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Abstract

Simple inductive learning algorithms assume that all attribute values are available. The well-known
Quinlan's paper [Qui89] discusses quite a few routines for processing of unknown attribute values in the
TDIDT family and analyzes seven of them.

This paper introduces five routines for processing of unknown attribute values that have been designed
for the CN4 learning algorithm, a large extension of the well-known CN2. Both algorithms CN2 and CN4
induce lists of decision rules from examples applying the covering paradigm.

CN2 offers two ways for processing of unknown attribute values. The CN4's five routines differ in
style of matching complexes with examples (objects) that involve unknown attribute values. The definition of
matching is discussed in detail in the paper. Strategy of unknown value processing is described both for
learning and classification phases in individual routines.

The results of experiments with various percentages of unknown attribute values on real-world (mostly
medical) data are presented and performances of all five routines are compared.
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1. Introduction

When inducing decision trees or decision rules from real-world data, many various aspects are to be
taken into account. One important aspect in particular is the processing of unknown attribute values. This topic
has been discussed and analyzed by several researchers in the field of machine learning [Qui86], [CKB87],
[BB92].

There are a few directions in which unknown attribute values as well as the corresponding routines  for
their processing may be studied and designed. First, the source of 'unknownness' should be investigated; there
are several such sources [Ko92], [C92]:
� a value is missing because it was forgotten or lost,
� a certain attribute is not applicable for a given object , e.g., it does not exist for a given observation,
� an attribute value is irrelevant in a given context,



2

� for a given observation, a designer of a training database does not care about a value of a certain attribute
(so-called dont-care value).

The second direction is studying the effects of different places in the algorithm where the routines for
unknown value processing are situated. For instance, [Qui89] conceders three different places: attribute test
evaluation, partitioning of training set, and classification, and all their mutual combinations. The third,
formulas for matching objects (examples) containing unknown attribute values with selectors (and complexes)
of decision trees and decision rules are important to be defined, since these routines differ particularly in this
fashion.

[Qui89] surveys and investigates quite a few techniques for unknown attribute values processing for
the TDIDT (Top Down Induction Decision Trees) family and analyzes seven combinations of their placement
in the learning algorithm.

The aim of this paper is to portray the performance of various unknown value processing strategies in
an algorithm employing the covering paradigm, which is rather different from the divide-and-conquer paradigm
utilized by the TDIDT algorithms. These two paradigms are more or less complementary; there are problems
in machine learning more suitable to one paradigm than the other and vice versa. The contribution of our paper
is to demonstrate how the unknown attribute value processing may be incorporated into an algorithm based on
the covering paradigm.

Following the CN2 algorithm [CN89], [CB91] in spirit, we have designed and implemented a
completely new version of this inductive algorithm and incorporated various enhancements, among them five
routines for unknown attribute value processing. We call this version CN4 [BK94], [KB93]. A user can choose
one of the above routines, however, the current version of our inductive algorithm does not distinguish the
sources of unknownness, similarly as [Qui89]. Currently we are working on extensions of this project which
would address this problem.

It should be also noticed that CN2 distinguishes two sources of unknown values [Bos90], namely
missing and dont-care values. The user thus has to differentiate them in a training database (by introducing '?'
and '*' , respectively), but otherwise he/she cannot select matching formulas.

Section 2 of this paper surveys the methodology of the CNx family of covering algorithms. The ways
CN4 processes unknown attribute values are presented in Section 3. Experiments exhibiting the performance
of this version are discussed in Section 4, and their results are analyzed in Section 5.

2. The CNx Family

The inductive algorithms of the CNx family comprise two main procedures: the top procedure that
repeatedly controls the search for decision rules, and the search procedure that performs the beam search to
find the best complex for a portion of the training set.

