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ABSTRACT. A partial Steiner (k, l)-system is a k-uniform hypergraph G with

the property that every l-element subset of V is contained in at most one edge

of G . In this paper we show that for given k, l and t there exists a partial Steiner

(k, l)-system such that whenever an l-element subset from every edge is chosen,

the resulting l-uniform hypergraph contains a clique of size t. As the main result

of this note, we establish asymptotic lower and upper bounds on the size of such

cliques with respect to the order of Steiner systems.
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1. Introduction

A partial Steiner (k, l)-system ((k, l)-system in short) is a k-uniform hyper-
graph G = (V, E ) with the property that every l-element subset of V is contained
in at most one edge of G . For fixed k and l we denote the set of all (k, l)-systems
by S(k, l). Questions regarding the maximum numbers of edges in (k, l)-systems
have been studied, e.g., in [1], [8], [17]. Another direction of the research was
pioneered by A l e x R o s a [15], [16], who was the first to investigate questions
regarding the chromatic number of Steiner systems. This motivated a further
study on chromatic numbers and independent sets of Steiner systems by a num-
ber of researchers (see, e.g., [4], [5], [6], [9], [12], [18]). The aim of this note is
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to introduce a Ramsey type parameter related to (k, l)-systems. The following
notion of a selector is essential for the discussion. Let l < k be integers and
H = (V, E ) be a k-uniform hypergraph. A selector is a function S : E → [V ]l

satisfying S(E) ⊂ E for every E ∈ E . Moreover, denote by K
(l)
n the l-uniform

complete hypergraph of order n. With this concept in mind we start with the
following reformulation of the Ramsey theorem (see, e.g., [10], [14]), which in
particular says that there exists the smallest integer Rl(k, t) such that any blue-
red coloring of the edges of K

(l)
Rl(k,t) yields either a blue copy of K

(l)
k or a red

copy of K
(l)
t .

������� 1.1� Let k, l, t be integers satisfying l ≤ min{k, t}. Then, there exists
n such that the hypergraph K

(k)
n = (V, E ) has the following property. For any

selector S : E → [V ]l the l-uniform hypergraph
(
V, S(E )

)
contains a clique K

(l)
t .

Note that the smallest such integer n equals Rl(k, t). In this note we are
interested in an extension of Theorem 1.1 with

(
V,

(
V
k

))
replaced by a “sparse”

hypergraph. Clearly, if (V, E ) is a partial (k, l−1)-system, then for any selector S

and E, E′ ∈ E , E �= E′, |S(E) ∩ S(E′)| ≤ l − 2 holds, and consequently, the
l-uniform hypergraph

(
V, S(E )

)
cannot contain a clique K

(l)
t . We show, however,

that with a conveniently chosen (k, l)-system Theorem 1.1 remains true.

������� 1.2� Let k, l, t be integers satisfying l ≤ min{k, t}. Then, there exists
a (k, l)-system T = (V, E ) such that for any selector S : E → [V ]l the l-uniform
hypergraph

(
V, S(E )

)
contains a clique K

(l)
t .

The special case of Theorem 1.2 (for k = 3 and l = 2) follows from the result
of the second author [7], where it was shown that for any positive integer t and
n large enough every projective Steiner triple system PG(n, 2) (cf. [3]) satisfies
the conditions of Theorem 1.2. In other words (for k = 3 and l = 2), projective
Steiner triple systems PG(n, 2) have the property of (3, 2)-system T with n

sufficiently large.

Theorem 1.2, though quite powerful, gives no explicit estimate of the size of
the graph T . A quantitative extension of Theorem 1.2 is the main result of this
note.

Let H be an l-uniform hypergraph. Define the clique number of H as

ω(H ) = max
{
t ∈ N : H ⊇ K

(l)
t

}
.
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Let G = (V, E ) be (k, l)-system. Define also the clique number for (k, l)-system
as

ω(G , k, l) = min
{
ω
(
(V, S(E ))

)
: S is a selector on G

}
.

