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ABSTRACT

Knowledge bases are often generated by learning (data min-
ing) algorithms. One possible form of such a knowledge base
(decision scheme, model) is a set of decision rules. If a classi-
fier uses an unordered set of rules (which happens frequently)
a problem arises concerning what to do if the classification of
an unseen object 'fires' rules of different classes. 

One possible solution consists of calculating a numerical
factor that would explicitly indicate a quality (predictive
power) of each rule and giving a higher priority to the rule
with a higher quality. In the literature, there can be found
several formulas for calculations of rule quality. So far as we
know, in existing models the rule qualities are calculated by
the learning (data mining) algorithm itself and remain con-
stant during the phase of classification.

This paper introduces a new strategy that allows to modify
(refine) the rule qualities during the classification of unseen
objects. The refinement is performed in a feedback loop that
can increase or decrease the quality of the rule involved with
the classification of each unseen object. Thus, the entire
method of refinement of rule qualities may be viewed as a
post-processing of a set of decision rules performed within the
testing phase.

The results of experiments  with both real-world and artificial
data are discussed and analysed.
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1.   SPECIFICATION OF THE PROBLEM

1.1   Knowledge Discovery

Knowledge discovery in databases (KDD), as its name re-
veals, deals with processing of usually very large databases in
a profound and robust way in order to reveal unknown and
unanticipated patterns within the data. Research in KDD is
concerned with developing methods and techniques how to
reveal knowledge hidden in the data.  The paper [1] defines
knowledge discovery as a nontrivial process of identifying
valid, novel, and ultimately understandable knowledge in
data.

Hence, the term KDD is commonly used for the overall pro-
cess of determining useful knowledge from databases, i.e.
extracting high-level knowledge from low-level data in the
context of large databases. Knowledge discovery can be view-
ed as a multidisciplinary activity because it exploits several
research disciplines of artificial intelligence (AI), such as
machine learning, pattern recognition, expert systems, and
knowledge acquisition, as well as mathematical disciplines,
such as statistics, theory of information, and uncertainty
processing.

The entire process of KDD can thus be characterized by these
stages:
(a) selecting a problem area,
(b) collecting the data,
(c) preprocessing of the data,
(d) data mining, i.e. extracting pieces of knowledge,
(e) postprocessing of the knowledge derived.

In our paper, we focus on the last two stages of KDD:  partly
data mining, but mainly post-processing.

1.2   Induction of Decision Rules

A commonly used strategy in machine learning is divide-and-
conquer. It is widely used by the family of TDIDT (Top-Down
Induction of Decision Trees) learning algorithms that induce
decision trees from a given set of examples. One if its first
pioneers was the ID3 [12], but currently the most used and



well-known member of the family is the C4.5 algorithm [13].

Another widely used strategy in machine learning relies on the
covering paradigm. The AQx family of algorithms [11] was
one of the first utilising this approach. The family the CNx of
learning algorithms relies on covering paradigm as well. The
second author of this paper developed the CN4 algorithm [5],
a significant extension of the wel l-known CN2 [8]. CN4 is
able to process unknown attribute values, numerical attrib-
utes, continuous classes, perform economy learning, etc.

In the project described here, we used the learning algorithm
CN4 that induces a knowledge base (model, concept descrip-
tion) in a form of a set of decision rules; this set produced by
CN4 may be ordered or unordered.  If the decision set is
ordered, then classification of an unseen object is quite
straightforward: the classifier goes through the list of rules
from its beginning to the end looking for the first rule that
matches ('fires') the given object, which is then categorized
into the class attached to the rule.

However, more frequent and natural form seems to be an
unordered set of rules, often utilized in expert systems. The
classification relying on an unordered set of decision rules
exhibits a significant deficiency, that may not be immediately
apparent. The three cases listed bellow illustrate the situation:

1/ If the unseen object satisfies one or more rules of
the same class, then the object is categorized to the
unique class assigned to the rule(s).

2/ If the unseen object is not covered by any rule, then
either the classifier informs the user about its inabil-
ity to decide, or the object is assigned by default to
the majority class in the training set, or some simi-
lar techniques are invoked.

