in the latter case v =u j

1u2, where in both
casesu1 respectivelyu2 is a left cyclic shift of u1 respectively u2 by |s1| positions. The left cyclic shift is possible as s1
is both a suffix of u1 and a suffix ofu1 = u2u2. Therefore, v = u j

1u2 and 1 ≤ j ≤ U(1) and so when j < U(1), case
(a1) holds true, and when j = U(1), case (a2) holds true.

(B) Case e(u[1]) < e(v[1]) ≤ e(u[1]u1)
We discuss this case in four different configurations based on where v[1] starts and where it ends.

(1) A configuration when v[1] starts in a u2 and ends in the first u2 of u[2].
Let s1 be the offset of v[1] in the u2 it starts in, let s2 be the overlap of v[1] and the u2 it starts in, let t1 be the

overlap of v[1] with the u2 it ends in, and let t2 be the overlap of v[2] with the u2 where v[1] ends. Letu1 = s2u2s1;
as a conjugate of u1, it is primitive.

By Lemma 2, t1 = s1 and t2 = s2, and so s1v[2] is a non-trivial proper prefix of u1
(U(1)+U(2))u2. It follows that the

suffix u2s1 of v must align with u1u2 = (u2u2)u2 of u1
(U(1)+U(2))u2, and so s1 is the prefix of u2u2. Thus, s1 is a

prefix of both, u2u2 and u2u2. Therefore, |s1| ≤ lcp(u1,u1) = 0, and so s1 is empty. It follows that v = uj
1u2 for

1 ≤ j ≤ U(1) and so either (a1) or (a2) holds true.
Note that Lemma 2 applies even if U(1) = 1, since then v[1] must start in the very first u2 of u[1].
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(2) A configuration when v[1] starts in a u2 and ends in the first u2 of u[2].
Let s1 and s2 be as in the previous case (B)(1). Let t1 be the overlap of v[1] and u[2].

The factor u1
(U(1)|+U(2))u2 has u2u1u1 as a prefix as U(1) + U(2) ≥ 2. The factor v has s2u1 as a prefix. Thus

u1
(U(1)|+U(2))u2 has also t1s2u1 as a prefix. Since |t1s2| < |u2| + |u1|, this contradicts Lemma 2, asu1 is primitive

being a conjugate of u1. Such a configuration is not possible.
(3) A configuration when v[1] starts in a u2 and ends in the first u2 of u[2].

Let s1 be the offset of v[1] in u2 it starts in, let s2 be the overlap of v[1] and the u2 it starts in. Let t1 be the
overlap of v[1] with u[2]

The factor v has s2u1 as a prefix, and so u1
(U(1)+U(2)) has as a prefix u1u1 and t1s2u1. Since |t1s2| < |u1|, this

contradicts Lemma 2. Such a configuration is not possible.
(4) A configuration when v[1] starts in a u2 and ends in the first u2 of u[2].

Let s1 and s2 be as in (B)(3). Let t1 be the overlap of v[1] and the u2 it ends in, and let t2 be the overlap of v[2]
with the u2 in which v[1] ends.

By Lemma 2, t1 = s1 and t2 = s2. Since u2s1v[2] is a prefix of u1
(U(1)+U(2))u2, it follows that the suffix u2u2s1 of

v[2] must align with u1u2 in u1
(U(1)+U(2))u2, and thus u2u2s1 is a prefix of u2u2u2, hence u2s1 is a prefix of u2u2.

Thus, u2u2 = u2s1s2 is a prefix of u2u2s2, giving u2u2 = u2u2, which is a contradiction as u2u2 is primitive. Such
a configuration is not possible.

(C) Case e(u[1]u1) < e(v[1]) < R2.
Then v[1] contains the inversion factor at R1. Thus, v[2] must contain the inversion factor at R2 and it must be

placed in v[2] in the same position mate to the beginning of v[2] as in v[1], and therefore |v| = R2 − R1 = |U|. Thus,
case (a4) holds true.

(D) Case R2 ≤ e(v[1]).
Since e(v[1]) ≥ R2 ≥ N2 = u1

U(1)u2u1
(U(1)+U(2)−1)u2, either s1u2u2u1

(U(1)+U(2)−1)u2 for some suffix s1 of u2 is a
prefix of v, or s1u1

iu2u1
(U(1)+U(2)−1)u2 for some suffix s1 of u1 and some i ≥ 1 is a prefix of v, and so case (a5) holds

true.
Case (a3) is not possible as it never materialized during the discussion of the cases (A)–(D) that cover exhaustively all
possible endings of v[1].

