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COMPLETION OF FACTOR ALGEBRAS OF IDEALS
B. BALCAR AND F. FRANEK

ABSTRACT. Let S be a k-complete ideal over k. The structure of the comple-
tion of the Boolean algebra p(k)/S is investigated with respect to properties
of the ideal & and the cardinal «. It is shown that under certain conditions
Comp(gp(k)/S) is isomorphic to a collapse algebra.

1. Introduction. In [BV] it is proven that Comp(p(x)/Sx) and Col(w, k™)
are isomorphic if 2¢ = k* and & is a regular uncountable cardinal (and where 3
is the ideal of all subsets of k of size < k). In this paper we extend this result to:

THEOREM 1. Let k be a regular uncountable cardinal such that 2% = IS
Let & be a k-complete nowhere precipitous ideal over k. Then Comp(gp(k) /) and
Col(w, k) are isomorphic.

COROLLARY 2. AssumeV = L. For every regular uncountable cardinal k and
every k-complete ideal S over k, Comp(p(k)/3) and Col(w, k™) are isomorphic.

THEOREM 3. Let k be a singular cardinal. Assume 2% = kt and 2¢7(®) =
cf(k)*.

(1) If ¢f (k) = w, then Comp(gp(k)/S) and Col(ws, &™) are isomorphic.

(2) If cf(k) > w, then Comp(p(k)/Sx) and Col(w, k) are 1somorphac.

REMARK. “If V = L, then Comp(gp(w1)/S) and Col(w,ws) are isomorphic” is
proven independently using a different method in [BTW]. ;

REMARK. Let A = u+ < k. Let & be a A\-complete and not A*-complete ideal
over k. Then p(x)/S as a forcing notion collapses either At to A, or )\ to u (see
[F]). If A = &, the latter happens (see [BTW]).

2. Notation and definitions. Lowercase Greek letters are reserved for ordi-
nals. Let &, 7, u be cardinals.

Let X,Y be sets. p(X) is the set of all subsets of X. XY is the set of all functions
from X into Y,

XA aX iAp<Eny,; X ={Y cX:|Y|=2},
£~ = Z{n": N < A&~ isacardinal}, <*k= U{"n: a € A}
Col(, k) is the Boolean completion of the set of all functions f with dom(f) €
[A]<* and rng(f) C & ordered by the inverse inclusion. (In generic extensions

obtained via Col(), ), the cardinal A is preserved and the cardinal & becomes an
ordinal of size \.)
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If X,Y C p(k), then X CC Y iff (Vy € Y)(3z € X)(z C y); we say that X
refines Y, or that X is a refinement of Y.

If B is a Boolean algebra, then 1p is its greatest element, while 0p is its least
element. Bt = B —{0p}. If b € B, then B|b = {c € B: ¢ < b}. Comp(B) denotes
the Boolean completion of B (it can be defined as the algebra of regular open sets
of the Stone space of B and is unique up to isomorphism).

Let b€ B*. P C BT is a partition of b iff P is a maximal disjoint subfamily of
elements of (B|b)*. If Py, P, are partitions of b, then

P << P, iff(Vce P1)(3d € Py)(c <d);

we say Py refines Py, or that Pj is a refinement of Py. (Py: o < \) is a descending
sequence of partitions of b iff P, << Pz whenever 8 < a < .

3 is a A-complete ideal over k iff I C p(k), I # p(k), S is closed under unions
of size < A and under the subset operation, and 3 contains all singletons of .
I = p(k) — . * ={X C k: (k — X) € Y}, which is the dual filter to S.

For an A € 3 define |4 = {X C k: (XN A) € I} (which also is a A-complete
ideal over k and & C S|A).

Sk = {X C k: |X| < k} is the Fréchet ideal over k.

Let X,Y € Q. Then X C* Y iff (X —Y) € &. P C p(k) is S-disjoint iff
(VX #Y € P)(XNY €89). P C p(k) is an almost disjoint family iff P is
& -disjoint.

