
Proceedings of the

Prague Stringology Conference 2012

Edited by Jan Holub and Jan Žd’́arek

August 2012

PSC
Prague Stringology Club

http://www.stringology.org/

http://www.stringology.org/

Proceedings of the Prague Stringology Conference 2012
Edited by Jan Holub and Jan Žd’́arek
Published by: Prague Stringology Club

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, Praha 6, 160 00, Czech Republic.

URL: http://www.stringology.org/
E-mail: psc@stringology.org Phone: +420-2-2435-9811
Printed by Česká technika – Nakladatelstv́ı ČVUT, Thákurova 550/1, Praha 6, 160 41, Czech Republic

c© Czech Technical University in Prague, Czech Republic, 2012

ISBN 978-80-01-05095-8

http://www.stringology.org/
mailto:psc@stringology.org

Conference Organisation

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Maxime Crochemore, Co-chair (King’s College London, United Kingdom)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Costas S. Iliopoulos (King’s College London, United Kingdom)
Shunsuke Inenaga (Kyushu University, Japan)
Shmuel T. Klein (Bar-Ilan University, Israel)
Thierry Lecroq (Université de Rouen, France)
Bořivoj Melichar, Honorary chair (Czech Technical University in Prague,

Czech Republic)
Yoan J. Pinzón (Universidad Nacional de Colombia, Colombia)
Marie-France Sagot (INRIA Rhône-Alpes, France)
William F. Smyth (McMaster University, Canada)
Bruce W. Watson (FASTAR Group (Stellenbosch University and

University of Pretoria, South Africa))
Jan Žd’́arek (Czech Technical University in Prague, Czech Republic)

Organizing Committee

Miroslav Baĺık, Co-chair
Jan Holub, Co-chair

Jan Janoušek Bořivoj Melichar
Jan Žd’́arek

External Referees

Loek Cleophas
Peter Clote

Arnaud Lefebvre
Ludovic Mignot

German Tischler
Fritz Venter

Preface

The proceedings in your hands contains the papers presented in the Prague Stringol-
ogy Conference 2012 (PSC 2012) which was devoted to 70th birthday of prof. Bořivoj
Melichar, the founder of the Prague Stringology Club at the Czech Technical Univer-
sity in Prague, which organizes the event. The conference was held on August 27–28,
2012 and it focused on stringology and related topics. Stringology is a discipline
concerned with algorithmic processing of strings and sequences.

The papers submitted were reviewed by the program committee. Ten papers were
selected, based on originality and quality, as regular papers for presentations at the
conference. This volume contains not only these selected papers but also an abstract
of one invited talk “Correctness-by-construction in stringology”.

The Prague Stringology Conference has a long tradition. PSC 2012 is the seven-
teenth event of the Prague Stringology Club. In the years 1996–2000 the Prague
Stringology Club Workshops (PSCW’s) and the Prague Stringology Conferences
(PSC’s) in 2001–2006, 2008–2011 preceded this conference. The proceedings of these
workshops and conferences have been published by the Czech Technical University
in Prague and are available on web pages of the Prague Stringology Club. Selected
contributions were published in special issues of journals the Kybernetika, the Nordic
Journal of Computing, the Journal of Automata, Languages and Combinatorics, and
the International Journal of Foundations of Computer Science.

The Prague Stringology Club was founded in 1996 as a research group in the
Czech Technical University in Prague. The goal of the Prague Stringology Club is
to study algorithms on strings, sequences, and trees with emphasis on automata
theory. The first event organized by the Prague Stringology Club was the workshop
PSCW’96 featuring only a handful of invited talks. However, since PSCW’97 the
papers and talks are selected by a rigorous peer review process. The objective is not
only to present new results in stringology and related areas, but also to facilitate
personal contacts among the people working on these problems. As a recognition of
the conference, Elsevier B.V. decided to index the conference proceedings by Scopus
collection. The main product derived from this collection is Scopus.com.

I would like to thank all those who had submitted papers for PSC 2012 as well
as the reviewers. Special thanks go to all the members of the program committee,
without whose efforts it would not have been possible to put together such a stim-
ulating program of PSC 2012. Last, but not least, my thanks go to the members of
the organizing committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2012

Jan Holub

Table of Contents

Invited Talk

Correctness-by-Construction in Stringology by Bruce W. Watson 1

Contributed Talks

Similarity Based Deduplication with Small Data Chunks by Lior Aronovich,
Ron Asher, Danny Harnik, Michael Hirsch, Shmuel T. Klein, and Yair Toaff . . 3

LZW Data Compression on Large Scale and Extreme Distributed Systems
by Sergio De Agostino . 18

Failure Deterministic Finite Automata by Derrick G. Kourie, Bruce W.
Watson, Loek Cleophas, and Fritz Venter . 28

An Efficient Parallel Determinisation Algorithm for Finite-state Automata
by Thomas Hanneforth and Bruce W. Watson . 42

BlastGraph: Intensive Approximate Pattern Matching in Sequence
Graphs and de-Bruijn Graphs by Guillaume Holley and Pierre Peterlongo 53

A Multiobjective Approach to the Weighted Longest Common Subsequence
Problem by David Becerra, Juan Mendivelso, and Yoan Pinzón 64

New and Efficient Approaches to the Quasiperiodic Characterisation of a
String by Tomáš Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon
P. Pissis, Simon J. Puglisi, William F. Smyth, and Wojciech Tyczyński 75

The Number of Cubes in Sturmian Words by Marcin Pi ↪atkowski and
Wojciech Rytter . 89

Quasi-linear Time Computation of the Abelian Periods of a Word by
Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, Élise Prieur-Gaston, and
William F. Smyth . 103

A Computational Framework for Determining Square-maximal Strings by
Antoine Deza, Frantisek Franek, and Mei Jiang . 111

Author Index . 120

vii

Correctness-by-Construction in Stringology

Bruce W. Watson

FASTAR Research Group
Stellenbosch University

South Africa
bruce@fastar.org

Correctness-by-construction (CbC) is an algorithm derivation technique in which
the algorithm is co-developed with its correctness proof. Starting with a specification
(most often as a pre- and post-condition), ‘derivation steps’ are made towards a
final algorithm. Critically, each step in the derivation is a correctness-preserving one,
meaning that the composition of the derivation steps is the correctness proof.

In this talk, I will present several stringological derivations to illustrate the use-
fulness of CbC – with a particular focus on exploratory algorithmics1 (see [10] for
an example of a new CbC-derived algorithm) and weak points of other algorithm
derivations.

Correctness proofs in stringology algorithms (and in related fields such as com-
pression and arbology) are particularly important for a few reasons:

– Many stringology problems arise in so-called infrastructure software, such as net-
work routers, security, operating systems, compilers, computational linguistics,
etc. All of these areas, are performance- and correctness-critical, with a low toler-
ance for bugs – unlike many user-level or web-applications.

– For many stringology algorithms, the devil is in the details: correctly defining,
using and precomputing various lookup tables often proceeds via case analysis –
a technique which is not always convincing or water-tight.

– The broad usefulness of these algorithms makes them ideal and central to many
computing science curricula – where convincing correctness proofs are important.

– The multitude of stringology algorithms (take, for example, exact keyword pattern
matching) is difficult to oversee (though several works successfully present the
breadth of the field [7,1]) and taxonomies play an important role in bringing
order.

For showing an algorithm’s correctness, CbC has significant advantages over other
approaches, namely:

– Testing: Edsger Dijkstra famously said “Testing shows the presence, not the ab-
sence of bugs”. It follows that testing is a poor replacement for proper correctness
proofs.

– A postiori proof: The majority of new algorithms are presented first and followed
by a correctness proof. This usually leaves a large gap between the algorithm (how
was it arrived at?) and the proof, or the proof remains just a sketch, where the
correctness of some parts of the algorithm are left for the reader to work out.

1 Exploratory algorithmics is the invention of new algorithms by exploring gaps and previously
unexplored options amongst the existing algorithms for a field.

Bruce W. Watson: Correctness-by-Construction in Stringology, pp. 1–2.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2012

– Automated proof: Alongside the algorithm itself, a model of the algorithm is cre-
ated; the model is then verified (using an automated theorem prover or a model-
checker). This, of course, depends on a close correspondence between the algorithm
and its model. Very few stringology derivations use this technique.

In CbC, at every derivation point there are often several possible derivation steps
– which begs the question of how to choose the right step? Good derivations have an
aspect of beauty and simplicity to them – properties which very often lead to the most
efficient algorithms [3] – though writing down a good derivation requires practice and
is an iterative process. Additionally, in many cases there are several possible ‘next
steps’, making CbC an ideal technique for deriving entire families of algorithms.
Such multiple-derivations can function both as a taxonomy (useful in teaching, for
illustrating the commonalities and differences between related algorithms) and also
for exploratory algorithmics in which new algorithms are invented [8,9].

CbC was ‘invented’ by Edsger Dijkstra in the late 1960’s [2] with no small amount
of input from his contemporaries such as Tony Hoare, Robert Floyd, Niklaus Wirth
and Donald Knuth and also Dijkstra’s colleagues in Eindhoven and Austin. Sev-
eral Turing Awards (in particular Dijkstra’s) were awarded for CbC-related research.
David Gries and Carroll Morgan wrote two of the best follow-on text-books in the
1980’s [4,6]. Despite the fact that some of those books are out of print, CbC remains
alive and well as a successful and appropriate techniques for inventing and deriving
new algorithms. The most recent book on this topic is by Kourie & Watson [5].

Acknowledgement: I would like to thank Nanette Watson-Saes and Derrick Kourie
for proof-reading this extended abstract.

References

1. M. A. Crochemore and W. Rytter: Jewels of Stringology, World Scientific Publishing
Company, 2003.

2. E. W. Dijkstra: A Discipline of Programming, Prentice Hall, 1976.
3. W. Feijen, A. van Gasteren, D. Gries, and J. Misra, eds., Beauty is Our Business,

Springer-Verlag, 1990.
4. D. Gries: The Science of Computer Programming, Springer-Verlag, second ed., 1980.
5. D. G. Kourie and B. W. Watson: The Correctness-by-Construction Approach to Program-

ming, Springer-Verlag, 2012.
6. C. Morgan: Programming from Specifications, Prentice Hall, second ed., 1998.
7. W. F. Smyth: Computing Patterns in Strings, Addison-Wesley, 2003.
8. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty

of Computing Science, Eindhoven University of Technology, the Netherlands, Sept. 1995.
9. B. W. Watson: Algorithms for Constructing Minimal Acyclic Deterministic Finite Automata,

PhD thesis, Department of Computer Science, University of Pretoria, South Africa, 2011.
10. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation of

dead-zone single keyword pattern matching, in Proceedings of the International Workshop on
Combinatorial Algorithms (IWOCA), 2012.

Similarity Based Deduplication

with Small Data Chunks

Lior Aronovich1, Ron Asher2, Danny Harnik2, Michael Hirsch2, Shmuel T. Klein3,
and Yair Toaff2

1 IBM
Toronto, Canada

aronovic@ca.ibm.com

2 IBM – Diligent
Tel Aviv, Israel

{ronasher,dannyh,hirschm,yairtoaff}@il.ibm.com
3 Department of Computer Science

Bar Ilan University, Ramat Gan, Israel
tomi@cs.biu.ac.il

Abstract. Large backup and restore systems may have a petabyte or more data in
their repository. Such systems are often compressed by means of deduplication tech-
niques, that partition the input text into chunks and store recurring chunks only once.
One of the approaches is to use hashing methods to store fingerprints for each data
chunk, detecting identical chunks with very low probability for collisions. As alterna-
tive, it has been suggested to use similarity instead of identity based searches, which
allows the definition of much larger chunks. This implies that the data structure needed
to store the fingerprints is much smaller, so that such a system may be more scalable
than systems built on the first approach.
This paper deals with an extension of the second approach to systems in which it is
still preferred to use small chunks. We describe the design choices made during the
development of what we call an approximate hash function, serving as the basic tool
of the new suggested deduplication system and report on extensive tests performed on
an variety of large input files.

Keywords: approximate hash scheme, deduplication, compression

1 Introduction and Motivation

Huge amounts of data have to be processed daily and the current trend suggests
that these amounts will continue being ever-increasing in the foreseeable future. An
efficient way to alleviate the problem is by using deduplication: large parts of the
available data is copied again and again and forwarded without any change; the idea
underlying a deduplication system is to locate repeated data and store only its first
occurrence. Subsequent copies are replaced by pointers to the stored occurrence, which
significantly reduces the storage requirements if the data is indeed repetitive [2].

Several approaches have been proposed to solve the problem, each concentrat-
ing on another aspect of the input characteristics. One of the approaches, based on
hashing, can be schematically described as follows [11,13,14].

The available data is partitioned into parts called chunks Ci. These chunks can be
of fixed or variable size, and the (average) size of a chunk can be small, say 4–8KB,
up to quite large, say, about 16MB. A cryptographically strong hash function h is
applied to these chunks, meaning that if h(Ci) = h(Cj), it can be assumed, with

Lior Aronovich, Ron Asher, Danny Harnik, Michael Hirsch, Shmuel T. Klein, Yair Toaff: Similarity Based Deduplication with Small Data Chunks, pp. 3–17.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

4 Proceedings of the Prague Stringology Conference 2012

very low error probability, that the chunks Ci and Cj are identical. The set S of
different hash values, along with pointers to the corresponding chunks, is kept in a
data structure D allowing fast access and easy update, typically a hash table or a
B-tree. For each new chunk to be treated, its hash value is searched for in D, and if
it appears there, one may assume that the given chunk is a duplicate. It is thus not
stored again, rather, it is replaced by a pointer to its earlier occurrence. If the hash
value is not in D, the given chunk is considered new, so it is stored and its hash value
is adjoined to the set S.

The suggested methods mainly differ in the way they define the chunk boundaries,
and in the suggested size of the chunks. The chunk size may indeed have a major
impact on the performance: if it is too small, the number of different chunks may be
so large as to jeopardize the whole approach, because the data structure D might not
fit into RAM, so the system might not be scalable. On the other hand, if the chunk
size is chosen too large, the probability of getting identical chunks decreases: many
instances of chunks might exist, that could have been deduplicated had the chunk
size been chosen smaller, but which, for the larger chunk size, have to be kept.

A possible solution to this chunk size dilemma has been suggested in [1]. The main
idea there is to look for similar rather than identical chunks. If such a similar chunk
is located, only the difference is recorded, which is generally much smaller than a full
chunk. This allows the use of much larger chunks than in identity based systems.

For many applications, such as data backups and archiving, data is more fine-
grained, and much better deduplication can be performed if one can use significantly
smaller chunks. A simple generalization of the above system in which the chunk size
would be reduced from 16MB to 8KB, that is, by a factor of 2000, without changing
anything else in the design, would imply a 2000 fold increase of the size of the index,
from 4GB to about 8TB. This cannot be assumed to fit into RAM in the near future.
Moreover, keeping the definition of the notion of similarity and reducing the size of
the chunks will lead to an increased number of collisions, which may invalidate the
approach altogether.

The idea of the current work is to implement the required similarity by what
we call an approximate hash scheme. This is an extension of the notion of locality-
sensitive hashing introduced in [8]. The basic idea is that such an approximate hash
function is not sensitive to “small” changes within the chunk, and yet behaves like
other hash functions as far as the close to uniform distribution of its values is con-
cerned. As a consequence, one can handle the set of approximate hash values as
is usually done in hash applications (using a hash table, or storing the values in a
B-Tree), but detect also similar, and not only identical chunks. If a given chunk un-
dergoes a more extended, but still minor, update, its new hash value might be close
to the original one, which suggests that in the case of a miss, the values stored in
the vicinity of the given element in the hash table should be checked. Such vicinity
searches are useless in a regular hash approach.

An approximate hash could be defined by a property that reminds the definition
of a continuous function: let A and B be data chunks of fixed size, and let d(x, y) be
some distance function to be defined on the set of chunks; a hash function ah will be
called an ε-approximate hash if

∃δ > 0 d(A,B) < δ −→ |ah(A)− ah(B)| < ε.

Note the difference with the common continuity definition, in which we would have
∀ε∃δ, implying that we can get function values as close as wanted (ε can tend to 0)

L.Aronovich et al.: Similarity Based Deduplication with Small Data Chunks 5

if we start from close enough arguments. In our case, it would be exaggerated to
impose such a property, and we can relax it to find two bounds δ and ε such that if
the distance between chunks is bounded by the first, then the distance between the
hash values of these chunks is bounded by the second, for reasonably chosen small
values of ε.

Actually, even this definition could be too restrictive, and we should allow a small
number of exceptions for certain extreme chunks. This leads to a probabilistic version
of the above definition: a hash function ah will be called an ε-approximate hash with
probability p if

∃δ > 0 d(A,B) < δ −→ Pr (|ah(A)− ah(B)| > ε) < 1− p,

where the probability is taken over a uniform selection of the possible chunks A
and B.

There are several possibilities to define the distance function d. A simple solution
would be the Hamming distance, defined either on bits (number of 1 bits in A xor B)
or on characters (number of differing characters), but this requires the chunks to be
of the same length. A more significant, yet more involved, function could be the
edit distance: the minimal number of single character insert, delete and substitute
operations needed to transform A into B.

The challenge is now to find such a function ah, giving a tradeoff between how
well it can be adapted to reflect the approximate nature described above, and how
long it takes to evaluate it. We should still bear in mind that one of the most basic
requirements of a hash function is that it should not require too much CPU time.

The general algorithm for storing the repository will then be as follows. The
number k of bits in the signature will be chosen in advance, and a hash table H with
2k entries will be used as basic data structure. During the building process, each chunk
C will be assigned its approximate hash value ah(C), and the index, or address, of
the chunk will be stored at H[ah(C)], the entry in H indexed by the hash value of the
chunk. If the location in the table is not free, it is overwritten. This may happen in
case the new chunk is identical or very similar to a previously encountered chunk, in
which case we prefer to store the address of the more recent chunk for potential later
reference; but a collision may also be the result of two completely different chunks
hashing to the same value, and then the pointer to the older chunk that has been
overwritten will be lost.

In the next section, we describe the details leading to the design of the approximate
hash function, and then report on extensive tests in Section 3, showing a noticeable
improvement of the suggested method over identity based deduplication with small
data chunks.

2 An approximate hashing function

Once it has been decided to base the system on approximate hashes according to the
ideas stated above, the problem reduces to devising an appropriate function. This is
the main thrust of the present suggestion.

Classical hashing functions have been studied for decades and many good solutions
are known [6]. The major challenge in the design of an approximate hash function is
finding the right balance between the following three competing criteria:

6 Proceedings of the Prague Stringology Conference 2012

– Uniformity: the function should yield a distribution of values as close as possible
to uniform, so as to minimize the number of collisions (false matches);

– Simplicity: the function should be easy and fast to calculate;
– Sensitivity: small changes in the chunk should not, or only slightly, affect the
corresponding approximate hash value.

The first two are properties that are common to all hashing functions, the third
one, sensitivity, is proper to the approximate version suggested herein. For standard
hashing schemes, just the contrary is required: even very small changes in the chunk
should lead to extensive changes in the hash value, otherwise the uniformity would be
hurt. Some works dealing with similarity rather than identity can be found in [4,5,10].
Our approach is different and will be described below.

The value produced by a hash function is, in a certain sense, a summarization
of the information contained in the data on which the function has been applied.
This is reminiscent of similar functions, like the Fourier Transform with its many
applications, or the Discrete Cosine Transform, used in JPEG image compression.
Such transforms allow to recode the information of the given data into a different
form, which may be more useful for certain applications, for example, being more
compressible. Similarly, we would like to recode compactly much of the information
contained within a given data chunk under the constraint that this recoding should
be immune to small fluctuations.

This lead to the decision of using the distribution of the various characters that
appear in the data as the basis for the suggested approximate hash. The data will be
partitioned into relatively small chunks C of fixed or variable length, with (average)
size of about 8–16 K. Each such chunk will be analyzed as to the distribution of
the bytes forming it and their frequencies. We define the sequence of different bytes,
ordered by their frequency of occurrence in the chunk, as the c-spectrum of C, and the
corresponding sequence of frequencies as the f-spectrum of C. In addition, we consider
also the sequence of different byte pairs, ordered by their frequency of occurrence in
the chunk, and call it the p-spectrum of C. The suggested approximate hash function
ah(C) will be a combination of certain elements of these spectra. The reasoning
behind the decision of relying on these distributions is that on the one hand, they
usually behave like fingerprints, and it will be rare that essentially different chunks
will exhibit the same distributions, but on the other hand, small perturbations in the
data will often have no, or just a minor, impact on the corresponding spectra. This
is the goal we wish to achieve in designing an approximate hash.

The size of the hash values will be fixed in advance, so as to exploit the space of
the allocated hash table. For example, one could decide that the table will have about
4 billion entries, which corresponds to a hash value of 32 bits. A much larger hash value
using k > 32 bits could be prohibitive, since the corresponding hash table would then
have 2k entries. On the other hand, a small value of k limits the number of elements
of the spectra that can be chosen to be a part of the definition of the signature. To
overcome this limitation, the chosen elements of the spectra, and more precisely, only
a part of their bits, will be arranged appropriately by shifting them to the desired
positions, and all these bit strings will be XORed. By using different indents for the
different elements, the final value will not only depend on each of the building blocks,
but also on their internal order. Figure 1 is a schematic representation of a possible
layout of these elements. The columns correspond to the 32 bit positions, and each

L.Aronovich et al.: Similarity Based Deduplication with Small Data Chunks 7

Figure 1. Schematic representation of the building blocks of a signature

rectangle stands for one of the elements, with the upper elements corresponding to
the c-spectrum, the lowest elements corresponding to the f-spectrum, and the element
in the middle corresponding to the p-spectrum, as detailed below. As can be seen,
each bit position of the final signature is influenced by several elements.

We do not claim that the suggested layout is the best possible, not even for the
sample data on which it has been tested. Rather, it is brought as an illustration of
the ideas leading to its design. The specific values of the various parameters (lengths
and shifts) shown in this example have been set empirically by iterating experiments
to locally optimize the performance.

2.1 Using elements of the c-spectrum

Let a1, a2, . . . , an be the sequence of different bytes in the chunk, or, more precisely,
the numerical value of these bytes, ordered by non-increasing frequency in the chunk.
Ties are broken by sorting bytes with identical frequency by their numerical value.
Let f1, f2, . . . , fn be, respectively, the corresponding frequencies. The number n of
different bytes in the chunk can vary between 1 (for chunks of identical bytes, like all
zeroes or blanks) and |C|, the size of the chunk. As this size is mostly much larger
than the maximum numerical value of a byte, one may assume that 1 ≤ n ≤ 256.

A first attempt would be to consider each byte on its own as one of the building
blocks of Figure 1, but this might result in a function that is too sensitive to noise. It
will often happen that frequencies of certain bytes may be equal or very close. In such
a case, a small perturbation might change the order of the bytes and yield a completely
different hash value, contrarily to our goal of the approximate hash function being
immune to small changes. To circumvent this problem, the ai will be partitioned
into blocks , gathering several bytes together and treating them symmetrically. The
representation of all the elements in a block will be aligned with the same offset and
will be XORed together, so that the internal order within the blocks may be arbitrary,
since the XOR operation is commutative.