(b) Case e(v[1]) ≤ e(u[1]).
If s(v[1]) ≥ R1, then |v| < |u1| and so v2 is a factor of u1u2u1 and hence of U[1], and thus there is a farther copy of v2

in U[2], a contradiction. Therefore s(v[1]) < R1 and this is the case (A) above, and thus either the case (a1) or case (a2)
holds. �

5.3. Proof of Lemma 19

Case (a): since s(v2) = s(V 2) = s(V) ≤ R1(U), applying Lemma 17 to v2 and V 2 gives the following possibilities:

(i) v =u i
1u2 for 1 ≤ i < U(1) whereu2 is a non-trivial proper prefix ofu1 and whereu1 respectivelyu2 is a cyclic shift of

u1 respectively u2 in the same direction by the same number of positions (by item (a1) of Lemma 17 applied to v2),
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(ii) v =uU(1)
1 u2 whereu2 is a non-trivial proper prefix ofu1 and whereu1 respectivelyu2 is a cyclic shift of u1 respectively

u2 in the same direction by the same number of positions (by item (a2) of Lemma 17 applied to v2),
(iii) |v| = |U| (by item (a4) of Lemma 17 applied to v2),
(iv) e(v[1]) − e(u[1]) ≥ (U(1) + U(2) − 1)|u1| + |u2| (by item (a5) of Lemma 17 applied to v2),

(I) V = u j
1u2 for 1 ≤ j < U(1) whereu2 is a non-trivial proper prefix ofu1 and whereu1 respectivelyu2 is a cyclic

shift of u1 respectively u2 in the same direction by the same number of positions (either by item (a1) or (a2) of
Lemma 17 applied to V 2),

(II) |V | = |U| (by item (a4) of Lemma 17 applied to V 2),
(III) Either s1u2u2u1

(U(1)+U(2)−1)u2 for some suffix s1 of u2 is a prefix of V , or s1u1
iu2u1

(U(1)+U(2)−1)u2 for some suffix s1
of u1 and some j ≥ 1 is a prefix of V (by item (a5) of Lemma 17 applied to V 2).

We inspect all possible combinations:

· Combining (i) and (I) is impossible: since v is a prefix of V ,u1 = u1 andu2 = u2. Since j > i as |V | > |v|, we can apply
Lemma 8 deriving a contradiction.

· Combining (i) and (II) is possible and yields case (a2): since v is a prefix of V ,u1 = u1 andu2 = u2 and so V must be a
β-mate ofU. Since |V | = |U| = (U(1)+U(2))|u1|+|u2|, V =u i

1u2u(U(2)+U(1)−i)
1 . Since i ≥ U(2)+U(1)−i as otherwise

there would be a farther copy of v2, 2i ≥ U(1) + U(2). Since 1 ≤ i < U(1), i = U(1) − k for some 1 ≤ k < U(1). It
follows that 2(U(1) − k) ≥ U(1) + U(2), so 2U(1) − 2k ≥= U(1) + U(2), and thus U(1) ≥ U(2) + 2.

· Combining (i) and (III) is impossible: since v2 is a prefix of V 2,u i
1u2u i

1u2 is a prefix of V 2. At the same time either
s1u1

ju2u1
(U(1)+U(2)−1)u2 is a prefix of V or s1u2u2u1

(U(1)+U(2)−1)u2 is a prefix of V . Due to Lemma 2, in both cases,u i
1u2u(U(1)+U(2)−1)

1 u2 is a prefix of V and sou i
1u2u i

1u2 is a prefix of V . It follows that v2 is a factor in V[1] and, consequently,
it has a farther copy in V[2], a contradiction.

· Combining (ii) and (I) is impossible: as j ≤ U(1) implies that |V | ≤ |v|, hence a contradiction.
· Combining (ii) and (II) is possible and yields that V is an α-mate of U, hence case (a1).
· Combining (ii) and (III) is impossible for the same reasons as for the combination (i) and (III).
· Combining (iii) and (I) or (II) is impossible due to the size of v being bigger than the size of V .
· Combining (iii) and (III) is possible and yields case (a3) and so V is a γ -mate of U.
· Combining (iv) and (I) or (II) is impossible due to the size of v being bigger than the size of V .
· Combining (iv) and (III) yields case (a4).

Case (b): The FS-double square V is an ε-mate of U by definition as R1 ≤ s(V). If e(v[1]) ≤ e(u[1]), then by Lemma 17,
s(V) < R1, a contradiction. So e(u[1]) < e(v[1]). �
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