The inductive algorithm generates decision rules from a set of K training examples, each accompanied
by its desired class Cr, r = 1,...,R . Examples are formally represented by N attributes which are either discrete
(symbolic) or numerical (continuous). A discrete attribute An comprises J(n) distinct values V1,...,VJ(n) ; a
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numerical attribute may attain any value from a continuous interval1. The algorithm yields either an ordered
or an unordered list of decision rules of the form

Rule:  if Cmplx then class is Cr

A complex Cmplx is evaluated according to a user-specified heuristic evaluation function which is one
of the three: either (negative) entropy

(1)

or Laplacian criterion for expected accuracy (for the class Cr)

(2)

or m-probability [Ces90]

(3)

where Kr(Cmplx) is the number of training examples of the class Cr covered by the complex Cmplx, called
class-sensitive coverage,
K(Cmplx) is the total number of examples covered by the complex (over-all coverage),
R is the number of classes involved in the given task, and
fr is the relative frequency of the class Cr in the entire training set.

The larger the value of the evaluation function, the better the complex. It should also be noticed that the
evaluation through the entropy may be used only in the ordered mode.

The appendix comprises the flow charts of both procedures of CNx for a reader to find easily where
the routines for unknown attribute values are positioned.

3. Unknown Attribute Value Processing

3.1. Survey

To deal with real-world situations, it is necessary to process incomplete data, i.e. data with unknown
attribute values. Five routines for unknown-attribute-values processing have been designed for CN4.  They
differ in the style of their solution of the matching formula.

The following natural ways of dealing with unknown attribute values were incorporated:
(i) ignore the example (object) with unknown values (routine Ignore),
(ii) consider the unknown value as an additional regular value for a given attribute (routine Unknown), or
(iii) substitute the unknown value for matching purposes by a suitable value which is either
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� the most common value (routine Common),
� a proportional fraction (routine Fraction), or
� any value (routine Anyvalue)
of the known values of the attribute that occur in the training set.

There are three places where these routines are situated (compare Appendix):
(a) learning at the search procedure

� when evaluating a complex (either to compare it with the current best complex, or if the star is to be
trimmed - see procedure SEARCH, steps 3 and 4 within while loop):

(b) learning at the top procedure
� when removing the covered examples from the training set (see procedure CNx, the first two lines of

the step 2, the until loop);
(c) classification

� when matching a rule to an unseen object.

The five routines discussed below correspond roughly to the following combinations in [Qui89]: IIC
(our routine Ignore), RUU (Unknown), CCC (Common), RFF (Fraction), and RAF (Anyvalue).

Dealing with unknown attribute values in all above places is in fact determined by matching a complex
with an object. A matching procedure of a complex with a fully specified object returns the uniform solution:
the object either matches the complex or not. Dilemmas arise when a partially defined object is to be matched
with a complex.

3.2. Matching

CN4 like most algorithms that process unknown values needs to know in advance (for r=1,...,R,
n=1,...,N, j=1,...,J(n) ):
� the over-all absolute frequencies Fn,j that express the number of examples exhibiting the value Vj for each

attribute An ;
� the class-sensitive absolute frequencies Fr,n,j that express the number of examples of the class Cr exhibiting

the value Vj for each attribute An ;
� the over-all relative frequencies fn,j of all known values Vj for each attribute An ;
� the class-sensitive relative frequencies fr,n,j of all known values Vj for each attribute An and for a given

class Cr .

The underlying idea for learning relies on the class distribution; i.e., the class-sensitive frequencies are
utilized. As soon as we substitute an unknown value by a suitable one, we take the desired class of the example
into consideration in order not to increase the noise in the data set. On the other hand, the over-all frequencies
are applied within classification.

Let us now consider an example (object)  x = [x1, ..., xN]  involving N attribute values and a complex
Cmplx = Sq

1
 &  ... &  Sq

M

where Sqm, m = 1,...,M, is the m-th selector testing the j-th value Vj of the qm-th attribute, i.e. exhibiting the
form

xq
m
 = Vj

Now we are going to define the matching of the example x and the complex Cmplx.

