
Solutions to the Oberwolfach problem
for orders 18 to 40

A. Deza1, F. Franek1, W. Hua1, M. Meszka2, and A. Rosa3

1 Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1

email: deza/franek/huaw@mcmaster.ca
2 Faculty of Applied Mathematics

AGH University of Science and Technology
al. Mickiewicza 30 30-059 Kraków, Poland

email: meszka@agh.edu.pl
3 Department of Mathematics and Statistics

McMaster University, Hamilton, Ontario, Canada L8S 4K1
email: rosa@mcmaster.ca

October 10, 2008

Abstract. The Oberwolfach problem (OP) asks whether Kn (for n odd)
or Kn minus a 1-factor (for n even) admits a 2-factorization where each
2-factor is isomorphic to a given 2-factor F . The order n and the type
of the 2-factor F are the parameters of the problem. For n ≤ 17, the
existence of a solution has been resolved for all possible parameters.
There are also many special types of 2-factors for which solutions to OP
are known. We provide solutions to OP for all orders n, 18 ≤ n ≤ 40.
The computational results for higher orders were obtained using the
SHARCNET high-performance computing cluster.

1 Introduction

A 2-factor of a graph G is a 2-regular spanning subgraph of G. A 2-factorization
of G is an edge-disjoint partition of the edge set of G into 2-factors. Determin-
ing if the complete graph K2k+1 has a 2-factorization where the 2-factors are
isomorphic to each other is known as the Oberwolfach problem. The problem,
when generalized to graphs of even order, asks if K2k \ I, where I is a 1-factor,
has a 2-factorization where the 2-factors are isomorphic to each other.

More specifically, an instance OP(n; a1, . . . , am) of the Oberwolfach problem
asks if there is a 2-factorization of Kn (Kn \I for even n) such that each 2-factor
is isomorphic to Ca1 ∪ . . .∪Cam

. Decomposing a graph of order n into 2-factors
necessitates that we have

∑
ai = n, ai ≥ 3.

The problem was first introduced by Gerhard Ringel and named the Ober-
wolfach problem as it was inspired by a question whether participants at a math-
ematical meeting at the Oberwolfach Institute could be seated during various
dinners at the conference so that everybody would sit next to any other partic-
ipant exactly once.



Since the problem was introduced, many papers on the topic have appeared.
With an exception of four cases (OP(6; 32), OP(12; 34), OP(9; 4, 5), and OP(11;
32, 5)) for which solutions are known not to exist, solutions were produced for all
orders n ≤ 17 (see [AB06]) and for many special cases (for instance OP(n; rk, n−
rk) for all n ≥ 6kr − 1, see [HJ01]). A comprehensive survey by B. Alspach can
be found in [CD96], with more up-to-date results in [CD06].

2 Methods

If we consider looking for solutions computationally, the naive brute-force ap-
proach runs in O((n!)b

n−1
2 c) time, and the problem is already intractable for

n ≥ 18. We present five methods of constructing possible solutions for different
instances, all but one depending only on n. These methods facilitate significant
reduction of the search and were successfully used to construct solutions for all
orders between 18 and 40. More precisely, we were able to construct solutions
for OP(n; ·), 18 ≤ n ≤ 40, with the exception of OP(18; 36) and OP(33; 311);
however, solutions for both of these instances are well known since these corre-
spond to an NKTS(18), a nearly Kirkman triple system of order 18 (cf., e.g.,
[VS93,MR01]), and to a KTS(33), a Kirkman triple system of order 33 (cf., e.g.,
[RW71]).

2.1 The method used for n ≡ 3 (mod 4)

This case is the simplest, and most of the remaining cases are variations of this
one. Rather than search for k = n−1

2 edge-disjoint 2-factors of Kn, we seek a
single base 2-factor satisfying certain properties. Developing then this base 2-
factor according to a prescribed group (i.e. letting this group act on the base
2-factor) produces the remaining 2-factors of the 2-factorization.

