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ISOMORPHISMS OF TREES
FRANTISEK FRANEK

ABSTRACT. Let k,) be cardinals, k > ®; and regular, and 2 < A < k. If
k > Ry and A < k, and if there is a k-Suslin (k-Aronszajn, k-Kurepa) tree,
then there are 2% normal M-ary rigid nonisomorphic x-Suslin (k-Aronszajn,
k-Kurepa) trees. If there is a Suslin (Aronszajn, Kurepa) tree, then there is a
normal rigid Suslin (Aronszajn, Kurepa) tree. If there is a k-Canadian tree,
then there are 2 normal A-ary rigid nonisomorphic k-Canadian trees.

Introduction. The number of automorphisms of a given tree and the number
of nonisomorphic trees of the same type have been investigated in several papers.
It is known that

(1) it is consistent with ZFC that (a) there is a rigid Suslin tree; (b) there is a
Suslin tree with 28¢ automorphism; (c) there is a Suslin tree with 2% automor-
phisms;

(2) the same as above for Kurepa trees;

(3) it is true in ZFC that (a) there are 2% nonisomorphic totally rigid Aron-
szajn trees; (b) there is an Aronszajn tree with 2% automorphisms; (c) there is an
Aronszajn tree with 2% automorphisms.

These results can be found in [GS, J2, J3, J4, D and T|. We shall prove that
for k-trees for k regular and k > N; the situation is uniform, i.e. we shall prove
that if there is a normal k-tree then there are 2* nonisomorphic rigid normal trees
of the “same type”. For trees of height x with levels of size < « it will work even
when k > N;. For details see [F].

Notation and definitions. We shall use standard set-theoretical notation as
possible. For all basic definitions about trees, see [J; and Jg]. If (T, <) is a tree,
x € T, then o(z) is the order type of z. T, denotes the ath level of T i.e. the set
of all nodes of T of the order type a. h(T) denotes the height of T'. A tree (T, <)
is normal iff

(1) every = € T has at least two immediate successors;

(2) if @ € h(T) is limit and z # y € Ty, then there are f < a and 2, # 2, € T
so that z; < z and z, < y; :

(3) every z € T has a successor on every higher level of 7.

T is a A-ary tree () a cardinal), if every = € T has exactly A immediate successors.

Note. If (T, <) is a normal tree, then there is a unique (up to isomorphism)
complete Boolean algebra B with the canonical ordering <’ so that ' C B and
<'|T' = <71 and T is a dense subset of B. If h(T) is a limit ordinal, then B is
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atomless. If T is v-ary, then every element of B — {Op} can be partitioned into v
mutually disjoint elements of B — {Op}.

Let B be a complete Boolean algebra with the canonical ordering <’. Let (T, <)
be a normal v-ary tree dense in B. B(v,T) is the set of all elements of B that are a
union of an antichain of T' of size v. If z € B—{Op}, then Blz = {y € B:y <z} =
{z Ay:y € B} (note that B|z with the restricted operations is again a complete
Boolean algebra and Op|, = Op and 1|, = z). B(v,T)|z = B(v,T)NB|z. A tree
(R,<R) is built in B(v,T)|z if R C B(y,T)|z , <' |R = <z' and }_ Ry = z for
every a < h(R).

T is a k-Canadian tree if T has height «, all levels of size < k, and at least
kT cofinal branches (i.e. branches of the length A(T)). A Canadian tree is an N;-
Canadian tree. A Canadian tree is nice if there is a cofinal branch passing through
every node.

Preliminaries.

LEMMA 1. Let k > Ny, be regular. Then there are mutually disjoint sets
K, Ky, K3 of size k and a function h so that

(1) K1 UKy UKs = {\ € k: X 1s limit};

(2) (Vv € K1 U K3)(y +w € K3);

(3) h:k x k X k — K 1s a bijection such that h(c, 8,7) > a for all o, B,~ € k.

PROOF. Left to the reader. O

LEMMA 2. Let k,A and v be cardinals, k > Ny and regular, 2 < X\ < k and
v =max{\, N1 }. Then there are two nonisomorphic normal \-ary trees R® and R
of height (w + 1) such that all their levels are of size < A -Rg and |R¥| = v.