Let S € QF, then P C p(S) N St is an S-partition of S iff P is I-disjoint
and maximal. (P,: a € )) is a descending sequence of I-partitions of S iff for
every a € A, P, is an S-partition of S and P, CC P whenever a < 8 < .
Let (P,: n < w) be a descending sequence of -partitions of S. Then a sequence
(Xn:n < w) is a path through (P,: n < w) iff for every n € w, X,, € P,, and also
Xn+1 g Xn-

S is a precipitous ideal iff for every S € 3T and for every descending sequence
(Pn: m € w) of 3-partitions of S, there is a path through with a nonempty inter-
section. 3 is nowhere precipitous iff for every A € T, 3|A is not precipitous.

Let X C k. Define

X/S={Y Ckr: (X-Y)U(Y -X) €S}, p(k)/S={X/S: X Cx},
X/SAY/F=(XNY)/S, X/IFVY/S=(XUY)/S, -X/S=(k-X)/S.

Thus p(k)/Y, A, and V form a A-complete Boolean algebra (for S is A-complete)
with @/% = Q being its smallest element and x/S being its greatest element. For
any £ < A,

Y {Xa/S:a< &)= (U{Xa: a< g}) /9
and

[T{Xa: a< &} = (U{Xa: a< g}) /9.

Let K > 2 and A > w. A Boolean algebra B is (), u, &)-distributive iff for every
sequence (P, : o € ) of partitions of 1p of size < y, here is Q, a partition of 15,
so that (Va € A\)(Vg € Q)(|{p € Pa: pAq#0B}| < k). Bis (), -, k)-distributive iff
the above holds without the restriction on the size of P,’s. B is (), -, k)-nowhere
distributive iff for every b € BT, B|b is not (), -, k)-distributive.
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Let P be a set partially ordered by <. D C P is dense in P iff (Vp € P)(3d €
D)(d < p). P is A-closed iff for any descending sequence (po: @ < ) of length
B < X of elements of P, there is a p € P such that (Va < B)(p € pa)- d(P) =
min{|D|: D is dense in P}.

3. Preliminaries.

LEMMA 4. Let )\ be an infinite cardinal and k be a cardinal > 2. A Boolean
algebra B 1s (), -, k)-nowhere distributive iff there is a sequence (Py: o < X) of
partitions of 1p such that (Vb € B*)(Ja € A)({p € Pa: pAb#0B}| > k).

PROOF. See Lemma 1.11 in [BSV]. O

LEMMA 5. Let )\ be an infinite cardinal and k be a cardinal > 2. Let B be a
complete (], -, k)-nowhere distributive Boolean algebra containing a A-closed dense
subset. Let d(B) = k<*. Then B is isomorphic to Col(), k).

PROOF. See Theorem 1.15 and Corollary 1.16 in [BSV]. O

LEMMA 6. Let k be an uncountable cardinal. Let S be a countably complete
ideal over k.  is mowhere precipitous iff there 1s a descending sequence of 3-
partitions of k with no path through whose tntersection 1s nonempty.

PROOF. Assume that & is nowhere precipitous (the opposite direction is ob-
vious). Note that if A € 3, then (S|4)* C Q+ and so if C € (3|A)T and W
is an (S]A)-partition of C, C € S* and W is an Q-partition of C as well. Since
& is nowhere precipitous, 3|A is not precipitous for any A € St. Le., there are
C € (3]A)* and a descending sequence of (| A)-partitions with no path through

whose intersection is nonempty. Thus there is C € &t so that C C A and

(%) there is a descending sequence (W (C,n): n < w) of S-partitions of
C with no path through whose intersection is nonempty.