We identify the vertex set of Kn with the set V = Zk × {1, 2} ∪ {∞}, and
let α : V → V be such that α(∞) =∞, α(ji) = ji + 1 (mod k), j ∈ Zk, i = 1, 2.
We then apply Bose’s well-known “method of pure and mixed differences” (cf.,
e.g., [MH86]).

An edge of F between s, t ∈ Zk×{i} (i = 1, 2), is of pure difference j, j ≤ k
2 ,

of type i if and only if t − s ≡ j (mod k) or t − s ≡ −j (mod k). An edge of
F between s ∈ Zk × {1}, t ∈ Zk × {2} is of mixed difference j if and only if
t − s ≡ j (mod k). Let us call an edge joining ∞ to an element of Zk × {i} an
i-infinity edge.

Necessary and sufficient conditions for the base 2-factor F to produce a 2-
factorization are:

1. F contains exactly one i-infinity edge for i = 1, 2
2. F contains exactly one edge of pure difference j of type i for i = 1, 2,

1 ≤ j ≤ k−1
2

3. F contains exactly one edge of mixed difference j for 0 ≤ j < k



With the given α which is an automorphism of the resulting 2-factorization,
and the conditions on the base 2-factor, exhibiting solutions for these instances
is much faster because of the reduced search space. Finding a base 2-factor at
this point can be done using brute-force backtracking with reasonable pruning.

This method was successfully used for orders 19, 23, 27, 31, 35, and 39.

2.2 The method for n ≡ 0 (mod 4)

Similarly to the first case, we seek a base 2-factor which yields, upon an action
of a group of order k = n−2

2 on it, a 2-factorization of Kn \ I. Here we identify
the vertex set of Kn with Zk × {1, 2} ∪ {∞1,∞2}, and let α : V → V be given
by α(∞i) =∞i, α(ji) = ji + 1 (mod k), j ∈ Zk, i = 1, 2.

The conditions on the base 2-factor F for a 2-factorization remain the same,
except that exactly one mixed difference is forbidden from F ; the edges with this
mixed difference, together with the edge {∞1,∞2} form the 1-factor I deleted
from Kn. In our computations for this case, we forbade the mixed difference 1.

This method was successfully used for orders 20, 24, 28, 32, 36, and 40.

2.3 The method for n ≡ 2 (mod 4)

This method is the same as in the previous case, except that instead of forbidding
a mixed difference, we forbid the pure differences k

2 of type i, i = 1, 2.
This method was successfully used for orders 18, 22, 26, 30, 34 and 38 with

the exception of OP(18; 36) which, as stated before, is already known.

2.4 The method for n ≡ 1 (mod 4)

The method from the first case, where n ≡ 3 (mod 4), can be generalized to
obtain a method for n ≡ 1 (mod 4). After choosing an infinity element ∞, the
remaining vertices are partitioned into r sets of size w = n−1

r , where r is the
largest power of two that divides n− 1.

Let the r sets be Zw × {i}, 1 ≤ i ≤ r. We now seek r
2 base 2-factors in Kn

satisfying certain conditions outlined below such that under the automorphism
α given by α(∞) = ∞, α(ji) = ji + 1 (mod w), j ∈ Zw, i = 1, . . . , r, a 2-
factorization of Kn (with all 2-factors isomorphic) results. Such a 2-factorization
is said to be r-rotational. In this sense, a solution in the case where n ≡ 3 (mod 4)
is a 2-rotational 2-factorization.

Generalizing from section 2.1, we say that an edge between s ∈ Zw ×{i}, t ∈
Zw × {j} has mixed difference k of type (i, j) provided t− s ≡ k (mod w).