PROOF. (a) Case when 2 < A < Rq. Let R2 = R¥ = ") for every n € w. For
every f € <“) choose some gy € “) so that gs|dom(f) = f. Let R} = {gs: f €
<@)}. Then R C “) and |RY| = Ro. Since [“A| > Xy, there is some R¥ C “) so
that [R¥| = 8; and R} C RY. Let R® = J{R%: @ < w} and R* = |J{R*: 0 < w}.
For f,g € R®(RY) define f > g iff f D g. Then R®, R are normal A-ary trees of
height (w + 1) with all levels countable, but |R¥| = X; = v. R? and R are not
isomorphic for |R’| # |RY|.

(b)Case when Ry < X < k. If f € ¥}, then f = 0 iff (In € w)(Vm € w)
(m>n= f(m)=0). Let R, = {fla: f €“) & f =0}, for all @ < w. Let R® =
U{R%: a < w}. For f,g € R define f > giff f O g. Then (R?, <) is a normal \-ary
tree of height (w + 1) with all levels of size < A. Let T be a normal binary tree of
height (w + 1) so that |T,,| = Ro. Let R¥ be a product of A copies of T. Then R¥
is a normal \-ary tree of height (w + 1) with all levels of size \. R® and RY are not
isomorphic, for R* contains a copy of a binary tree, while R* does not. O

LEMMA 3. Let k,\,v be cardinals, k > Ry and reqular, 2 < A\ < k and v =
max{\,R;}. Let T be a normal v-ary tree of height k dense in a complete Boolean
algebra B. Let x € B—{Op}.Then there are two nonisomorphic A-ary normal trees
T* and T® of height (w + 1) with all levels of size < X - g built in B(v, T)|z and
sothat T} CT.

PROOF. (HINT) Build 7% in B(v,T)|z as an isomorphic copy of R* and T®
as an isomorphic copy of R® (R*,R® from Lemma 2), using the fact that every
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nonzero element of B(v,T)|z can be partitioned into v mutually disjoint nonzero
elements of B(v,T). O

Results.

THEOREM 4. Let k,\,v be cardinals, k > Ry and regular, 2 < X\ < k and
v = max{\,N;1}. Let (I) K > Ry and T be a normal v-ary k-tree, or (II) T be a
normal nice v-ary k-Canadian tree. Let T be dense in a complete Boolean algebra
B with the canonical ordering <. Then there 1s a sequence (R%:0 € 2%) so that

(1) R® with <~' is a rigid normal \-ary tree of height k with as many cofinal
branches as T'; in case (1), R® is a k-tree, in case (I), R? is a k-Canadian tree;

(2) RY is dense in B;

(3) if 61 # 02 € 2%, then RO and R%? are not isomorphic.

PROOF. Let Ki, K, K3 and h be as in Lemma 1. Let P(K3) = {Xp:0 € 2~}.
Fix 6 € 2. We shall describe the construction of R?. For simplicity we shall omit
the superscript 6. Let X = Xj.

By transfinite recursion we shall construct two sequences (R,:a < k) and
(fo: @ € k) so that, for any a < &,

(i) Rq is a partition of 15 of size < £ (in case (I)) or < k (in case (II));

(i) Ra C B(v, T);

(iii) Ra+w C T whenever a € Ks;

(iv) Rla+1 = [J{Rp: 8 < a} with <~! is a normal -ary tree of height (a + 1);

(v) fo is an enumeration of R, with rng(fy) C .

The construction will be described in three steps.

(A) Ro ={1p} and fo = {(15,0)}, i.e. fo(1p) =0.

(B) Suppose that we have already constructed (R,:a < ) and (f,: a < B) for
B < k limit or § = 0. We shall describe the construction of Rgt1,..., Rst, and
fB+1,- -+, fp+w- First we shall color the elements of Rg.

(B1) Case when 3 € K;. Then 8 = h(~,p,6) for some ~,p,6 € k and v < 3.
If p,6 € rng(f,) and if there exists a nontrivial automorphism of R|3 + 1 mapping
f5'(p) onto f1(6), then every z € Rg so that = < f7!(p) is colored “black”; the
rest are colored “white”. Otherwise, all elements of Rg are colored “white”.

(B2) Case when 3 € K,. If 8 € X (the fixed subset of K5 ), then all elements
of Rg are colored “white”; otherwise all elements of Rs are colored “black”.

(B3) Case when 8 € K3 or 3 =0. Then all elements of Rs are colored “white”.

Now, after the coloring, we can construct Rg;1,...,Rg+w and fgi1,- .., fo+w-
If z € Rg was colored “white”, let (R; o: @ < w) be the tree T% built in B(v,T)|z,
otherwise (if « is colored “black”) let it be the tree 7° built in B(v,T)|z (T™,T®
from Lemma 3). For all o < w define Rg;o = |J{Rs,n:z € Rp} and define fg1q
as an enumeration of Rz, with rng(fg+a) C .