8 Proceedings of the Prague Stringology Conference 2012

The sizes of the blocks should not be fixed in advance, but depend on the values
themselves. Consider the sizes di of the gaps between the frequencies, di = fi − fi+1,
for i = 1, . . . , n − 1. The boundaries between the blocks should be chosen according
to the largest gaps, however, sorting according to di alone would strongly bias the
definition of the gaps towards inducing blocks with single elements, since the largest
gaps will tend to occur between the largest values. We should therefore normalize the
size of the gaps by dividing by an appropriate weight. We chose harmonic weights 1

i
for i ≥ 1 according to Zipf’s law [15]. The gaps are therefore sorted with respect to
i× di = i× (fi − fi+1), which has the advantage of requiring only integer arithmetic.

For a given parameter ℓ, the ℓ − 1 gaps with largest weights are chosen and
the ℓ sets of consecutive elements delimited by the beginning of the sequence, these
ℓ − 1 gaps, and the end of the sequence, are defined as the blocks. Figure 2 is a
schematic representation of an example partition into blocks with ℓ = 8. The squares
represent elements ai, the arrows stand for weighted gaps i (fi−fi+1), and the numbers
under the arrows are the indices of the weighted gaps in non-increasing order. In this
example, the induced blocks would consist of 3, 1, 3, 2, 4,. . . bytes, respectively.

Figure 2. Schematic representation of the gaps

The number of elements forming the last block is limited, if necessary, to include
at most a predetermined number of bytes, say 10, otherwise the speed of calculation
could be hurt, and spurious bytes that appear possibly only once or twice in the
chunk would have too strong of an influence. For the same reason, there are also
lower bounds on the number of occurrences of a byte to be considered at all (for
example, 15) and on the size di of a gap (for example, 5). If after these adjustments,
the number of blocks in a given chunk is smaller than the selected value of ℓ, a different
layout will be chosen that is adapted to the given number of blocks. In any case, one
has to prepare layouts also for the possibility of having any number of blocks between
1 and ℓ, since certain extreme chunks may contain only a small number of different
bytes.

Each block taken from the c-spectrum will be represented by a string of 8 bits,
using the full representation of the corresponding bytes. The strings are depicted
in Figure 1 as white rectangles. Each of these rectangles is shifted as indicated in
Figure 1, where they are listed in order top down. That is, the first rectangle is
shifted by 24 bits to the left (in fact, to get it left justified in the 32-bit layout), the
next rectangle is shifted 21 bits, then 18, 15, 12, 9, 6 and 3 bits.

2.2 Using elements of the f-spectrum

The elements of the f-spectrum are incorporated into the signature independently
from the partition into blocks of the corresponding bytes. For each frequency value,
which can be an integer between 1 and |C|, consider first its standard binary rep-
resentation (say, in 16 bits), and extend this string by 8 additional zeros to the
right. We thus assign to each frequency fi a 24-bit string Fi, for example, if fi = 5,
then Fi = 00000000 00000101 00000000. We further define Di as the substring of

L.Aronovich et al.: Similarity Based Deduplication with Small Data Chunks 9

Fi of length m bits, for some predetermined small integer m, starting at the posi-
tion immediately following the most significant 1-bit, for our case 00000000 00000101
00000000, the bits forming Di for m = 3 appear bold faced. To give another example
with a value of more than 8 bits, consider fi = 759; 00000010 11110111 00000000
then displays both Fi and Di. In the example of Figure 1, the elements included in
the layout are the Di, and the size m of all the elements is chosen as 3 bits. We exper-
imented also with other values of m, from 1 to 8, but got better results with m = 3.
The 8 bit padding allows values of m up to 8. The offsets of the chosen elements are
as indicated, this time bottom up, with the largest frequency being depicted as the
lowest element in the figure: 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6 and 6. The idea
behind this choice of bits is to select those with highest variability so as to get a broad
spread of values, but to ignore, for the larger frequencies, the lowest bits, which are
those most influenced by small fluctuations.

2.3 Using elements of the p-spectrum

Though much of the information of a chunk is already contained in the c- and f-
spectrum, we decided to adjoin also elements of the p-spectrum and got empirical
evidence that this improved the performance. When the maximal number ℓ of blocks
could be used, a single element based on the p-spectrum was sufficient. The corre-
sponding rectangle, depicted in the center of Figure 1, is of length 12 bits and will
be placed left-justified in the layout. It is defined as follows: order the pairs by non-
increasing frequencies and consider those indexed 5, 6, 7, 8 and 9 in this ordering.
The reason for not choosing the most frequent pairs as we did for the individual bytes
is that their distribution is much more biased, with the pairs (0,0) and (255,255) ap-
pearing as the most frequent in an overwhelming majority of the cases we tested. On
the other side, there was already a great variability in the pairs in positions 5 to 9.

For each of the 5 pairs, the following bitstring is constructed. Given the 2 bytes
A = a7 · · · a0 and B = b7 · · · b0, we rotate A cyclically to the left by 3 bits, and B
cyclically to the right by 3 bits. The bytes are aligned so that the rightmost 4 bits of
A overlap with the leftmost 4 bits of B, and then the strings are XORed. Formally,
the 12 resulting bits are now

a4,a3,a2,a1,a0 ⊕ b2, a7 ⊕ b1, a6 ⊕ b0, a5 ⊕ b7,b6,b5,b4,b3,

where the ⊕ operator stands for bitwise XOR. Note that the most and least significant
bits of both A and B are in the overlapping part, so if their distribution is biased,
they have an additional chance to correct the bias by the additional XOR. This is
important for special cases, for example, when the chunk only contains printable text.
The representation of all the bytes would then start with the same one to three bits,
which could have a negative effect on the uniformity we seek.

2.4 Putting it all together

Finally, all the elements of the layout are XORed, yielding a 32 bit string, representing
a number between 0 and 232− 1 that will act as the hash value of the given chunk C.

The geometry of the layout of the signature has been chosen on purpose as given
in Figure 1, with the most frequent bytes being placed left-justified, thereby influ-
encing the most significant (highest) bits, and the lowest elements of the f-spectrum
appearing in the area influencing the least significant (lowest) bits. The intention was

10 Proceedings of the Prague Stringology Conference 2012

that in case of small fluctuations in the frequencies, the order of the most frequent
characters might remain the same, so only some low order bits would change, yield-
ing just a small difference in the signature values. Minor changes affecting even lower
frequencies may go undetected, either because the corresponding frequencies are not
among those chosen, or because the change is in the lower order bits that are not
recorded in the signature.

3 Experimental Results

We performed a series of tests to assess the usefulness of the approach. A first concern
was to verify that the proposed approximate hash indeed spreads its values evenly.
Once this has been confirmed, we have to check that this uniformity does not come at
the price of sensitivity, as it would for a standard hashing scheme. We thus checked the
impact of the signature scheme in some artificial perturbation and clustering tests,
described below. Finally, we bring examples of applying the whole deduplication
process in comparison with an identity based approach.

As testbed, a subset of an Exchange database (EXC) of about 27GB has been
chosen, as well as the entire operating system of one of our computers (OS), a file of
about 5GB. The first set of tests was done with chunks of fixed length 8K. These
tests were then repeated for variable length sized chunks, the boundary of a chunk
being defined by applying a simple Rabin-Karp rolling hash on the d rightmost bytes
of the chunk under consideration. If this hash value equals some predefined constant
c, the chunk is truncated after these d bytes; otherwise, the following byte is adjoined
and the test with the rolling hash is repeated. In the test, d = 25, c = 2718 and the
hash function is RK(x) = x mod P , where P = 248 − 257 is a prime number. To
avoid extreme values for the chunk lengths, a lower limit of 2K and an upper limit
of 64K has been imposed. The average size of a chunk was around 12K on our test
databases.

blocks Average Excess St.Dev Excess Avg # occ

expected 1/2 1/
√
12

EXC 3,300,000 0.5050 1.0% 0.2991 3.6% 1.0033
OS 594,969 0.5085 1.7% 0.2858 -2% 1.0996

Table 1. Some statistics on the test databases and signatures

3.1 Uniformity

Table 1 summarizes some statistics about the test databases, the number of 8K blocks,
the average signature value (normalized to the [0,1] range), the standard deviation
of these normalized values, as well as the deviation from the expected results for a
uniform distribution. As can be seen, the values are very close to the expected ones.
On the EXC database, the chunk containing only zeros appeared 1756 times, but
beside the corresponding signature, all the others appeared mostly only once, some
appeared twice, etc. No signature appeared more than 45 times. The last column of
Table 1 gives the average number of occurrences for each signature.

For a more precise evaluation, inspecting each individual bit, the graph of Figure 3
shows the probability of getting a 1-bit in each of the 32 positions of the signatures.

L.Aronovich et al.: Similarity Based Deduplication with Small Data Chunks 11

Note that these probabilities, for all bit positions, are very close to the expected value
of 0.5 for a random distribution.

Figure 3. Bit distribution on example data

3.2 Perturbation tests

We now turn to observing the properties of the signature when introducing pertur-
bations. Recall that the challenge was to reconcile two contradicting demands: on
the one hand, the function is required, similarly to usual hash functions, to spread
its values as much as possible, so as to minimize the number of collisions; on the
other hand, we want small perturbations to yield only slight differences, if at all, in
the corresponding signature values, a property one explicitly prohibits for classical
hashing.

To simulate real life changes, the modified bytes did not get a random value, but
rather another randomly chosen byte from within the same chunk was copied into the
location to be modified. Thus the perturbations were introduced as follows: a random
position i between 1 and |C|, the size of the chunk, was chosen, and the character
from position |C| − i + 1 was copied to position i, overwriting the current one. The
idea was to change the chunk slightly, but without introducing any new characters
that are not already present in the chunk. Obviously, there is a small chance that
this “perturbation” is in fact void (when overwriting a character by itself), but the
corresponding probability is small enough so as not to bias the overall statistics.
The signature function was then applied to the modified chunk and compared to the
signature of the original chunk. In many cases, we got the same signature, meaning
that changing a single byte in the chunk did not change the function, contrarily to
what would be expected from a real hash function.

The above perturbation procedure has then been repeated, and the signature was
reevaluated after 2, 3, . . . , 10, 20, 30, . . . , 100, 110 byte changes. The changes were
cumulative, that is, each test added one (or 10) more perturbations. Table 2 is a
sample of some consecutive lines of the corresponding table.

One could define the distance between two signature values as the absolute value
of their difference, reflecting the intention of the design of the signature layout to yield
changes in the low order bits of the signature as result of small changes in the chunk.
However, in the intended application to a deduplication system, one cannot afford
too many search attempts in the vicinity of the hash value. More precisely, suppose

12 Proceedings of the Prague Stringology Conference 2012

signature 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 110
1144762526 0 0 0 0 0 0 0 0 0 0 2 12 12 12 12 12 12 12 12 12
127187251 0 0 0 0 0 0 0 0 14 14 14 14 14 14 14 14 14 14 14 14

4244827393 0 0 0 0 0 0 0 0 0 0 0 10 10 13 13 14 13 9 6 5
1818305692 0 0 0 0 0 0 0 0 0 14 17 17 15 18 18 18 18 18 20 20
1354737651 0 0 0 0 0 0 0 0 0 0 8 10 10 10 10 6 5 10 12 14

33724058 0 0 6 6 6 6 6 6 6 6 6 6 2 2 8 8 6 6 6 6
1392679006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

59007581 0 0 0 0 0 0 0 0 0 0 1 8 7 14 16 12 16 16 16 16
1343544922 0 0 0 0 0 0 0 0 0 0 0 0 11 0 7 7 7 11 0 0
1077804921 0
142372494 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2

1076507414 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
583838910 0 1 2 2 2 2 2 2 2 3 3 9 9 3 0 6 6 6 6 6

2214783602 0 0 0 0 0 0 0 10 0 0 9 8 10 8 8 8 8 8 8 8
2217595617 1 1 1 1 1 0 0 1 1 1 0 6 3 2 2 1 1 4 3 3
2198134340 5 5 5 5 5 5 5 5 5 5 6 5 4 4 4 4 4 7 13 10
1073872964 0
3233873385 0 1 1 1 1 1 1 1 1 1 2 7 7 7 2 3 1 1 1 1
2155372916 0 0 8 8 8 8 8 8 8 2 0 2 2 12 12 4 2 2 2 2
4277376398 0 0 0 0 0 0 0 0 0 0 3 3 1 2 4 14 14 12 12 12
4264726240 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3
2248374342 0 0 0 0 0 0 0 0 0 0 0 7 7 7 13 15 16 8 8 8

Table 2. Hamming distance with original chunk after 1, 2, . . . , 110 perturbations

a chunk C is given. We would evaluate ah(C) and check whether there is a pointer
to a chunk D at the address H[ah(C)] in the hash table. If so and indeed D = C,
the newly arrived chunk C can be deduplicated by pointing to D. But if D 6= C,
the intention was to look for pointers to chunks identical to C at the neighboring
locations of the hash table. But each trial is costly, so the number of trials will
have to be restricted. It might possibly only be reasonable to check at H[ah(C)],
H[ah(C) + 1] and H[ah(C) − 1]. In that case, we can as well restrict ourselves to
the Hamming distance between signatures, i.e., the number of differing bits in their
standard binary representation, rather than their arithmetic difference. These are the
values displayed in Table 2.

The first column gives the original signature (as a decimal number) before applying
any perturbation, then in the column headed i is the Hamming distance between the
original and the new signatures when i perturbations have been applied. Note that
this distance is not always an increasing function of the number of perturbations,
indicating that there might be quite a few cases in which the signature tends to
“correct itself” when there are many changes; however, the overall trend is clearly
increasing, as can be seen in the graphs below.

The plot in Figure 4 shows the average number of changed bits as a function of the
number of perturbations, for both the Exchange and the OS databases. The average
Hamming distance was between 0.3 and 5 to 6. There are slight differences between
the databases, but the trend is the same.

Note that the distances, at least for the small number of perturbations, are quite
low, and very often even zero, meaning that very small changes often yield the same
signature as before. This is in sharp contrast with regular hashing schemes, for which
the corresponding graph is expected to be a straight line (that is, independent of the
number of changes as long as this number is > 0) at the level of about 16 (that is,
about half of the bits are expected to change).

To verify this fact, we devised a control experiment in which a regular hash func-
tion (modulo P = 232 − 17 = 4, 294, 967, 279), was applied the same blocks, and then

L.Aronovich et al.: Similarity Based Deduplication with Small Data Chunks 13

Figure 4. Average number of changed bits as function of the number of perturbations for the
suggested signature

Figure 5. Average number of changed bits as function of the number of perturbations for a real
hash function

performed the same perturbation tests as for our function, recording the Hamming
distance between the original and perturbed signatures. Note that P is a prime num-
ber (actually the largest one fitting into our unsigned 32 bit signature). As expected,
the number of changed bits was indeed around 16, as can be seen on the plot in
Figure 5, more precisely, the average values were in the range from 15.988 to 16.018.
Figure 5 also displays again the graph for the OS database, for comparison.

For our function, even if there are more than 100 bytes changed, this implies, at
the average, only a change in about 5 to 6 bits. The resulting signature might thus
be very different (depending on the position of those 6 changed bits), but the change
is clearly not as radical as if a regular hash had be applied. In any case, this is just a
noteworthy observation as in the intended application, there is no intention to look
for similar chunks so far away.

To get a feeling on how far one can insert perturbations without yet changing
the signature value, consider the plot in Figure 6, giving for each number i of per-
turbations, the probability of getting a non-zero value in the column headed i of
the perturbation table. The plots are again given for both the Exchange and the
OS databases. The probability of a non-zero value for a single perturbation is just
about 0.06, and we see a clear ascending trend, reaching probability about 0.8 for

14 Proceedings of the Prague Stringology Conference 2012

Figure 6. Probability of getting non-zero Hamming distance

more than 100 changes. For the control test with the real hashing function, we again
got practically always non-zero values, more precisely, the probability for getting a
non-zero for each of the columns was between 0.99986 and 1.00000.

3.3 Clustering

After testing that the proposed signature indeed has the properties required from an
approximate hash function, that is: it gives a uniform spread, yet preserves locality in
the sense that similar blocks give similar signatures, we turn now to a more general
clustering test, which in fact checks the transpose of the above implication, that
similar signatures also imply similar blocks.

For each of the tested databases, N centröıd chunks have been chosen (we used
N = 11), so that they were mutually not similar. This is achieved by choosing the
chunks in a random sequence, and checking for each new candidate that it is different
enough from all the preceding chosen chunks in the sequence. X and Y are said to be
different enough if LD(X, Y) ≥ T , where T is some independently chosen threshold
(we used 1000), and LD defines the Levenshtein distance [12].

Each of the centröıds is then used to generate a number M of perturbation chunks
(we used M = 10), which are obtained by either changing a predetermined number
K of bytes of the map to a random value, or by copying to each of these K bytes
the value of another, randomly chosen, byte value from within the same chunk. The
number of perturbations K has been chosen to vary from 2 to 1024, doubling in each
step. Finally, the approximate hashing is applied to each of the generated chunks,
and the whole set of N ·M signatures is then sent to a clustering procedure, which
partitions the set of signatures, and thereby the set of corresponding chunks, into
subset of similar chunks. The number of hits, that is, correctly assigned correlations
between a generated chunk and its generating centröıd, is recorded as a function of
the number K of perturbations.

Three different alternatives have been considered to perform the clustering: the
hierarchical Tree-method (repeatedly choosing the pair of closest chunks among the
set of remaining subsets and dynamically updating the sets), K-means (minimizing
the within-cluster sum of squares) [9], and simply checking the distance from every
generated chunk to each of the centröıds and choosing that with minimal distance.
The results were similar, with the first method consistently giving slightly better
performance.

L.Aronovich et al.: Similarity Based Deduplication with Small Data Chunks 15

Figure 7. Probability of guessing the correct cluster as function of the number of perturbations

Each experiment was repeated 10 times and the values averaged. The results for
our test databases of the hit ratio as function of the number of perturbations are
displayed in Figure 7. As can be seen, the success rate is indeed decreasing with
increasing K, and for a small number of perturbations, the number of successful
assignments may be as large as 95%.

3.4 Comparison of similarity with identity

As has been mentioned earlier, the ultimate aim of these hash based systems is to
perform deduplication. One approach is to use standard hashing, even with crypto-
graphically strong hash functions that reduce the probability of false alarms to almost
zero, but can thereby detect only identical chunks. The alternative suggested in this
paper is the approximate hash, which could be able of locating also similar and not
necessarily identical data chunks.

It might not be possible to quantify the relative improvement caused by shifting
from a system based on identity to one based on similarity: the results will be ex-
tremely data dependent, based on the nature of the data and its repetitiveness. It
obviously makes no sense to simulate the system’s behavior on random data, as is
done for many other applications, since truly random data is not compressible. On
the other hand, also compressed files cannot be compressed even further, but they
may be able to take advantage of deduplication, for example when several copies of
such a file appear in the database.

We therefore decided, by lack of what could be agreed on as being “typical” data,
to test the performance in tests on publicly available files and report the results just as
examples, without claiming that these results are representative. Indeed, on different
input data, the figures could be higher or lower, depending on the data at hand.

file name size (MB) identity similarity gain
centos-5.3-i386-server 2816 6.58 7.10 7.3%
freebsd-6.4-i386 949 3.88 4.02 3.5%
fedora-fc6-i386 265 5.84 6.20 5.8%

Table 3. Comparing identity with similarity based systems

16 Proceedings of the Prague Stringology Conference 2012

distance -5 -4 -3 -2 -1 0 1 2 3 4 5
probability 0.6 2.4 1.3 2.1 2.7 81.7 2.9 2.4 1.3 1.9 0.6

Table 4. Distribution of distances from the approximate hash value

The files we chose were images of virtual machines obtainable from the web, a
sample of which is presented in Table 3 The sizes are given in MB, and the columns
headed identity and similarity list the corresponding compression ratios. The com-
pression ratio is defined as the size of the original file divided by the size of the
compressed file. For identity, we used the SHA1 secure hash function [7] and second
and subsequent copies of identical chunks were removed. For similarity, we used our
approximate hashing scheme, and in case a similar chunk has been found, the new
chunk was delta-encoded using vcdiff [3]. Fixed length chunks of size 8K have been
used for both parts of the experiment. The final column lists the relative gain, in
percent, of using similarity instead of identity.

Table 4 gives a more specific insight in the distribution of where the matching
chunks have been located by our system. We checked first at H[ah(C)], and if this
entry did not contain a pointer to C, we also checked H[ah(C)± i], for i = 1, 2, . . . , 5.
On our example data, in the overwhelming majority of cases among those where the
chunk could indeed be deduplicated, the pointer was found at H[ah(C)] itself. But
in 18% of the cases, it was found nearby. As could be expected, the probability of
locating the chunk decreases with the distance from ah(C), but interestingly, the
decrease is not monotonic: the values for ±4 are larger than for ±3. Clearly, this
is due to the fact that a difference of 4 means that only one bit is different in the
signature, while for a difference of 3, there are two differing bits.

4 Conclusion

We have presented the main ideas leading to the design of a similarity rather than
identity based deduplication system working with relatively small data chunks. Sim-
ilarity has been explored earlier in this context [1], but the performance depended
critically on the fact that the chunk size could be chosen large enough, in the MB
range, which reduced the size of the required data structures. The current work is a
first attempt to adapt the similarity approach also to systems in which a more fine
grained resolution is required, with data chunks typically in the KB range.

The tests we performed suggest that the proposed approximate hash function
indeed combines quite contradicting properties, like uniformity and sensitivity as
required, though this can only be empirically tested on chosen examples, and not
quantitatively checked in controlled statistical experiments. The scalability of the
system will obviously depend on the amount of duplicate data it contains.

L.Aronovich et al.: Similarity Based Deduplication with Small Data Chunks 17

References

1. L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and T. S. Klein: The
Design of a Similarity Based Deduplication System, Proc. of the SYSTOR’09 Conference, Haifa,
(2009) 1–14.

2. D.R. Bobbarjung, D. Jagannathan, and C. Dubnicki: Improving duplicate elimination
in storage systems, ACM Transactions on Storage, 2(4) (2006) 424–448.

3. J. L. Bentley and M. Douglas McIlroy: Data Compression Using Long Common Strings,
Proc. Data Compression Conference, Snowbird, Utah, (1999) 287–295.

4. A.Z. Broder: Identifying and Filtering Near-Duplicate Documents, Proc. Combinatorial Pat-
tern Matching Conference, CPM’00, (2000) 1–10.

5. A.Z. Broder: On the resemblance and containment of documents, Proc. of Compression and
Complexity of Sequences , IEEE Computer Society, (1997) 21–29.

6. T.H. Cormen, C. E. Leiserson, and R. L. Rivest: Introduction to Algorithms, MIT Press,
1990.

7. N. Ferguson, B. Schneier, and T. Kohno: Cryptography Engineering , John Wiley & Sons,
(2010).

8. P. Indyk and R. Motwani: Approximate Nearest Neighbors: Towards Removing the Curse
of Dimensionality, Proc. of the ACM Symposium on the Theory of Computing STOC’98 , (1998)
604–613.

9. T. Kanungo, D.M. Mount, N. S. Netanyahu, C.D. Piatko, R. Silverman, and A.Y.
Wu: An efficient K-means clustering algorithm: Analysis and implementation, IEEE Trans.
Pattern Analysis and Machine Intelligence 24 (2002) 881–892.

10. U. Manber: Finding Similar Files in a Large File System, Proc. of the USENIX Winter 1994
Technical Conference, (1994) 17–21.

11. G.H. Moulton and S. B. Whitehill: Hash file system and method for use in a commonality
factoring system, U.S. Pat. No. 6,704,730, issued March 9, 2004.