Furthermore, let

ω(n, k, l) = max
{
ω(G ) : G is (k, l)-system of order n

}
.

Theorem 1.2 states that for any fixed k and l the function ω(n, k, l) → ∞ as
n → ∞. For partial Steiner triple systems (PSTS), i.e., where k = 3 and l = 2,
we show the following explicit bounds.

������� 1.3�

(1 − o(1)) log2 log2 n ≤ ω(n, 3, 2) ≤ 2 log3 n + 1.

2. Proof of Theorem 1.2

Let ≤ be a linear ordering of vertices V . For a given hypergraph G = (V, E )
denote by (G ,≤) the hypergraph with linear ordering ≤ on its vertices. Let
(G ,≤) and (H ,≤) be two ordered hypergraphs with G = (V, E ) and H =
(W, F ). Say the mapping φ : V → W is an ordered embedding if for all v < v′,
v, v′ ∈ V , φ(v) < φ(v′), and {φ(v1), φ(v2), . . . , φ(vk)} ∈ F if and only if
{v1, v2, . . . , vk}∈ E .

We use the Ramsey theorem for Steiner systems established by J. N e š e t ř i l
and the third author.

������� 2.1� ([13]) Let (G ,≤) be an ordered k-uniform hypergraph such that
G ∈ S(k, l). Let r ≥ 2 be an integer. Then, there exists an ordered k-uniform
hypergraph (H ,≤) with H ∈ S(k, l) and such that for every partition of the
edges E (H ) = E1 ∪ E2 ∪ · · · ∪ Er there exists i, 1 ≤ i ≤ r, and an ordered
embedding φ : V (G ) → V

(
(V, Ei)

)
.

P r o o f o f T h e o r e m 1.2. First we are going to define an ordered Steiner
system (G ,≤) to which we will apply Theorem 2.1. Let [k] = {1, . . . , k}. For each
L ∈ (

[k]
l

)
consider an ordered set TL, |TL| = t, so that for L �= L′, TL ∩ TL′ = ∅.

Now for each TL, where say L = {m1 < · · · < ml}, and every l-element subset
U = {u1 < · · · < ul} ⊂ TL consider a k-element set V (L, U ) = {v1 < · · · < vk}
such that:
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(i) vmi
= ui for each i = 1, . . . , l, and

(ii) V (L, U ) ∩ V (L, U ′) ⊂ TL for each L, and

(iii) V (L, U ) ∩ V (L′, U ′) = ∅, whenever U �= U ′.

Observe that (ii) and (iii) is equivalent to saying that the sets V (L, U )\U are
pairwise disjoint for distinct U and L. For each L ∈ (

[k]
l

)
set

VL =
⋃{

V (L, U ) : U ∈ (
TL

l

)}
and

V =
⋃{

VL : L ∈ (
[k]
l

)}
.

Let

EL =
{
V (L, U ) : U ∈ (

TL

l

)}
, (1)

and

E =
⋃{

EL : L ∈ (
[k]
l

)}
. (2)

Clearly G = (V, E ) is (k, l)-system. Let ≤ be an arbitrary linear extension of the
order we considered on elements of V . Let r =

(
k
l

)
and let (H ,≤) be a graph

guaranteed by Theorem 2.1. We claim that T is the desired graph H .

Consider an arbitrary selector S : H → (
V (H )

l

)
(for convenience we identify

H with its edge set). Consider the following partition of the edges of H as

H =
⋃{

HL : L ∈ (
[k]
l

)}
,

where HL =
{
E ∈ H : E = {x1 < · · · < xk} and S(E) = {xi : i ∈ L}}.

