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Denote by kt(G) the number of cliques of order t in a graph G having n vertices. Let
kt(n) = min{kt(G) + kt(G)} where G denotes the complement of G . Let ct(n) = kt(n)/

(n
t

)
and ct be the limit of ct(n) for n going to infinity. A 1962 conjecture of Erdős stating that

ct = 21−(t
2) was disproved by Thomason in 1989 for all t � 4. Tighter counterexamples have

been constructed by Jagger, Št’ovíček and Thomason in 1996, by Thomason for t � 6 in
1997, and by Franek for t = 6 in 2002. We investigate a computational framework to search
for tighter upper bounds for small t and provide the following improved upper bounds for

t = 6,7 and 8: c6 � 0.7445 × 21−(6
2), c7 � 0.6869 × 21−(7

2) , and c8 � 0.7002 × 21−(8
2). The

constructions are based on a large but highly regular variant of Cayley graphs for which the
number of cliques and cocliques can be expressed in closed form. Note that if we consider

the quantity et = 2(t
2)−1ct , the new upper bound of 0.687 for e7 is the first bound for any

et smaller than the lower bound of 0.695 for e4 due to Giraud in 1979.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Denote by kt(G) the number of cliques of order t in a graph G having n vertices. Let kt(n) = min{kt(G)+kt(G)} where G
denotes the complement of G . The cliques in G are referred to as cocliques. If we want to be specific about their sizes,
we talk of t-cliques and t-cocliques. Let ct(n) = kt(n)/

(n
t

)
and ct = limn→∞ ct(n). Since we can view G and G as a 2-colouring

of the edges of the complete graph Kn , ct(n) denotes the minimum proportion of monochromatic t-cliques and t-cocliques
for all 2-colourings of the edges of Kn .

A conjecture of Erdős related to Ramsey’s Theorem [2], states that ct = 21−(t
2) . The conjecture is clearly true for t = 2,

and using Goodman’s approach [8], one can show that the conjecture holds for t = 3. One of the motivations behind the
conjecture is the fact that the conjecture holds for any t for random graphs. Erdős and Moon [3] showed that a modified
conjecture for complete bipartite subgraphs of bipartite graphs is true. Sidorenko [11] showed that a modified conjecture
for cycles is true, but not true for certain incomplete subgraphs. Franek and Rödl [5] showed that the original conjecture for
t = 4 is true for nearly quasirandom, and hence quasirandom graphs.

Thomason [12] disproved the conjecture for t � 4 by exhibiting constructions achieving low numbers of cliques and

cocliques. Thomason’s upper bounds from [12] were: c4 � 0.976 × 21−(4
2) , c5 � 0.906 × 21−(5

2) , and ct � 0.936 × 21−(t
2)

for t � 6. These bounds were further improved in [13] to c4 � 0.9693 × 21−(4
2) and c5 � 0.8801 × 21−(5

2) , in [4] to c6 �
0.7446 × 21−(6

2) , and in [9] to ct � 0.835 × 21−(t
2) for t � 7. The construction used in [4] to bound c6 is based on the

approach used by Franek and Rödl [6], who tied the best upper bound for c4. It improves the best upper bound for t = 7 to

c7 � 0.7156 × 21−(7
2) . This bound for c7 was mentioned in a referee report but never formally put forward.
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In this paper we investigate a computational framework to search for tighter upper bounds for small t and give improved

upper bounds for t = 6,7 and 8: c6 � 0.74444 × 21−(6
2) , c7 � 0.6869 × 21−(7

2) , and c8 � 0.7002 × 21−(8
2) .

Concerning the lower bound, see Conlon [1] for a recent improvement over Erdős’s original application of Ramsey’s

Theorem, and Giraud [7] who showed that c4 � 0.695 × 21−(4
2) . Note that if we consider the quantity et = 2(t

2)−1ct , the new
upper bound for e7 is in fact smaller than Giraud’s lower bound for e4; this is the first such upper bound for any et .

2. Constructing counterexamples

In order to improve the upper bound for ct for small t , we follow the approach used in [4,6] and work with graphs for
which the number of cliques and cocliques can be expressed in closed form. This allows a viable search among them for
the ones that exhibit the lowest numbers of cliques and cocliques.