Necessary and sufficient conditions on the 2-factors for an r-rotational solu-
tion are:

1. Exactly one edge in the union of the 2-factors is an i-infinity edge, 1 ≤ i ≤ r
2. Exactly one edge in the union of the 2-factors has a pure difference j of type
i, 1 ≤ i ≤ r, 1 ≤ j ≤ w−1

2



3. Exactly one edge in the union of the 2-factors has a mixed difference k of
type (i, j), 1 ≤ i < j ≤ r, 0 ≤ k < w

This method was successfully used for orders 21, 25, 29, and 37. One will
note that for n = 33, we have r = 32, and so the method here is reduced to an
exhaustive search. In this case, we show, by a different method, how to exhibit
solutions for all instances except for OP(33; 311).

Different approach for n ≡ 1 (mod 4) Another method can be used to deal
with the case n ≡ 1 (mod 4). Suppose that w = n−1

2 ; hence w is even. After
choosing the infinity element ∞, partition the remaining vertices into two sets
Zw × {i}, i = 1, 2. To construct a 2-factor F , consider two cases.

Suppose first that F contains a cycle of length at least 5. We need F to
satisfy the following conditions:

1. F has exactly one i-infinity edge for i = 1, 2
2. One component of F of size at least 5 contains the sequence of vertices

(01, (w
2 )1, (w

2 )2, 02)
3. F contains exactly one edge of each pure difference of type 1 and exactly

one edge of each pure difference of type 2
4. Every mixed difference except w

2 appears exactly once in F

The action of the permutation α on the vertex set of F produces w 2-factors
F0, F1, . . . , Fw−1, each isomorphic to F . To get a required 2-factorization, in the
2-factor Fk, for k = w

2 ,
w
2 + 1, . . . , w − 1, we have to replace the path k1, (w

2 +
k)1, (w

2 +k)2, k2 with k1, (w
2 +k)2, (w

2 +k)1, k2. This operation replaces two edges
of pure difference w

2 with two edges of mixed difference w
2 in each 2-factor Fk,

and yields a proper 2-factorization.
Consider now the case when F contains one cycle of length 4 and one cycle

of length 3. We want to find F ′ satisfying the following conditions.

1. F ′ contains the cycle 01,∞, (w
2 )1, j2, 01, where j 6= 0, w

2

2. F ′ contains the cycle 02, (w
2 )2, i1, 02, where i 6= 0, w

2

3. F ′ contains exactly one edge of each pure difference in 1, 2, . . . , w
2 −1 of type

1, and exactly one edge of each pure difference in 1, 2, . . . , w
2 of type 2

4. Every mixed difference appears exactly once in F ′

Similarly to the above, α produces w 2-factors F ′0, F
′
1, . . . F

′
w−1. To get a

proper 2-factorization, in the 2-factor F ′k, for k = w
2 ,

w
2 + 1, . . . , w − 1, we have

to replace the path k1,∞, (w
2 + k)1 with the edge k1, (w

2 + k)1 and moreover the
edge k2, (w

2 + k)2 with the path k2,∞, (w
2 + k)2. Notice that such replacement

does not change the structure of F ′k.
The presented method was successfully used for n = 33 in all cases except in

one case where the 2-factor has to have all its cycles of length 3.



3 Conclusion

Using variations on the 2-rotational approach, we presented five methods for
restricting a search for possible solutions for the Oberwolfach problem. The
methods were successful and we were able to obtain by computer search solutions
for all orders 18 ≤ n ≤ 40, with two exceptions, both of which have known
solutions. For the higher orders we used SHARCNET computing facilities, due
to the size of the search. Our results further substantiate the conjecture that
OP(6; 32), OP(9; 4, 5), OP(11; 32, 5), OP(12; 34) are the only instances which
have no solutions.