It is left to the reader to check that (i)-(v) hold. When proving that (iii) holds,
realize that, for any = € Rg, R, ., C T (by Lemma 3) and so Rg4+, C T

(C) Suppose that we have already constructed (R,:a < ) and (fo:a < )
for f < k limit. First note that there is no v so that 8 = v + w. If so, there
is v limit or ¥ = 0 so that 3 = v+ w. Hence, after R, was constructed, the
levels R 11,..., R, were constructed according to (B), and thus Rg is already
constructed, too.
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Let o < 3. Then (a+n-w) < B for any n < w and a + w is limit; hence
a+we KiUK, UKs. If a+w € K; UKy, then o + w+ w € K3 and so
Rotwtwie © T Define g, = atwtwrw lfatwe K sthent e s S @]
and thus define v, = @ + w + w. So in any case, for every a < 3 there is v s0
that & < 74 < B and R,, C T . Let (Aq: @ < p) be a strictly increasing sequence
so that {Aa: < p} C {Ya:a < B} and U{Aa: @ < p} = U{1a: @ < B} = B. Thus
for each a < p, Ry, C T.

Let z € [ {Rx,: a < p}.

In case (I), for every o < p define p(a) = sup{p € KRy, NT, # 9D}
Since |Ry,| < & and k is regular, then p(a) < k. Now let p < k be so that
p > U{u(a): @ < p}. Hence for any o < p, Ry, NT, = Q. By normality of T,
there is y € T}, so that y < z and for every a < p there is a unique z, € Ry, so
that y < . {Za: @ < p} determines a cofinal branch b, of R|f so that z € b, and
[Tz €T.

In case (II), there is a cofinal branch d in T so that = € d. Since d intersects
every Ry, v < p, it determines a unique cofinal branch b, in R|f so that z < [[ b,
and [[b, €T.

Define Rz = {[[bz:z € U{R».: @ < p}}. Then Rp is an antichain, in case (I)
|Rg| < k as | J{R»,: @ < p}| < k, and in case (II), |[Rp| < & as |U{Rxr,:a < p}| <
k,and Y. Rg = 1p, and Rg C T; hence Rg C B(v,T). Let fg be an enumeration
of Rz with rng(fg) C &.

It is left to the reader to check that (i)—(v) hold.

Define R = | J{Ra: @ < k} and f = |J{fa: @ < £}. This completes the construc-
tion.

Claim 1. In case (I), R is a rigid normal A-ary k-tree with as many cofinal
branches as T. In case (II), R is a rigid normal A-ary s-Canadian tree with as
many cofinal branches as T'.

From (iv) follows that R is a normal A-ary of height . From (i) follows that R
is a k-tree (in case (I)), or a tree with levels of size < « (in case (II)).

Let us prove that R is rigid. Suppose not. Then there are v < k and a nontrivial
automorphism § such that for some z # y € R, §(z) = y. Let p = f(z) and 6 =
f(y). Let B = h(v,p,6). Then B € K; and y < 3. There are 2z, # z, € Rg so that
€(2:) = 2y, 2z < z and 2z, < y. Now recall how Rg1,... , Rg+., were constructed
(case (B1)). Every z € R so that z < = was colored “black” and the rest were
colored “white”, for §(R|S + 1) is a nontrivial automorphism of R|3 + 1 so that it
maps z = f~1(y) onto y = f~(p) and B = h(7,p,6). Rp+a = U{Rz,a: 2 € Ra} for
all @ < w. Then (R,, o: @ < w) is an isomorphic copy of T built in B(v, T')|z; and
(R, o:a < w) is an isomorphic copy of T® built in B(v, T)|zy. Since §(zz) = (=),
9| U{R-, o: @ < w} is an isomorphism from (R., o:a < w) onto (R, ai < w), a
contradiction as T% and T® are not isomorphic.

Let us conclude the proof of Claim 1 by showing that R has as many cofinal
branches as T. Let b = (b(a):a < k) be a cofinal branch of R. If @ € K3, then
R+ C T by (iii). Hence (b(a +w):a € K3) is a linearly ordered cofinal subset
of T and determines a unique cofinal branch of 7. Thus T has at least as many
cofinal branches as R.