12. G. Navarro: A guided tour to approximate string matching, ACM Computing Surveys 33(1)
(2001) 31–88.

13. S. Quinlan and S. Dorward: Venti: A New Approach to Archival Storage, Proc. of the
USENIX Conference on File And Storage Technologies (FAST), (2002) 89–101.

14. B. Zhu, K. Li, and H. Patterson: Avoiding the Disk Bottleneck in the Data Domain Dedupli-
cation File System, Proc. of the USENIX Conference on File And Storage Technologies (FAST),
(2008) 279-292.

15. G.K. Zipf: The Psycho-Biology of Language, Boston, Houghton (1935).

LZW Data Compression on

Large Scale and Extreme

Distributed Systems

Sergio De Agostino

Computer Science Department, Sapienza University, 00198 Rome, Italy

Abstract. Results on the parallel complexity of Lempel-Ziv data compression suggest
that the sliding window method is more suitable than the LZW technique on shared
memory parallel machines. When instead we address the practical goal of designing
distributed algorithms with low communication cost, sliding window compression does
not seem to guarantee robustness if we scale up the system. The possibility of imple-
menting scalable heuristics is instead offered by LZW compression. In this paper we
present two implementations of the LZW technique on a large scale and an extreme
distributed system, respectively. They are both derived from a parallel approximation
scheme of a bounded memory version of the sequential algorithm.

Keywords: compression, factorization, distributed system, scalability

1 Introduction

Lempel-Ziv compression [18], [19], [22] is based on string factorization. Two different
factorization processes exist with no memory constraints. With the first one (LZ1)
[19], each factor is independent from the others since it extends by one character the
longest match with a substring to its left in the input string (sliding window compres-
sion). With the second one (LZ2 or LZW) [22], each factor is instead the extension by
one character of the longest match with one of the previous factors. This computa-
tional difference implies that while sliding window compression has efficient parallel
algorithms [6], [11], [12], [3], LZW compression (a practical implementation of the LZ2
method [21]) is hard to parallelize [5]. This difference is maintained when the most
effective bounded memory versions of Lempel-Ziv compression are considered [15],
[2]. There are several heuristics for limiting the work-space of the LZW compression
procedure in the literature. The most effective is the “least recently used” strategy
(LRU). Hardness results inside Steve Cook’s class (SC) have been proved for this ap-
proach [15], implying the likeliness of the non-inclusion of the LZW-LRU compression
method in Nick Pippenger’s class (NC). Completeness results in SC have also been
obtained for a relaxed version of the LRU strategy (RLRU) [15]. RLRU was shown
to be as effective as LRU in [8], [9]. Therefore, RLRU is the most efficient among the
bounded memory versions of LZW compression. A simpler heuristic which is still ef-
fective is the RESTART strategy. Differently from LRU and RLRU, LZW-RESTART
is parallelizable [15]. Moreover, parallel decompression is possible (this is true also for
the unbounded memory version) [6], [7], [11], [12].

When we address the practical goal of designing distributed algorithms with low
communication cost sliding window compression does not seem to guarantee robust-
ness when we scale up the system [10], [11], [12], [2]. The possibility of implementing
scalable heuristics is instead offered by LZW-RESTART compression [11], [12], [13].
Traditionally, the scale of a system is considered large when the number of nodes has

Sergio De Agostino: LZW Data Compression on Large Scale and Extreme Distributed Systems, pp. 18–27.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 19

the order of magnitude of a thousand. Modern distributed systems may nowadays
consist of hundreds of thousands of nodes, pushing scalability well beyond traditional
scenarios (extreme distributed systems). In this paper we present two implementa-
tions of the LZW technique on a large scale and an extreme distributed system,
respectively. They are both derived from a parallel approximation scheme of the
bounded memory version of the sequential algorithm presented in [13]. The approach
for extreme distributed systems could be applied to arbitrarily smaller scale systems
as well, but the alternative implementation we propose is simpler.

In Section 2 we describe Lempel-Ziv data compression while the bounded memory
versions are given in Section 3. Section 4 briefly describes past work on the study of
the parallel complexity of Lempel-Ziv methods since it is somehow consistent with
the practical results on the distributed implementation of LZW compression shown
in Section 5. Conclusion and future work are given in Section 6.

2 Lempel-Ziv Data Compression

Lempel-Ziv compression is a dictionary-based technique. In fact, the factors of the
string are substituted by pointers to copies stored in a dictionary. LZ1 (LZ2) com-
pression is also called the sliding (dynamic) dictionary method.

2.1 LZ1 Compression

Given an alphabet A and a string S in A∗ the LZ1 factorization of S is S =
f1f2 · · · fi · · · fk where the factor fi is the shortest substring which does not occur
previously in the prefix f1f2 · · · fi for 1 ≤ i ≤ k. With such a factorization, the en-
coding of each factor leaves one character uncompressed. To avoid this, a different
factorization was introduced (LZSS factorization) where fi is the longest match with
a substring occurring in the prefix f1f2 · · · fi if fi 6= λ, otherwise fi is the alphabet
character next to f1f2 · · · fi−1 [20]. fi is encoded by the pointer qi = (di, ℓi), where di
is the displacement back to the copy of the factor and ℓi is the length of the factor
(LZSS compression). If di = 0, li is the alphabet character. In other words the dic-
tionary is defined by a window sliding its right end over the input string, that is, it
comprises all the substrings of the prefix read so far in the computation. It follows
that the dictionary is both prefix and suffix since all the prefixes and suffixes of a
dictionary element are dictionary elements.

2.2 LZ2 Compression

The LZ2 factorization of a string S is S = f1f2 · · · fi · · · fk where the factor fi is the
shortest substring which is different from one of the previous factors. As for LZ1 the
encoding of each factor leaves one character uncompressed. To avoid this a different
factorization was introduced (LZW factorization) where each factor fi is the longest
match with the concatenation of a previous factor and the next character [21]. fi is
encoded by a pointer qi to such concatenation (LZW compression). LZ2 and LZW
compression can be implemented in real time by storing the dictionary with a trie
data structure. Differently from LZ1 and LZSS, the dictionary is only prefix.

20 Proceedings of the Prague Stringology Conference 2012

2.3 Greedy versus Optimal Factorization

The pointer encoding the factor fi has a size increasing with the index i. This means
that the lower one is the number of factors for a string of a given length the better
is the compression. The factorizations described in the previous subsections are pro-
duced by greedy algorithms. The question is whether the greedy approach is always
optimal, that is, if we relax the assumption that each factor is the longest match can
we do better than greedy? The answer is negative with suffix dictionaries as for LZ1
or LZSS compression. On the other hand, the greedy approach is not optimal for
LZ2 or LZW compression. However, the optimal approach is NP-complete [16] and

the greedy algorithm approximates with an O(n
1
4) multiplicative factor the optimal

solution [14].

3 Bounded Size Dictionary Compression

The factorization processes described in the previous section are such that the number
of different factors (that is, the dictionary size) grows with the string length. In
practical implementations instead the dictionary size is bounded by a constant and
the pointers have equal size. While for sliding window compression this can be simply
obtained by bounding the match and window lengths (therefore, the left end of the
window slides as well), for the LZW compression the dictionary elements are removed
by using a deletion heuristic.

3.1 The Deletion Heuristics

Let d + α be the cardinality of the fixed size dictionary where α is the cardinality
of the alphabet. With the FREEZE deletion heuristic, there is a first phase of the
factorization process where the dictionary is filled up and “frozen”. Afterwards, the
factorization continues in a “static” way using the factors of the frozen dictionary.
In other words, the LZW factorization of a string S using the FREEZE deletion
heuristic is S = f1f2 · · · fi · · · fk where fi is the longest match with the concatenation
of a previous factor fj, with j ≤ d, and the next character.

The shortcoming of the FREEZE heuristic is that after processing the string for a
while the dictionary often becomes obsolete. A more sophisticated deletion heuristic
is RESTART, which monitors the compression ratio achieved on the portion of the
input string read so far and, when it starts deteriorating, restarts the factorization
process. Let f1f2 · · · fj · · · fi · · · fk be such a factorization with j the highest index less
than i where the restart operation happens. Then, fj is an alphabet character and fi
is the longest match with the concatenation of a previous factor fh, with h ≥ j, and
the next character (the restart operation removes all the elements from the dictionary
but the alphabet characters). This heuristic is used by the Unix command “compress”
since it has a good compression effectiveness and it is easy to implement. Usually,
the dictionary performs well in a static way on a block long enough to learn another
dictionary of the same size. This is what is done by the SWAP heuristic. When the
other dictionary is filled, they swap their roles on the successive block.

The best deletion heuristic is the LRU (last recently used) strategy. The LRU
deletion heuristic removes elements from the dictionay in a “continuous” way by
deleting at each step of the factorization the least recently used factor, which is not a
proper prefix of another one. In [15] a relaxed version (RLRU) was introduced. RLRU

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 21

partitions the dictionary in p equivalence classes, so that all the elements in each class
are considered to have the same “age” for the LRU strategy. RLRU turns out to be
as good as LRU even when p is equal to 2 [8], [9]. Since RLRU removes an arbitrary
element from the equivalence class with the “older” elements, the two classes (when
p is equal to 2) can be implemented with a couple of stacks, which makes RLRU
slightly easier to implement than LRU in addition to be more space efficient. SWAP
is the best heuristic among the “discrete” ones.

3.2 Compression with Finite Windows

As mentioned at the beginning of this section, bounded size dictionary compression
can also be obtained by sliding a fixed length window and by bounding the match
length. The window length is usually several thousands kilobytes. The compression
tools of the Zip family, as the Unix command “gzip” for example, use a window size
of at least 32K.

3.3 Greedy versus Optimal Factorization

Greedy factorization is optimal for compression with finite windows since the dic-
tionary is suffix. With LZW compression, after we fill up the dictionary using the
FREEZE, RESTART or SWAP heuristic, the greedy factorization we compute with
such dictionary is not optimal since the dictionary is not suffix. However, there is
an optimal semi-greedy factorization which is computed by the procedure of figure
1 [17], [4]. At each step, we select a factor such that the longest match in the next
position with a dictionary element ends to the rightest. Since the dictionary is prefix,
the factorization is optimal. However, greedy factorizations are very close to optimal
in practice even if they approximate the optimal solution with a multiplicative factor
equal to the maximum match length in the worst case.

j:=0; i:=0
repeat forever

for k = j + 1 to i+ 1 compute
h(k): xk...xh(k) is the longest match in the kth position

let k′ be such that h(k′) is maximum
xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure

4 Lempel-Ziv Compression on a Parallel System

LZSS (or LZ1) compression can be efficiently parallelized on a PRAM EREW [6],
[2], [3], that is, a parallel machine where processors access a shared memory with-
out reading and writing conflicts. On the other hand, LZW (or LZ2) compression is
P-complete [5] and, therefore, hard to parallelize. Decompression, instead, is paral-
lelizable for both methods [7]. The asymmetry of the pair encoder/decoder between
LZ1 and LZ2 follows from the fact that the hardness results of the LZ2/LZW encoder
depend on the factorization process rather than on the coding itself.

22 Proceedings of the Prague Stringology Conference 2012

As far as bounded size dictionary compression is concerned, the “parallel com-
putation thesis” claims that sequential work space and parallel running time have
the same order of magnitude giving theoretical underpinning to the realization of
parallel algorithms for LZW compression using deletion heuristic. However, the the-
sis concerns unbounded parallelism and a practical requirement for the design of a
parallel algorithm is a limited number of processors. A stronger statement is that
sequential logarithmic work space corresponds to parallel logarithmic running time
with a polynomial number of processors. Therefore, a fixed size dictionary implies
a parallel algorithm for LZW compression satisfying these constraints. Realistically,
the satisfaction of these requirements is a necessary but not a sufficient condition
for a practical parallel algorithm since the number of processors should be linear.
The SCk-hardness and SCk-completeness of LZ2 compression using, respectively, the
LRU and RLRU deletion heuristics and a dictionary of polylogarithmic size show
that it is unlikely to have a parallel complexity involving reasonable multiplicative
constants [15]. In conclusion, the only practical LZW compression algorithm for a
shared memory parallel system is the one using the FREEZE, RESTART or SWAP
deletion heuristics. Unfortunately, the SWAP heuristic does not seem to have a paral-
lel decoder. Since the FREEZE heuristic is not very effective in terms of compression,
RESTART is a good candidate for an efficient parallel implementation of the pair
encoder/decoder even on a distributed system. We will see these arguments more in
detail in the next section.

5 Lempel-Ziv Compression on a Distributed System

Distributed systems have two types of complexity, the interprocessor communication
and the input-output mechanism. While the input/output issue is inherent to any
parallel algorithm and has standard solutions, the communication cost of the com-
putational phase after the distribution of the data among the processors and before
the output of the final result is obviously algorithm-dependent. So, we need to limit
the interprocessor communication and involve more local computation to design a
practical algorithm. The simplest model for this phase is, of course, a simple array
of processors with no interconnections and, therefore, no communication cost. Such
array of processors could be a set of neighbors linked directly to a central node (from
which they receive blocks of the input) to form a so called star network (a rooted tree
of height 1). In an extended star each node adjacent to the central one has a set of
leaf neighbors (a rooted tree of height 2). Such extension is useful in practice when
we scale up the system.

For every integer k greater than 1 there is an O(kw) time, O(n/kw) processors
distributed algorithm factorizing an input string S with a cost which approximates
the cost of the LZSS factorization within the multiplicative factor (k + m − 1)/k,
where n, m and w are the lengths of the input string, the longest factor and the win-
dow respectively [2]. As far as LZW compression is concerned, if we use a RESTART
deletion heuristic clearing out the dictionary every ℓ characters of the input string we
can trivially parallelize the factorization process with an O(ℓ) time, O(n/ℓ) proces-
sors distributed algorithm. This could also be done with the LRU or SWAP deletion
heuristic. However, with the RESTART deletion heuristic scalable compression and
decompression algorithms are possible on a tree architecture. The parallel encoder,
after a dictionary is filled for each block of length ℓ, produces a factorization of S with
a cost approximating the cost of the optimal factorization within the multiplicative

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 23

factor (k+1)/k in O(km) time with O(n/km) processors [13]. These algorithms pro-
vide approximation schemes for the corresponding factorization problems since the
approximation factors converge to 1 when km and kw converge to ℓ and to n, respec-
tively. In the following subsections, we first discuss sliding window compression and
then propose two improved new versions of the LZW distributed algorithm suitable
on large scale and extreme distributed systems.

5.1 Sliding Window Compression on a Distributed System

We simply apply in parallel sliding window compression to blocks of length kw.
It follows that the algorithm requires O(kw) time with n/kw processors and the
approximation factor is (k + m − 1))/k with respect to any parsing. In fact, the
number of factors of an optimal (greedy) factorization on a block is at least kw/m
while the number of factors of the factorization produced by the scheme is at most
(k− 1)w/m+w. As shown in figure 2, the boundary might cut a factor (sequence of
plus signs) and the length w of the initial full size window of the block (sequence of
w’s) is the upper bound to the factors produced by the scheme in it. Yet, the factor
cut by the boundary might be followed by another factor (sequence of x’s) which
covers the remaining part of the initial window. If this second factor has a suffix to
the right of the window, this suffix must be a factor of the sliding dictionary defined
by it (dotted line) and the multiplicative approximation factor follows.

+++++(+++)xxxxxxxxxxx
———————/——————————–

wwwwwwwwww
.....

Figure 2. The making of the surplus factors

Making the order of magnitude of the block length greater than the one of the
window length largely beats the worst case bound on realistic data. Since the com-
pression tools of the Zip family use a window size of at least 32K, the block length in
our parallel implementation should be about 300K and the file size should be about
one third of the number of processors in megabytes. Therefore, the approximation
scheme is suitable only for a small scale system unless the file size is very large.

5.2 LZW Compression on a Distributed System

LZW compression was originally presented with a dictionary of size 212, clearing out
the dictionary as soon as it is filled up [21]. The Unix command “compress” employs
a dictionary of size 216 and works with the RESTART deletion heuristic. The block
length needed to fill up a dictionary of this size is approximately 300K.

As previously mentioned, the SWAP heuristic is the best deletion heuristic among
the discrete ones. After a dictionary is filled up on a block of 300K, the SWAP
heuristic shows that we can use it efficiently on a successive block of about the same
dimension where a second dictionary is learned. A distributed compression algorithm
employing the SWAP heuristic learns a different dictionary on every block of 300K of
a partitioned string (the first block is compressed while the dictionary is learned). For
the other blocks, block i is compressed statically in a second phase using the dictionary

24 Proceedings of the Prague Stringology Conference 2012

learned during the first phase on block i − 1. But, unfortunately, the decoder is not
parallelizable since the dictionary to decompress block i is not available until the
previous blocks have been decompressed. On the other hand, with RESTART we can
work on a block of 600K where the second half of it it is compressed statically. We
wish to speed up this second phase though, since LZW compression must be kept
more efficient than sliding window compression. In fact, it is well-known that sliding
window compression is more effective but slower. If both methods are applied to a
block of 300K, but LZW has a second static phase to execute on a block of about
the same length it would no longer have the advantage of being faster. We show how
to speed up this second phase on a very simple tree architecture as the extended star
in time O(km) with O(n/km) processors.

During the input phase, the central node broadcasts a block of length 600K to
each adjacent processor. Then, for each block the corresponding processor broadcasts
to the adjacent leaves a sub-block of length m(k + 2) in the suffix of length 300K,
except for the first one and the last one which are m(k + 1) long. Each sub-block
overlaps on m characters with the adjacent sub-block to the left and to the right,
respectively (obviously, the first one overlaps only to the right and the last one only
to the left). Every processor stores a dictionary initially set to comprise only the
alphabet characters.

The first phase of the computation is executed by processors adjacent to the
central node. The prefix of length 300K of each block is compressed while learning
the dictionary. At each step of the LZW factorization process, each of these processors
sends the current factor to the adjacent leaves. They all adds such factor to their
own dictionary. After compressing the prefix of length 300K of each block, all the
leaves have a dictionary stored which has been learned by their parents during such
compression phase.

Let us call a boundary match a factor covering positions of two adjacent sub-blocks
stored by leaf processors. Then, the leaf processors execute the following algorithm
to compress the suffix of length 300K of each block:

– for each block, every corresponding leaf processor but the one associated with the
last sub-block computes the boundary match between its sub-block and the next
one ending furthest to the right, if any;

– each leaf processor computes the optimal factorization from the beginning of its
sub-block to the beginning of the boundary match on the right boundary of its
sub-block (or the end of its sub-block if there is no boundary match).

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 3. The making of a surplus factor

Stopping the factorization of each sub-block at the beginning of the right boundary
match might cause the making of a surplus factor, which determines the approxima-
tion factor (k+1)/k with respect to any factorization. In fact, as it is shown in figure

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 25

3, the factor in front of the right boundary match (sequence of x’s) might be extended
to be a boundary match itself (sequence of plus signs) and to cover the first position
of the factor after the boundary (dotted line).

In [1], it is shown experimentally that for k = 10 the compression ratio achieved
by such factorizarion is about the same as the sequential one. Results were presented
for static prefix dictionary compression but they are valid for dynamic compression
using the LZW technique with the RESTART deletion heuristic. In fact, experiments
were proposed compressing similar files in a collection using a dictionary learned
from one of them. This is true even if the second step is greedy, since greedy is very
close to optimal in practice. Moreover, with the greedy approach it is enough to use
a simple trie data structure for the dictionary rather than the modified suffix tree
data structure of [17] needed to implement the semi-greedy factorization in real time.
Therefore, after computing the boundary matches the second part of the parallel
approximation scheme can be substituted by the following procedure:

– each leaf processor computes the static greedy factorization from the end of the
boundary match on the left boundary of its sub-block to the beginning of the
boundary match on the right boundary.

Considering that typically the average match length is 10, one processor can com-
press down to 100 bytes independently. Then compressing 300K involves a number
of processors up to 3000 for each block. It follows that with a file size of several
megabytes or more, the system scale has a greater order of magnitude than the stan-
dard large scale parameter making the implementation suitable for an extreme dis-
tributed system. We wish to point out that the computation of the boundary matches
is very relevant for the compression effectiveness when an extreme distributed system
is employed since the sub-block length becomes much less than 1K.

With standard large scale systems the sub-block length is several kilobytes with
just a few megabytes to compress and the approach using boundary matches is too
conservative for the static phase. In fact, a partition of the second half of the block
does not effect on the compression effectiveness unless the sub-blocks are very small
since the process is static. In conclusion, we can propose a further simplification of
the algorithm for standard small, medium and large scale distributed systems.

Let p0 · · · pn be the processors of a distributed system with an extended star
topology. p0 is the central node of the extended star network and p1 · · · pm are its
neighbors. For 1 ≤ i ≤ m and t = (n−m)/m let the processors pm+(i−1)t+1 · · · pm+it

be the neighbors of processor i.
B1 · · ·Bm is the sequence of blocks of length 600K partitioning the input file.

Denote with B1
i and B2

i the two halves of Bi for 1 ≤ i ≤ m. Divide B2
i into t

sub-blocks of equal length.
The input phase of this simpler algorithm distributes for each block the first half

and the sub-blocks of the second half in the following way:

– broadcast B1
i to processor pi for 1 ≤ i ≤ m

– broadcast the j-th sub-block of B2
i to processor pm+(i−1)t+j for 1 ≤ i ≤ m and

1 ≤ j ≤ t

26 Proceedings of the Prague Stringology Conference 2012

Then, the computational phase is:

in parallel for 1 ≤ i ≤ m

– processor pi applies LZW compression to its block, sending the current factor to
its neigbors at each step of the factorization

– the neighbors of processor pi compress their blocks statically using the dictionary
received from pi with a greedy factorization

5.3 Decompression

To decode the compressed files on a distributed system, it is enough to use a special
mark occurring in the sequence of pointers each time the coding of a block ends. The
input phase distributes the subsequences of pointers coding each block among the
processors. If the file is encoded by an LZW compressor implemented with one of the
two procedures described in the previous section, a second special mark indicates for
each block the end of the coding of a sub-block. The coding of the first half of each
block is stored in one of the neighbors of the central node while the coding of the
sub-blocks are stored into the corresponding leaves. The first half of each block is
decoded by one processor to learn the corresponding dictionary. Each decoded factor
is sent to the corresponding leaves during the process, so that the leaves can rebuild
the dictionary themselves. Then, the dictionary is used by the leaves to decode the
sub-blocks of the second half.

6 Conclusion

We presented an approach to the parallel implementation of LZW data compression
which is suitable for small and large scale distributed systems. Some blocks are com-
pressed independently providing information for a second phase where the remaining
portions of the input string are encoded in parallel with a higher granularity. In order
to push scalability beyond what is traditionally considered a large scale system a more
involved approach distributes overlapping sub-blocks of these remaining portions to
compute boundary matches. These boundary matches are relevant to maintain the
compression effectiveness on a so-called extreme distributed system. We wish to im-
plement these ideas on real systems with the appropriate architecture to experiment
how the communication cost effects on the speed-up. If we have a relatively small
scale system available, the approach with no bounadary matches can be used. More-
over, if the system has an architecture with a simple star topology rather than an
extended one we could still experiment on a file with size between 500K and one
megabyte. During the input phase, the central node brodcasts the sub-blocks of the
second half of the file to the neighbors. Then, it applies LZW compression to the first
half providing the dictionary to the other nodes for the compression of the second
half. The parallel running time of this implementation could be compared with the
sequential time of the sliding compression method applied to each of the two halves
of the file (the higher one would be considered). In this way, it can be seen how the
running times of the two parallel implementations relate to each other.