First, selector's matching ratio satisfies the following:
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  = 0 if xq
m
 =/  Vj

�(x,Sq
m
) � = 1 if xq

m
 = Vj (4)

  � [0; 1] if xq
m
 is unknown

A particular value of the matching ratio is determined by the selected routine for unknown value processing.
The first two cases correspond to the 'standard' way of matching.

The matching ratio of the complex Cmplx may be determined in various ways. It is either equal to
� the product of matching ratios of its selectors:

(5)

� or their average:

(6)

where w(x) is the weight of the example x (1 by default).

Second, the class-sensitive coverage of the complex Cmplx is expressed as the weighted sum of
matching ratios of the given complex and all training examples of the class Cr

(7)

and the over-all coverage of the complex is represented by

K(Cmplx) = �
 r 

 Kr(Cmplx) (8)

The above formulas are utilized by the heuristics (1) to (3).

3.3. The Five Routines

(A) Routine Ignore: Ignore Unknown Values

This strategy simply ignores examples with at least one unknown attribute value before learning.
Hence, no dilemma arises when determining matching ratios within learning. However, this approach does not
contribute to any enhancement of processing noisy or partly specified data.

As for classification, the unknown value does not match any regular (known) value in a rule's complex.
Thus, selector's matching ratio is equal to 0 for any unknown value. Consequently, only the rules that test the
regular values of an unseen object may succeed. If there is no such rule, then the default rule is applied; i.e.,
the object is classified as belonging to the majority class.

(B) Routine Unknown: Unknown Value as a Regular One

An unknown value is considered as an additional attribute value. Hence, the number of values is
increased by one for each attribute that depicts an unknown value in the training set. The matching ratio of a
selector comprising the test of the attribute An and an object with An unknown is equal to 1 if and only if this
test is of the form  xn = ?   where '?' represents the unknown value.

Note that selectors corresponding to a numerical (continuous) attribute are formed by tests xn � Vj

(where Vj is a numerical interval) or xn = ? .



2 It is not in the scope of this paper to discuss the methods and methodologies how to assign weights to examples in training sets, see
[Qui92] for details.

6

(C) Routine Common: The Most Common Value

This routine needs the class-sensitive absolute frequencies Fr,n,j to be known before learning and the
over-all frequencies Fn,j before classification. An unknown value of a discrete attribute An of an example
belonging to the class Cr is replaced by the class-sensitive common value which maximizes the Laplacian

formula    over j for the given r and n. If the maximum is reached for more than one value of An, then

the value Vj with the greatest frequency Fr,n,j is selected as the common value. An unknown value within
classification is replaced by the over-all common value which maximizes Fn,j over the subscript j . Conse-
quently, the matching ratio yields 0 or 1, since every unknown value is substituted by a concrete known value.

The Laplacian formula utilized within learning prefers those attribute values that are more predictive
for a given class in the contrary to the conventional 'maximum frequency' scheme. For instance, let an attribute
have two values V1 and V2 , with (absolute) frequencies [4, 2] and [3, 0], respectively, above the classes C1 and
C2 . The maximum frequency then chooses the value V1 as the most common value, whereas the Laplacian
formula prefers the value V2 as the more predictive for the class C1.

There are no theoretical reasons why to prefer one most common value over another if they have the
same frequency. Our routine simply selects the first attribute value with the highest frequency. The order of
attribute values is determined by the user, and hence, he/she can affect the value chosen if so desired. For the
future extension, a subroutine that selects the most common value according to some criteria might easily be
implemented.

It is virtually standard to discretize numerical values continuously distributed over a range by
subdividing the range into intervals and considering all values falling into an interval to have the same discrete
(categorical) value [BB95]. Such an approach, of course, is rather sensitive to the way the range is divided into
intervals (categories).