By Theorem 2.1 there exists L0 ∈ (
[k]
l

)
and a copy of (G ,≤) in (H ,≤), say

(G0,≤), such that E(G0) ⊂ HL0 . In particular, all edges E = {x1 < · · · < xk}
of EL0 ⊂ E(G0) (cf. (1) and (2)) have the property that S(E) = {xi : i ∈ L0}.
Consequently, the set TL0 =

⋃{
S(E) : E ∈ EL0

}
induces a clique K

(l)
t . �

3. Proof of Theorem 1.3

First, we find an upper bound on ω(n, 3, 2) by using a simple probabilistic
argument.
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P r o o f o f T h e o r e m 1.3 (upper bound). We show that for sufficiently
large n the following inequality holds:

ω(n, 3, 2) ≤ 2 log3 n + 1. (3)

In order to prove (3), it suffices to show that ω(G , 3, 2) ≤ 2 log3 n + 1 for any
PSTS G of order n. For a given PSTS G = (V, E ) with |V | = n we show that
there exists a selector S : E → [V ]2 for which (M, S(E )∩ [M ]2) is not a complete
graph, i.e., S(E ) ∩ [M ]2 �= [M ]2, whenever M ⊆ V and |M | > 2 log3 n + 1.
Let S : E → [V ]2 be a random selector defined by Pr(S = S) = 1

(3
2)

|E | for every

possible selector S on G . For a fixed set M with |M | = m we have

Pr
(
S(E ) ∩ [M ]2 = [M ]2

) ≤ 3−(m
2 ),

since from 3|E | selectors at most 3|E |−(m
2 ) of them keep [M ]2 complete. Thus,

Pr
((∃M ∈ [V ]m

)(
S(E ) ∩ [M ]2 = [M ]2

)) ≤
(

n

m

)
3−(m

2 ),

and equivalently

Pr
(( ∀M ∈ [V ]m

)(
S(E ) ∩ [M ]2 �= [M ]2

)) ≥ 1 −
(

n

m

)
3−(m

2 ). (4)

Note that for m > 2 log3 n + 1 we get
(

n
m

) ≤ nm <
(
3

m−1
2

)m

= 3(m
2 ). Con-

sequently, the right side of (4) is positive, i.e., there exists a selector with the
required property. �

In order to prove the lower bound on ω(n, 3, 2) we need to show the existence of
the PSTS with the property that any selector chooses a clique of size Ω

(
ln lnn

)
.

To this end, we construct a PSTS with the property that any sufficiently large
subset of its vertices induces many triples. We need one auxiliary result, i.e.,
Proposition 3.3, which follows from a special version of Lovász Local Lemma,
i.e., Corollary 3.2. Let A1, . . . , An be events in a probability space. A graph
Γ = (V, E) on the set vertices {1, 2, . . . , n} is called a dependency graph for the
events A1, . . . , An if for each i, 1 ≤ i ≤ n, the event Ai is mutually independent
of all the events

{
Aj : {i, j} /∈ E

}
.
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����� 3.1 (Lovász Local Lemma)� (see, e.g., [2]) Suppose that Γ = (V, E)
is a dependency graph for the events A1, . . . , An and suppose there are real num-
bers x1, . . . , xn such that 0 < xi < 1 and Pr(Ai) ≤ xi

∏
{i,j}∈E

(1 − xj) for all

1 ≤ i ≤ n. Then, Pr
( n⋂

i=1

Āi

)
> 0, i.e., with positive probability no event Ai

holds.

In the proof of Proposition 3.3 we will use the following consequence of
Lemma 3.1.

	���

��� 3.2� (For a similar result see [19].) Let A1, . . . , An be events with
a dependency graph Γ = (V, E). Suppose, there exist real numbers y1, . . . , yn, δ

such that 0 < δ < 1, 0 < yi Pr(Ai) ≤ δ and
∑

{i,j}∈E

yj Pr(Aj) ≤ (1 − δ) ln(yi) for

all 1 ≤ i ≤ n. Then, Pr
( n⋂

i=1

ĀI

)
> 0.