For a positive integer X and F ⊆ {1,2, . . . , X}, we consider the graph G X,F whose vertices are all 2X subsets of
{0,1, . . . , X − 1}, and two subsets xi and x j of {0,1, . . . , X − 1} are connected by an edge if and only if |xi � x j | ∈ F ,
where � denotes the operation of symmetric difference. We clearly have G X,F = G X,F where F = {1,2, . . . , X} − F .

Since it would be too complicated to count cliques in G X,F , we introduce the notion of (X, F )-tuples and count the
(X, F )-tuples instead. Lemma 1 recalls the straightforward relationship between these quantities. For m � 1, an ordered
m-tuple 〈x0, x1, . . . , xm−1〉 is an (X, F )-m-tuple if xi ⊆ {0,1, . . . , X − 1}, |xi | ∈ F for i < m, and |xi � x j | ∈ F for all i 
= j < m.

Lemma 1. The number km+1(G X,F ) of cliques of size m+1 in the graph G X,F satisfies km+1(G X,F ) = 2n

(m+1)! Sm(X, F ) where Sm(X, F )

is the number of (X, F )-m-tuples.

Proof. We simply illustrate the cases m = 1 and m = 2. Case m = 1: let {xi, x j} be a 2-clique; i.e. an edge, in G X,F . Clearly
〈xi � x j〉 and 〈x j � xi〉 are (X, F )-singletons, so we have 2 distinct (X, F )-singletons for each 2-clique and k2(G X,F ) =
2n

2! S1(X, F ). Case m = 2: let {xi, x j, xk} be a 3-clique in G X,F . Clearly 〈xi � x j, xi � xk〉 is an (X, F )-pair of distinct elements.

Considering the permutations of i, j, k we have 3! distinct (X, F )-pairs for each 3-clique and k3(G X,F ) = 2n

3! S2(X, F ). �
For a positive integer d and a graph G of order n, the graph Gd is obtained by replacing each vertex of G by a d-clique;

therefore Gd has dn vertices. Besides the edges within the created d-cliques, there is an edge between two vertices vi

and v j of Gd if and only if an edge existed in G between the two vertices corresponding to the d-cliques containing vi
and v j , i 
= j.

Lemma 2. We have

lim
d→∞

k7(Gd) + k7(Gd)(dn
7

)

= 5040(k7(G) + k7(Ḡ)) + 15120k6(G) + 16800k5(G) + 8400k4(G) + 1806k3(G) + 126k2(G) + k1(G)

n7
.

Proof. A 7-clique in Gd may arise from the following seven cases which correspond to the possible partitioning of num-
ber 7: [{7}], [{1,6}{2,5}{3,4}], [{1,1,5}{1,2,4}{1,3,3}{2,2,3}], [{1,1,1,4}{1,1,2,3}{1,2,2,2}], [{1,1,1,1,3}{1,1,1,2,2}],
[{1,1,1,1,1,2}], [{1,1,1,1,1,1,1}] – we have grouped them by the number of partitions. For illustration, we count the
number Q 2(d) of cliques corresponding to the decompositions [{1,6}{2,5}{3,4}]. We have:

Q 2(d) =
((

2

1

)(
d

1

)(
d

6

)
+

(
2

1

)(
d

2

)(
d

5

)
+

(
2

1

)(
d

3

)(
d

4

))
k2(G) = (

2L1(d) + 6L2(d) + 10L3(d)
)d7

6! k2(G)

where L1(d) = (1− 1
d )(1 − 2

d )(1 − 3
d )(1− 4

d )(1− 5
d ), L2(d) = (1− 1

d )2(1− 2
d )(1− 3

d )(1− 4
d ) and L3(d) = (1− 1

d )2(1− 2
d )2(1− 3

d ).
To derive similar formulas for the other partitions is straightforward, giving

lim
d→∞

k7(Gd)(dn
7

) = 5040k7(G) + 15120k6(G) + 16800k5(G) + 8400k4(G) + 1806k3(G) + 126k2(G) + k1(G)

n7
.

A 7-coclique can only arise in one way, and thus for the number of 7-cocliques, we get

lim
d→∞

k7(Gd)(nd
7

) = 5040k7(G)

n7
. �
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Remark. In general, the coefficients αm,t for km(G) in the formula reducing the computation of limd→∞ kt (Gd)+kt (Gd)

(dn
t )

to

counting cliques and cocliques in the underlying graph G follow a pattern similar to the Pascal triangle equality as we have
αm,t = m(αm,t−1 + αm−1,t−1). See Lemma 2 for the case t = 7. The coefficients for km(G) and other auxiliary results are
available online at [10].