In our routine, for any numerical (continuous) attribute the entire numerical range is partitioned into
a pre-specified number of equal-length intervals and their frequencies are determined. An unknown value of the
numerical attribute is then substituted by the mean value of the interval with the maximum frequency. Thus,
these intervals (categories) play the role of discrete attribute values. Using the mean value moderates to some
degree the disturbing effect of the selection of the partitioning of the range as described above.

(D) Routine Fraction: Split into Proportional Fractions

(i) Learning phase

The learning phase requires that the relative frequencies fr,n,j above the entire training set be known.
Each example x of class Cr with an unknown value of a discrete attribute An is substituted by a collection of
examples before the actual learning phase as follows: unknown value of An is replaced by all known values Vj

of An and Cr. The weight of each split example (with the value Vj) is

wj = w(x) * fr,n,j , j=1,...,J(n)

where w(x) is the weight of the original example x . The weight is assigned by the designer of the training set
and represents his/her subjective judgement of the importance of that particular example within the entire
training set.2 The matching ratio of the split examples is accomplished by (4) and (5) in a standard way.

If a training example involves more unknown attribute values, then the above splitting is done for each
unknown value. Thus, the matching ratio may rapidly decrease. Therefore, the routine involves the star
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methodology to avoid explosion of examples so that only a predefined number of split examples with the
largest weights is used for replacement of the original example.

In case of a numerical (continuous) attribute, an example with an unknown numerical value is not
divided before the learning phase. The actual splitting takes place when an example (of the class Cr) involving
an unknown numerical value is tested in a newly generated rule (step 2 in the procedure CNx). The matching
ratio � of a numerical selector is determined by the relative frequency of numerical values (occurring in the
class Cr) in the interval of the tested selector. The example is then split into two fragments: the portion � which
is covered and the portion 1-� which remains uncovered.

(ii) Classification phase

The routine Fraction works in two different modes within classification: ordered and unordered. The
matching ratio for a selector xn = Vj is defined by (4) as � = fn,j for an unknown value of An. The complex's
ratio for the ordered mode is specified by (5) and that for the unordered mode by (6).

To classify an unseen object in the ordered mode, the system tests the rules in a determined order and
calculates the matching ratio for each rule's complex. If the unseen object is regular (without any unknown
value), then the classification is carried out in the traditional way. However, if an object involves one or more
unknown values, then the system tries in turn all the rules (except the last, default one):
� If a rule that matches completely the given object is reached - i.e., the matching ratio of its complex is

equal to 1 - then the classification ends and the object is categorized as belonging to the class attached to
this rule.

� If no rule matches completely, then the system sums up the rules' matching ratios for each class separately,
and classifies the given object as belonging to the class with the maximum sum.

Formula (5) utilized in the ordered-mode classification is thus in principle similar to the token scenario
developed for the decision trees derived by ID3 [Qui86], [Qui89].

The decision scheme of the unordered-mode classification looks as follows:
� If a rule that matches completely the given object is reached - i.e., its matching ratio is equal to 1 - then

the classification ends and the object is categorized as belonging to the class attached to this rule.
� If no rule matches completely, then the rule whose complex yields maximum matching ratio is detected and

its class is attached to the object.
Formula (6) applied in the unordered-mode classification is more or less equivalent to the flexible

matching used e.g. in [Tor93].
Let us consider the following two rules illustrating the influence of the different formulas of matching

ratios in the ordered and unordered mode:

Rule1:  if S1 & S2 then class is C1
Rule2:  if S1 & S2 & S3 then class is C2

Let the selectors S1 and S3 match an example x with the ratio 1, and S2 with 0.5 . The matching ratio (5) for
both rules is 0.5, but the unordered mode prefers the rule Rule2 since it exhibits more completely matching
selectors following (6):
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(E) Routine Anyvalue: Any Value Matches

An unknown value matches any existing attribute value, both in learning and classification. Therefore,
matching ratio � of any selector is equal to 1 for any unknown value.