P r o o f. For each i, 1 ≤ i ≤ n, set xi = yi Pr(Ai). Note that 0 < xi < 1 and
∏

{i,j}∈E

(1 − xj) =
∏

{i,j}∈E

(
1 − yj Pr(Aj)

) ≥
∏

{i,j}∈E

exp
( −yj Pr(Aj)

1 − yj Pr(Aj)

)

= exp
(
−

∑
{i,j}∈E

yj Pr(Aj)
1 − yj Pr(Aj)

)
≥ exp

(
−

∑
{i,j}∈E

yj Pr(Aj)
1 − δ

)

≥ exp
(− ln(yi)

)
=

1
yi

=
Pr(Ai)

xi
,

and hence, the assumptions of Lemma 3.1 are satisfied. �

���������� 3.3� There exists a positive constant c such that for any ε > 0 and
any sufficiently large n ≥ n0(ε) there exists a PSTS G = (V, E ) with |V | = n

and with the property that whenever M ⊆ V with |M | = m ≥ n
1
2+ε, then

|E ∩ [M ]3| > c
2n

(
m
3

)
.

P r o o f. By a standard averaging argument it is enough to show that the state-
ment holds for m =

⌈
n

1
2+ε

⌉
. Set c = 1

102 and ε > 0 be given. Let G = (V, E)
be a random 3-uniform hypergraph with vertex set V , |V | = n, and with hy-
peredges chosen independently with probability p = c

n . For L ∈ [V ]4 let AL be
the event that |E ∩ [L]3| ≥ 2, i.e., there is a pair, which is contained in at least
two triples. For M ∈ [V ]m let BM be the event that |E ∩ [M ]3| ≤ p

2

(
m
3

)
. Note

that for L, L̂ ∈ [V ]4, AL is independent of all AL̂ with |L ∩ L̂| < 3. Similarly,

114



CLIQUES IN STEINER SYSTEMS

for M ∈ [V ]m, BM is independent of all AL and BM̂ with |M ∩ L| < 3 and
|M ∩ M̂ | < 3, respectively. Let

A =
⋂

L∈[V ]4

ĀL ∩
⋂

M∈[V ]m

B̄M .

If Pr(A) > 0, then there is a 3-uniform hypergraph G = (V, E ) which is a
PSTS (no pair is covered more than once) such that for any M ⊆ V we have
|E ∩ [M ]3| > p

2

(
m
3

)
.

In order to complete the proof, we show that Pr(A) > 0. According to
Corollary 3.2 (applied with δ = 1

100 ), it suffices to find positive real numbers yL

and zM , for all L ∈ [V ]4 and M ∈ [V ]m, so that

yL Pr(AL) ≤ 1
100

, (5)

zM Pr(BM ) ≤ 1
100

, (6)
∑

|L̂∩L|≥3

yL̂ Pr(AL̂) +
∑

|M∩L|≥3

zM Pr(BM ) ≤ 99
100

ln(yL), (7)

and ∑
|L∩M |≥3

yL Pr(AL) +
∑

|M̂∩M |≥3

zM̂ Pr(BM̂ ) ≤ 99
100

ln(zM ). (8)

First, let us estimate Pr(AL) and Pr(BM ). For each L ∈ [L]4

Pr(AL) =
(

4
2

)
p2(1 − p)2 +

(
4
3

)
p3(1 − p) + p4 < 6p2,

since p ≤ 1. Hence, for every L ∈ [V ]4 we have

Pr(AL) ≤ 6c2

n2
. (9)

To estimate Pr(BM ) we will use Chernoff’s inequality (see, e.g., [11, Theo-
rem 2.1]). Let X ∼ B

((
m
3

)
, p

)
be a random variable with binomial distribution.

Then, E[X] =
(
m
3

)
p and Chernoff’s inequality yields

Pr(BM ) = Pr
(
X ≤ 1

2
E[X]

)
≤ exp

(
−1

8
E[X]

)
= exp

(
−1

8
c

n

(
m

3

))
.

Hence, for sufficiently large n,

Pr(BM ) < exp
(
− c

50
m3

n

)
. (10)
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Now for every L ∈ [V ]4 define

yL = 1 +
1
n

,

and for every M ∈ [V ]m define

zM = exp
(

c

100
m3

n

)
.