We have just shown that the set of all C € &t for which () holds is dense in
(3+,C). Therefore there is an I-disjoint partition F' of  so that (*) holds for
every C € F. Now for every n < w define Wy, = U{W(C,n): C € F}. Since
F is an Q-disjoint family, all Wy,’s are 3-partitions of k and form a descending
sequence of partitions. If (Xn:n < w) is a path through (Wn:n < w), then
Xo € W(C,0) for some C € F and since X, C Xo C C, (Xn: n < w) is a path
through (W (C,n): n < w), and hence its intersection is empty. O

LEMMA 7. Let k,\ be uncountable cardinals. Let S be a A-complete nowhere
precipitous ideal over k. Then p(k)/S 15 (w, -, A1)-nowhere distributive.

PROOF. By Lemma 6 there is a descending sequence (Wp: N < w) of S-
partitions of k with no path through whose intersection is nonempty. We shall
prove that

(VX € §H)(3n < W)({Y € Wa: X/SAY/S # D/} 2 3T).

Then, by Lemma 4, p(k)/S is (w, -, At+)-nowhere distributive. By way of contra-
diction assume (3X € S7)(Vn < w)({Y € Wr: X/SA Y/S}| < AT). Since Wp
is an Q-partition of k, Qn = {Y/S: Y € W, & X/S A Y/ # @/Q} is a parti-
tion of X/S of size < A (in the Boolean algebra 0(k)/S). For each Y/ € Qn
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choose a representative and enumerate them, i.e. Q, = {Y*/S: a < \,}, where
An = |Qn| < A Let Q, = {¥: & < A\,}. Then Q,, is an S-partition of X of size
An. Define Z§ = Yg* and Z3 = Y — U{Y}': B < a} for all & < \,. Since S is
A-complete and A, < A, {Z2: a < A,} is a disjoint 3-partition of X refining Qn
Let Z, = X—UJ{Z%: a < A\x}. Thenevery Z, € Sandso X —|J{Z,: n < w} # 2,
for & is countable complete. Pick any p € X — [J{Z,: n < w}. For every n < w,
p € X and p ¢ Z,, hence there must be some a,, < A, so that p € ZaMEPE
Since (Wy: n < w) is a descending sequence of S-partitions of k, (V2 : n < w) is a
(descending) path through (W, : n < w) which has a nonempty intersection (for it
contains at least p), a contradiction. O

LEMMA 8. Letk, A be cardinals, kK > 2 and A > w. Let B be a (), -, k)-nowhere
distributive Boolean algebra. Then

(1) B is atomless and thus w-closed,

(2) of D C B 1s dense in B, then |D| > k,

(3) Comp(B) is also (A, -, k)-nowhere distributive.

PROOF. Easy, left to the interested reader. 0O

LEMMA 9. Let k,\ be uncountable cardinals. Let I be a \-complete nowhere
precipitous ideal over k so that p(k)/S has a dense set of size \T. Then
Comp(p(k)/¥) and Col(w,A") are isomorphic.

PROOF. Since 3 is A-complete and nowhere precipitous, by Lemma 6, p(x)/S
is (w,-, A")-nowhere distributive. By Lemma 8, Comp(p(k)/3) is also (w,-, A)-
nowhere distributive and d(Comp(p(k)/¥)) > AT. Since p(x)/S has a dense set
of size AT, so does Comp(p(k)/S). Hence d(Comp(p(k)/F)) = At = (AT)<«. By
Lemma 8, p(k)/Y is w-closed. Thus all requirements of Lemma 5 are satisfied and
so Comp(p(k)/S) and Col(w, A™) are isomorphic. O

These were preliminaries needed to deal with ideals over regular cardinals. Let us
now turn our attention to singular cardinals. Unfortunately, we can only describe
the structure of Comp(p(x)/Sk)-

Let w < A = ¢f(k) < k. (Recall that X is regular, p())/S) can be regularly
imbedded into p(k)/S, and Sy is A-complete.)

As usual, for X,Y € [A\]* define X C* Y iff (X - Y) € Sy, i.e. iff [ X - Y| < A.