3/ Difficulty arises if the object satisfies more rules
assigned to different classes. Then some schemes
have to be applied to assign the unseen object to the
most appropriate class.

A possible resolution principle to clarify the conflict situation
(case 3/) associates each rule in the decision scheme of a
classifier with numerical factors expressing certain attributes
of the rule, such as a measure of belief in the rule, its power,
predictability, reliability, likelihood, and so forth. A collection
of these attributes is commonly called the rule quality.

When we decide on a formula for the rule quality, we have to
provide a scheme for combining these qualities if many rules
fire. The conflict case is then resolved using the (combined)
quality of the rules of the same class that fired for the given
object: the rule combination with the maximum value will
determine the class of the unseen object. (Note that this reso-
lution principle does not address the case when qualities of
two rule combinations for different classes come out with the
same maximum value.) 

Formulas for assignment of rule quality have been studied and
tested in several papers [3], [7], [14].  The paper [6] provides
a survey of such formulas as well as three fundamental schem-
es for rule quality combination. 

In the recently studied systems utilising the quality measure
there is no feedback loop between the classifier and the corre-
sponding learner (data mining algorithm). In this project we
proposed and studied such a feedback loop whose main pur-
pose is the refinement (modification) of rule qualities accord-
ing to the ratio correct/false predictions made by the classifier.
The feedback loop increases or decreases the qualities of the
rules that were involved in the classification of the currently
processed unseen object.

We categorize this method as a post-processing algorithm that
modifies (refines) the qualities of the rules induced by a
"traditional" learning (data mining) algorithm.

The paper is organized as follows. Section 2 introduces some
formulas for rule qualities and schemes for their combination.
Section 3 describes the actual feedback loop for refining the
rule qualities.  Section 4 then presents some experiments
performed with both real-word databases as well as some
artificial ones. An analysis of the feedback loop and some
future work are presented in Section 5.

2.   RULE QUALITIES AND QUALITY COM BINA-
TION

Let a given task to be classified be represented by a set of
training examples that belong to two classes, named  C  and
��C .  Let  R  be a decision rule of the class  C , that is, of the
form

R:   i f  Condi t i on t hen c l ass i s  C

From the statistical viewpoint, the above rule can be described
by the 2x2 contingency table [4]:

class C not class C

rule R covers rc r �c r

does not cover �rc �r �c �r

c �c K

where rc  is the number of training examples that are cov-
ered by the rule R and belong to the class C ;
r �c is the number of examples covered by the rule R
but not belonging to the class C, etc.;
r = rc  +  r �c  is the number of examples covered by
R;
c = rc  +  �rc  is the number of training examples of
the class C, etc.; and
K  = c + �c = r +  �r  is the number of all training
examples.

Using the elements of the contingency table, we may define
the consistency of the rule  R  by

cons(R) = (1)



and its completeness by

compl(R) = (2)

The paper [6] surveys both empirical and statistical formulas
for rule quality. Rule quality can be viewed as a function of
the contingency table:

quality(R)  =  f(rc, r �c, �rc, �r �c)

or even just a function of consistency and completeness:

quality(R) = F(cons(R), compl(R))

[2] works with the simplest formula in a form of a weighted
sum:

quality Mich (R) = w 1 cons(R) + w 2 compl(R) (3)

where w 1, w 2 � (0, 1) are user-defined weights, usually  w 1 +
w 2 = 1 . The formula (3) is used quite often; however, its
great disadvantage is the user has to specify the weights.
Therefore some systems use a formula with a product of
consistency and completeness, without weights:

quality BT(R) = cons(R) . h(compl(R)) (4)

In particular, the authors of [7] came with the following form
of the function  h  in (4) that they use in their integration
system Integ.3 :

h(x) = exp(x-1)

As soon as a formula for rule quality is selected and a knowl-
edge base (model) is induced, we may employ several differ-
ent classification schemes. Each such scheme has to resolve
the conflict case (case 3/ above).  If one or more rules from
different classes are satisfied (fired) for a given input unseen
object, then:

(i) the classification scheme has to combine the quali-
ties of the fired rules belonging to the same class,
thus yielding the so-called combined quality;

(ii) the unseen object is categorized to the class with the
maximum combined quality.