S. De Agostino: LZW Data Compression on Large Scale and Extreme Distributed System 27

References

1. D. Belinskaya, S. D. Agostino, and J. A. Storer: Near optimal compression with respect
to a static dictionary on a practical massively parallel architecture, in Proceedings IEEE Data
Compression Conference, 1996, pp. 172–181.

2. L. Cinque, S. DeAgostino, and L. Lombardi: Scalability and communication in parallel
low-complexity lossless compression. Mathematics in Computer Science, 3 2010, pp. 391–406.

3. M. Crochemore and W. Rytter: Efficient parallel algorithms to test square-freeness and
factorize strings. Information Processing Letters, 38 1991, pp. 57–60.

4. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific, 2003.
5. S. DeAgostino: P-complete problems in data compression. Theoretical Computer Science, 127

1994, pp. 181–186.
6. S. DeAgostino: Parallelism and dictionary-based data compression. Information Sciences, 135

2001, pp. 43–56.
7. S. DeAgostino: Almost work-optimal PRAM EREW decoders of LZ-compressed text. Parallel

Processing Letters, 14 2004, pp. 351–359.
8. S. DeAgostino: Bounded size dictionary compression: Relaxing the LRU deletion heuristic, in

Proceedings Prague Stringology Conference, 2005, pp. 135–142.
9. S. DeAgostino: Bounded size dictionary compression: Relaxing the LRU deletion heuristic.

International Journal of Foundations of Computer Science, 17 2006, pp. 1273–1280.
10. S. DeAgostino: Parallel implementations of dictionary text compression without communica-

tion, 2009.
11. S. DeAgostino: Lempel-Ziv data compression on parallel and distributed systems, in Proceed-

ings Data Compression, Communications and Processing Conference, 2011, pp. 193–202.
12. S. DeAgostino: Lempel-Ziv data compression on parallel and distributed systems. Algorithms,

4 2011, pp. 183–199.
13. S. DeAgostino: LZW versus sliding window compression on a distributed system: Robustness

and communication, in Proceedings INFOCOMP, 2011, pp. 125–130.
14. S. DeAgostino and R. Silvestri: A worst case analisys of the LZ2 compression algorithm.

Information and Computation, 139 1997, pp. 258–268.
15. S. DeAgostino and R. Silvestri: Bounded size dictionary compression: SCk-completeness

and nc algorithms. Information and Computation, 180 2003, pp. 101–112.
16. S. DeAgostino and J. A. Storer: On-line versus off-line computation for dynamic text

compression. Information Processing Letters, 59 1996, pp. 169–174.
17. A. Hartman and M. Rodeh: Optimal parsing of strings, 1985.
18. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-

tion Theory, 22 1976, pp. 75–81.
19. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory, 23 1977, pp. 337–343.
20. J. A. Storer and T. G. Szymanski: Data compression via textual substitution. Journal of

ACM, 29 1982, pp. 928–951.
21. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 1984,

pp. 8–19.
22. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24 1978, pp. 530–536.

Failure Deterministic Finite Automata

Derrick G. Kourie1, Bruce W. Watson2, Loek Cleophas1,3, and Fritz Venter1

1 University of Pretoria
2 Stellenbosch University

3 Eindhoven University of Technology
{dkourie,bruce,loek,fritz}@fastar.org

Abstract. Inspired by failure functions found in classical pattern matching algorithms,
a failure deterministic finite automaton (FDFA) is defined as a formalism to recognise
a regular language. An algorithm, based on formal concept analysis, is proposed for de-
riving from a given deterministic finite automaton (DFA) a language-equivalent FDFA.
The FDFA’s transition diagram has fewer arcs than that of the DFA. A small mod-
ification to the classical DFA’s algorithm for recognising language elements yields a
corresponding algorithm for an FDFA.

Keywords: failure arcs, DFA, formal concept analysis

1 Introduction

It is well-known that there is a mapping between deterministic finite automata (DFAs)
and regular languages. Let L(D) ⊆ Σ∗ denote the regular language associated with
DFA D, the DFA being defined on an alphabet Σ and having δ as its transition
function. The transition function maps a state / symbol pair to a new state, i.e.
δ(q, a) = p where q, p ∈ Q, the DFA’s set of states, and a ∈ Σ.

Given an arbitrary finite-length string x ∈ Σ∗, there is a classical algorithm to
test whether x ∈ L(D). The algorithm uses δ to transition from state to state as it
processes x on a character by character basis. It starts from the DFA’s start state
and terminates once all characters in x have been processed. Only if a final state has
been reached at termination does the algorithm affirm that x ∈ L(D).

Such an algorithm takes time O(|x|), assuming that δ(q, a) is computed in con-
stant time. It uses O(|Σ| × |Q|) space, as δ has to be stored. Applications of the
algorithm vary widely, with the underlying DFA possibly involving millions of states
and transitions. Consequently, research efforts have been directed at improving on the
algorithm’s space or time efficiency. Examples include DFA minimisation [22], hard-
coding and cache manipulation [10], various automata transformations [6,3], various
strategies for storing sparse matrices [21,8], and other strategies to reduce represen-
tation sizes [5].

Here we focus on improving on space efficiency by relying on failure DFAs (FD-
FAs). The formalism derives from the failure functions found in classical pattern
matching algorithms [1,11,4]. Recall, for example, the Aho-Corasick algorithm [1]
which takes a finite set of patterns and identifies all their occurrences in a text. One
version uses a DFA, while a second version uses a trie DFA [9] with a so-called failure
function. The latter version removes arcs that do not contribute to the definition of
patterns, replacing them judiciously with arcs derived from a failure function. The
result is a trie DFA, decorated by various failure arcs. The standard acceptance al-
gorithm is adapted to use this automaton. The total number of trie and failure arcs
is significantly less than the number of arcs in the DFA version of the algorithm.

Derrick G. Kourie, Bruce W. Watson, Loek Cleophas, Fritz Venter: Failure Deterministic Finite Automata, pp. 28–41.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

D.G.Kourie et al.: Failure Deterministic Finite Automata 29

Benchmarks reported in [22] suggest that the gain in space efficiency comes at the
cost of about 20% reduction in processing speed.

In addition to their use in the Knuth-Morris-Pratt and Aho-Corasick keyword
pattern matching algorithms, there has been some work in broadening the use of
failure functions, including:

– Kowaltowski, Lucchesi and Stolfi [16] present failure functions (and algorithms for
computing them) in the restricted case of acyclic automata – especially as used
in various natural language processing applications, such as spell-checking.

– Mohri [18] presents algorithms for the restricted case of constructing a failure
function and manipulating D such that the resulting FDFA accepts language
Σ∗ · L(D). The resulting compact representation is primarily useful in pattern
matching for the language D somewhere in an input string x, as the Σ∗ matches
the prefix of x before the match.

– Crochemore and Hancart [4] illustrate how failure arc placement can sometimes
be further optimised, but they do not give a general construction algorithm for
deriving an FDFA from a DFA.

Our work takes up the failure arc idea and generalises it. Below we describe an
ordered approach to deriving a language-equivalent FDFA from any complete DFA.
This generalisation brings several issues to the fore.

The starting point to address these issues is the provision of a formal definition of
an FDFA and its associated language. In terms of this definition, a DFA can be viewed
as a degenerate FDFA. The right language of an FDFA state is recursively defined,
and this provides a formal definition of an FDFA’s language. Starting with the DFA
(seen as a degenerate FDFA), we then show how to build incrementally a sequence
of language-equivalent FDFAs. At each increment a set of arcs is replaced with a
single failure arc while preserving the right languages of all states involved in such a
transformation. As a consequence, the language recognised by FDFAs produced from
transformation to the next remains invariant.

The matter of which set of arcs to select for transformation at each next iteration
step is non-trivial. In general, there will be many possibilities, different selections
leading to different FDFAs. One of the complications is that so-called divergent cycles
of failure arcs have to be avoided (although non-divergent cycles may be tolerated).

To ensure that all candidate arcs for transformation are identified, we turn to
formal concept analysis (FCA) – a domain of study in which a so-called (formal)
concept lattice identifies clusters of objects that share common attributes [2]. We
show how information about a complete DFA can be encapsulated in what we call a
state/out-transition concept lattice. The state/out-transition lattice isolates arc sets
that could potentially be replaced by failure arcs, and the arc redundancy measure
is used to prioritise which sets to first select for such replacement. In this sense,
we approximate a greedy algorithm. We also indicate how to proceed in order to
render the algorithm a strictly greedy one, at some cost to the algorithm’s efficiency.
Since the greediness does not guarantee optimality, finding an efficient algorithm for
deriving an arc-minimal language-preserving FDFA remains an open problem.

In summary, then, Section 2 provides the necessary formal material about FDFAs,
while Section 3 introduces the reader to the FCA theory about concept lattices that
is needed in this paper. Section 4 then shows how to build a state/out-transition
concept lattice from a DFA. It also provides an algorithm which uses such a lattice
to derive a language equivalent FDFA. Because the resulting FDFA retains all the

30 Proceedings of the Prague Stringology Conference 2012

original DFA states, the algorithm is characterised as a DFA-homomorphic algorithm.
In Section 5 we point to additional work on this theme that is currently on our
agenda. This includes algorithms under development which introduce failure arcs to
new states derived directly from the lattice. Because of this, these may be described
as lattice-homomorphic algorithms. However, full elaboration of these algorithms will
be provided in subsequent research contributions.

2 Failure Deterministic Finite Automata

In defining and discussing an FDFA below, we rely on the following conventions and
general notation.

– Where convenient, a function will be regarded as a set of pairs, the first element
being from its domain and the second from its range. A function which is not
guaranteed to be total but may be, is called a possibly partial function.

– The domain of any function f is denoted by dom f . If q /∈ dom f for the possibly
partial function f , then this is denoted by f(q) = ⊥.

– A DFA denoted by D = (Q,Σ, δ, F, s) is considered, where Q is the DFA’s set of
states; Σ is its alphabet; δ is the transition function mapping state / symbol pairs
to a new state; s is the start state; and F is the set of final states.

– We use Σq = {a : δ(q, a) 6= ⊥} to denote symbols labeling out-transitions of state
q, and /Σq for Σ \Σq. A complete DFA (sometimes called a total DFA, because δ
is a total function) is characterised by the fact that Σq = Σ for all q ∈ Q. Note
that any DFA can easily be converted to a language-equivalent complete DFA by
simply introducing an arc to a common sink state for every state q and symbol a
such that δ(q, a) = ⊥.

– We will also use the function head : Σ+ → Σ where head(av) = a; and the function
tail : Σ+ → Σ∗ where tail(av) = v.

– We define the extended transition function δ∗ : Q × Σ∗ → Q by δ∗(q, w) = q if
w = ε and by δ∗(q, w) = δ∗(δ(q, head(w)), tail(w)) otherwise.

– Given δ∗, the language of D is defined by L(D) = {w | δ∗(s, w) ∈ F}.
– If L ⊆ Σ∗ and u ∈ Σ then u · L denotes the prefixing of all elements in L by the
symbol u, i.e. u · L = {uw : w ∈ L}. Of course, u · ∅ = ∅.

Definition 1 (FDFA). F = (Q,Σ, δ, f, F, s) is an FDFA if f : Q → Q is a possibly
partial function and D = (Q,Σ, δ, F, s) is a DFA.

We shall callD the embedded DFA of F and f the failure function of F. If q ∈ dom f,
then q is called a failure state.

Definition 2 (Right language of an FDFA’s state). The right language of state q

in FDFA F = (Q,Σ, δ, f, F, s), denoted by
−→
L (F, q), is defined as the smallest language

such that
−→
L (F, q) =

−→
L δ(F, q) ∪

−→
L f(F, q), where

−→
L δ(F, q) =


 ⋃

b∈Σq

b · −→L (F, δ(q, b))


 ∪

{
{ε} if q ∈ F

∅ otherwise

−→
L f(F, q) =

{−→
L (F, f(q)) ∩ (/ΣqΣ

∗) if f(q) 6= ⊥
∅ otherwise

D.G.Kourie et al.: Failure Deterministic Finite Automata 31

Thus, the right language of an FDFA in state q, written
−→
L (F, q), consists of

three components: (1) all strings that can be generated from that state by making a
conventional DFA transition to the next state on one of the out-transition symbols

in Σq; (2) ε if q is final; and (3) those words in
−→
L (F, f(q)) (the right language of the

next state as determined by the failure function at q) that begin with a symbol not
in Σq, because any word beginning with a symbol in Σq would already have caused
a conventional DFA transition from q.

(Such a recursive definition of right language is well-formed. The above definition

essentially gives rise to a finite set of equations with variables
−→
L (F, q),

−→
L δ(F, q) or−→

L f(F, q) (for all states q) on the left-hand side. All of those equations are either right-
linear or chain-rules, and Gaussian elimination/substitution can be used to partially
solve them, leaving a limited number of self- or mutually-recursive equations. Those
equations are solvable (as a regular language) using Arden’s lemma [20, Lemma 2.9,
page 100]. See [20, Section 4.3.1, page 133] for a detailed example resembling this
one.)

Definition 3 (Language of an FDFA). The language of an FDFA F is denoted

by L(F) and is defined as
−→
L (F, s), where s denotes the start state of F.

Definition 4 (FDFA equivalence). An FDFA D (which may possibly be a DFA)
is said to be (language) equivalent to an FDFA F iff L(F) = L(D). This will be
denoted by F ≡ D.

Clearly, the embedded DFA of an FDFA is not, in general, equivalent to the
FDFA, but it is in the degenerate case, i.e. when f = ∅. As previously noted, a DFA
can therefore be seen as a special case of an FDFA – it is an FDFA that has a
degenerate failure function.

Note that for a given FDFA, there could be many equivalent DFAs and vice versa.
It is well known that the regular languages partition the set of DFAs into equivalence
classes. Thus, each regular language R defines a class ED(R) = {D | D is a DFA ∧
L(D) = R} that is disjoint from every other such class. Similarly, the regular lan-
guages also induce equivalence classes of FDFAs so that for regular language R there
is a unique and partitioning set of FDFAs EF(R) = {F | F is an FDFA∧L(F) = R}.
Since every DFA is a degenerate FDFA, ED(R) ⊆ EF(R).

The algorithm proposed in Section 4 may be thought of as starting off with D ∈
ED(R) and deriving a sequence of Fi ∈ EF(R), terminating when there are no further
opportunities for removing elements of δ while adding elements of f.

The FDFA F produced by that algorithm can be used for recognising whether a
string x is a member of L(F). Algorithm 1 shows how this can be done. It assumes
FDFA F = (Q,Σ, δ, f, F, s) is given.

In this text, the Guarded Command Language (GCL) is used to specify algo-
rithms. This minimalist and easy to use specification language was invented by Dijk-
stra [7] and remains widely in use because of its conciseness and precision [14].

We rely on GCL’s multiple guarded command format for the loop. In this form,
the loop comprises of two guarded commands of the form G → S where G is a
boolean expression and S is a command. All guards are evaluated at each iteration,
and a statement is non-deterministically selected among those whose guards evaluate
to true. If no guard evaluates to true, the loop terminates1.

1 cand and cor stand for “conditional and” and “conditional or” respectively, i.e. the equivalent of
the short circuit operators && and ‖ in C++, Java, etc.

32 Proceedings of the Prague Stringology Conference 2012

The virtue of this multiple guarded command loop format is that it highlights
the symmetry with standard DFA acceptance. The standard algorithm is identical to
Algorithm 1, but with the second loop guard absent.

Algorithm 1 (Test for string membership of an FDFA’s language)
y, q := x, s;
{ Invariant: y is untested and the current state is q }
do (y 6= ε) cand (δ(q, head(y)) 6= ⊥) → q, y := δ(q, head(y)), tail(y)
[] (y 6= ε) cand ((δ(q, head(y)) = ⊥) ∧ (f(q) 6= ⊥)) → q := f(q)
od;
{ ((y = ε) cor ((δ(q, head(y)) = ⊥) ∧ (f(q) = ⊥))) }
accept := (y = ε) ∧ (q ∈ F)
{ post (accept ⇔ x ∈ L(F)) }

However, Algorithm 1 embodies a potential complication that does not arise in
its DFA counterpart. The presence of cycles in the failure function could lead to
complications. In order to understand the meaning and consequences of such cycles,
we begin by defining the notion of a failure path.

Definition 5 (Failure path and failure alphabet). A sequence of FDFA states,

〈p0, p1, . . . , pn〉 of length n > 0 is called a failure path from p0 to pn, written p0
f
❀ pn,

iff ∀i ∈ [0, n) : f(pi) = pi+1. For such a failure path, Σ
p0

f
❀pn

= /Σp0 ∩ /Σp1 ∩ · · · ∩ /Σpn−1

is its failure alphabet.

Where convenient, pi
f
❀ pj will be used as a predicate to assert that the FDFA

under consideration has a failure path from state pi to state pj.
In Algorithm 1, the transition which occurs on symbols in Σq is determined by δ,

and if q is a failure state then the transition to occur on symbols in /Σq is determined
by the failure function f. The failure alphabet of a failure path is therefore the set
of symbols, each of which is guaranteed to cause failure transitions from the start of
the failure path to its end. This insight becomes important in distinguishing between
failure paths that form cycles. We shall simply call a failure path that forms a cycle

a failure cycle and designate it by pi
f
❀ pi, where pi is any state in the cycle.

Definition 6 (Divergent failure cycle). A failure cycle pi
f
❀ pi is divergent iff

Σ
pi

f
❀pi

6= ∅.

The term divergent is inspired by its use in process algebras. In that domain, a
divergent concurrent system is one that is trapped into a cycle of non-productive state
changes [19]. A divergent failure cycle in an FDFA would cause analogous behaviour
in Algorithm 1. If the algorithm is examining symbol a in state pi, where a ∈ Σ

pi
f
❀pi

,

then the algorithm will cycle non-productively through the divergent failure cycle
without ever consuming symbol a. Clearly, therefore, it is advisable to avoid divergent
failure cycles when constructing an FDFA. On the other hand, cycles which are not
divergent (i.e. where Σ

pi
f
❀pi

= ∅) are harmless, since it is guaranteed that at some

state in the cycle, a symbol will eventually be consumed.

D.G.Kourie et al.: Failure Deterministic Finite Automata 33

Definition 1 of an FDFA is as general as possible. It does not preclude failure
cycles, whether or not they are divergent. It allows for useless states and transitions,
including useless failure transitions. For example, a failure arc from state q where
Σq = Σ serves no purpose, but is not prohibited in the FDFA definition. We do not
consider such cases in detail here, but ensure that they are avoided in the FDFA
construction algorithm to be described.

Note in passing that the failure function description in [4] also allows for failure
arcs in a general DFA setting, but no algorithm for constructing FDFAs in general
is presented, and all failure arc cycles are prohibited there, even if they are not
divergent. From what has been discussed above, this would seem to be an overly
strict requirement.

Algorithm 1 operates in O(|w|) time in the best case, but in the worst case it
has to traverse the path of an entire failure cycle before having a symbol of w con-
sumed. Since the longest possible non-divergent cycle is |Q|−1, the algorithm’s worst
case performance is described by O(|w| × (|Q| − 1)). The corresponding DFA string
membership algorithm operates in O(|w|).

However, there is a potential savings in arc storage if an FDFA is used instead
of a DFA. For example, consider the DFA depicted in Figure 1a. It has a total of
sixteen arcs. (Doubly labelled arcs are counted twice, because storage is required to
represent each transition.) The FDFA in Figure 1b is language equivalent to the DFA

p1 p2 p3 p4
b

a

c

b
c

a

c

a, b
a, d b, d

c, d
d

(a) Initial DFA: |δ| = 16, |f| = 0

p1 p2 p3 p4c

a, b
a, d d

d
d

f

f f

(b) FDFA after two iterations of Algorithm 2:
|δ| = 8, |f| = 3

Figure 1: Initial DFA and an equivalent FDFA. All states are considered final

in Figure 1a. The FDFA has only eight arcs, and three failure transitions (represented
by dashed arcs). This saving in arcs is possible because a conventional DFA sometimes
contains redundancies, i.e. it may have transitions to the same state from several
destinations, all on the same symbol2. For example, in Figure 1a, all states make a
transition to state p1 on a, the transition from p4 on a being an exception. All states
transition to state p2 on b, and all states transition to state p3 on c.

The FDFA in the Figure 1b is designed to handle transitions that are unique at
each state, and to fail over to another state if the transition to be made on a set
of symbols is shared with other states. For example, in state p2, a transition on d is
determined locally, yet on all other symbols, a failure transition is made to p1, since
on those symbols the behaviour from the states is the same.

2 DFA minimization relies on such redundancy, but only works in case of right language equality
between states, vs. containment in the FDFA case.

34 Proceedings of the Prague Stringology Conference 2012

Thus, to recognise the string abca, the following DFA transitions are made in
Figure 1a

p4
a−→ p2

b−→ p2
c−→ p3

a−→ p1

However, in the case of the FDFA in Figure 1b the transitions made are as follows

p4
a−→ p2

f−→ p1
f−→ p4

b−→ p2
f−→ p1

f−→ p4
c−→ p3

f−→ p1
a−→ p1

An FDFA therefore needs at most O(|Q|× (Σ+1)) to store δ and f. However, the
actual storage will be decreased from this worst case estimate to the extent that δ can
be minimized when constructing the FDFA. The challenge taken up here, therefore, is
to derive from a DFA (seen here as a degenerate FDFA) say F′ = (Q′, Σ, δ′, ∅, s′, F ′),
an equivalent FDFA, say F = (Q,Σ, δ, f, s, F) such that |δ′| − (|δ| + |f|) is as large
as possible. Because of the benchmarking results reported in [22], we conjecture that
the time penalty will be about 20%.

For the purposes of the algorithm, we assume F′ to be a complete DFA, i.e. for
every state q, Σq = Σ. Furthermore, we regard the various states as constants
(i.e. Q = Q′, s = s′ and F = F ′). The algorithm thus preserves the originating
DFA’s shape, and will, for this reason, be called a DFA-homomorphic algorithm. In
the algorithm δ and f are variables whose values change from their initial values δ′

and f′. The algorithm also ensures that at every step the right language of every state
remains unchanged.

A theorem which relies on a predicate FailPred(P, q,X) indicates conditions under
which the right language is preserved. The predicate is defined as follows.

Definition 7 (FailPred(P, q,X)). For P ∪ {q} ⊆ Q and X ⊆ Σ, FailPred(P, q,X)
is defined by

∀p ∈ P : (

(Σp = Σ) (1)

∧ (f(p) = ⊥) (2)

∧ (∀(a ∈ X) : (δ(p, a) = δ(q, a))) (3)

∧ (q
f
❀ p ⇒ (Σ

q
f
❀p

∩X = ∅)) (4)

)

A scenario in which this predicate holds is sketched in Figure 2a, where it is assumed
that P = {p}, Σ = {a, b, c} and X = {a, b}. Notice that the scenario in the figure
complies with the first three conjuncts of Definition 7, i.e. (Σp = Σ), complying with
conjunct 1; (∀a ∈ X : (δ(p, a) = δ(q, a)), complying with conjunct 3 ; and (f(p) = ⊥),
complying with conjunct 2. Furthermore, the figure shows that f(q) = p, and thus

q
f
❀ p. Clearly, Σ

q
f
❀p

= /Σq = {c} and since {c} ∩ X = ∅, conjunct 4 holds as well.

Thus, Figure 2a depicts a scenario in which FailPred(P, q,X) holds.
Figure 2b shows the result of removing the a and b transitions from p, and pro-

viding a failure transition from p to q. Note that this can be done without disturbing
the right languages of any of the states in the figures. Note also that because con-
junct 4 holds, we can be sure that a divergent cycle has not been created. Theorem 8
generalises these observations.