LEMMA 10. Let A > w be regular. For every X € [A\]* define by induction
hx (o) = min(A — J{hx(B): B < a}) for all a € X. Then
(1) hx s strictly increasing,
(2) (Va € X)(hx(a) < a),
(B) f Y €[A]} and Y C* X, then
(FeXnNY)Vae XNY)(a> B — hx(a) > hy(a)),
(4) if s: X — X s strictly increasing, then (Vo € X)(hx(a) < s(a)).

PROOF. Standard, left to the reader. (Note that hx is the inverse of the
enumeration function for X.) O

LEMMA 11. Letw < XA = cf(k) < k. Assume that there 1s a sequence
(Po: a € p) of x-partitions of A so that (VX € [A})(3a € u)(3Y € Py)(Y C* X).
Then p(k)/Sx s (4, -, kT)-nowhere distributive.
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PROOF. Let k = [J{Qqa: a € A} where (Qqa: a € )) is a disjoint family of subsets
of & so that (|Q4|: @ € \) is a strictly increasing sequence of regular cardinals and
k=S {|Qa|: @ € A}. Let ko = |Qql for every o € A. For any X € [A]* define
X =J{Qa: @ € X}. Let hx: X — X be as in Lemma 10. Define

Sx = (D € [W]*: (Vo € X)(IDN Qal < [Qny(e)&(Ve € (A= X))(DN Qa = D).

Claim 1. For any X € [\]*, Sx is dense in ([X]*, ).
If D € Sx, then D = U{DNQq: a € X} C HQa: ae X} =X,
so D € [X]*. Let Y € [X]*. Then

(Vy € A)(VB e X)(Fa € X)(a> B & Y NQal 2 1Q4])-

If not, then (3y € A)(3F € X)(Va € X)(a > B — [YNQal < [Q4])
and so |Y| < |Qg| + |G4| < k, a contradiction. Thus we can
define by induction a strictly increasing function f: A — X so
that [V 0 Q| > |Q,] for all y € A and 5 < hx(£()) < J(¥):
For every o € X define D, by

(i) if o = f(v) for some v € A, then let D, be a subset of
(Y N Qy(y)) of size > |Q4| but < |Qny(f(y))|- Notice that this is
possible as v < hx(f(7)) and 50 Q4| < [Qnx (s(1)|;

(ii) otherwise Dy = Q.
Let D = |J{Do: @ € X}. Then DC Y, and [D| > Y {|Q+]: v €
mg(f)} = k as mg(f) = A, and also |D N Qa| < |Qhx (el for all
o € X. Hence D € Sx and so the claim is proven.

By Claim 1, for any X € [A]* there is an almost disjoint partition of X consisting
entirely of elements of Sx. Choose one and denote it Rx. Define

We = | J{Bx: X' P}

for every o € p.

Claim 2. Each W, is an almost disjoint partition of .
Clearly, for each Z € W, |Z| = k. Now let 21,2 € Wy. If
Z1,Zy € Rx for some X € P,, then |Z; N Z3| < k. So assume
that Z; € Rx,,Z2 € Rx,, and X; # X3 € P,. Assume by
way of contradiction that |Z; N Z3| = k. If B € Z; N Z3, then
RS Xin Xg, so B € Q- for some v € X; N Xp. Thus there is
a function f: (Z; N Z2) — (X1 N X2) so that € Q). Since
| X1 N X2| < A, and hence | rng(f)| < A, there are v € X; N X, and
Z3 € [Z1 N Z5)" such that f(B) =~ for all 8 € Z3. Then Z3 C Q~,
s0 |@Q4| = &, a contradiction. Hence |Z; N Z3| < k. The claim is
proven.