Since each order has many types of 2-factors to be considered (and the bigger
the order, the more types to deal with, see Table 1), a complete listing of results
is too large for inclusion in this paper. In the appendix, we list some selected
results. A comprehensive set of results can be found available at
http://optlab.mcmaster.ca/~oberwolfach/.
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A Appendix

A.1 Selected Results

Only selected results are listed here; a comprehensive listing can be found at
http://optlab.mcmaster.ca/~oberwolfach/.

n # of instances n # of instances

18 33 30 331
19 39 31 391
20 49 32 468
21 60 33 556
22 73 34 660
23 88 35 779
24 110 36 927
25 130 37 1087
26 158 38 1284
27 191 39 1510
28 230 40 1775
29 273

Table 1. Number of OP instances by order

(01 ∞1 02 11 21 41 71 12 31 42 52 72 ∞2 51 22 61 62 32)
(01 ∞1 02 11 21 41 71 12 31 42 62 72 22 61 32) (51 52 ∞2)
(01 ∞1 02 11 21 41 71 12 31 62 51 52 72 42) (61 32 22 ∞2)
(01 ∞1 02 11 21 41 71 12 31 62 61 72 42) (51 22 32 52 ∞2)
(01 ∞1 02 11 21 41 71 12 31 62 32 42) (51 22 ∞2 61 72 52)

...

(01 ∞1 02 11 31 12) (21 51 72) (41 42 ∞2) (61 71 22) (32 52 62)
(01 ∞1 02 11 21) (31 61 12 71 32) (41 22 51 62 ∞2) (42 52 72)
(01 ∞1 02 11 21) (31 61 22 32 62) (41 42 71 52) (51 72 12 ∞2)
(01 ∞1 02 11 21) (31 32 51 62) (41 71 12) (61 22 ∞2) (42 52 72)
(01 ∞1 02 11) (21 41 71 22) (31 52 72 ∞2) (51 12 62) (61 32 42)

Fig. 1. Base 2-factors for n = 18



(01 ∞ 02 11 21 41 71 31 12 51 52 81 22 72 61 82 62 32 42)
(01 ∞ 02 11 21 41 71 31 12 51 72 61 62 52 81 32) (22 42 82)
(01 ∞ 02 11 21 41 71 31 12 61 62 51 72 82 32) (81 42 22 52)
(01 ∞ 02 11 21 41 71 31 12 51 52 81 22 42) (61 72 62 32 82)
(01 ∞ 02 11 21 41 71 31 12 51 52 42 62) (61 72 32 81 22 82)

...

(01 ∞ 02 11 21) (31 61 12 22 52) (41 81 42 71 72) (51 32 82 62)
(01 ∞ 02 11 21) (31 61 32 51 72) (41 81 42) (71 12 82) (22 52 62)
(01 ∞ 02 11 21) (31 61 42 81) (41 12 71 82) (51 52 72) (22 32 62)
(01 ∞ 02 11) (21 41 71 52) (31 81 32 42) (51 12 72 22) (61 62 82)
(01 ∞ 02 11) (21 41 71) (31 12 42) (51 72 82) (61 22 62) (81 32 52)

Fig. 2. Base 2-factors for n = 19

(01 ∞1 02 11 21 41 71 31 12 51 22 81 32 52 62 61 82 42 72 ∞2)
(01 ∞1 02 11 21 41 71 31 12 51 22 81 32 72 42 52 ∞2) (61 62 82)
(01 ∞1 02 11 21 41 71 31 12 51 22 81 82 61 ∞2 42) (32 62 52 72)
(01 ∞1 02 11 21 41 71 31 12 51 22 81 32 52 ∞2) (61 62 72 42 82)
(01 ∞1 02 11 21 41 71 31 12 51 22 81 32 ∞2) (61 62 52 72 42 82)

...