D.G.Kourie et al.: Failure Deterministic Finite Automata 35

p q

r0 r1 r2

c a
b

a b

f

(a) Before

p q

r0 r1 r2

c
a b

f

f

(b) After

Figure 2: Theorem 8 applied, where X = {a, b}

Theorem 8 (A transformation that preserves right languages and does not
introduce any failure cycle). Let F be an FDFA such that P ∪ {q} ⊆ Q, X ⊆ Σ
and FailPred(P, q,X) holds. Then the following transformation on each p ∈ P leaves
the right languages of all states unchanged and does not introduce any failure cycle:

Delete from δ all transitions from p on each symbol in X, and add a failure
arc from p to q.

Applying such a transformation to FDFA F′ results in an FDFA F such that
F′ ≡ F, in which |δ| has decreased by |X| and |f| has increased by 1. Theorem 8 may
be applied repeatedly, as long as P, q and X satisfying the definition above can be
found. In Section 4 we will show how formal concept lattices, introduced in the next
section, can be used to identify such P, q and X.

3 State / Out-Transition Formal Concept Lattices

A formal concept lattice can be defined in a domain of discourse consisting of a set of
objects, and a set of attributes that the various objects possess. In such a domain, a
concept is considered to be a pair of two sets: a set of objects, the concept’s extent ;
and a set of attributes, the concept’s intent. All objects in the concept’s extent have in
common all and only the attributes in the intent. Furthermore, the extent is maximal
over the objects: there may not be any object outside of the concept’s extent which
also possesses all the attributes in the intent.

In the theory known as formal concept analysis, such concepts are considered to be
partially ordered: if ci and cj are two arbitrary concepts in the domain, and if ext(c)
denotes concept c’s extent, then ci ≤ cj ⇔ ext(ci) ⊆ ext(cj). Equality holds if and
only if i = j. Furthermore, it can be shown that there is a duality in the role of objects
and attributes, such that if int(c) denotes concept c’s intent, then ci ≤ cj ⇔ int(cj) ⊆
int(ci). The relationship between objects and attributes in a given domain can be
presented as a cross table known as a context. An example is shown in Table 1. The
rows represent the objects p1, . . . , p4 and the columns represent attributes designated
〈a, p1〉, 〈a, p2〉, 〈b, p2〉, . . . , 〈d, p4〉. (We discuss the reason for these rather strange
attributes later.) An entry in a cell indicates that the relevant object has the indicated
attributes. E.g. object p4 has attributes {〈a, p2〉, 〈b, p2〉, 〈c, p3〉, 〈d, p4〉}.

It can be shown that the partial ordering over all possible concepts implied by
such a context, constitutes a lattice. Various lattice construction algorithms have been
devised to extract all possible concepts from a given context and to arrange them
in a graph structure that reflects their parent/child relationships [17,12]. Figure 3

36 Proceedings of the Prague Stringology Conference 2012

shows a line diagram, generated from the context in Table 1, showing the ordering of
concepts in the lattice. Concepts have been labelled c1, c2, c3, c4, c123 and c1234.

〈a, p1〉 〈a, p2〉 〈b, p2〉 〈c, p3〉 〈d, p1〉 〈d, p2〉 〈d, p3〉 〈d, p4〉
p1 1 1 1 1
p2 1 1 1 1
p3 1 1 1 1
p4 1 1 1 1

Table 1: The state/out-transition context of DFA in Figure 1a

c2
c3

c1 c4

c123
c1234

p2 p3 p1 p4

〈d, p2〉 〈d, p3〉
〈d, p1〉 〈d, p4〉 〈a, p2〉

〈a, p1〉
〈c, p3〉 〈b, p2〉

Figure 3: State/out-transition formal concept lattice of DFA in Figure 1a

Consider concept c123. Its extent is given by ext(c123) = {p1, p2, p3}, while its in-
tent is int(c123) = {〈a, p1〉, 〈c, p3〉, 〈b, p2〉}. Thus, concept c123 indicates that objects
p1, p2 and p3 share all and only the attributes 〈a, p1〉, 〈c, p3〉 and 〈b, p2〉.

Concept c123 illustrates that the extent of a concept is the union of the extents of
its children, together with any of its so-called “own objects”. In this case, c123 does
not have any own objects. Its children are c1, c2 and c3, and their respective extents
correspond to their own objects, which are explicitly shown in the diagram – i.e. their
extents are {p1}, {p2} and {p3} respectively. Dually, concept c123 also illustrates the
fact that the intent of a concept is the union of the intents of all its parents, together
with any of its so-called “own attributes”. It has 〈a, p1〉 as its single own attribute,
and its only parent, c1234, adds its intent, {〈c, p3〉, 〈b, p2〉}, to that of c123.

Information in a DFA’s transition graph can be represented in a context, and
hence in a formal concept lattice. Here we propose one particular way to do so and
call the result a state/out-transition (formal concept) lattice. For a DFA D, we denote
this lattice by SO(D). The set of objects in SO(D) is simply the set of states in D,
namely Q. Each attribute is a pair consisting of the label of an out-transition from
some state, and the corresponding destination state. Formally, 〈b, p〉 is an attribute
in SO(D) iff ∃ : q ∈ Q : δ(q, b) = p. In this case, 〈b, p〉 is an attribute of object q. The
context in Table 1 was derived from the DFA in Figure 1a in precisely this way, and
hence Figure 3 shows SO(D).

The space and time requirements for building the lattice’s context table are deter-
mined by the size of δ, i.e. they are O(|Q|2×|Σ|). An SO-lattice is a constrained lattice
in the sense that its objects are constrained to each have exactly one attribute from
each of |Σ| classes, each class having |Q| attributes. In [13] it is shown that the number

of concepts for such a lattice is bound from above by min((1 + |Σ|)|Q|, |Q|
(1+|Σ|)2

1+|Σ|).

D.G.Kourie et al.: Failure Deterministic Finite Automata 37

For convenience, we shall denote this expression by LB(Σ,Q). This means that for
a fixed alphabet, an upper bound of the lattice size eventually becomes linearly de-
pendent on the number of states.

4 A DFA-Homomorphic Algorithm

Consider an arbitrary concept c in SO(D), the state/out-transition lattice for a
complete DFA D. By definition, all states in ext(c) share all and only the out-
transitions in int(c). (Of course, each state in ext(c) may have other out-transitions.)
For convenience, let m = |ext(c)| and n = |int(c)|. Let q be any state in ext(c), let
P = ext(c)\{q} and let X = dom int(c). Thus X ⊆ Σ is the set of symbols on which
transitions to common states are made from all states in ext(c).

We argue that FailPred(P, q,X) is true because the following holds for each p ∈ P .
Conjunct 1 of the predicate is true because the DFA is assumed to be complete.
Conjuncts 2 and 4 of the predicate hold because a DFA has no failure arcs. Conjunct 3
holds by the construction of SO(D) and by the definition of a concept in a concept
lattice. Therefore Theorem 8 may be applied to produce an equivalent FDFA. This
entails the following arc changes:

For each p ∈ P remove all outgoing arcs represented in int(c). Thus, the
number of arcs removed from D is n(m− 1).
For each p ∈ P install an outgoing failure arc to q. Thus, the number of arcs
added to D is (m− 1).

As a result of these steps, (n−1)(m−1) arcs will be removed from the initial structure.
For a given concept, c, we will call (n− 1)(m− 1) its arc redundancy, denoted by

ar(c). For example, ar(c123) = (3−1)×(3−1) = 4 since |int(c123)| = |ext(c123)| = 3.
If the above steps to construct a failure arc are applied to a concept c for which

ar(c) = 0, there will be no decline in the number of arcs. Conversely, the ‘maximum’
decline is obtained if one selects from all the concepts, the one for which ar(c) is
‘maximal’. (Note that ‘maximal’ is used here in terms of the initially computed ar(c)
– it may not necessarily be maximal in terms of the current arc redundancy values, as
we will discuss below.) This suggests the following ‘greedy’ algorithm for constructing
FDFA F from DFA D, assuming that SO(D) is available.

Algorithm 2
f, O := ∅, Q;
{ Assume that AR is set of concepts with non-zero arc redundancy }
{ Invariant: (dom f = Q \O) ∧ (Concepts in AR have not been processed) }
do ((O 6= ∅) ∧ (AR 6= ∅)) →

c := maxcar(AR);
AR := AR \ {c};
let q ∈ ext(c);
P := ext(c) \ {q};
for each (p ∈ P ∩O) →

if ¬(q f
❀ p) COR ((Σ

q
f
❀p

∩ dom int(c)) = ∅) →
for each (〈a, r〉 ∈ int(c)) →

δ := δ \ {〈p, a, r〉}
rof ;

38 Proceedings of the Prague Stringology Conference 2012

f(p), O := q, O \ {p};
[] (q

f
❀ p) CAND ((Σ

q
f
❀p

∩ dom int(c)) 6= ∅) → skip

fi
rof

od

The set, AR, of concepts with non-zero arc redundancy is easily computed, and
is assumed to be available to the algorithm. The algorithm initialises and maintains
the set O of states which do not originate failure transitions, i.e. O is defined by
dom f = Q \ O. A function maxcar : P(SO(D)) → SO(D) is assumed which selects
from AR a concept, c with the maximum arc redundancy as initially determined.

Note that, as stated above, q is arbitrarily selected from ext(c) to act as the
target for failure arcs. The outer for each loop identifies states remaining in ext(c)
which may serve as sources of failure arcs. Such states have to be in O (to ensure
compliance with conjunct 2 of Definition 7). The if statement then ensures that δ
arcs are replaced by f (within the inner for each loop) if and only if conjunct 4 of
Definition 7 holds3, thus ensuring that divergent cycles are never produced.

Applying the algorithm to the DFA in Figure 1a, and making use of the state/out-
transition lattice shown in Figure 3 yields the FDFA shown in Figure 4a after the
first iteration of the outer do loop. To see that this is so, note that upon entering the
loop, AR = {c123, c1234} where ar(c123) = 4, ar(c1234) = 3 and O = {p1, p2, p3, p4}.
Thus, in the first iteration maxcar(AR) returns concept c123 and the algorithm re-
moves c123 from AR. Choosing q = p1 (any element of P = {p1, p2, p3} could have
been chosen) as the destination of all failure nodes in this iteration, the for each
loop removes the following 6 arcs (δ mappings) from the DFA in Figure 1a:

{〈p2, a, p1〉, 〈p2, b, p2〉, 〈p2, c, p3〉, 〈p3, a, p1〉, 〈p3, b, p2〉, 〈p3, c, p3〉}

Thereafter, it inserts two failure transitions: {〈p2, p1〉, 〈p3, p1〉}. It also changes O to
{p1, p4}. As a result, the number of arcs has been reduced by 4 – as predicted by
c123’s arc redundancy.

p1 p2 p3 p4
b

c

c

a, b
a, d d

d
d

f

f
(a) After first iteration: |δ| = 9, |f| = 2

p1 p2 p3 p4c

a, b
a, d d

d
d

f

f f

(b) After second iteration: |δ| = 8, |f| = 3

Figure 4: FDFA’s as Algorithm 2 progresses

3 The guard of the if statement, namely ¬(q f
❀ p) COR (Σ

q
f
❀p

∩ dom int(c) = ∅)), is logically

equivalent to (q
f
❀ p) ⇒ (Σ

q
f
❀p

∩ dom int(c) = ∅), which in turn corresponds to conjunct 4 in

Definition 7 in which dom int(c) takes the role of X.

D.G.Kourie et al.: Failure Deterministic Finite Automata 39

After the second iteration of the outer do loop the FDFA in Figure 4b is obtained.
(It is a copy of Figure 1b, reproduced here for convenience.) Upon entering the loop
for a second time, AR = {c1234}. maxcar(AR) therefore returns concept c1234. At
this point one of the states in ext(c1234) = {p1, p2, p3, p4} has to be selected as the
destination of all failure nodes in this iteration.

The for each loop removes from the FDFA in Figure 4a the arcs 〈p1, b, p2〉 and
〈p1, c, p3〉 and inserts failure transition {〈p1, p4〉}, reducing the number of arcs by 1.

We offer the following reflections, based on the algorithm and the example just
given.

1. Out-transitions from p2 and p3 are not considered in the outer for each loop,
since these became failure states in the previous iteration and were removed from
set O. To have more than one failure arc emanating from a state would mean
that we could no longer speak of a failure function, and we would not know under
which circumstances which failure arc should be selected. This, of course, is the
reason for conjunct 2 in Definition 7.

2. Suppose that instead of selecting p4 from ext(c1234) as the failure arc destination,
p2 had been chosen. In this case, p1 and p4 would be candidate source states for
failure arcs to p2. (Again, p3 would be eliminated because it is already a failure
state.) The if statement within the for each loop would discover that a failure
arc 〈p1, p2〉 would result in a divergent failure cycle. Consequently, only failure
transition 〈p4, p2〉 would be added, and arcs 〈p4, c, p3〉 and 〈p4, b, p2〉 would be
removed.

3. It can easily be verified that the reduction in the number of arcs in the second
iteration is by 1, no matter which member of ext(c1234) is selected for the fail-
ure arc destination. This does not correspond to the initially computed value of
ar(c1234), namely 3. This is to be expected, because the algorithm as given above
computes concept arc redundancy only once – at the start of the algorithm. Con-
sequently, the algorithm in its above format näıvely ignores the fact that whenever
states are removed from O, the concept arc redundancies may change for those
concepts whose extents contain removed states. By implication, therefore, maxcar
is no longer guaranteed to choose as “greedily” as it might have. This potential
selection inefficiency could easily be overcome at the cost of recomputing concept
arc redundancy whenever s is removed from O. In such a case, the arc redundancy
of a concept whose extent contains s should account for the fact that s is not a
candidate for being the source of an second failure arc.

4. The way in which the target state for failure arcs, q, is selected in Algorithm 2
could also be optimised to enhance the algorithm’s greediness. Instead of selecting
an arbitrary state in ext(c), preference should be given to failure states (i.e. states
already in dom f). The reason for this heuristic is clear: when a state becomes a
source state (i.e. a failure state), its δ arcs are removed, but when a state becomes
a target state, no δ arcs are removed. Since an existing failure state is no longer
a candidate for becoming a source state, and therefore cannot contribute to the
removal of δ arcs, it might as well serve as the target of newly installed failure
arcs, thus allowing more states to become source states and thus allowing more
states to shed some of their δ arcs. If this heuristic is to be applied, then the
recomputation of arc redundancy mentioned in point 3 above should be suitably
adjusted.

5. The test to be carried out in the if statement of Algorithm 2 entails determining
whether a divergent cycle will arise if a failure arc is installed from state p to

40 Proceedings of the Prague Stringology Conference 2012

state q. Since cycle-determination is a well known task in general data structure
theory, details here are unnecessary. In the present context, a cycle cannot be
longer than |Q|. Furthermore cycles in a given FDFA have to be disjoint, since f
is a function. This considerably simplifies the task of identifying divergent cycles.

6. Consider the implications of providing a sink node to render a partial DFA com-
plete so that it may serve as input to Algorithm 2 to produce an FDFA. Of course,
there can be no guarantee that the number of arcs in the FDFA will be less than
in the originating partial DFA. However, it may be possible to remove some of
the inserted arcs from the FDFA. In particular, all arcs from non-failure states to
the sink state may safely be removed. This applies, even if the non-failure state
serves the target state of one or more failure states. Furthermore, noting that the
sink state will have loops back to itself on all symbols (as part of the completeness
requirement), it is possible that the sink state becomes the target of failure arcs
from other states. Such failure arcs could be removed as well. Notwithstanding
these few brief observations, the matter of converting partial DFAs to FDFAs
requires further study.

Additional details relating to algorithmic enhancements mentioned in points 3
and 4 above are briefly taken up in [15], and an example is also given to illustrate
the points that are made.

Recall from the previous section that the number of concepts in lattice SO(D) is
bound from above by LB(Σ,Q), giving a very rough upper bound for |AR| in our
algorithm. We expect the actual bound to be much lower than this, since it is not
clear that a state/out-transition lattice can reach the upper bound mentioned, and
many concepts may have no arc redundancy and thus not end up in AR. Nevertheless,
using that bound, and noting that O ⊆ Q, the outer do loop is executed at most
LB(Σ,Q) times under the assumption that AR is never recomputed and under the
unrealistic assumption that all concepts initially have a positive arc redundancy. This
bound also ignores the fact that the loop terminates when O becomes the empty set.

The outer for each loop is executed at most |Q| times, as both P and O are
subsets of Q. The complexity of computing the value of the guards of the if statement
is bounded by the maximum of |Q| (for failure path tracing) and |Σ| (for checking
intersection), while the inner for each loop has complexity at most |Σ|. Combining
this gives LB(Σ,Q) × |Q| × max(|Q|, |Σ|) × |Σ|) as a very coarse upper bound on
the algorithm’s time complexity.

5 The Next Steps

The foregoing has stimulated a number of future research questions and ideas relating
to FDFAs, their properties, their relation to DFAs, and their construction. They
include investigating transition and state minimality properties of FDFAs compared
to their DFA counterparts; directly constructing an FDFA from a regular expression;
handling partial DFAs; and constructing a DFA from a given FDFA. Additionally, we
are investigating alternative construction algorithms for producing an FDFA that is
language-equivalent to a given DFA. These also rely on a state/out-transition lattice,
but allow for the generation of new states that are derived from lattice concepts.
In this sense, they can be regarded as “lattice-homomorphic”. Refinements of the
DFA-homomorphic algorithm of Section 4 have also been developed. They relate to
the recomputation of arc redundancy and to optimised selection strategies for target

D.G.Kourie et al.: Failure Deterministic Finite Automata 41

state of a failure transition. The tradeoff between FDFA storage size reduction versus
processing speed is currently under empirical investigation. We refer the reader to [15]
for details regarding this and other future work.

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6) June 1975, pp. 333–340.

2. C. Carpineto and G. Romano: Concept Data Analysis: Theory and Applications, John Wiley
& Sons, England, 2004.

3. W. Coetser, D. G. Kourie, and B. W. Watson: On regular expression hashing to reduce
FA size. IJFCS, 20(6) 2009, pp. 1069–1086.

4. M. Crochemore and C. Hancart: Automata for matching patterns, Springer-Verlag New
York, Inc., New York, NY, USA, 1997, pp. 399–462.

5. J. Daciuk and D. Weiss: Smaller representation of finite state automata, in Proceedings of
the Conference on Implementation and Application of Automata (CIAA), 2011, pp. 118–129.

6. N. de Beijer, L. Cleophas, D. G. Kourie, and B. W. Watson: Improving automata effi-
ciency by stretching and jamming, in Proceedings of the Prague Stringology Conference (PSC),
2010, pp. 9–24.

7. E. W. Dijkstra: Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8) Aug. 1975, pp. 453–457.

8. K. Driesen and U. Hölzle: Minimizing row displacement dispatch tables, in Proceedings of
the tenth annual conference on Object-oriented programming systems, languages, and applica-
tions, OOPSLA ’95, New York, NY, USA, 1995, ACM, pp. 141–155.

9. E. Fredkin: Trie memory. Communications of the ACM, 3(9) 1960, pp. 490–499.
10. E. Ketcha Ngassam: Towards cache optimization in finite automata implementations, PhD

thesis, University of Pretoria, 2007.
11. D. E. Knuth, J. James H. Morris, and V. R. Pratt: Fast pattern matching in strings.

SIAM Journal on Computing, 6(2) 1977, pp. 323–350.
12. D. G. Kourie, S. A. Obiedkov, B. W. Watson, and D. van der Merwe: An incremental

algorithm to construct a lattice of set intersections. Science of Computer Programming, 74(3)
2009, pp. 128–142.

13. D. G. Kourie and G. D. Oosthuizen: Lattices in machine learning: Complexity issues. Acta
Informatica, 35 1998, pp. 269–292.

14. D. G. Kourie and B. W. Watson: The Correctness-by-Construction Approach to Program-
ming, Springer Verlag, 2012.

15. D. G. Kourie, B. W. Watson, T. Strauss, F. Venter, and L. Cleophas: Failure
deterministic finite automata, Tech. Rep. 2012.1.0, FASTAR Research Group, 2012.

16. T. Kowaltowski, C. L. Lucchesi, and J. Stolfi: Minimization of binary automata, in
Proceedings of the First South American String Processing Workshop, 1993, pp. 105–116.

17. S. O. Kuznetsov and S. A. Obiedkov: Comparing performance of algorithms for generating
concept lattices. Journal of Experimental & Theoretical Artificial Intelligence, 14(2-3) 2002,
pp. 189–216.

18. M. Mohri: String-matching with automata. Nordic Journal of Computing, 4 1997, pp. 217–231.
19. A. W. Roscoe: The Theory and Practice of Concurrency, Prentice Hall, 1997.
20. J. Sakarovitch: Elements of Automata Theory, Cambridge University Press, 2009.
21. R. E. Tarjan and A. C.-C. Yao: Storing a sparse table. Communications of the ACM ACM,

22(11) November 1979, pp. 606–611.
22. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Eind-

hoven University of Technology, September 1995.

An Efficient Parallel Determinisation Algorithm

for Finite-state Automata

Thomas Hanneforth and Bruce W. Watson

1 Universität Potsdam, Germany
2 Stellenbosch University, South Africa

Thomas.Hanneforth@uni-potsdam.de Bruce@fastar.org

Abstract. Determinisation of non-deterministic finite automata (NFA) is an impor-
tant operation not only for optimisation purposes, but also the prerequisite for the com-
plementation operation, which in turn is necessary for creating robust pattern matchers,
for example in string replacement and robust parsing. In the paper, we present an ef-
ficient parallel determinisation algorithm based on a message-passing graph approach.
In a number of experiments on a multicore machine we show that the parallel algorithm
behaves very well for acyclic and cyclic NFAs of different sizes, especially in the worst
case, where determinisation leads to an exponential blow-up of states.

Keywords: finite-state automata, determinisation, parallel algorithms, message pass-
ing, flow graphs, Kahn process networks, replacement rules

1 Introduction

Given a nondeterministic finite automaton (an NFA), determinisation is the con-
struction of an equivalent deterministic finite automaton (DFA), where ‘equivalence’
means that the NFA and DFA accept the same language. Many real-life applica-
tions involve the relatively straightforward construction and manipulation initially of
NFA’s, for example when compiling regular expressions, regular grammars, or other
descriptive formalisms (such as replacement rules in computational linguistics) to fi-
nite automata. While NFAs are often very compact and easily manipulated, several
situations motivate the subsequent construction of a DFA:

– The standard approach for considering equivalence of two automata [4] is to
minimize their respective equivalent DFA’s and compare those (thanks to the
uniqueness-modulo-isomorphism of minimal DFA’s per language).

– Effective complementation of regular languages requires the construction of a DFA
(cf. [4]).

– Complementation is also the key for robust natural language processing applica-
tions based on finite-state automata, e.g. shallow parsing systems etc. Many of
these systems are build upon regular conditional [6] and unconditional replacement
rules [7] which heavily rely on complementation to ensure robust application.

– The end-goal of constructing automata is often to apply it to a string, e.g. for
pattern matching, network security applications, and computational linguistics.
Determinism of the DFA means that only a single ‘current state’ needs to be
tracked while processing input. By contrast, in the worst case, all of an NFA’s
states may become active while processing input – an enormous computational
overhead as each symbol is processed, and usually impractical. In all of those
applications, a DFA is essential [1].