For a given L ∈ [V ]4 and n large enough, we obtain by (9)

yL Pr(AL) ≤
(
1 +

1
n

)6c2

n2
≤ 1

100
.

Similarly, since m =
⌈
n

1
2+ε

⌉
, (10) yields for n large enough

zM Pr(BM ) ≤ exp
(

c

100
m3

n

)
exp

(
− c

50
m3

n

)
= exp

(
− c

100
m3

n

)
≤ 1

100
.

Thus, conditions (5) and (6) are satisfied. To complete the proof of Proposi-
tion 3.3 we need to show that conditions (7) and (8) are satisfied as well.

For a given L ∈ [V ]4 the number of L̂’s such that L̂ ∈ [V ]4 and |L̂ ∩L| ≥ 3 is(
4
3

)
(n − 4) < 4n, and the number of M ’s such that M ∈ [V ]m and |L ∩ M | ≥ 3

is trivially less than
(

n
m

) ≤ (
ne
m

)m, where e denotes the base of the natural
logarithmic function. Thus,

∑
|L̂∩L|≥3

yL̂ Pr(AL̂) +
∑

|M∩L|≥3

zM Pr(BM )

≤ 4n

(
1 +

1
n

)
6c2

n2
+

(
ne
m

)m

exp
(

c

100
m3

n

)
exp

(
− c

50
m3

n

)

=
(

1 +
1
n

)
24c2

n
+ exp

(
m

(
− c

100
m2

n
+ ln

(ne
m

)))
. (11)

Since m =
⌈
n

1
2+ε

⌉
, then for sufficiently large n we have − c

100
m2

n + ln
(

ne
m

) ≤ −1.
Hence, the second term of (11) can be estimated by

exp
(

m
(
− c

100
m2

n
+ ln

(ne
m

)))
≤ exp (−m) ≤ exp

(−√
n

)
,
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which yields in (11) for sufficiently large n

(
1 +

1
n

)
24c2

n
+ exp

(
m

(
− c

100
m2

n
+ ln

(ne
m

)))

≤
(

1 +
1
n

)
24c2

n
+ exp

(−√
n

)
=

99
100

2400c2

99

(
1 +

1
n

)
1
n

+ exp
(−√

n
)
. (12)

One can check that for a < 1 and x positive and sufficiently small number
a(1 + x)x < ln(1 + x). Applying this inequality with a = 2400c2

99 < 1 (recall
c = 1

102 ) yields that the right-hand side of (12) can be bounded from above (for
n large enough) by 99

100 ln
(
1 + 1

n

)
. Thus,

∑
|L̂∩L|≥3

yL̂ Pr(AL̂) +
∑

|M∩L|≥3

zM Pr(BM ) ≤ (11) ≤ (12) ≤ 99
100

ln(yL),

which proves (7).

Similarly, we show that (8) also holds. For a given M ∈ [V ]m, the number of
L’s such that L ∈ [V ]4 and |L ∩ M | ≥ 3 is at most

(
m
3

)
(n − 3) ≤ m3n

6
. Again

the number of M̂ ’s such that M̂ ∈ [V ]m and |M ∩ M̂ | ≥ 3 is trivially less than(
n
m

) ≤ (
ne
m

)m. Thus,

∑
|L∩M |≥3

yL Pr(AL) +
∑

|M̂∩M |≥3

zM̂ Pr(BM̂ )

≤ m3n

6

(
1 +

1
n

)
6c2

n2
+

(
ne
m

)m

exp
(

c

100
m3

n

)
exp

(
− c

50
m3

n

)

=
(

1 +
1
n

)
c2m3

n
+ exp

(
m

(
− c

100
m2

n
+ ln

(ne
m

)))

≤
(

1 +
1
n

)
c2m3

n
+ exp

(−√
n

)
. (13)

Since c < 99
10000 (recall c = 1

102 ), then for n large enough
(
1 + 1

n

)
c < 99

10000 as
well. Consequently,

∑
|L∩M |≥3

yL Pr(AL) +
∑

|M̂∩M |≥3

zM̂ Pr(BM̂ )
(13)

≤ 99
100

c

100
m3

n
=

99
100

ln(zM ).