Let b be a cofinal branch of 7. Then for any a € K3, Ro+o, C T and ) Rayw =
15. So Ry is a maximal antichain in T of size < . Hence [bN R | =1%lhen
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{y € T:(3a € K3)({y} = bNRa+w)} is a cofinal linearly ordered subset of R, hence
it determines a unique cofinal branch in R. Thus R has at least as many cofinal
branches as T'.

Since in case (II), T was a k-Canadian tree, R is a x-Canadian tree as well.
Claim 1 is proven.

Claim 2. R is dense in B. Let y € B — {Op}. Then there is an z € T so that
xz <y for T is dense in B. If o € K3, then R, is a maximal antichain in 7', and
so there is z, € Rg+., comparable with z. Since a; # ag € K3 = 2o, # Za,, there
is @ € K3 so that z, < z. Hence R is dense in 7. Claim 2 is proven.

Now consider the whole sequence (R%: 6 € 2~).

Claim 3. Let 0; # 03 € 2°. Then R% and R%: are not isomorphic.

Assume that §: R — R is an isomorphism. Since 0; # 0, Xy, # Xp,.
Without loss of generality assume that there is f € Xy, — Xp,. Then 8 € K. By
(B2) all elements of RZ‘ were colored “white” for f € X4, and all elements of Rg’

were colored “black” for 5 ¢ Xy,. Let z € RZ‘. Then (R%!,: o < w) is an isomorphic
copy of T% built in B(v,T)|z. Let y = §(z). Since y € RP, (RP2,:a < w) is an
isomorphic copy of T? built in B(v,T)|y. Since §(z) =y, |(U{R}'s: @ < w}) is an
isomorphism from (R, : o < w) onto (RY2,:a < w), a contradiction as T* and
T? are not isomorphic. Claim 3 is proven.

Thus the sequence (R?: 6 € 2~) satisfies (1)~(3) (proven by Claims 1-3). O

COROLLARY 5. Let k and X be cardinals, k regular, and 2 < A < k. Then

(1) of k > Ny and if there is a k-Suslin tree, then there are 2% nomisomorphic -
rigid normal A-ary k-Suslin trees;

(2) if & > Ry and if there is a k-Aronszajn tree, then there are 2% nonisomorphic
rigid normal A-ary k-Aronszajn trees;

(3) if k > Ny and of there is a k-Kurepa, then there are 2% nonisomorphic rigid
normal \-ary k-Kurepa trees;

(4) of X < Kk, Ro < k and if there is a k-Canadian tree, then there are 2%
nonisomorphic rigid normal A-ary k-Canadian trees.

PROOF. (SKETCH) Let v = max{\,R;}. If there is a tree T of certain type,
then there is a normal v-ary tree T of the same type. In case T was k-Canadian,
there is a nice T. Let T be dense in a complete Boolean algebra B. If T is k-Suslin,
then B satisfies the k-c.c. (i.e. every chain or antichain in B has size < ) and so
every k-tree built in B must be x-Suslin. Let (R%:60 € 2*) be the sequence from
Theorem 4. Since the type of the tree we are dealing with is determined either by
the number of cofinal branches or by the size of antichains and chains, each R? is
tree of the same type as 7. 0O

REMARK. Unfortunately, the method of Theorem 4 cannot be used for K = N;
and trees with countable levels, for 7% and T are isomorphic if they have all levels
countable. Nevertheless, the technique of complete Boolean algebras generated by
normal trees could be used to obtain some (although not too interesting) rigid
N -trees.

By induction construct a normal trees R¥ of height (w + 1) with all levels of
countable size and so that every level is enumerated and if z is the nth element of
the mth level, then r has exactly n immediate successors at the (m + 1)th level.
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Such a tree is rigid. If 7" is a normal Rg-ary R;-tree dense in a complete Boolean
algebra B and z € B—{Op}, then there is a rigid normal tree 7% of height (w+1)
with all levels of countable size built in B(Ry,T) and so that T c T (it is an
isomorphic copy of R¥). If a tree R is constructed in the same way as R® was
constructed in Theorem 4 with the exception that all elements are always colored
white, then it will prove the following theorem:

THEOREM 6. Let T be a normal Ng-ary R;-tree dense in a complete Boolean
algebra B. Then there is a normal rigid Ri-tree R dense in B and with as many
cofinal branches as T.

COROLLARY 7. Let there be a Suslin (Aronszajn, Kurepa) tree. Then there is
a normal rigid Suslin (Aronszagn, Kurepa) tree.
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