Claim 3. {Wa: o € u} witnesses that p(k)/S is (4, -, £T)-nowhere distributive.
Let C € [k]*. Then (Vy € A)(VB8 € A)(3a € A)(a > B & |CN
Qal > |Q4]). If not, then (3y € N)(3B € N)(Va € N)(a > B —
|C N Qal < |Q+])- Then |C] < |Qp| + |@4| < &, a contradiction.
Thus there is a strictly increasing sequence (a: v € A) C A so
that [CNQq,| > |Q4|- Let X ={ay: 7€ A}. So X € [A]*. Define
s(ay) =~ for all 4y € X\. Thus s: X — X is strictly increasing and
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therefore hx(a) < s(e) for all @ € X. By the assumption of this
lemma, (36 € p)(3Y € Ps)(Y C* X). Then thereisa@€ X NY so
that hy (a) < hx(a) for all @ € (X NY) —@. Recall that Ry is
an almost disjoint partition of ¥’ consisting of elements of Sy, and
also Ry C Ws. If Z € Ry, then Z € [k]*, Va € Y)(|ZN Q4| <
|Qhy (]) and (Va € X = Y)(Z N Qq = D).

(+) There are at least kT elements of Ry which have an intersection
of size k with C.
If not, let {Z,: p € k} be a list of elements of Ry which contains
all Z € Ry so that |ZN C| = « (if need be, with repetitions). Let
D=CNXNY. Then

() (BeN@veN (v>8& |(D-H2: pensl) NQa,|>1Q41).
Let 3 € A. Since Y C* X,|XNY| = A. There is y € X so that
v>pBand ay € (XNY)-a Ifp < kg, then |Z,NQq,| <
1@hy (a)| £ @hx(a)| < 1Qs(ay)| =1Q~|- Thus

|U{z,,; p < K8} N Qa,| < kg X |Qy] = |Q,]
as y > B and |Q,] = k.

Since oy € XNY,Qo, € XNY. |DNQa, | = [(CNXNY)NQa,| =
|C N Q.| > Q|- Thus

KD = U{Zp: pE ’Qﬁ}) N Qa,

(DNQa,).— (U{Zp: p<kKg} ﬂQav)

Therefore (**) holds.

By () there is a strictly increasing sequence (yg: 8 < A) C A
so that (D —U{Z,: p € £5}) N Qa. 4| > |Q~p|. For each B € X let
Ap be a subset of (D —|J{Z,: p € k3}) N Q.. , of size |Q4a|. Let
A={Ap: B€N}. Then ACD,s0 ACY and AC C. |A] =
2{l4pl: B € A} = 3 {|Qysl: B € A} = Y{kyp: BE A} = k. So
A € |Y|*. Since Ry is an almost disjoint partition of Y, for some
Z € Ry, |ZN A| = k. Then also |Z N C| = k. Therefore Z = Z,,
for some pg € k. Let B € X so that pg < kg and Z N Ag # @.
Let t € ZNAg. Then z ¢ |J{Z,: p < kg},s0z ¢ Z,, =2, a
contradiction. Hence (%) holds.

Thus Claim 3 is proven.

> Q-

This completes the proof of the lemma. 0O

LEMMA 12. Let A > wy be regular. Let B = Col(w, A\"). There is a descending
sequence (P,: n < w) of partitions of 1p such that (Vb € BT)(In < w)(3c €
P,)(c < b) and so that J{P,: n < w} is dense in B.

PROOF [SKETCH|. Let C =<* (A*). For f,ge Clet f < giff g C f. Then
B = Comp((C, %)). For every n < w, let P, =™ (AT). Now it is easy to check that
(Pp:n < w) is a required sequence. O



COMPLETION OF FACTOR ALGEBRAS OF IDEALS 211

LEMMA 13. Let2¥ = w;. There is a sequence (Py: a € wy) of S, -partitions
of w such that (VX € [w]*)(Fa € wy)(3Y € P,)(Y C X).

PROOF. Easy, left to the reader (or follows from Base Matrix Theorem in [BPS]
(see [BVo))).

LEMMA 14. Letw = cf(k) < k. Then p(k)/Sx s wy-closed.