It should be noticed that there is no uniform scheme in machine learning for processing the 'any-value'.
� In some systems, especially TDIDT, an example with an unknown value for attribute An (which is to be

treated as 'any-value') is replaced by J(n) examples in which the unknown value is in turn substituted by
each regular value Vj, j=1,...,J(n) ; weights of new examples are equal to the weight of the original one.

� In other systems, especially those utilizing the covering paradigm, the unknown 'any-value' is substituted
by any first attribute value involved in a newly generated rule when covered examples are being removed
from the training set (see the second line of step 2 in the procedure CNx).

4. Experiments

This section describes the experiments that have been carried out in order to compare the above five
routines for unknown attribute value processing. The CN4 algorithm has been employed as a knowledge
acquisition vehicle.

Each routine was run for these modes and heuristics: (i) the ordered mode with entropy, (ii) the ordered
mode with Laplacian evaluation function, and (iii) the unordered mode with Laplacian function.

All combinations have been tested on four well-known AI databases. Each database has been randomly
separated to two subsets (70% learning, 30% testing) and this scenario has been executed 10 times for each
combination. The following table thus involves in each slot an average of classification accuracy (of testing
sets) acquired from 10 runs. The parameters of CN4 were set up to their default values (i.e. star size equal to
5, parameter for �2-distribution equal to 0.025).

The four AI databases are as follows:

� ThyroidGland:
This task of diagnosis of thyroid gland disease has been provided by the Institute of Nuclear Medicine

of Inselspital, Bern, Switzerland. The database has been used at the Dept. of Advanced Mathematics,
University of Bern, and also in the project CN4. The entire set involves 269 patients' data. Each patient is
described by 19 attributes, 5 of them are numerical attributes, the rest are symbolic ones; the average number
of values per symbolic attribute is 4.9 . About 30% of attribute values are unknown. The task involves two
classes; the frequency of the majority class is 72%.

� BreastTumor:
This dataset has been provided by the Jozef Stefan Institute, the research group of Prof. Dr. I. Bratko,

Ljubljana. It involves 288 examples and two classes. Each attribute is represented by 10 attributes, 4 of them
are numerical; symbolic attributes exhibit on average 2.7 values per attribute. 0.7% of attribute values are
unknown. The majority class has frequency 80%.

� Onco:
The oncological data [Pe93] were used for testing in the Czech Academy of Sciences, Prague,

Czechland, and also in the project CN4 [BK93]. The entire set involves 127 examples. Each example is
represented by 8 attributes; 7 of them are numerical attributes, the only symbolic one involves 3 values. All
attribute values are known. The task involves three classes; the frequency of the majority class is 50%.
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� Soybean:
This well-known data has been used in many various experiments in machine learning, namely within

the AQ family. The set available to the authors of this paper involves 290 training examples and 15 classes.
Each example is characterized by 24 attributes, all are symbolic ones with average 2.9 values per attribute.
The set exhibits 3.7% unknown attribute values. There are 4 classes exposing the maximum frequency (14%).

To achieve extensive and comprehensive comparison of the above routines' behaviour  we decided to
find how classification accuracy depends on various percentage of unknown attribute values in databases.

However, only the database ThyroidGland exhibits a reasonable size of 'unknownness'. Therefore, we
performed three experiments with this database for various number of attributes:
- set with all 19 attributes (there is 30% unknown values),
- set with 10 most informative attributes3 (there is 20% unknown values),
- set with 5 most informative attributes (there is 15% unknown values).

As for the remaining databases, to emulate various number of unknown values, we have run the
original data through a filter which randomly changes attribute values to unknown ones. The filter procedure
('unknownizer') has the percentage of unknown attribute values as its parameter. As one can see from the
following results, we have run the filter to get datasets with 5%, 10%, 15%, 20%, and 30% unknown values.

