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Abstract

Denote by kt(G) the number of cliques of order t in the graph G. Let kt(n) = min{kt(G) + kt(Ḡ) :

|G| = n}, where Ḡ denotes the complement of G, and |G| denotes the order of G. Let ct(n) = kt(n)

(n

t)
,

and let ct = limn→∞ ct(n). An old conjecture of Erdös [E], related to Ramsey’s theorem, states that ct

= 21−(t

2). It was shown false by Thomason [T] for all t ≥ 4. We present a class of simply describable

Cayley graphs which also show the falsity Erdös’s conjecture for t = 4. These graphs were found by a

computer search and though of large orders (210 − 214), they are rather simple and highly regular. The

smallest upper bound for c4 obtained by us is 0.976501× 1
32 , and is given by the graph on power set of 10

element set (and hence of order 210) determined by the configuration {1, 3, 4, 7, 8, 10}, and by the graph

on power set of 11 elements (and hence of order 211) determined by the configuration {1, 3, 4, 7, 8, 10, 11}.

It is also shown that the ratio of edges to non-edges in a sequence contradicting the conjecture for t = 4

may approach 1, unlike in the sequences of graphs Thomason used in [T].

1. Introduction.

Denote by kt(G) the number of cliques of order t in the graph G. Let kt(n) = min{kt(G) + kt(Ḡ) :

|G| = n}, where Ḡ denotes the complement of G, and |G| denotes the order of G. Let ct(n) = kt(n)

(n

t)
, and

let ct = limn→∞ ct(n). Thus ct(n) denotes the minimum proportion of monochromatic Kt’s in a coloring

of the edges of Kn with two colors. An old conjecture of Erdös [E], related to Ramsey’s theorem, states

that ct = 21−(t

2). It follows from Goodman’s work [G], that the conjecture is true for t = 3. Erdös and

Moon showed in [EM] that the modified conjecture for complete bipartite subgraphs of bipartite graphs

is true. Sidorenko [S] showed that the modified conjecture for cycles is true, and not true for certain

incomplete subgraphs. Erdös’s conjecture is obviously true for random graphs, and it follows from results

of various people that it is also true for ”pseudo-random” graphs (see [GS], [FRW], [T1]). For more

details about the ”modified conjecture” and ”psuedo-random” graphs with respect to the conjecture see

[FR]. Thomason [T] disproved the conjecture in general for all t ≥ 4, producing an infinite sequence
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from a single underlying graph leading to a limit smaller than that which the conjecture stipulates. He

obtained the following results: c4 < 1
33 < 0.976 × 1

32 , c5 < 0.906 × 21−(5

2), and ct < 0.936 × 21−(t

2) for

t > 5. His underlying graphs are formed by vectors in orthogonal geometries. As for the lower bound,

Giraud [Gi] showed that c4 > 1
46 . On the other hand the authors showed in [FR] that the conjecture

not only holds for ”pseudo-random” graphs, but also for graphs obtained by ”small perturbations” from

”pseudo-random” graphs.

It is easy to realize that in order to obtain an infinite sequence {Gn}
∞
n=0 of graphs with a given value

of limn→∞
k4(Gn)+k4(Ḡn)

(|Gn|
4 )

it suffices to find just one graph that satisfies certain conditions (see Lemma

2 here, Lemma 1 in [T]). We are going to present an alternative way of obtaining Cayley graphs as the

underlying graphs to produce counterexamples to the conjecture for t = 4. For a finite set X and a

F ⊂ {1, 2, 3, 4, ..., |X|} the graph GX,F has as its vertex set all subsets of X, two subsets x, y ⊂ X are

then connected by an edge if |x4y| ∈ F (where x4y is the symmetric difference of x and y). A computer

was used to search for configurations of X, F to obtain a class of graphs which all lead to infinite sequences

with c4 smaller than 1
32 . The lowest upper bound for c4 obtained by this method is 0.976501× 1

32 and

is given by the sequence with GX,F as its underlying graph, where either X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

and F = {1, 3, 4, 7, 8, 10}, or X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and F = {1, 3, 4, 7, 8, 10, 11}. Thomason’s

graphs exhibit ratio of edges to non-edges not approaching 1 as n tends to ∞ which (as Thomason

remarked in [T]) runs counter to the received wisdom (prior to his work). As our results show the ratio of

edges to non-edges in a sequence of graphs may approach 1: for instance consider the sequence of graphs

determined by the graph GX,F where X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} and F = {1, 4, 5, 8, 9, 11}

which leads to c4 ≤ 0.987314× 1
32 . The nth member of the sequence has 212·4095·n2 + 213·

(

n
2

)

edges and

212·4096·n2 non-edges, hence the ratio of edges to non-edges is
4096− 1

n

4096 which approaches exactly 1. Also

notice that for this sequence the neighborhood of every vertex of the nth member of the sequence has

size 4095·n + n − 1, thus the ratio of the size of the neighborhood to the order of the graph is 4096n−1
213·n

which approaches 1
2 as n tends to ∞. We also obtained graphs giving rise to sequences in which the ratio

of edges to non-edges does not approach 1 and/or in which the ratio of the size of the neighborhood to

the order does not approach 1
2 .