PROOF. Let (kn: n < w) be an increasing sequence of regular cardinals cofinal
in k. p(k)/Sx is atomless, for if X ¢ Sy, then |X| = & and so there is ¥ C X so
that |Y| = k and |X — Y| = &, hence @/S < Y/ < X/ and so X/Si is not
an atom. Thus p(k)/S is w-closed. Let (X,/Sx: n < w) be a strictly decreasing
sequence of elements of p(x)/Sx. Let ¥V, = ({Xm: m < n} for all n < w. Since
X, = Y, UlU{Xn — Xm:m < n} and | H{Xn — Xm:m < n} € Sk, Yn/Sx =
X, /S for every n < w. Thus (V,/Qx: n < w} is a strictly decreasing sequence
of elements of p(k)/S, and therefore |Y;+1 — Y5| = & for all n < w. For each
n < w choose some Ap C (Y, — Ynt1) of size k,. Let A =J{4n:n < w}. Then
|A| = S{kn:n <w} =k, AC Yo, and for every n > 1, A=Y, = J{4:i:1 < n},
hence A C* Y,, and so A C* X,, for all n < w. Thus @/ < A/Sx < Xn /S for
aln<w. O

4. Main results.

PROOF OF THEOREM 1. By Lemma 7, p(x)/S is (w, -, & )-nowhere distribu-
tive and so by Lemma 8 d(p(k)/S) > &*. Since |p(k)/S| < |p(k)| = 2° = &7,
d(p(k/S)) = k* and so p(k)/S has a dense set of size k*. Thus, by Lemma 9,
Comp(p(k)/S) and Col(w, k1) are isomorphic. O

PROOF OF COROLLARY 2. It is known that under V = L, there are no mea-
surable cardinals, and hence no countably complete precipitous ideals (see e.g. [J])
and that the G.C.H. holds. Therefore for any k-complete ideal I over «, all re-
quirements of Theorem 1 are satisfied, and so Comp(gp(x)/S) and Col(w, k) are
isomorphic. O

NOTE. Why cannot Theorem 1 be applied to singular cardinals? For if I is a
k-complete ideal over a singular cardinal k, then x € I and it is a contradiction. Is
it necessary that & be k-complete? As long as we can find a dense set of size At in
0(k)/S, we need just A-completeness (see Lemma 9). Thus we need k-completeness
only to get “close” to the “natural” estimate of the size of p(k)/S.

PROOF OF THEOREM 3. Let x be a singular cardinal. Assume 2* = k™ and
genEl—cifiio)t:

(1) Assume that cf(k) =uw.

By Lemmas 13 and 11, p(k) /S is (w1, -, &*)-nowhere distributive. By Lemma 8,
Comp(p(k)/Sx) is (w1,-,kT)-nowhere distributive. By Lemma 14, p(k)/Sk is
wi-closed. By Lemma 8, d(Comp(p(k)/Sx)) > k*. Since |p(k)/Sk| < 2 =
k*,d(Comp(p(k)/Sx)) = k. Since 2¢ = kt and cf(k) = w,(kT)<* = ol
Therefore, by Lemma 5, Comp(gp(k)/Sx) and Col(w, k™) are isomorphic.

(2) Assume that A = cf(k) > w.

By Theorem 1, Comp(gp()\)/S) is isomorphic to Col(w, AT), for Iy is nowhere
precipitous (see [J] or [JP]), A-complete and 2* = A*. Thus, by Lemma 12,



212 B. BALCAR AND F. FRANEK

there is a descending sequence (P,: n < w) of I -partitions of A so that (VX €
AY(Bn < w)(3Y € P,)(Y C* X). Hence, by Lemma 11, p(k)/Sx is (w,-,k1)-
nowhere distributive. By Lemma 8, Comp(p(k)/S«) is (w,-, k™ )-nowhere dis-
tributive, d(Comp(p(k)/Sx)) > k™, and p(k)/Jx is w-closed. Since |p(k)/Ix| <
2¢ = g, d(Comp(p(k)/Sx)) = k. Clearly (k*)<¥ = k¥ and so, by Lemma 5,
Comp(p(x)/Sx) and Col(w, ™) are isomorphic. O
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