This completes the proof of Proposition 3.3. �

117



ANDRZEJ DUDEK — FRANTIŠEK FRANĚK — VOJTĚCH RÖDL

P r o o f o f T h e o r e m 1.3 (lower b o u n d). We show that for sufficiently
large n the following inequality holds:

(1 − o(1)) log2 log2 n ≤ ω(n, 3, 2). (14)

Let c, ε (with 1
2 > ε > 0), and n0 be from Proposition 3.3. Let c1 be a

positive constant such that c
2n

(
m
3

) ≥ c1
m3

n , for n ≥ n0 and n ≥ m ≥ n
1
2+ε.

Proposition 3.3 guarantees the existence of a PSTS G = (V, E ) with |V | = n,
which satisfies

|E ∩ [M ]3| >
c

2n

(
m

3

)
≥ c1

m3

n
, (15)

whenever M ⊆ V and |M | = m ≥ n
1
2+ε (since c = 1

102 works in Proposition 3.3,
c1 = 1

1250 satisfies (15)). Let S : E → [V ]2 be a selector on G . Then, for any
M ⊆ V with m ≥ n

1
2+ε the number of edges S(E ) induced on the set M is at

least |E ∩ [M ]3|. Hence,

|S(E ) ∩ [M ]2| ≥ |E ∩ [M ]3| ≥ c1
m3

n
. (16)

We construct a clique of size log2 log2 n − O(1). Set M1 = V . Since |M1| =
n ≥ n

1
2+ε, (16) yields that

|S(E ) ∩ [M1]2| ≥ c1
n3

n
= c1n

2.

Consequently, there must be an element a1 ∈ M1 and a set M2 ⊆ M1 with
|M2| ≥ 2c1n2

n
= 2c1n such that {a1, x} ∈ S(E ) for any x ∈ M2.

Set c2 = 2c1. Then, |M2| ≥ c2n. If c2n ≥ n
1
2+ε, then (16) infers that

|S(E ) ∩ [M2]2| ≥ c1
(c2n)3

n
= c1c

3
2n

2.

Thus, there must be an element a2 ∈ M2 and a set M3 ⊆ M2 with |M3| ≥
2c1c3

2n2

c2n = 2c1c
2
2n such that {a2, x} ∈ S(E ) for any x ∈ M3.

In general, set ci+1 = 2c1c
2
i , which leads to ci+1 = (2c1)2

i−1 =
(

1
625

)2i−1. We
can carry on with this construction as long as cin > n

1
2+ε. If i0 is the largest

such i, then ci0n = Θ
(
n

1
2 +ε

)
or equivalently 625(2i0−1) = Θ

(
n

1
2−ε

)
, which

yields i0 ≥ log2 log2 n − O(1). �
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4. Concluding remarks

Our main tool to find the lower bound on ω(n, 3, 2) was Proposition 3.3.
In particular, for a given PSTS G = (V, E ), a selector S, and a set M ⊆ V ,
|M | > n

1
2+ε, we concluded in (16) that the number of edges S(E ) induced on

the set M is at least |E ∩ [M ]3|. However, it looks very likely that in general
this number, i.e., |S(E ) ∩ [M ]2|, is much bigger. In fact, there are many edges
in S(E )∩ [M ]2, which are contained in triples that do not lie entirely in M . We
conjecture that the right magnitude of ω(n, 3, 2) is log2(n).

	��������� 4.1� There exists a constant c such that

c log2(n) ≤ ω(n, 3, 2).

We believe that our proof of Theorem 1.3 can be modified to give similar
bounds on ω(n, k, 2). The problem of estimating ω(n, k, l), l ≥ 3, seems to be
however harder.
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