Tab. 1 comprises the average classification accuracy (in %) for the dataset ThyroidGland for 15%,
20%, and 30% of unknown values, and (i) ordered mode, entropy, (ii) ordered mode, Laplacian evaluation, and
(iii) unordered mode, Laplacian evaluation.

Fig. 1 to 3 (and corresponding Tab. 2 to 4) depict the results for the three remaining datasets. There
are five lines in each graph for each of the routine; they indicate how classification accuracy depends on the
percentage of unknown attribute values. Each graph point (and each number in tables) represents an average
value done from the three above modes (i), (ii), and (iii); i.e., it reflects an average of 30 separate runs.

5. Analysis

The aim of this project was to design and experimentally compare various unknown-attribute-value
processing routines for inductive algorithms utilizing the covering paradigm. The only, but widely used
criterion in our experiments was the classification accuracy acquired from testing sets. However, in any
experimental project like this one, the classification accuracy depends on various factors; here particularly on:
(a) the routine for processing unknown attribute values (what was the main aim of this paper);
(b) the "quality" of training dataset, i.e. its fuzziness, representativeness of examples, presence of

contradictory examples, and the like;
(c) parameters of the inductive algorithm CN4, namely star size, significance threshold, and the mode and

heuristic functions for complex evaluation.

The issue (c) was not part of this project, since it was deeply investigated in [BK93], [BK94], [KB93].
Just to summarize the earlier results, we have not found any profound dependence of the classification
accuracy and the number of decision rules induced on the star size. A higher significance threshold generally
induces smaller number of decision rules which exhibit a weaker classification accuracy. The ordered mode is
slightly better in its performance than the unordered one. From a theoretical viewpoint, if training data are
sufficiently representative, then the algorithm with a smaller significance threshold might induce rules with
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100% accuracy, however, the number of rules would be quite large and the rules derived would exhibit
meaningless predictability.

Each dataset exhibits different magnitude of noise, distortion, and fuzziness. Since all the above
routines were applied to all datasets, the noise of each set is thus more or less eliminated.

Tab. 5 exhibits the over-all results, averaged for all datasets, all sizes of 'unknownness', and all the
modes. It shows not only the classification accuracy (performed on testing subsets) but also average numbers
of decision rules induced (which may interpreted a simple measures for sizes of concept descriptions).

When comparing the results gained by CN4 we came to the following:
� The five routines discussed above may be separated into the three groups. The routine Ignore is evidently

the worst strategy; we suggest not to apply it at all. The second group is formed by the routines Common
and Fraction with accuracy about 1 to 2% below the third group. On average, the most successful are the
strategies Unknown and Anyvalue.

� This contradicts to some extent [Qui89] which indicates that the routine Fraction is one of the best for
processing unknown values in ID3. The explanation of this fact is based on different ways of processing
examples in the covering paradigm as opposed to TDIDT:  in TDIDT, all examples from the training set
are eventually incorporated into the decision tree generated by the learning algorithm. On the other hand,
the covering paradigm algorithm generates rules which may not cover all of the examples from the training
set (since some of the examples are found not to be representable).

� The above table also indicates that the classification accuracy more or less depends on the number of rules
induced. Although the parameters of CN4 (star size, significance threshold etc.) were set up identical for
all the five routines, they induced quite different sizes of the concept descriptions.

� Although the routine Unknown is one of the 'winners' in our experiments, however, it is not clear to us how
to interpret on philosophical as well as semantic level a decision rule that involves a selector with an
attribute equal to '?' (unknown value).

� We have also found out that each dataset has more or less its own 'favourite' routine for processing
unknown attribute values. It evidently depends on the magnitude of noise and source of unknownness in
each dataset, measured e.g. by methodology in [KB91]. A promising idea seems to be to explore the most
suitable routine(s) for training datasets. We are going to investigate this issue in the future.

� Another future project is to distinguish the sources of unknownness. The first attempt was done in [B95].

The covering algorithm CN4 has been written in C and runs under both Unix and MS-DOS. Anybody
requesting a copy of the source code should contact the first author, preferably by Email.