We can set G = G X,F and then substitute km(G X,F ) by Sm−1(X, F ) using Lemma 1, and restate Lemma 2 as:

Lemma 3. For a given pair (X, F ), we have

lim
d→∞

k7(Gd
X,F ) + k7(Gd

X,F )(d2n

7

)

= S6(X, F ) + S6(X, F̄ ) + 21S5(X, F ) + 140S4(X, F ) + 350S3(X, F ) + 301S2(X, F ) + 63S1(X, F ) + 1

26n−20
.

The approach used in [6] is based on an exhaustive search for a pair (X, F ) achieving a low number of cliques and
cocliques for t = 4. The identified best pair (10, {1,3,4,7,8,10}) yields a tie for the best upper bound for c4 and was used

to achieve c6 � 0.7446 × 21−(6
2) . The referee’s report for [6] mentioned that the same pair yields c7 � 0.7156 × 21−(7

2) but
this bound was never formally put forward. In this paper we improve the bounds for ct for t = 6,7 and 8.

3. Computational framework

Lemma 3 provides a closed formula for computing a limit of a special sequence of graphs determined by a given pair
(X, F ). If this limit is small enough, it constitutes a counterexample to the conjecture of Erdős. Thus, the computational
framework consists of a routine to compute all the required Si(X, F )’s for a given pair (X, F ) and a routine performing
a search for the best (X, F ). First, in Section 3.1 we discuss the approach for computing Si(X, F ) that was used previously
in [4,6]. This approach is rather slow and cannot be employed for t > 4. That is why only a single pair (10, {1,3,4,7,8,10})
was used in [4]. Then, in Sections 3.2 and 3.3 we discuss a different approach to the computation of Si(X, F )’s referred to
as m-approach, and a further enhancement based on symmetry. These techniques provide a significant speedup allowing
an exhaustive search for t = 6 and 7 that was previously intractable.

3.1. Straightforward computation of Si

For simplicity, for a given X , X̂ denotes the set {0,1, . . . , X − 1}.

3.1.1. Straightforward computation of S1(X, F )

Generate all possible x0 ⊆ X̂ so that |x0| ∈ F ; then

S1(X, F ) =
∑

|x0|∈F

(
X

|x0|
)

.

3.1.2. Straightforward computation of S2(X, F )

Consider an ordered pair 〈x0, x1〉 of mutually distinct subsets of X̂ . Clearly, x0 ∩ (x0 � x1), x1 ∩ (x0 � x1) and x0 ∩ x1 are
mutually disjoint. Let m0 = |x0 ∩(x0 �x1)|, m1 = |x1 ∩(x0 �x1)| and m01 = |x0 ∩x1|. We have m0 +m01 = |x0|, m1 +m01 = |x1|,
and m0 + m1 = |x0 � x1|. In addition, we have |x0|, |x1| and |x0 � x1| ∈ F . Thus, once generating all possible valid solutions
〈m0,m1,m01〉, we obtain the value of S2(X, F ) by:

S2(X, F ) =
∑

all valid 〈m0,m1,m01〉

(
X

m0

)(
X − m0

m1

)(
X − m0 − m1

m01

)
.

3.1.3. Straightforward computation of Si(X, F ) for i > 2
Similar computations, with increasing computation time, are performed to obtain the values of Si(X, F ). We need

to consider an ordered i-tuple 〈x0, x1, x2, . . . , xi−1〉 of mutually distinct subsets of X̂ , and find all the valid solutions
〈m0,m1,m2, . . .〉. Then we can compute the sum of the corresponding binomial coefficients using a dynamically expanded
and maintained Pascal triangle. Notice that the total number of the solutions increases rather quickly. In general, we have
to consider (2i − 1) solutions to compute Si(X, F ).