Thomas Hanneforth, Bruce W. Watson: An Efficient Parallel Determinisation Algorithm for Finite-state Automata, pp. 42–52.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 43

The classical ‘subset construction’ algorithm1 follows directly from Rabin & Scott’s
proof of NFA/DFA equivalence, and also shows that an equivalent DFA can be ex-
ponentially larger than the NFA in the worst-case [4]. Most real-life implementations
combine reachability with the subset construction, which can subsequently be tuned
quite effectively. In addition to tuning for memory and speed performance, vari-
ous toolkits also implement incremental determinisation in which the DFA is con-
structed on-the-fly while processing an input string. Recent work by van Glabbeek &
Ploeger [3] presents five determinisation algorithms, classifying them in lattice (based
on the resulting DFA size), and giving benchmarking results.

Despite these algorithmic advances, there has been little work on parallel de-
terminisation. Clock-speeds of modern processors and memory have plateaued and
Moore’s Law advances in silicon chip production are now devoted to more processor
cores, enabling cheap multi-threading, with the caveat that parallel algorithms are
less well-known and much more difficult to get correct. This paper presents one of
the first such parallel algorithms.

Before we turn to the algorithm, we define the relevant technical notions in the
next section. Then, Section 3 restates the standard reachability-based serial deter-
minisation algorithm, before it develops an efficient parallel one. In Section 4, we
give a short C++ code fragment which implements the parallel algorithm. Finally,
in Section 5, we report on several experiments we conducted to compare serial and
parallel determinisation.

2 Preliminaries

An alphabet Σ is a finite set of symbols. A string x = a1 · a2 · · · an over Σ is a finite
concatenation of symbols ai taken from Σ (the concatenation operator · is normally
omitted). The length of a string x = a1 · · · an – symbolically |x| – is n. The empty
string is denoted by ε and has length zero. Let Σ∗ denote the set of all finite-length
strings (including ε) over Σ.
A non-deterministic finite-state automaton (NFA) A is a 5-tuple 〈Q,Σ, q0, δnd, F 〉
with Q being a finite set of states; Σ, an alphabet, q0 ∈ Q, the start state; δnd :
Q×Σ 7→ 2Q, the transition function; and F ⊆ Q, the set of final states.
Define δ∗nd : Q×Σ∗ 7→ 2Q as the reflexive and transitive closure of δnd:

– ∀q ∈ Q, δ∗nd(q, ε) = {q} and
– ∀q ∈ Q, a ∈ Σ,w ∈ Σ∗ : δ∗nd(q, aw) =

⋃
p∈δnd(q,a)

δ∗nd(p, a).

δnd may be a partial function. In case δnd(S, a) is undefined for some state set
S ⊆ Q and a ∈ Σ, we take δnd(S, a) be equal to ∅. The language of a NFA A =
〈Q,Σ, q0, δnd, F 〉, symbolically L(A), is defined as L(A) = {w ∈ Σ∗ | δ∗nd(q0, w)∩F 6=
∅}.

A deterministic finite-state automaton (DFA)A is defined as a 5-tuple 〈Q,Σ, q0, δd, F 〉
where A, Q, q0, and F are the same as in the NFA case and δd is a (partial) function
mapping Q×Σ to Q. The notions of δ∗d and L(A) are defined analogously to the ones
in NFAs.

A state q is reachable if there exists a word w ∈ Σ∗ such that δ∗d(q0, w) = q.
For every NFA, an equivalent DFA (with respect to the recognized language) can

be constructed. The key idea is the subset construction:

1 Sometimes known as the ‘powerset construction’, see the next section.

44 Proceedings of the Prague Stringology Conference 2012

Definition 1 (Subset construction). Let A = 〈Q,Σ, q0, F, δnd〉 be an NFA. Define
A′, the equivalent DFA with L(A′) = L(A) as A′ = 〈2Q, Σ, {q0}, F ′, δd〉 with:
– F ′ = {S ⊆ Q | S ∩ F 6= ∅}
– δd(S, a) =

⋃
q∈S δnd(q, a), ∀a ∈ Σ, ∀S ⊆ Q

The next section describes serial and parallel determinisation algorithms based on
the subset construction.

3 Determinisation algorithms

This section recapitulates the standard serial determinisation algorithm and intro-
duces our parallel version of it.

3.1 Serial determinisation

A näıve NFA determinisation algorithm implementing Definition 1 directly would lead
to worst-case behaviour in every case. In practice, it turns out that most of the states
in the powerset of Q are not reachable from the start state of the DFA. Thus, their
creation can be completely avoided by incorporating a reachability constraint into
the algorithm. This leads directly to the queue-based version shown in Algorithm 1.

Algorithm 1: Serial NFA determinisation algorithm
Input: NFA A = 〈Q,Σ, q0nd

, δnd, F 〉
Output: DFA A′ = 〈Q′, Σ, q0d , δd, F

′〉
1 R({q0nd

})← c← q0d ← 0
2 L← ∅
3 Q′ ← F ′ ← ∅
4 Enqueue(L, 〈{q0nd

}, q0d〉)
5 while L 6= ∅ do
6 〈S, q〉 ← Dequeue(L)
7 Q′ ← Q′ ∪ {q}
8 if S ∩ F 6= ∅ then
9 F ′ ← F ′ ∪ {q}

10 C = {〈a,⋃p∈S δnd(p, a)〉 ∈ Σ × 2Q | ∃r ∈ S : δnd(r, a) 6= ∅}
11 for each 〈a, S′〉 ∈ C do
12 p← R(S′)
13 if p = ⊤ then
14 c← c+ 1
15 R(S′)← p← c
16 Enqueue(L, 〈S′, p〉)
17 δd(q, a)← p

Algorithm 1 uses several auxiliary data structures: First of all, R : 2Q 7→ N∪ {⊤}
is a state register mapping subsets of Q to natural numbers. If some set S is not
in the register, R(S) returns ⊤. Initially, the set containing q0d is mapped to zero.
Furthermore, the algorithm maintains a queue L holding pairs 〈S, q〉 ∈ 2Q×N and a
global state counter c initially set to 0. In line 4, the initial pair 〈{q0nd

}, 0〉 is added
to the queue which is subsequently processed in the while-loop between lines 5 and
17. In line 6, a pair 〈S, q〉 is removed from L. If S contains a final state, q is added

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 45

to the final states of the DFA. In line 10, a set C of candidate states is constructed.
For this purpose, a set Σ ′ ⊆ Σ is created such that a is in Σ ′ if δnd(r, a) is defined
(that is, δnd(r, a) 6= ∅) for some r ∈ S. Then, for each a ∈ Σ ′, a new state set S ′ is
assembled holding all the destination states δnd(p, a) for all p ∈ S. In the following,
we will refer to this step as the symbol indexing step. The for-loop in lines 11–17
processes all pairs 〈a, S ′〉. Line 12 looks up state set S ′ in the register R. If S ′ is not
found in R, it is added to R by assigning it a new state number p by incrementing
the global state counter c (line 14–15). Furthermore, the pair 〈S ′, p〉 is added to the
queue L (line 16). In both cases, a new transition from q to p with a is added to δd
(line 17).

By maintaining a queue L, the algorithm ensures that each state q added to Q′

in line 7 is reachable from that start state q0d . Nevertheless, in the worst case, all
subsets of Q are added to the queue resulting in a running time in O(|2Q||Σ|).

Given an alphabet Σ = {a, b}, the worst case is exihibited by NFAs resulting from
regular expressions r(k) of the form Σ∗a(a+b)k which leads to DFA with 2k+1 states.
Figure 1 shows an NFA constructed from r(2), while Figure 2 shows the equivalent
DFA. Note that DFA constructed from regular expressions r(k) are also complete,
that is, δd is a total function.

Figure 1. NFA created from regular expression Σ∗a(a+ b)2

Figure 2. Equivalent DFA to the NFA of Figure 1

This worst case of exponential blow-up may not be so uncommon in practice as
one might expect. Consider a pattern matching problem [1] where some finite set P
of patterns is to be efficiently found in some given input text. In automata-theoretic
terms, this amounts to constructing an NFA for Σ∗ · P , the infinite regular language
consisting of all strings having some p ∈ P as a suffix. If P has the form a(a+ b)k or
something similar, then determinisation is exponential.

46 Proceedings of the Prague Stringology Conference 2012

3.2 Parallel determinisation

When looking at Algorithm 1 for parts which could be run in parallel and which can
not, the following observations could be made:

– The while-loop between lines 5 and 17 is a good candidate for parallel processing,
since several pairs 〈S, q〉 could be removed from the queue (line 6) and further
processed in parallel.

– This is in particular the case for the symbol indexing step in line 10, since the
creation of follower candidate states for each state set S is completely independent
for all state sets S.

– The for-loop (lines 11–17) could in principle be parallelised, but the main actions
in its body – querying/adding to the state register and adding new transitions to
the DFA – must certainly be serialised.

– The same is true for adding final states to the DFA (line 8–9). Assuming a suitable
data structure for the DFA, adding final states (line 9) and adding transitions (line
17) can certainly be done in parallel.

– Incrementing the state counter (line 14) must again be serialised.

A straightforward way to link parallel and serial components of the algorithm are
the concepts of Kahn Process Networks, (cf. [5]) and Labeled Transition Systems ([2]).

Definition 2 (Labelled Transition System (LTS), cf. [2]). Let a channel c be
an unbounded FIFO-queue (first-in-first-out queue) with elements taken from some
alphabet Σc. Let Chan denote the set of all channels.
An LTS is a tuple 〈S, s0, I, O,Act,→〉 consisting of a set S of states, an initial state
s0 ∈ S, a set I ⊆ Chan of input channels, a set O ⊆ Chan (distinct from I) of output
channels, a set Act of actions consisting of input actions {c?a | c ∈ I, a ∈ Σc} ⊆ Act,
output actions {c!a | c ∈ O, a ∈ Σc} ⊆ Act and a labelled transition relation → ⊆
S × Act× S.

Definition 3 (Kahn Process Network (KPN), cf. [2]). A Kahn process network
is a tuple 〈P,C, I, O,Act, {LTSp | p ∈ P}〉 with the components as follows:

– P is a finite set of processes.
– C, I and O (⊆ Chan) are finite and pairwise disjunct sets of internal channels,
input channels and output channels, respectively.

– Act = {c?a, c!a | c ∈ C ∪ I ∪O, a ∈ Σc}
– Every process p ∈ P is defined by a sequential labelled transition system2 LTSp =

〈Sp, sp0 , Ip, Op, Act,
p−→〉, with Ip ⊆ I ∪ C and Op ⊆ O ∪ C.

– For every channel c ∈ C ∪ I, there is exactly one process p ∈ P that reads from it
(c ∈ Ip) and for every channel c ∈ C ∪ O, there is exactly one process p ∈ P that
writes to it (c ∈ Op).

Since KPNs are essentially graph structures, they admit an intuitive graphical
representation. Figure 3 shows a KPN for the parallel version of the determinisation
algorithm.

The start state labelled s0 in Figure 3 starts the network by passing the initial
pair 〈{q0nd

}, q0d〉 to the state labelled process state set. This corresponds to enqueuing
the initial pair in line 4 of Algorithm 1. State process state set – which basically
implements the body of the while-loop in Algorithm 1 – is connected with 3 other
nodes:
2 Basically, a sequential LTS accepts at most one input/output operation at a given point in time.

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 47

q ∈ F

〈{q0nd
}, 0〉 ∈ 2Q × N

〈S, q〉 ∈ 2Q × N
〈q, a, p〉 ∈ N× Σ× N

process state sets0

add delta

make final

Figure 3. KPN for the parallel determinisation algorithm. Nodes with octogon shape are parallel
nodes

1. with itself. This corresponds to line 15 of Algorithm 1: a state set S may lead
to the creation of further state sets if these are not already present in the state
register.

2. with state add delta which reflects line 17 of the serial algorithm and
3. with state make final which corresponds to line 9.

All states except s0 work in principle in parallel, but they share three common
resources: the state register, the state counter and the emerging DFA. Access to these
resources must be synchronised by using appropriate locking mechanisms.

4 Implementation

The algorithm of Section 3.2 is implemented on the basis of the flow graph construct
in Intel’s ThreadBuildingBlocks C++ library (TBB, [8]). TBB defines a number of
different graph nodes classes like broadcast node, function node and multifunction node,
which can be connected to each other by data flow edges.

Unlike instances of function node, which are required to always compute a result,
instances of multifunction node are connected to other flow graph nodes by a tuple of
channels, to which output actions are send. This is exactly what is required by state
process state set in Figure 3, since a NFA state set currently processed may not lead
to further new state sets.

The serial and parallel version of the determinisation algorithm are basically based
on the same data structures. State sets of NFAs were implemented as sorted vectors.
To allow an efficient test for equality of state sets and to speed up look-up in the
state register, each state set also stores a permanent hash value. The δ-function
of the class representing serial DFAs is based on a STL hash map, while the one of
the concurrent DFA uses TBB’s concurrent hash map, a map data structure where
the keys can be individually locked. The state registers for the serial and parallel
algorithms are implemented in a similar fashion. Figure 4 states some of the relevant
definitions of the parallel algorithm in C++. ParallelDeterminizerBody, AddDeltaBody,
and MakeFinalBody are classes which implement the actions executed by the three
parallel nodes of Figure 3.

5 Experiments

For the experiments, we choose two different types of NFAs:

1. Acyclic NFAs compiled from word lists and
2. Cyclic NFAs exhibiting the worst case along the lines of Figure 1 with various

number of states and alphabet sizes.

48 Proceedings of the Prague Stringology Conference 2012

1 typedef int STATE;

2 typedef StateSet <STATE > NFAStateSet;

3 typedef std::pair <NFAStateSet ,STATE > NFAStateSetToState;

4 typedef tbb:: concurrent_hash_map <NFAStateSet ,STATE > StateRegister;

5 typedef std::tuple <NFAStateSetToDFAState ,AddDelta ,MakeFinal > NFAStateSetToDFAStateTuple;

6 typedef tbb::flow:: multifunction_node <NFAStateSetToState ,NFAStateSetToStateTuple > ParDetWorkerNode;

7 typedef tbb::flow:: function_node <AddDelta > AddDeltaNode;

8 typedef tbb::flow:: function_node <MakeFinal > MakeFinalNode;

10 NFA nfa;

11 ConcurrentDFA dfa;

12 StateRegister state_register;

13 tbb::atomic <STATE > state_counter;

14 unsigned num_workers = tbb::flow:: unlimited;

16 tbb::flow:: graph g;

17 tbb::flow:: broadcast_node <NFAStateSetToState > pardet_root_node (g);

18 ParallelDeterminizerBody pardet_worker_body(nfa ,state_register ,state_counter);

19 ParDetWorkerNode pardet_node(g, num_workers , pardet_worker_body);

20 AddDeltaNode add_transition_node(g, num_workers , AddDeltaBody(dfa));

21 MakeFinalNode make_final_node(g, num_workers , MakeFinalBody(dfa));

22 tbb::flow:: make_edge(pardet_root_node , pardet_node);

23 tbb::flow:: make_edge(tbb::flow:: output_port <0>(pardet_node), pardet_node);

24 tbb::flow:: make_edge(tbb::flow:: output_port <1>(pardet_node), add_delta_node);

25 tbb::flow:: make_edge(tbb::flow:: output_port <2>(pardet_node), make_final_node);

Figure 4. C++ definitions of the parallel algorithm based on Intel’s TBB framework

The acyclic NFAs derived from two different English words lists are maximally
non-deterministic, that is, each word inserted into the NFA constitutes a separate
chain from the start state to a distinct final state.

Table 1 summarises the different test automata.

NFA |Σ| |Qnd| |δnd| |Fnd| |Qd| |δd| |Fd|
NFAdict1 56 681,719 681,718 49,999 271,194 271,193 49,999
NFAdict2 45 994,676 994,675 128,972 270,411 270,410 128,972

NFAr(k),2, k ∈ [10 . . . 22] 2 k + 1 2(k + 1) + 1 1 2k+1 2 · 2k+1 2k+1

2

NFAr(k),10, k ∈ [10 . . . 19] 10 k + 1 10(k + 1) + 1 1 2k+1 10 · 2k+1 2k+1

2

NFAr(k),100, k ∈ [10 . . . 16] 100 k + 1 100(k + 1) + 1 1 2k+1 100 · 2k+1 2k+1

2

Table 1. Input NFA for the determinisation algorithms

All subsequent experiments were run on a Linux machine with 2 Intel-XEON
64bit-2.93GHz 4-core-CPUs. Hyperthreading was turned on. In hyperthreaded archi-
tectures, each physical core is supplemented by a virtual core which takes over control
if the physical one is currently stalled because it is waiting for CPU cache data etc.
Virtual cores duplicate only certain sections of their physical counterpart, mainly
those holding the current thread’s state, but not the main computing resources.

Let us now turn to the experiments. In Figure 5, we compare the serial and the
parallel version of the determinisation algorithm for NFAr(k),2 on a logarithmic time
scale. Unsuprisingly, the processing time for both versions grows exponentially with
the number k of disjunctions3 in the NFA. Starting with 211+1 ≈ 4, 000 DFA states,
the parallel algorithm outperforms the serial one, with k = 13, it is already more than
twice as fast. With bigger ks, the processing time of the parallel version converges at
approximately one-third of the serial one.

The advantage of the parallel algorithm becomes even better when the alphabet
size is increased. Figure 6 compares the serial and parallel determinisation of NFAr(k)

with |Σ| = 10 and |Σ| = 100, respecitively. For an alphabet size of 10, the parallel
algorithm is, depending on k, approximately 2 to 3.5 times faster than the serial one.
For |Σ| = 100, the ratio is between 3.7 to 1 for k = 10 and 4.7 to 1 for k = 16.

3 Also known as alternations.

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 49

0.001

0.01

0.1

1

10

10 11 12 13 14 15 16 17 18 19 20 21 22

ti
m
e
(s
)

k

parallel
serial

Figure 5. Serial vs. parallel determinisation of NFAr(k),2

An explanation for the speedup for bigger alphabet sizes could be, that the number
of DFA states depends only on k and thus the number of pairs 〈S, q〉 forwarded on
the looping channel in Figure 3 is independent of the alphabet size. Furthermore,
the state register shared between the parallel determinisation workers – even when
queried |Σ| times for each state set – doesn’t seem to slow down processing very
much.

To assess the amount of the contribution of the other shared resource – the DFA
under construction – we ran a further experiment where we turned off the channels
to the states add delta and make final in Figure 3 and made a similar move in the
serial version. The results for the NFAr(k),100 are shown in Figure 7.

Figure 7 shows that for the serial case whether DFA construction is turned on
or off makes almost no difference with respect to processing time. But the situation
is different for the parallel algorithm where the DFA construction contributes with
more than 40% to the overall processing time.

Since both serial and concurrent DFA implementations rely on efficient hash maps,
the difference must be explained with locking issues and the administrative overhead
for implementing micro locks.

In our second-last experiment, we compare serial and parallel determinisation
applied to acyclic NFAs, namely, the NFAs derived from the two word lists. Table 2
summarises the results.

NFA serial parallel
dict1 0.465 s 0.197 s
dict2 0.550 s 0.230 s

Table 2. Serial and parallel determinisation of the dictionary NFAs

50 Proceedings of the Prague Stringology Conference 2012

0.001

0.01

0.1

1

10

10 11 12 13 14 15 16 17 18 19

ti
m
e
(s
)

k

r(k),10, parallel
r(k),10, serial

r(k),100, parallel
r(k),100, serial

Figure 6. Serial vs. parallel determinisation of NFAr(k),10 and NFAr(k),100, resp.

0.01

0.1

1

10

10 11 12 13 14 15 16

ti
m
e
(s
)

k

r(k),100, parallel
r(k),100, parallel, no DFA

r(k),100, serial
r(k),100, serial, no DFA

Figure 7. Serial and parallel determinisation of NFAr(k),100, with DFA construction turned on
and off

The parallel version exhibits a speed-up of a factor of approximately 2.4 compared
to the serial algorithm. Even though the alphabet sizes are bigger, this is less than
the speed-up in the cyclic case with an alphabet of size 2.

But, (serial) determinisation of acyclic NFA is very efficient anyway, since it is
linear in the size of the NFA, so parallelising the algorithm is normally not worth the
effort.

T.Hanneforth et al.: An Efficient Parallel Determinisation Algorithm for FSA 51

Intel’s ThreadBuildingBlocks framework allows the control of the amount of paral-
lelism by specifying the number of flow graph node copies concurrently active. A
value of unlimited means that the framework chooses an optimal amount of concur-
rency.

Figure 8 shows the dependencies between the number of workers and the time
consumed for two NFA (r(17), 2 and dict2).

The relative plateau in both graphs for 8 to 16 workers could perhaps be explained
with Intel’s hyperthreading feature. Since the non-virtual cores are not idle when the
parallel algorithm is executed, the virtual ones cannot take over control and thus do
not contribute at all. Also apparent from the graphs is, that the parallel algorithm
performs best if TBB’s scheduler is allowed to control the amount of parallelism.

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 unlimited

ti
m
e
(s
)

workers (N)

r(17),2
dict2

Figure 8. Dependency between the processing time and the number of workers for NFAs r(17), 2
and dict2

6 Conclusion and further work

In the preceding sections, we developed an efficient parallel determinisation algorithm
based on Kahn process networks. Experiments showed that the algorithm performed
particularly well in cases of highly-cyclic result DFAs over realistically sized alphabets.

The worst-case pattern Σ∗a(a + b)k we choose for the cyclic test automata is
not as artifical as it looks at first glance. For example, compiling replacement rules
α→ β [7] relies on a does-not-contain operator Σ∗ · α ·Σ∗ to achieve robust behaviour
by identity-mapping all strings to themselves which do not contain an instance of α.
Since the standard complementation operation depends on a deterministic DFA for
Σ∗ · α ·Σ∗, choosing a(a+ b)k for α creates the worst case.

In further work, we try to improve the algorithm in the following ways:

– Examine and profile the algorithm to reduce the number of locking situations,
– apply randomisation techniques to further reduce locking,

52 Proceedings of the Prague Stringology Conference 2012

– make use of graph theoretic notions to divide the determinisation problem into
largely independent subproblems which can be solved without making much use
of shared resources, and

– study a redundant work approach where each parallel determinisation worker may
process a limited number of state sets already processed by other workers to
increase the relative independence of the workers from the shared resources.

References

1. A. V. Aho: Algorithms for Finding Patterns in Strings, in Handbook of Theoretical Computer
Science, J. van Leeuwen, ed., vol. A, North-Holland, 1990, pp. 257–300.

2. M. Geilen and T. Basten: Requirements on the Execution of Kahn Process Networks, in
Proc. of the 12th European Symposium on Programming, ESOP 2003, Springer Verlag, 2003,
pp. 319–334.

3. R. Glabbeek and B. Ploeger: Five Determinisation Algorithms, in Proceedings of the 13th
International Conference on Implementation and Applications of Automata, CIAA ’08, Berlin,
Heidelberg, 2008, Springer-Verlag, pp. 161–170.

4. J. E. Hopcroft and J. D. Ullman: Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley, 1979.

5. G. Kahn: The Semantics of a Simple Language for Parallel Programming. Information Process-
ing, 1974, pp. 471–475.

6. R. M. Kaplan and M. Kay: Regular Models of Phonological Rule Systems. Computational
Linguistics, 20(3) 1994, pp. 331–378.

7. L. Karttunen: The Replace Operator, in ACL, 1995, pp. 16–23.
8. J. Reinders: Intel Threading Building Blocks. Outfitting C++ for Multi-core Processor Paral-

lelism, O’Reilly, 2007.