Appendix

The flow charts of the learning and search procedures for the ordered mode look as follows (here T is
a training set):

procedure CNx(T)
Let ListOfRules be an empty list
Until T is empty do

1. Let Cmplx be the best complex found by the search procedure SEARCH(T) for the given set T and
user-selected heuristic
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2. If Cmplx is not nil then
Let T' � T  be examples covered by Cmplx
Let T become T \ T'
Add the rule  If Cmplx then class is C  to the end of ListOfRules where C is the

majority class in T'
else break (quit the loop)

enddo
Add the default rule  If true then class is majority class  to the end of ListOfRules
Return ListOfRules

procedure SEARCH(T)
Let Star be a set containing just the true complex (that matches anything)
Let the complex Best be nil
Let Sel be the set of all possible selectors occurring in T
While stopping condition is not satisfied do

1. Let NewStar be an empty set
2. Specialization: Specialize each complex p in Star by adding any possible selector s from Sel

(except contradictory or unchanged selectors), then evaluate the new complex  p &  s  by user-
selected heuristic and include it in the set NewStar

3. Searching for the best complex:
For each complex p in NewStar do

if p is statistically significant (i.e., its significance is greater than a predefined threshold) and
is better than Best measured by the used-selected heuristic, then replace the current value of
Best by p

enddo
4. Trimming: If the size of NewStar is greater than a user-defined maximum (so-called star size),

then remove the worst complexes from NewStar, again by applying the heuristic
5. Let Star become NewStar

enddo
Return Best

To generate an unordered list of decision rules the above principle is sequentially activated for each
class separately.
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Ignore Unknown Common Fraction Anyvalue

 (i)    (ii)   (iii)  (i)    (ii)   (iii)  (i)    (ii)   (iii)  (i)    (ii)   (iii)  (i)    (ii)   (iii)

15%  80    81    69  89    90    88  83    85    85  87    80    83  89    88    80

20%  77    77    65  90    91    84  84    85    85  86    87    83  88    92    82

30%  79    73    55  90    91    85  83    85    84  90    90    83  91    92    83

Tab. 1. Average classification accuracy (in %) for the dataset ThyroidGland.

Ignore Unknown Common Fraction Anyvalue

5% 81 86  85 83 84

10% 80 85 85 81 84

15% 80 84 85 82 83

20% 80 83 83 82 83

30% 79 82 83 81 83

Tab. 2. Average classification accuracy (in %) for the dataset BreastTumor.

Ignore Unknown Common Fraction Anyvalue

5% 69 75 74 72 75

10% 69 74 74 71 75

15% 67 72 71 70 73

20% 66 71 71 70 72

30% 64 71 70 69 72

Tab. 3. Average classification accuracy (in %) for the dataset Onco.

Ignore Unknown Common Fraction Anyvalue

5% 69 75 74 72 75

10% 69 74 74 71 75

15% 67 72 71 70 73

20% 66 71 71 70 72

30% 64 71 70 69 72

Tab. 4. Average classification accuracy (in %) for the dataset Soybean.
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Ignore Unknown Common Fraction Anyvalue

classification accuracy 73.0 80.6 79.5 78.7 80.6

# rules induced 6.9 13.2 9.5 9.9 15.2

Tab. 5. Over-all classification accuracy and number of rules induced, averaged for all datasets, all sizes of
'unknownness', and all the modes.

Fig. 1. Classification accuracy vs. percentage of unknown values for the five routines,  performed on the
dataset BreastTumor.. Each point represents average accuracy of the three learning modes.



15

Fig. 2. Classification accuracy vs. percentage of unknown values for the five routines,  performed on the
dataset Onco. Each point represents average accuracy of the three learning modes.

Fig. 3. Classification accuracy vs. percentage of unknown values for the five routines,  performed on the
dataset Soybean. Each point represents average accuracy of the three learning modes.