12 A. Deza et al. / Journal of Discrete Algorithms 17 (2012) 9–14
Table 1
Ordering of the xi ’s and corresponding coeffi-
cients for S4 computation.

xi ordering Coefficient

|x0| > |x1| > |x2| > |x3| 4!
|x0| > |x1| > |x2| = |x3| 2

(4
2

)
|x0| > |x1| = |x2| > |x3| 2

(4
2

)
|x0| = |x1| > |x2| > |x3| 2

(4
2

)
|x0| > |x1| = |x2| = |x3| (4

3

)
|x0| = |x1| > |x2| = |x3| (4

2

)
|x0| = |x1| = |x2| > |x3| (4

3

)
|x0| = |x1| = |x2| = |x3| 1

3.2. The m-approach to computing Si

In Section 3.1, the Si was obtained by finding all valid solutions and computing the sum of the corresponding binomial
coefficients, a procedure with an O (2i X ) worst-case complexity. Therefore, a more efficient approach is required to speed
up the computation.

The following example illustrates how knowing and storing solutions for Si−1’s can be used to faster obtain solutions
for Si . For the illustration, we consider computing a solution for S3 while having m∗ = 〈m∗

0,m∗
1,m∗

01〉 a valid solution for S2.
We could generate a valid solution m = 〈m0,m1,m2,m01,m02,m12,m012〉 for S3 by reusing m∗ , since m0 + m02 = m0

∗ ,
m1 + m12 = m1

∗ and m01 + m012 = m01
∗ . The following constraints can be used to check the validity: 0 � m0 � m0

∗ , 0 �
m1 � m1

∗ , and 0 � m01 � m01
∗ . Recall that |x2| should be in F , and thus we can calculate m2 directly: as m2 = z − m12 −

m02 − m012 for some z ∈ F . We also need to check the symmetric difference relationships among the xi ’s. However, we only
need to check |x0 � x2| ∈ F and |x1 � x2| ∈ F .

Remark. If m∗ is a valid solution for Si , and m is the corresponding valid solution for Si+1,

Y ∗ =
(

X

m0
∗

)(
X − m0

∗

m1
∗

)(
X − m0

∗ − m1
∗

m∗
2

)(
X − m0

∗ − m1
∗ − m2

∗

m3
∗

)
· · ·

is the corresponding product of the binomial coefficients for m∗ , and

Y =
(

X

m0

)(
X − m0

m1

)(
X − m0 − m1

m2

)(
X − m0 − m1 − m2

m3

)
· · ·

is the corresponding product of the binomial coefficients for m, then

Y = Y ∗
(

m0
∗

m0

)(
m1

∗

m1

)
· · ·

(
m01···i∗

m01···i

)(
X − m0

∗ − m1
∗ − m01

∗ − · · ·
mi

)
.

Similarly, to compute Si we only need to consider 2i−1 m’s, if we reuse the results from the computation of Si−1.

3.3. Exploiting symmetry

This technique to further speed up the computation of Si relies on the inherent symmetries of the mi ’s. We shall
illustrate the technique on S2: if 〈m0,m1,m01〉 is a valid solution for S2 with m0 
= m1, then 〈m1,m0,m01〉 is also a valid
solution. Since the products of the corresponding binomial coefficients for those two solutions are the same, we only need
to compute the product of the binomial coefficients for one solution and multiply it by 2.

Similarly, the symmetries can be exploited for computing Si for i � 2. Thus, one can fix the order of the xi and take into
account multiplicities by multiplying by the corresponding coefficients. We therefore need, for example for the computation
of S7, to consider only about 1% of the total number of solutions. Table 1 shows the coefficients used for S4. The coefficients
for other Si ’s are available online at [10].

Note that while the determination of Si and S̄ i for the first i’s is very fast even without exploiting the symmetry, the
computational gain increases with i. Table 2 shows the number of solutions that need to be computed when we used the
pair (X, F ) = (11, {3,4,7,8,10,11}) to compute S4, S5 and S6.

4. New upper bounds for c6, c7, and c8

Using the approach described in Sections 3.2 and 3.3 we performed an exhaustive search on (X, F ) for X = 9,10,11
and 12 for t = 6 and 7, using code written in C++.
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Table 2
Exploiting symmetry for (X, F ) = (11, {3,4,7,8,10,11}).

i # of solutions in Si # of solutions exploiting symmetry Ratio # of solutions in S̄ i # of solutions exploiting symmetry Ratio

4 15,668 1813 3.0% 4477 794 5.9%
5 377,196 17,625 0.5% 86,978 8214 1.7%
6 9,104,496 160,626 0.08% 1,145,103 55,803 0.46%

Table 3
The values of Si(X, F ) and Si(X, F ) when (X, F ) = (10, {1,3,4,7,8}).