(01 ∞1 02 11 21) (31 61 12 51 32) (41 81 22 62) (71 42 ∞2) (52 72 82)
(01 ∞1 02 11 21) (31 61 12 71) (41 62 72 ∞2) (51 22 52 32) (81 42 82)
(01 ∞1 02 11 21) (31 71 12) (41 62 82) (51 81 52) (61 22 ∞2) (32 42 72)
(01 ∞1 02 11) (21 41 71 22) (31 81 42 ∞2) (51 32 61 82) (12 62 52 72)
(01 ∞1 02 11) (21 41 71 22) (31 81 52) (51 12 82) (61 42 ∞2) (32 62 72)

Fig. 3. Base 2-factors for n = 20

{ (01 ∞ 03 11 21 41 02 31 12 22 42 13 32 23 04 33 44 43 34 14 24),
(02 ∞ 04 01 42 41 03 21 23 12 13 43 33 11 24 31 14 22 44 32 34) }
{ (01 ∞ 03 11 21 41 02 31 12 22 42 13 32 23 04 43 14 44) (33 24 34),

(02 ∞ 04 01 42 41 03 23 21 44 31 14 32 24 22 34 12 13) (11 33 43) }

...

{ (01 ∞ 03 11) (21 41 02 12) (31 32 13 43) (22 23 14) (42 04 24) (33 34 44),
(02 ∞ 04 32) (01 22 33) (11 14 21 34) (31 12 03) (41 43 24) (42 13 23 44) }
{ (01 ∞ 03) (11 21 02) (31 32 42) (41 13 04) (12 33 44) (22 14 34) (23 43 24),

(02 ∞ 04) (01 33 43) (11 32 23) (21 41 44) (31 14 24) (12 13 34) (22 42 03) }

Fig. 4. Base 2-factors for n = 21



(01 81 82 02 11 21 41 71 31 91 141 51 12 61 32 101 42 131 22 151 52 62 102 121 132 111

152 92 112 142 72 122 ∞)
(01 81 82 02 11 21 41 71 31 91 141 51 12 61 32 101 42 131 22 151 52 62 112 72 142 121

132 102 122 ∞) (111 92 152)
(01 81 82 02 11 21 41 71 31 91 141 51 12 61 32 101 42 131 22 151 52 62 112 132 92 152

111 122 ∞) (121 102 72 142)
(01 81 82 02 11 21 41 71 31 91 141 51 12 61 32 101 42 131 22 151 52 62 122 92 111 152

102 ∞) (121 132 112 72 142)
(01 81 82 02 11 21 41 71 31 91 141 51 12 61 32 101 42 131 22 151 52 62 122 92 112 72

142) (111 132 121 ∞ 102 152)

...

(01 81 82 02 11) (21 41 71 31 91) (51 101 12 22) (61 72 141 102) (111 62 121 142) (131

32 132 112) (151 42 152 ∞) (52 92 122)
(01 81 82 02 11) (21 41 71 31 91) (51 101 12 72) (61 22 121 152) (111 52 ∞) (131 102

142) (141 92 122) (151 32 42) (62 112 132)
(01 81 82 02 11) (21 41 71 111) (31 91 141 12) (51 22 61 72) (101 52 102 142) (121 32 131

62) (151 42 112 ∞) (92 122 132 152)
(01 81 82 02 11) (21 41 71 111) (31 91 141 12) (51 22 61 122) (101 112 102 142) (121 52

72) (131 152 ∞) (151 42 92) (32 62 132)
(01 81 82 02 11) (21 41 71 111) (31 91 42) (51 101 12) (61 92 152) (121 142 ∞) (131 22

72) (141 112 122) (151 32 52) (62 102 132)

Fig. 5. Base 2-factors for n = 33, with some ai ≥ 5

(01 ∞ 81 142) (21 31 51 91) (41 71 131 152) (61 22 122 112) (101 151 32 102) (111 42 72

52) (11 02 82) (121 92 132) (141 12 62)
(01 ∞ 81 142) (21 31 51 91) (41 71 12 141) (61 72 102) (101 151 122) (111 62 112) (121

42 52) (131 22 92) (32 132 152) (11 02 82)

Fig. 6. Base 2-factors for OP (33; 46, 33) and OP (33; 43, 37)