2. Methods.

For a finite set X and F ⊂ {1, 2, ..., |X|} F̄ denotes {1, 2, ..., |X|} − F . It follows that ḠX,F = GX,F̄ .
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An ordered triple 〈f0, f1, f2〉 is an X, F -triple, if f0, f1, f2 ⊂ X, |fi| ∈ F for each i ≤ 2, and |fi4fj | ∈ F

for all i 6= j ≤ 2. An ordered pair 〈f0, f1〉 is an X, F -pair, if f0, f1 ⊂ X, |fi| ∈ F for each i ≤ 1, and

|fi4fj | ∈ F for all i 6= j ≤ 1. A singleton 〈f0〉 is an X, F -singleton, if f0 ⊂ X, an |f0| ∈ F .

Lemma 1: Let X be a finite set, and let F ⊂ {1, 2, ..., |X|}. Let tc(X, F ) denote the number of

X, F -triples, pc(X, F ) the number of X, F -pairs, and sc(X, F ) the number of X, F -singletons. Then

k4(GX,F ) = 2|X|

24 tc(X, F ), k3(GX,F ) = 2|X|

6 pc(X, F ), and k2(GX,F ) = 2|X|

2 sc(X, F ).

Proof: Easy and hence left to the interested reader.

Similarly as Thomason did, we shall produce an infinite sequence of graphs from a single graph:

Def. 2: Let G = 〈V, E〉 be a graph, and let n be a positive integer. The graph Gn = 〈Vn, En〉 is defined

as follows: let {Bv : v ∈ V } be a system of mutually disjoint sets of size n. Then Vn =
⋃

{Bv : v ∈ V }.

If a, b ∈ Bv, then {a, b} ∈ En, and if a ∈ Bu, b ∈ Bv, u 6= v, then {a, b} ∈ En iff {u, v} ∈ E.

Lemma 2: If all graphs in an infinite sequence of graphs {Gn}
∞
n=0 were obtained from a single graph G

of size t as in Def. 2, then

lim
n→∞

k4(Gn) + k4(Ḡn)
(

tn
4

) =
24(k4(G) + k4(Ḡ)) + 36k3(G) + 14k2(G) + t

t4
.

Proof: The straight forward calculations are left to the reader.

We shall call the number 32· 24(k4(G)+k4(Ḡ))+36k3(G)+14k2(G)+t

t4
the Erdös number of the graph G.

Corollary 3: Let X be a finite set, and let F ⊂ {1, 2, ..., |X|}. Let tc(X, F ) denote the number of X, F -

triples, tc(X, F̄ ) denote the number of X, F̄ -triples, pc(X, F ) the number of X, F -pairs, and sc(X, F ) the

number of X, F -singletons. Then the Erdös’s number of GX,F =

tc(X, F ) + tc(X, F̄ ) + 6pc(X, F ) + 7sc(X, F ) + 1

23|X|−5
.

Proof: Follows directly from the previous lemma.

Our task was to find such a set X and such a family F ⊂ {1, 2, ..., |X|} so that the Erdös number of GX,F

is less than 1. In the following we shall briefly describe the algorithm to compute the Erdös number for

given X and F which was then used for an orderly search for suitable configurations.

Based on Lemma 3, it sufficed to compute the number of X, F -triples, X, F -pairs, and X, F -singletons:
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Consider 〈f0, f1, f2〉, an ordered triple of mutually distinct subsets of X. Denote |fi| as ai (i ≤ 2),

|f04f1| as a3, |f04f2| as a4, and |f14f2| as a5. Let x012 = f0 ∩ f1 ∩ f2, let x01 = (f0 ∩ f1) − x012,

let x02 = (f0 ∩ f2) − x012, let x12 = (f1 ∩ f2) − x012, let x0 = f0 − (f1 ∪ f2), let x1 = f1 − (f0 ∪ f2),

and let x2 = f2 − (f0 ∪ f1). Then x0, x1, x2, x01, x02, x12, x012 are mutually disjoint and f0 ∪ f1 ∪ f2 =

x0 ∪ x1 ∪ x2 ∪ x01 ∪ x02 ∪ x12 ∪ x012. Let m0 = |x0|, m1 = |x1|, m2 = |x2|, m01 = |x01|, m02 = |x02|,

m12 = |x12|, and m012 = |x012|. Since f0, f1 and f2 are mutually distinct, 2 ≤ |f0 ∪ f1 ∪ f2|, and so

2 ≤ m0 + m1 + m2 + m01 + m02 + m12 + m012 ≤ |X|. Thus

m0 + m01 + m02 + m012 = a0,

m1 + m01 + m12 + m012 = a1,

m2 + m02 + m12 + m012 = a2,

m0 + m02 + m1 + m12 = a3,

m0 + m01 + m2 + m12 = a4,

m1 + m01 + m2 + m02 = a5.

For each solution of these equations calculate

(

|X|
m0

)

·
(

|X|−m0

m1

)

·
(

|X|−m0−m1

m2

)

·
(

|X|−m0−m1−m2

m01

)

·
(

|X|−m0−m1−m2−m01

m02

)

·

·
(

|X|−m0−m1−m2−m01−m02

m12

)

·
(

|X|−m0−m1−m2−m01−m02−m12

m012

)

.

The sum of these numbers for all 5-tuples 〈a0, a1, a2, a3, a4, a5〉 then represents the number of all X, F -

triples.

Similarly for the number of all X, F -pairs and X, F -singletons.

For a given |X| the computer program calculates the Erdös number of GX,F for all possible families F

in the lexicographical order. A result is output only when a new minimal value of the Erdös number

is found. The Erdös numbers for |X| = 10, 11, 12, 13, and 14 were completely calculated in the above

fashion.

The programs were written in the programming language C and the results were calculated on VAX 11/780

machine. The results were then later verified on SUN 4/280-S machine. For more on the programming

aspects of the project and for complete list of results see [FR1].
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