i 1 2 3 4 5

Si(X, F ) 505 125,010 14,562,090 726,780,600 13,191,935,400
Si(X, F̄ ) 518 135,726 17,463,606 1,028,265,840 26,106,252,480

Table 4
The values of Si(X, F ) and Si(X, F ) when (X, F ) = (11, {3,4,7,8,10,11}).

i 1 2 3 4 5 6

Si(X, F ) 1002 490,050 113,148,090 11,590,147,800 506,500,533,000 14,677,396,549,200
Si(X, F̄ ) 1045 556,842 146,860,362 17,896,958,640 950,437,303,200 21,359,851,904,160

Table 5
The values of Si(X, F ) and Si(X, F ) when (X, F ) = (12, {1,3,4,7,8,11,12}).

i 1 2 3 4 5 6 7

Si(X, F ) 2027 2,030,562 986,934,042 223,874,343,000 21,997,023,741,000 868,195,804,568,400 23,207,044,770,478,800
Si(X, F̄ ) 2068 2,158,860 1,120,464,444 279,763,013,640 32,608,321,954,560 1,762,344,151,444,800 47,296,455,155,389,440

Besides the usual testing and verification, we also computationally checked the new program by recomputing previously
known values as well as theoretically known ones. We first computed the values of S1, . . . , S6 for all the previously used
pairs (X, F ) and obtained the same results, using a tiny fraction of the computation time previously required. We then com-
puted the values of S1, . . . , S7 for full families because for such a family {1,2, . . . , X} the number i-tuples can be expressed

using Lemma 1 with a closed form formula Si = (2X −1)!
(2X −i−1)! . The computed and theoretical values coincided, which is a strong

indication that the generation of valid solutions is both sound and complete.

The best results were achieved for t = 6 by (X, F ) = (10, {1,3,4,7,8}) yielding c6 � 0.74444 × 21−(6
2) , see Table 3. For

t = 7 by (X, F ) = (11, {3,4,7,8,10,11}) yielding c7 � 0.6869 × 21−(7
2) , see Table 4.

Representing the pair (X, F ) as the characteristic vector of F as a subset of {1,2, . . . , X}, one notices the best results
for t = 6, respectively t = 7, are obtained with (X, F ) = [1011001100], respectively (X, F ) = [00110011011], so a natural
candidate to consider for t = 8 is (X, F ) = [101100110011]. Setting accordingly (X, F ) = (12, {1,3,4,7,8,11,12}) indeed

yielded an improved upper bound c8 � 0.7002 × 21−(8
2) , see Table 5.

Proposition 1. We have c6 � 0.7445 × 21−(6
2) , c7 � 0.6869 × 21−(7

2) , and c8 � 0.7002 × 21−(8
2) .

5. Conclusion and future work

We presented a computational framework for computing the ratio of monochromatic t-cliques and the number of all
t-subsets for a specific Cayley graph determined by a pair (X, F ). The program allows for searching for counterexamples
to a 1960 Erdős’s conjecture on multiplicities of complete subgraphs. We described a significant speedup obtained by the
so-called m-approach and considering inherent symmetries. As a result, we were able to improve the known upper bounds
for t = 6,7 and 8.

The computational framework presented lends itself to straightforward parallelisations. A parallel version of our program
will allow us to explore larger t ’s and also to enlarge the search space for smaller values of t . The first task thus will be to
search for a better pair (X, F ) for t = 8 to improve the upper bound for c8, and to redo the searches for t = 4,5,6 and 7 in
larger search spaces.
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[4] F. Franek, A note on Erdős’ conjecture on multiplicities of complete subgraphs – lower upper bound for cliques of size 6, Combinatorica 3 (22) (2002)

451–454.
[5] F. Franek, V. Rödl, Ramsey problem on multiplicities of complete subgraphs in nearly quasirandom graphs, Graphs and Combinatorics 8 (1992) 299–308.
[6] F. Franek, V. Rödl, 2-Colorings of complete graphs with a small number of monochromatic K4 subgraphs, Discrete Mathematics 114 (1993) 199–203.
[7] G. Giraud, Sur le problème de Goodman pour les quadrangles et la majoration des nombres de Ramsey, Journal of Combinatorial Theory, Series B 27

(1979) 237–253.
[8] A.W. Goodman, On sets of acquaintances and strangers at any party, American Mathematical Monthly 66 (1959) 778–783.
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