BlastGraph: Intensive Approximate Pattern

Matching in Sequence Graphs and de-Bruijn

Graphs

Guillaume Holley1 and Pierre Peterlongo1⋆

Centre de recherche INRIA Rennes - Bretagne Atlantique, IRISA, Campus universitaire de
Beaulieu, Rennes, France

guillaumeholley@gmail.com, pierre.peterlongo@inria.fr

Abstract. Many de novo assembly tools have been created these last few years to
assemble short reads generated by high throughput sequencing platforms. The core of
almost all these assemblers is a sequence graph data structure that links reads together.
This motivates our work: BlastGraph, a new algorithm performing intensive approx-
imate string matching between a set of query sequences and a sequence graph. Our
approach is similar to blast-like algorithms and additionally presents specificity due to
the matching on the graph data structure. Our results show that BlastGraph perfor-
mances permit its usage on large graphs in reasonable time. We propose a Cytoscape
plug-in for visualizing results as well as a command line program. These programs are
available at http://alcovna.genouest.org/blastree/.

Keywords: sequence graph, de-Bruijn graph, string matching, high throughput se-
quencing, next generation sequencing, sequence assembly, Viterbi algorithm

1 Introduction

Compared to traditional Sanger technologies High Throughput Sequencing (HTS)
technologies enable sequencing of biological material (DNA and RNA) at much higher
throughput and a cost that is now affordable by most academic labs. They have
revolutionized the field of genomics and medical research [5]. Sequencing became in a
few years accessible to almost all biological labs while being able to produce sequences
of full complex genomes in a few days.

HTS technologies do not output the entire sequence of a DNA or RNA molecule.
Instead, they return small sequence fragments, called reads, whose length is usually
ranging between 100 to 700 characters although some technologies produce longer
reads. HTS produce overlapping reads, thus making possible to reconstruct the orig-
inal sequence by assembling them. Over the last few years, many assemblers were
created, such as Euler [2,3], Velvet [12] or Soapnovo [7] to cite a few among the most
famous ones. They present different capacities and drawbacks, but all of them make
use of a graph data structure storing sequences for organizing the reads. For assembly,
the most used graph is the de-Bruijn graph, first proposed for assembly purposes by
Pevzner, Tang and Waterman [9]. In a de-Bruijn graph a node represents a length-k
substring (called a k-mer) and an edge connects nodes u and v if the two correspond-
ing k-mers overlap over k−1 positions. Once the graph is created and usually after an
error correction step, a traversal of the graph is performed for generating contiguous
sequences called contigs.

⋆ Corresponding author

Guillaume Holley, Pierre Peterlongo: BlastGraph: Intensive Approximate Pattern Matching in Sequence Graphs and de-Bruijn Graphs, pp. 53–63.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

54 Proceedings of the Prague Stringology Conference 2012

In this paper, we present BlastGraph, a generic approach for aligning a (pos-
sibly large) set of query sequences on a graph storing sequences. The algorithm we
propose applies on two kinds of graphs: 1/ any kind of graph storing sequences, called
Sequence Graphs (SG); 2/ de-Bruijn graphs (DBG). Motivations for this work are
multiple. For developers of assembly tools, it is of great interest to precisely detect
query sequences in the graph, for instance while testing filter algorithms or correc-
tion algorithms. Biologically, checking the presence of approximate copies of a set of
sequences in the graph, enables to detect homologies, to filter contaminants and to
detect the presence of species. Avoiding the full assembly process presents two main
advantages: first it avoids the time consuming contig generation phase, and second
and more important, it avoids the usage of heuristics or statistical choices made while
traversing the graph.

Note that the BlastGraph algorithm applies generically to any directed SG, and
is also adapted to apply to a DBG. Given a directed sequence graph, a set of query
sequences and a maximum edit distance, BlastGraph detects paths in the graph
on which query sequences align at most at the given edit distance. Our approach is a
blast-like algorithm [1]. The graph is indexed using seeds, this enables to decrease the
request execution time. The main originality of our work stands in the fact that both
seeds and mapped query sequences may be spread over several nodes of the graph.

This work presents similarities with the famous Viterbi algorithm [11]. In a few
words, Viterbi is a dynamic programming algorithm for finding the most likely path
in a rooted graph while reading a query sequence. The major fundamental differences
with this work stand in the fact that:

– Viterbi nodes are composed by a unique symbol while in the BlastGraph frame-
work, nodes store a full sequence, and their reverse complement in the DBG frame-
work;

– In the Viterbi framework, the alignment is global: the full query sequence is aligned
to the whole graph, starting from the root node, while in the BlastGraph al-
gorithm, the alignment is semi global: the whole query sequence is aligned to any
un-rooted sub-graph.

The next Section introduces preliminaries and definitions. In Section 3 we expose
the BlastGraph algorithm when applied on a SG, while in Section 4 we show how
BlastGraph is modified to apply on a DBG. We present some practical results in
section 5.

2 Preliminaries

A sequence is composed by zero or more symbols from an alphabet Σ. A sequence s of
length n on Σ is denoted also by s[0]s[1] · · · s[n−1], where s[i] ∈ Σ for 0 ≤ i < n. The
edit distance between two sequences is the minimal number of insertions, deletions
and substitutions to transform one into the other. The length of s is denoted by |s|.
We denote by s[i, j] the substring s[i]s[i + 1] · · · s[j] of s. In this case, we say that
the substring s[i, j] occurs at position i in s. We call k-mer a sequence of length k.
If s = u · v for u and v ∈ Σ∗, we say that v is a suffix of s and that u is a prefix
of s, the symbol “·” designating the concatenation between two sequences. Let s[i..]
denote the suffix of s starting at position i (i.e. s[i..] = s[i, |s| − 1]).

The symbol “k̊” designates the concatenation of two sequences, removing the
first k symbols of the second. Formally, uk̊v = u · v[k..] . In the DNA context, Σ =

Guillaume Holley and Pierre Peterlongo: BlastGraph 55

{A,C,G, T}, and, given s ∈ Σ∗, s designates the reverse complement of s, that is s,
read from right to left, switching characters A and T , and C and G.

2.1 Sequence Graphs (SG)

In a directed sequence graph G, each node N stores a sequence s, denoted by S(N).
A node N1 linked to a node N2 denotes the fact that the sequence S(N1).S(N2) is
stored in G. Example of a directed sequence graph is given Figure 1a.

2.2 De-Bruijn Graphs (DBG)

DBGs were first used in the context of genome assembly in 2001 by Pevzner et
al. [9]. In 2007, Medvedev et al. [8] modified the definition to better model DNA
as a double stranded molecule. In this context, given a fixed k value, a DBG is a
bi-directed multigraph, each node N storing a k-mer s and its reverse complement
s. The sequence s, denoted by F (N), is the forward sequence of N , while s, denoted
by R(N), is the reverse complement sequence of N . An arc exists from node N1 to
node N2 if the suffix of length k − 1 of F (N1) or R(N1) overlaps perfectly with the
prefix of F (N2) or R(N2). Each arc is labelled with a string in {FF,RR, FR,RF}.
The first letter of the arc label indicates which of F (N1) or R(N1) overlaps F (N2)
or R(N2), this latter choice being indicated by the second letter. Because of reverse
complements, there is an even number of arcs in the DBG: if there is an arc from N1

to N2 then, necessarily, there is an arc from N2 to N1 (e.g. if the first arc has label
FF then the second has label RR).

A DBG can be compressed without loss of information by merging simple nodes.
A simple node denotes a node linked to at most two other nodes. Two adjacent simple
nodes are merged into one by removing the redundant information. A valid path (see
Definition 2) composed by i > 1 simple nodes is compressed into one node storing
a sequence of length k + (i − 1) as each node adds one new character to the first
node. Figure 1b represents a DBG (upper) and the corresponding compressed DBG
(lower). In the remainder of the paper, we denote by cDBG a compressed DBG.

Definition 1 (Active strand of a node in a DBG). The active strand of a node
N in a DBG denotes which strand of the node, forward or reverse, is considered while
traversing N .

Definition 2 (Valid path). The traversal of a node N is said to be valid if the
rightmost label (F or R) of the arc used for entering the node is equal to the leftmost
label of the arc used for leaving the node.

A path in the graph is valid if for each node involved in the path, its traversal is
valid, that is, each pair of adjacent arcs in the path are labelled, respectively, XY and
Y Z with X, Y, Z ∈ {R,F}.

Definition 3 (Sequence stored in a cDBG). A valid path in a cDBG composed
by ordered nodes N0, N1, . . . , Nl, stores two sequences as following:

1. s = F/R(N0)̊kF/R(N1)̊k · · ·̊k F/R(Nl), the choice between R or F for node N0 is
equal the first label of the edge going from N0 to N1, while for i ∈ [1, l], the choice
between R or F for node Ni is equal the second label of the edge going from Ni−1

to Ni.
2. s.

56 Proceedings of the Prague Stringology Conference 2012

(a) SG (b) DBG

Figure 1: (a) Directed sequence graph. (b) Uncompressed (upper) and compressed
(lower) de-Bruijn Graphs with k = 5. For each node, lower sequence is the reverse
complement of the upper sequence, it should be read from right to left. Boxes both
on (a) and (b): example of a seed of length 7 (TCTACGC) spread over 2 nodes. In
the de-Bruijn Graph, the k− 1 first characters of the second node are pruned due to
overlap, and the reverse part of the second node is considered as the edge between
the first (left) and the second (central) node is FR

For instance, the arrowed path on the cDBG presented Figure 1b, stores the
sequences

s = CATCTk̊ATCTCCGCAk̊CGCAG

= CATCT.CCGCA.G

= CATCTCCGCAG

and

s = CTGCGGAGATG

2.3 Approximate pattern matching in a graph (SG or cDBG)

Definition 4 (Approximate pattern matching in a graph). Given a query Q,
a graph G (SG or cDBG), and a parameter d, approximate pattern matching consists
in finding all occurrences of Q in sequences stored in G within an edit distance of at
most d.

3 The BlastGraph algorithm

Blast like seed-based heuristics rest on the idea that if two sequences share some
similarities, then there exists (at least) a common word (a seed) between these two
sequences. Such algorithms consist in, first, anchoring the detection of similarities by
exact matching of short sub-sequences, the seeds, and then, performing the similarity
distance computation once sequences are anchored. The algorithm we propose applies
these ideas between a graph (the bank) and a string (the query). It is divided into
four main stages:

1. Index all seeds present in the graph G.

Guillaume Holley and Pierre Peterlongo: BlastGraph 57

2. Anchor query sequences to nodes of G using seeds. In the case of genomic data,
reverse complement of query sequences may also be used as queries.

3. Align anchored query sequences on the left and right of the matched seeds.
4. Merge left and right alignments.

In the four following sections, we provide some more details for each of these four
stages simply considering the graph as a SG. Then, in Section 4, we describe the
modifications needed for applying the algorithm on a cDBG.

3.1 Stage 1: Indexing the seeds

Let n denote the length of the seeds. Each word of length n of the sequence of each
node of G as well as those spread over several linked nodes are indexed using a hash
table. The index contains for each seed a set of its occurrence positions.

Occurrence position in a graph: An occurrence position in the graph is defined as a
couple (node identifier N , position on S(N)) indicating the starting position of the
occurrence.

Seeds spread over more than one node: Any seed starting at less than n positions to
the end of the sequence of a node is spread over more than one node. For instance, the
seed TCTACGC starting at position 2 on the leftmost node of Figure 1a, is spread
over two distinct nodes. Seeds spread over more than one node are detected thanks
to a depth first algorithm recursive approach.

In order to make a light index, the BlastGraph algorithm only stores the start-
ing position of a seed (node identifier N , position on S(N)) and not all possible nodes
over which the seed is spread.

3.2 Stage 2: Anchoring query sequences to sequences of the graph

Figure 2: Value rel(Q,N) while anchoring a query sequence Q on a node N with a
seed

For each query sequence Q, all overlapping words of length n (seeds) are read. Let
s be such a seed occurring at position p on Q, also having at least one occurrence in
the graph. Then the index provides a set of couples (node N , position on S(N)). For
each such couple, the query Q is anchored on the sequence S(N), giving a relative
position rel(Q,N) of Q on S(N). More precisely, rel(Q,N) = p−position on S(N)
(see Figure 2) is the position where Q aligns to S(N). Note that rel(Q,N) could be
< 0 if a prefix of S(N) is not aligned to Q. This is the case of S(Q,L1) in the example
presented Figure 3.

58 Proceedings of the Prague Stringology Conference 2012

Computing an alignment only once: If a node N and a sequence Q share more than
one seed for the same alignment, each of them generate the same value {rel(Q,N)}.
As this is a very usual case, in order to avoid computing several times the same
alignments, while aligning sequence Q, the value {rel(Q,N)} is stored in memory.
Thus, the same alignment anchored at position {rel(Q,N)} is computed only once.

Figure 3: Overview of the alignment process. Anchoring: Using a seed, a query se-
quence Q is anchored to the node N . Right alignment: edit distance is computed
between Q[rel(Q,N) + i + k..] and S(N)[i + k..] (right dotted square in node N),
then between Q[rel(Q,A0)..] and S(A0), between Q[rel(Q,B0)..] and S(B0), between
Q[rel(Q,B1)..] and S(B1), and so on. In this example, path using node A1 presents
an edit distance higher than the threshold; its children are not explored. Left Align-
ment: the same procedure is applied on the sequence on the left of the seed (left
dotted square in node N), then on parents L0, L1 of node N , and so on. . .

3.3 Stage 3: Alignment between query sequence and sequence graph
nodes

Given a query sequence Q anchored at position {rel(Q,N)} in a node N of the graph,
this stage computes all possible alignments (based on edit distance) between Q and
all paths readable from node N (see Figure 3 for an example).

Computing the edit distance between two strings is a dynamic programming pro-
cedure that involves the usage of a matrix of size the product of the string lengths.
However, in the particular case of this work, the user restricts the maximum edit
distance for having a match. Consequently, the matrix computation is limited to a
diagonal (see Figure 4 for an example) of width

⌊
maximum edit distance

cost indel

⌋
×2. Outside the

diagonal, number of insertions or deletions becomes bigger than maximum number
of insertions or deletions accepted equal to

⌊
maximum edit distance

cost indel

⌋
. Thus during this

stage, the time and memory complexity for aligning query Q to one path of the graph
is in O (|Q|) considering maximum edit distance and cost indel as fixed parameters.

Right alignments The alignment is done between Q and S(N) on the right of the
matched seed. Additionally, as shown Figure 3, right extremity of the query sequence
may finish after S(N). In such a case the alignment has to be done on children
A0, A1, . . . , An of node N . On each child Ai, the right extremity of the query se-
quence may finish after the S(Ai), in this case, alignment continues on its children
B0, B1, . . . , Bn′ , and so on. Thus, right part of sequence Q (starting after the anchored
seed), may be aligned to S(N · Ai · Bj . . .). This is done via a recursive depth-first
traversal of the graph, starting from N as long as the full right part of S is not aligned.
An alignment between the sequence of a node and Q is never computed twice. For in-
stance (Figure 3), if the alignment between Q and S(N · A0 · B0) was computed,

Guillaume Holley and Pierre Peterlongo: BlastGraph 59

(a) (b)

Figure 4: Dynamic programming matrix. Only the shadowed diagonal is computed.
(a) distance computed between the query sequence S and S(N.Ai). (b) distance
computed between S and S(N.Ai+1). Lighter lines are not recomputed for computing
matrix (b) if matrix (a) was already computed

the computation between Q and S(N · A0 · B1) starts from the last full line of the
alignment of Q with S(N ·A0). Thus the alignment between Q and S(N) and S(A0)
is never recomputed.

Left alignments Aligning the part of the sequence Q on the left of the seed to the
graph is done using almost the same approach as the one previously described for
right alignments. However, there are two main differences: 1) Sequences both from Q
and from the nodes are reversed (read from right to left); 2) when the reversed query
sequence is longer than the reversed sequence of a node N , the parents L0, L1, ... of
N are explored in depth first search approach (see Figure 3 for an example).

3.4 Joining left and right alignments

For a given aligned query sequence, each left alignment is compared to each right
alignment. For each such couple whose sum of the cost of the alignments is below or
equal the user defined maximum edit distance, the full alignment is reported.

4 BlastGraph on compressed de-Bruijn graphs

The three main differences between the SG and the cDBG are:

1. In the cDBG, the sequences of two connected nodes overlaps over k−1 characters.
Thus, whatever the stage, the concatenation of the sequences of two nodes of the
cDBG, has to be done removing the k − 1 overlapping characters using the “k̊”
concatenation instead of the classical “·” one.

2. In the cDBG, each node N stores a sequence (F (N)) and its reverse complement
(R(N)).

3. Label of edges have to be considered while traversing the graph. Thus, in the
cDBG, the general rule is the following: a node N is always traversed either as

60 Proceedings of the Prague Stringology Conference 2012

forward (F (N)) or as reverse complement (R(N)), with F or R being its “active
strand” (see Definition 1).
In the first case (resp. second case), accessing the children of the node is done
following edges starting with the letter F (resp. R).
While following an edge, the active strand of the targeted node F (resp. R) is the
second letter of the label of the edge.

Seeding in a DBG: The seeding approach is the same than the one applied on the
SG. By convention, all seeds start on forward sequence of each node. This is done
without loss of information as each query is considered both in its forward and its
reverse complement directions.

Right extension in a DBG: The right extension in a DBG is the same as the one
described for a SG. However, the algorithm takes into account some DBG specificities:

– query sequence is mapped on F (N) (seeds are indexed only on forward strands);
– children of a node N are reached using only outgoing edges whose label first
character corresponds to the active strand of N , and, once a child is reached, its
active strand is the one corresponding to the second character of this label;

– concatenation of sequences of two linked nodes is done pruning the overlapping
k − 1 characters.

Left extension in a DBG: Left extensions in the DBG are done by right extending
the reverse complement Q of the sequence Q to the DBG, starting from the reverse
strand of the node N : R(N).

5 Results

Two prototype versions of this algorithm are implemented. Under the CeCILL Li-
cense, they can be downloaded here: http://alcovna.genouest.org/blastree.
A Java version is implemented in a Cytoscape plug-in. Cytoscape [10] is an open-
source platform for visualization and interaction with complex graph, especially in
bioinformatics. The second version is implemented in C and can be run under Unix
platforms. In the two prototypes, while working on nucleotides, characters are coded
in two bits.

The next section proposes a use case of the Java version, while section 5.2 proposes
some results over the C prototype.

5.1 Use case

We present in this section a use case, on a toy example. We created a sequence graph
containing five nodes (Figure 5). We searched for the sequence

ggcgT tcagac/cTatacgcatacgcagcagact/agCctacg,

spread over 3 nodes of this graph and containing two mismatches and one insertion.
To help the reader, we indicated here substitutions and indel with an upper case
letter and we indicated separations between nodes with a ‘/’ character. Of course
the practical query sequence is a raw un-annotated sequence. We fixed the cost of
a mismatch to 1, the cost of an indel to 2 and the maximum edit distance to 4.
BlastGraph (Cytoscape plug-in version)) found the correct path, as presented in
Figure 5 where selected nodes are those in which alignment is found between the
query and the graph.

Guillaume Holley and Pierre Peterlongo: BlastGraph 61

Figure 5: Cytoscape view of the selected nodes (green) in the sequence graph after
the research of query sequence

5.2 Performances on DBG

We present results obtained in a typical use case while applying BlastGraph on a
DBG graph. Results were obtained on a 64 bit 2× 2.5GHz dual-core computer with
3MB cache and 4GB RAM memory. From the NCBI Sequence Read Archive (SRA,
http://www.ncbi.nlm.nih.gov/Traces/sra), we downloaded the DRR000096 Illu-
mina run containing approximately 4 million reads and approximately 150 million
nucleotides.

Increasing graph sizes Subsets of different sizes were generated by randomly sam-
pling DRR000096 reads. For each subset, we constructed the de-Bruijn graph using
k = 31. Table 1 reports the total number of nodes and nucleotides stored in some of
these graphs.

No Reads No Nodes No nucleotides
10K 59K 1833K
100K 573K 17774K
150K 849K 26306K

Table 1: Total number of nodes and nucleotides stored in the graph with respect to
the number of reads

Figure 6: Time and memory consumption with respect to the number of nucleotides
stored in the graph

62 Proceedings of the Prague Stringology Conference 2012

On each graph, we applied the C version of BlastGraph, aligning a set of 10000
query sequences derived from the initial read set. We used seeds of length 19, a
mismatch cost equal to 1 and an indel cost equal to 2 and a maximum edit distance
equal to 5. We report in Figure 6 time and memory needed both for constructing the
index and for performing the 10000 queries.

We can observe that memory footprint and both indexation and query execu-
tion times increase linearly with the quantity of information contained in the graph.
While memory usage is the main bottleneck of this approach, the indexation and
query time are acceptable. Even on the biggest tested graph (containing more than
26 million characters stored in approximately 849000 distinct nodes), indexation is
done in 26 seconds and the 10000 queries are performed in less than 52 seconds.

Increasing number of queries In order to measure the impact of the number of
queries on the execution time, we used the graph composed of 100000 reads from
the DRR000096 data set using k = 31. We ran BlastGraph using queries dataset
composed of 500, 1000, . . . , 10000 reads taken from the 100000 reads used for creating
the graph. We report the query time (not including the indexation time) Figure 7. We
note that, as expected, the query time increases slowly and linearly with the number
of queries.

Figure 7: Query time with respect to the number of queries. Note that reported time
do not include the indexation time equal to 16 seconds independently of the number
of queries

6 Conclusion

We presented BlastGraph, a new algorithm for performing intensive approxim-
ate string matching between a set of query sequences and a directed sequence graph
including the application to de-Bruijn graphs. This blast-like algorithm presents nov-
elties with respect to “classical” blast-like approaches as seeds and alignments may
be spread over several nodes and as the algorithm takes into account double stranded
de-Bruijn graph features. Results showed that BlastGraph performances permit
its usage on quite large graphs in reasonable time.

Guillaume Holley and Pierre Peterlongo: BlastGraph 63

The main bottleneck of the approach comes from the memory footprint. Stor-
ing in memory graphs containing hundreds of millions of nucleotides together with
seed index is challenging. Future work will include either an adaptation of Blast-
Graph to extremely light DBG representation [4] or a non indexed version of the
algorithm, for instance based on KMP [6] algorithm. This will increase the query
time, while decreasing the memory usage. Possible applications will exceed the fron-
tiers of the current work as this problem is central in many algorithms associated to
high throughput sequencing problems.

7 Acknowledgements

Authors warmly thank Vincent Lacroix and François Coste for their participation to
discussions. This work was born from and supported by the Inria “action de recherche
collaborative” ARC Alcovna http://alcovna.genouest.org/.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman: Basic local
alignment search tool. Journal of Molecular Biology, 215(3) 1990, pp. 403–410.

2. M. J. Chaisson, D. Brinza, and P. A. Pevzner: De novo fragment assembly with short
mate-paired reads: Does the read length matter? Genome Research, 19(2) 2009, pp. 336–346.

3. M. J. Chaisson and P. A. Pevzner: Short read fragment assembly of bacterial genomes.
Genome Research, 18(2) 2008, pp. 324–330.

4. R. Chikhi and G. Rizk: Space-efficient and exact de Bruijn graph representation based on a
Bloom filter, in WABI, 2012, p. to appear.