More formally,  let  Rr,j  be the rules of the class  Cr , r=1...,R,
that are satisfied (fired) for the input object  x  and   qr,j  the
corresponding qualities of these rules;  the sequence  j=1,2,...
differs for each class.  Then, the classification scheme is a
function   ClassScheme   that returns the combined quality
comb_quality  for each class  Cr  in the form

comb_quality r (x) = ClassScheme(q r,1 , q r,2 , ...)

r=1,...,R.  The input object  x  is then classified to the class  r*
for which

comb_quality r*  (x) = comb_quality r (x)max
r

Some classification schemes are introduced and analyzed e.g.
in [6], [10]. 

3.  REFINEM ENT OF QUALITIES IN A FEEDBACK

L OOP

The classification systems in the literature employing the rule
qualities have not, to our knowledge, utilized any information
from the result of classification of unseen objects for updating
(modifying, refining) rule qualities. We have developed a new
strategy that allows to modify (refine) the rule qualities during
the classification of unseen objects. This is achieved by a
feedback loop that can increase or decrease the qualities of the
rules that were involved in the classification of the unseen
object.

The power and predictability of a decision set (knowledge
base, model) is usually measured by the classification accu-
racy, i.e. the number of correctly classified testing objects over
the total size of the testing set. More sophisticated formulas
may be used, e.g. based on the so-called loss-matrix.

In a traditional scenario the testing of a classifier is a passive
process without any influence on the decision set induced by
the learning (data mining) algorithm. Nevertheless, it seems
to be quite natural to enhance the rule qualities according to
the results of classification. Thanks to the feedback loop
designed in our project, the rule qualities may be refined
(modified) according to the correct/false predictions made by
the classifier. This process thus represents a simple version of
meta-learning that is performed above the existing knowledge
base that was induced by a learner. Figure 1 i l lustrates the
entire idea of the feedback loop.

The top-level flow chart can be described as follows:

for  each testing object do
    1. (penalty)

if the classifier made a wrong decision about the
class of the testing object
then decrease the quality of all fired rules attached
to by the wrong class

    2. (reward)
if the classifier made a correct decision about the
class of the  testing object
then increase the quality of all fired rules that are
attached to by the correct class

enddo

The entire feedback loop represents a quite simple incremen-
tal learning procedure above the set of rule qualities.  The
testing data are presented to the classifier only once. Since the
rule qualities are represented by an array of numerical values,
we opted for a very simple learning algorithm for modifying
numerical vectors. The formula is given below (derived from
the delta method [9]):

q := q ± c *  �Q�

where c is the delta-constant, selected by the user of the
algorithm,

�Q� is the normalized sum of all the rule qual ities
in the given knowledge base (model),



+ (�) is used if the rule classified the object cor-
rectly (incorrectly),
:=  represents the assignment statement.

4.   EXPERIM ENTS

To test out the performance of the feedback loop mechanism,
various datasets from Machine Learning Repository as well as
a medical dataset from Bern University were used. We also
ran experiments with two artificially created datasets. The
following databases were used:

� Japanese Credit, I ris, Pima Indian Diabetes, and Aus-
tralian Credit:  These datasets were taken from the
Machine Learning Repository.

� Thyreosis:  The data for diagnosing of thyroid gland
disease were provided by the Institute of Nuclear Medi-
cine of Inselspital, Bern, Switzerland. The database has
been used at the Department of Advanced Mathematics,
University of Bern, and also in the project CN4 [5]. The
entire task in fact consists of four subsets (Thyr21,
Thyr5, Thyr7, and Thyr14).

� ArtData 1 and ArtData 2:  We utilize these arti ficially
created datasets for comparative analysis.

Table 1 exhibits the characteristics of all the datasets.

We ran the following algorithms on the above ten datasets:

(i) the covering algorithm CN4 (the unordered mode, of
course);

(ii) CN4-unordered with the feedback loop in the incre-
mental mode.

Each of above ten databases has been randomly separated to
three subsets:

• the learning subset used for inducing the set of deci-
sion rules (with their ini tial  rule qualities), size
50%;

• the primary testing subset used for the feedback
loop to modify the rule qualities, size 25%;

• the secondary testing subset used for the actual
testing, i.e. calculating the classification accuracy,
size 25%.

This scenario was executed 20 times for each combination.
Consequently, Table 2 gives in each cell the average of the
classification accuracy (of the secondary testing subsets) over
the 20 runs.

5.   ANALYSIS AND FUTURE WORK

There is a great effort to improve predictive power of models
induced by learning (data-mining) algorithms. Such enhance-
ments are obtained through various concepts of boosting,

bagging, combining, stacking, etc. This paper introduces a
new feature in learning (data mining) which can in a simple
way increase the predictive power of the resulting model.
Current data mining systems test the predictive power of a
knowledge base (model, decision set) in a passive way, with-
out influencing the induced knowledge base itself. Our ap-
proach introduces a feedback loop that can modify the quali-
ties of the decision rules and thus improve the predictive
power. The modification procedure uses almost standard
reward/penalty scenario.

The analysis of the above experimental data reveals the fol-
lowing:

� The percentage of unknown attribute values yields a
significant influence on the behaviour of the feed-
back loop and thus on better classification accuracy.
One  can observe that the datasets with larger per-
centage of unknown attribute values yield better
performance of the feedback loop.

� The larger the size of a database, the better perfor-
mance of the feedback loop.

� According to our analysis, the  most important factor
that influences the behaviour of the feedback loop is
the so-called redundancy rate for a given knowledge
base (set of decision rules) KB ; it is defined as the
average numbers of rules in KB that fire for (are
satisfied by) an object in the training set.
The datasets of small  sizes with small (or no) per-
centage of unknown attribute values have the redun-
dancy rate from 1.0 to 1.10 .
Therefore, this was the reason we employed artifi-
cial datasets, too; they were formed to exhibit higher
redundancy rule: 1.5 to 2.5 .

Our future work in this topic will consequently carry out the
following:

(i) Finding precisely how the feedback loop perfor-
mance depends on the redundancy rate is a very
important issue.

(ii) We concluded that a further study and the design of
the data mining systems inducing redundant knowl-
edge bases with a large redundancy rate should be
done.

(iii) In the current system, the feedback loop is applied
to modify the qualities of single rules. The same
principle of a feedback loop could be applied to a
set of several knowledge bases (models), each ac-
companied by the model quality. The updating (mo-
difying) these model qualities can be done on the
same principle as described in this paper.
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Figure 1.  Feedback loop from Classifier to Knowledge Base



dataset # classes frequency of ma-
jority class

# examples # attributes numerical
attributes

average # of values per
symbolic attribute

% unknown
values

Japanese Credit
Iris
Pima Indian Diabetes
Australian Credit
Thyr21
Thyr5
Thyr7
Thyr14
ArtData 1
ArtData 2

 2
 3
 2
 2
 2
 2
 3
 3
 4
 4

68%
33%
65%
55%
72%
72%
48%
44%
40%
35%

125
147
 768
 690
269
269
 73
 72
600
500

 10
  4
  8
 14
21
 5
 7

 14
 20
 15

 5
 4
 8
 6
 5
 2
 6
 1
 5
 3

3
-
-

4.6
5.4
5.7
2.0
2.8
4.5
3.0

0%
0%
0%
0%

23%
29%
36%
12%
30%
15%

Table 1.  Characteristics of all ten datasets.

database CN4 feedback loop 

Japanese Credit
Iris
Pima Indian Diabetes
Australian Credit

96.8
97.0
95.8
100

97.0
97.5
96.5
100

Thyr21
Thyr5
Thyr7
Thyr14

96.5
91.0
95.3
92.5

97.5
91.5
96.8
93.7

ArtData 1
ArtData 2

81.0
75.7

84.1
77.1

Table 2. Classification accuracy (in %) for all three algorithms.