5. S. Feature: Next-generation sequencing transforms today’s biology. Most, 5(1) 2008, pp. 16–18.
6. D. E. Knuth, J. James H. Morris, and V. R. Pratt: Fast pattern matching in strings.

SIAM Journal on Computing, 6(2) 1977, pp. 323–350.
7. R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen,

S. Li, H. Yang, J. Wang, and J. Wang: De novo assembly of human genomes with massively
parallel short read sequencing. Genome Research, 20(2) 2010, pp. 265–272.

8. P. Medvedev, K. Georgiou, G. Myers, and M. Brudno: Computability of models for
sequence assembly, in WABI, 2007, pp. 289–301.

9. P. A. Pevzner, H. Tang, and M. S. Waterman: An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences of the United States of
America, 98(17) Aug. 2001, pp. 9748–53.

10. M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker: Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics, 27(3) 2011, pp. 431–432.

11. A. Viterbi: Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. Information Theory, IEEE Transactions on, 13(2) april 1967, pp. 260 –269.

12. D. R. Zerbino and E. Birney: Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs. Genome Research, 18(5) 2008, pp. 821–829.

A Multiobjective Approach to the Weighted

Longest Common Subsequence Problem

David Becerra, Juan Mendivelso, and Yoan Pinzón

Universidad Nacional de Colombia
Facultad de Ingenieŕıa

Department of Computer Science and Industrial Engineering
Research Group on Algorithms and Combinatorics (ALGOS-UN)
Carrera 30 No. 45-03. Edificio 453. Oficina 207. Bogotá, Colombia

{dcbecerrar,jcmendivelsom,ypinzon}@unal.edu.co

Abstract. Finding the Longest Common Subsequence in Weighted Sequences (WLCS)
is an important problem in computational biology and bioinformatics. In this paper, we
model this problem as a multiobjective optimization problem. As a result, we propose a
novel and efficient algorithm that not only finds a WLCS but also the set of all possible
solutions. The time complexity of the algorithm depends primarily on the number of
length-1 common subsequences between the two input weighted sequences.

Keywords: longest common subsequence, weighted sequences, multiobjective opti-
mization, bioinformatics

1 Introduction

Algorithmic studies over molecular data have allowed the concomitant development of
valuable analysis in biological processes. Specifically, studies on comparative genomics
have lead to the development of powerful data analysis tools that have been success-
fully applied in several contexts from gene functional annotation to phylogenomics
and whole genome comparison [4].

Since the publication of the human genome in 2001 [11], weighted sequences, also
called position weight matrices [13], have become a major area of research in compu-
tational biology. A weighted sequence can be defined as a sequence of character-sets
where, at each position of the sequence, each character is associated to a weight
(or frequency). Thus, weighted sequences allow a newer and more precise encoding
paradigm that allows to model several biological processes. For instance, in a molecu-
lar weighted sequence, the characters can represent either nucleotides or amino acids,
and the weight can model either the occurrence probability of a character or the sta-
bility contributed by the character to a molecular complex [9]. Weighted sequences
can be used to represent a variety of sequence lengths from short sequences, like pro-
tein binding sites, to much larger sequences such as profiles of protein families or even
a complete chromosome sequence [6].

In recent years, different research groups have been modeling several other biolog-
ical processes through weighted sequences. In [14], weighted sequences were used to
propose a simple modeling of the translation of gene expression and regulation. Later,
new weighted sequence algorithms were given for DNA approximate matching [2].
Moreover, in [10], a novel data structure called weighted suffix tree was introduced.
This structure can be used to compute repeats and covers, as well as to detect the
longest common substring. More recently, weighted sequences were used to model
gene expression data derived from DNA micro-array analysis [15]. Despite its wide

David Becerra, Juan Mendivelso, Yoan Pinzón: A Multiobjective Approach to the Weighted Longest Common Subsequence Problem, pp. 64–74.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 65

range of utilities, it is important to consider that, in most sequence comparison meth-
ods, the quality of the results are significantly affected by small perturbations in the
algorithmic methods and the data. Furthermore, there is a dearth of computational
tools to compare sequences beyond a certain length and quality [3].

The Longest Common Subsequence (LCS) of a given set of sequences is one of
the most used similarity measures in computational biology. Computing the LCS has
been analytically shown to be intractable (NP- hard in the strong sense) even for
sequences over a binary alphabet [12]; however, it can be solved for a fixed number
of sequences in polynomial time via standard dynamic programming algorithms [7].
Then, the development of adequate algorithms for the variants of the LCS has be-
come an increasing necessity, considering that efficient algorithms are an undeniable
requirement for the analysis of high throughput sequencing data.

Particularly, the Weighted Longest Common Subsequence (WLCS) is a similarity
measure between weighted sequences. The WLCS of two weighted sequences, X and
Y , is the longest common subsequence such that the product of the weights associated
to each character in the subsequence is greater or equal to given bounds for X and
Y . It was proven that computing the WLCS is NP-hard for unbounded alphabets [1];
opposite to the case of the LCS, the tractability of the problem for a bounded alphabet
is still an open problem. To the best of our knowledge, there are only two algorithms
to solve the WLCS problem. Specifically, a (1/|Σ|)-approximation algorithm was
presented in [1]; more recently, this algorithm was improved by means of a polynomial-
time approximation scheme in [5]. In this paper, we propose an exact algorithm, based
on a new concept of dominance, to find the WLCS of two weighted sequences over
bounded alphabets (DNA). As an advantage, the proposed algorithm returns not only
the longest common subsequence (and its length), but also the set of all dominant
common subsequences.

The outline of the paper is as follows. The next section provides some definitions
necessary to understand the essential features of this paper. Then, the framework
to tackle the WLCS problem as a simple multiobjective problem is presented in §3.
In §4, the proposed algorithm is described along with its time complexity analysis
and an example. The concluding remarks are drawn in the last section.

2 Preliminaries

Let Σ be an alphabet of cardinality σ = |Σ| which consists of a set of symbols.

Definition 1 (longest common subsequence). The LCS problem for two input
strings x and y consists of finding the longest sequence p such that p is a subsequence
of both x and y.

Definition 2 (weighted sequence). A weighted sequence X = X[1] · · ·X[n] over
the alphabet Σ is a sequence of n sets X[i], 1 ≤ i ≤ n. Each set X[i] is comprised
of pairs (sj, π

X
i (sj)), where sj ∈ Σ and πX

i (sj) is the occurrence probability of the
character sj at location i. Additionally,

∑
j π

X
i (sj) = 1 for every position 1 ≤ i ≤ n.

For convenience and brevity, we will refer to X[i] as the set of characters occurring
at position i with a probability greater than zero.

For a finite alphabet Σ = {s1, . . . , sσ}, we can view a length-n weighted sequence
X as a |Σ|×n matrix A, where A[j, i] = πX

i (sj). The elements of this matrix represent
the occurrence probability of each character in every position of the sequence. Thus,

66 Proceedings of the Prague Stringology Conference 2012

matrix A is comprised of values within the real interval [0,1]. As an example, two
weighted sequences are illustrated in Fig. 1. Notice that for a given character the
occurrence probability can be different at each position; however, for a given position,
the occurrence probability of all characters must sum 1.

X = Y =

(a)

(b)

0a
0c
1g
0t

X =

1 3 52 4

0.6a
0.4c
0g
0t

0a
0c
0g
1t

0a
0.5c
0g

0.5t

1a
0c
0g
0t

0a
0c
1g
0t

Y =

1 3 52 4

0.5a
0.5c
0g
0t

1a
0c
0g
0t

0a
0c
0g
1t

0a
0c
1g
0t

6

0.8a
0c
0g

0.2t

Figure 1. Example of 2 weighted sequences drawn from the alphabet ΣDNA = {a, c, g, t} shown in
(a) as a matrix and in (b) as a 2-dimensional pictogram

Definition 3 (subsequence of a weighted sequence). For a given weighted
sequence X = X[1] · · ·X[n], p = pi1 · · · pi|p| (where pij ∈ Σ, 1 ≤ j ≤ |p| and 1 ≤ i1 <

i2 < · · · < i|p| ≤ n) is a subsequence of X iff pij ∈ X[ij] for 1 ≤ j ≤ |p|.
Definition 4 (occurrence probability of a subsequence). Let p = pi1 · · · pi|p|
be a subsequence of a weighted sequence X = X[1] · · ·X[n]. The occurrence probabil-

ity of the subsequence p with respect to X, denoted as πX(p), is given by
∏|p|

j=1 π
X
ij
(pij).

See Fig. 2 for an example illustrating this last definition.

p = acata with =(2,3,4,7,10)ij ¼Z()=0.6 1 0.3 0.25 0.3=0.0135p £ £ £ £

Z =

0a
0.2c
1g

0.8t

Z =

1 3 52 4

0.6a
0c
0g

0.4t

0a
1c
0g
0t

0.3a
0c

0.7g
0t

1a
0c
0g
0t

6

0a
1c
0g
0t

7

0.25a
0.25c
0.25g
0.25t

8

0a
0c
1g
0t

9

0a
0.2c
0.8g
0t

10

0.3a
0c

0.7g
0t

i1 i2 i3 i4 i5

Figure 2. Example of a subsequence p extracted from a weighted sequence Z. Note that p′ = acata
with ij = (2, 3, 5, 7, 10) is also a subsequence of Z but πZ(p′) = 0.045

Definition 5 (weighted longest common subsequence problem1). Let X =
X[1] · · ·X[n] and Y = Y [1] · · ·Y [m] be two weighted sequences. For two given con-
stants α1 and α2 with 0 < α1, α2 ≤ 1, the weighted longest common subsequence is

1 Also known as the Longest Common Weighted Subsequence Problem with Two Thresholds.

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 67

the maximal integer length ℓ such that there is a common subsequence of length ℓ,
p = pi1 · · · piℓ, for which πX(p) ≥ α1 AND πY (p) ≥ α2.

Definition 6 (dominance between two common subsequences). Let X =
X[1] · · ·X[n] and Y = Y [1] · · ·Y [m] be two weighted sequences where n ≤ m. Also,
let p and q be two length-h common subsequences of both X and Y where p and q
occur in X at indices (ix1 , . . . , ixh

) and (jx1 , . . . , jxh
), respectively. Similarly, p and

q occur at Y at indices (iy1 , . . . , iyh) and (jy1 , . . . , jyh), respectively. We say that p
dominates q, denoted as p ≺ q, iff:

i) πX(p) ≥ πX(q)
ii) πY (p) ≥ πY (q)
iii) ixh

< jxh

iv) iyh < jyh

Notice that if p dominates q, then the positions of the last character of p, in
both X and Y , are lower than those of q. This fact is useful given that a common
subsequence that ends at a lower index will have a better chance of being extended;
thus, it may lead to longer common subsequences. On the other hand, the occurrence
probabilities of p, with respect to X and to Y , are greater or equal to the ones of q.
Consequently, if p dominates q, a possible LCS containing p will be at least as good
as the LCS containing q.

Definition 7 (multiobjective optimization problem – MOOP). Find a vec-

tor x = [x1, x2, . . . , xn]
T that:

i) satisfies the r equality constraints hi(x) = 0, 1 ≤ i ≤ r,
ii) is subject to the s inequality constraints gi(x) ≥ 0, 1 ≤ i ≤ s, and
iii) optimizes the vector function f(x) = [f1(x), . . . , fm(x)]

T .

Then, it is clear that a MOOP problem focuses on searching for the optimal values
of the decision variables (vector x) that minimize/maximize the objective function
vector f(x) while satisfying the constraints. The vector x is an n-dimensional decision
vector or solution and X is the decision space, i.e., the set of all expressible solutions.
The objective vector z = f(x) maps X into ℜm, where m ≥ 2 is the number of
objectives. The image of X in the objective space, denoted as Z, is the set of all
attainable points (see Fig. 3).

xn

x1

x2

z1

zm

X
Z

decision
space

objective
space

z2

Figure 3. The n-dimensional parameter space maps to the m-dimensional objective space

68 Proceedings of the Prague Stringology Conference 2012

3 WLCS as a Multiobjective Optimization Problem

In any multiobjective problem, two spaces should be defined: the decision space (the
set of all expressible solutions), and the objective space (the space where the image
of the solutions is the set of all attainable solutions). In general, to model any spe-
cific problem as a MOOP, three basic sets should be established: a set of objective
functions, a set of decision variables and a set of equality/inequality constraints.

Particularly, for the WLCS problem, the length of the LCS should be maximized
under two weight restrictions. Moreover, more than one possible direction of extending
the substrings must be considered. Given two input weighted sequences,X and Y , and
two constants α1 > 0 and α2 > 0, let p = pi1 · · · pih be a length-h common subsequence
of X and Y that occurs at indices (ix1 , . . . , ixh

) and (iy1 , . . . , iyh), respectively. Then,
we define the elements of the MOOP model as follows:

– Decision Space. A vector with three components will be used as the decision
vector. The first component is the list of symbols of the subsequence, i.e. pi1 · · · pih .
The second component is the list of indices at which the subsequence p occurs in
X, i.e., (ix1 , . . . , ixh

). Finally, the third component is the list of indices at which the
subsequence p occurs in Y , i.e., (iy1 , . . . , iyh).

– Objective space. A vector with four components will be used as the objective
function. The first objective, which will be maximized, is the occurrence probability
of the subsequence with respect to X, i.e., πX(p). The second objective, which will
also be maximized, is the occurrence probability of the subsequence with respect to
Y , i.e., πY (p). The third and fourth objectives, which will be minimized, are the
positions of the last symbol of the subsequence in X, i.e. ixh

, and in Y , i.e., iyh ,
respectively. Then, the dominance relation between two common subsequences can
be easily checked (c.f. see Definition 6).

– Feasible regions. The following constraints establish the feasible regions: the
occurrence probabilitities of the subsequence p with respect to X and to Y must be
greater or equal to α1 and α2, respectively. That is, π

X(p) ≥ α1 and πY (p) ≥ α2.

The proposed algorithm maximizes the length of the longest common subsequence
by means of the objective functions. Its core idea is building different pareto opti-
mum solutions, by using Definition 6, until the LCS is found in one of these optimum
sets. Specifically, the algorithm iteratively finds new decision spaces as the result of
the concatenation between the former pareto optimum set and the decision space of
matches. The new decision space contains all the subsequences of length ℓ, while the
former decision space contained all the subsequences of length ℓ− 1. Then, these so-
lutions are mapped to new objective spaces from which only the new pareto optimum
set is extracted. The algorithm will continue until a new decision space can no longer
be created (see Fig. 4, for an illustration of this process). In the next section, we
describe in detail the proposed algorithm.

4 MiCO: An Algorithm for the WLCS Problem

Given two input weighted sequences, X = X[1] · · ·X[n] and Y [1] · · ·Y [m], and two
given constants α1 and α2, where 0 < α1, α2 ≤ 1, our algorithm computes the

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 69

Iteration 1

xn

x1

decision space with
1-length common

subsequences

zn

z1

objective space of
1- common

subsequences
length

Iteration 2

xn

x1

decision space with
2- common

subsequences
length

zn

z1

objective space of
2- common

subsequences
length

Iteration -n 1

xn

x1

decision space with
(-1)- common

subsequences
n length

zn

z1

objective space of
(-1)- common

subsequences
n length

Iteration n

xn

x1

decision space with
- common
subsequences

n length

.

.

.

.

.

.

.

.

.

.

All the
LCSs are
pareto

optimum

Figure 4. Iterations of the algorithm between the decision and objective spaces

weighted longest common subsequence of X and Y , along with all dominant common
subsequences. The algorithm’s framework is as follows:

– Step 1 [computing 1-length common subsequences]: Find a set ∆ of all
length-1 common subsequences of X and Y .

– Step 2 [finding dominant common subsequences]: Compute the set Di of
all the length-i common subsequences of X and Y that are not dominated by any
other common subsequence. First, the dominant subsequences from ∆ are added
to D1. Then, the following two phases are performed for each δ ∈ ∆:
– Phase 1 [inserting concatenations with δ]: Updates Di by inserting all the
new length-i common subsequences, for i ≥ 2, resulting from the concatenation
between each d ∈ Di−1 and the given δ.
– Phase 2 [deleting dominated subsequences]: Updates Di by deleting all
the elements that were dominated by the common subsequences inserted during
Phase 1.

While Step 1 is straightforward to implement, Step 2 is perhaps the trickiest step
and needs a bit more of attention. Both of these steps are described below in more
detail.

Step 1: To achieve the goal of this step, we begin by considering a matrix like the
matrix shown in Fig. 6(a). In such matrix X[i], 1 ≤ i ≤ n, and Y [j], 1 ≤ j ≤ m,
represent a column and a row, respectively. We now can proceed to compute all the
length-1 common subsequences in a row-wise fashion from top to bottom, as follows:
First, X is traversed (from left to right) and all the positions i for which πX

i (γ) ≥ α1,
for each character γ, are inserted into ListX [γ]. Thereafter, Y is traversed (from top
to bottom) and, for each position j in Y , all the lists ListX [γ] for which πY

j (γ) ≥ α2

are merged-sorted into a list Γ containing (ℓ, γ), where ℓ ∈ ListX [γ]. Then, we add

70 Proceedings of the Prague Stringology Conference 2012

the triplet (j, ℓ, γ) to ∆ for every (ℓ, γ) ∈ Γ . Fig. 6(b–c) illustrates this operation on
our running example.

Step 2: This is an iterative process that is performed once for each element δ ∈ ∆
computed in the previous step. Broadly, the main idea is to use ∆ to compute the set
Di of the common subsequences with the following invariant condition of stability:
no element (common subsequence) in Di dominates any other element in Di. This
basically means two things: i) a new common subsequence can be inserted into Di iff
it is not dominated by any other common subsequence currently in Di, and ii) all the
common subsequences that are dominated by the new arriving subsequence should
be deleted from Di.

MiCO Algorithm
Input: X, Y , Σ, α1, α2

Local Variables: n← |X|, m← |Y |, ∆← ∅
Output: D
1 for i← 1 to n do
2 forall γ ∈ Σ do
3 if πX

i (γ) ≥ α1 then ListX [γ].add(i)
4 for j ← 1 to m do
5 Γ ← ∅
6 forall γ ∈ Σ
7 if πY

j (γ) ≥ α2 then Γ.mergeSort(ListX [γ], γ)
8 forall (ℓ, γ) ∈ Γ do δ ← (j, ℓ, γ), ∆.add(δ)
9 if !Dominate(δ,D1) then
10 D1.add(δ)
11 i← 2
12 forall d ∈ Di−1 do
13 forall δ ∈ ∆ do
14 if (Concatenate(d, δ) and !Dominate(dδ,Di))then
15 Di.add(dδ)
16 Delete(dδ,Di)
17 if Di = ∅ then
18 return Di−1

19 i← i+ 1

Figure 5. MiCO Algorithm

The elements of D1 are the dominant length-1 subsequences extracted from ∆,
while the elements of Di, for i > 1, are the dominant length-i subsequences generated
by concatenating every d ∈ Di−1 with the elements δ ∈ ∆. When in Step 2 no
subsequence is inserted, i.e. Di = ∅, this means that the length of the weighted LCS
is i−1 and the algorithm returns all the set Di−1. In order to derive our final algorithm
we need to define the following procedures:

– Procedure Concatenate(d, δ): Returns true if subsequence d can be concatenated
with subsequence δ, (i.e. the positions of the row and the column of the last char-
acter of subsequence d are lower than the row and the column of δ, respectively),
or false otherwise.

– Procedure Dominate(dδ,D): Returns true if subsequence dδ is dominated by any
element d ∈ D, or false otherwise.

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 71

– Procedure Delete(dδ,D): Deletes all the elements of D that are dominated by d.

The pseudocode for the MiCO algorithm is presented in Fig. 5. The time com-
plexity analysis and an example are presented in §4.1 and §4.2.

(a) (b)

ListX[] = 2,5a

ListX[] = 2,4c

ListX[] = 1g

ListX[] = 3,4t

for = 1, 1 =(1,1,)j { } 1 g, ±
for = 2, =(2,2,),j { } 2 a2,2,4,5 , =(2,2,), =(2,4,), =(2,5,)3 4 5c c a± ± ± ±

for = 4, =(4,3,),j { } 8 t3,4 , =(4,4,)9 t± ±
for = 5, =(5,1,)j { } 10 g1 , ±
for = 6, =(6,2,),j { } 11 a2,5 , =(6,5,)12 a± ±

for = 3, =(3,2,),j { } 6 a2,5 , =(3,5,)7 a± ±

(c)

1 2 3 4 5

1

2

3

4

5

6

X

Y

0.8
0.2

a
t

1g

0.5
0.5

a
c

1a

1t

1g

1g
0.6
0.4

a
c 1t 1a

0.5
0.5

c
t

1 2 3 4 5

1

2

3

4

5

6

X

0.8
0.2

a
t

1g

0.5
0.5

a
c

1a

1t

1g

1g
0.6
0.4

a
c 1t 1a

0.5
0.5

c
t

±2 a
±3 c

±1 g

±6 a

±8 t

±4 c ±5 a

±7 a

±9 t

±10g

±11a ±12a

Y

Figure 6. (a) Matrix representation of weighted sequences X and Y , (b) computation trace of Step
1, (c) resulting length-1 common subsequences for α1 = α2 = 0.2

4.1 Time Complexity Analysis

The time complexity of Step 1 (see MiCO pseudo-code, lines 1–8) is bounded by
O(σn + σm) = O(σm). This process can be done in O(m logm) time for the case
where the sequences are unweighted [8]. However, when this approach is used on
weighted sequences, its time complexity becomes O(σm log(σm)) which is worse than
the time complexity of the implementation proposed for Step 1. Step 2, computed in
lines 12–19 (see MiCO pseudo-code), can be implemented in O(ℓ|∆||D|), where |∆|
is the number of length-1 common subsequences between the two input sequences,
|D| is the size of the sets resulting from the concatenations, and ℓ is the length of the
computed WLCS. Clearly the overall time complexity of the algorithm is determined
by Step 2. The space complexity is bounded by O (|∆||D|). It should be remarked
that |∆| will decrease as the algorithm runs; on the other hand, |D| will tend to
increase during the first stages of the running time and decrease during the last ones.

4.2 Example

For the input weighted sequences X and Y shown in Fig. 1 and two constants
α1 = 0.2 and α2 = 0.2, Fig. 6(c) shows how to calculate the set of length-1 com-
mon subsequences, ∆, using the procedure described in Step 1 (MiCO pseudo-code,
lines 1–8). Then, Fig. 7 shows all the iterations during Step 2. The set D1 is calcu-
lated by calling !Dominate(δ,D1) (MiCO pseudo-code, line 9–10). In the first itera-
tion of the for loops (MiCO pseudo-code, lines 12–13), the set F2 is built by calling

72 Proceedings of the Prague Stringology Conference 2012

(1, 1)[6/5]

¢

F5 Concatenate= (,)¢ D4 = Â

it
er

a
ti
o
n

1
it
er

a
ti
o
n

2
it
er

at
io

n
3

iteration 5

±3 (0.4, 0.5)c [2/2]

±4 (0.5, 0.5)c [2/4]

±5 (1, 0.5)a [2/5]

±6 (0.6, 1)a [3/2]

±7 (1, 1)a [3/5]

±8 (1, 1)t [4/3]

±9 (0.5, 1)t [4/4]

±10 (1, 1)g [5/1]

±11 a

± (1, 1)g [1/1]1
±2 (0.6, 0.5)a [2/2]

±1 (0.6, 0,5)ga [1,2/1,2]

±1 (0.4, 0.5)gc [1,2/1,2]

±1 (0.5, 0.5)gc [1,2/1,4]

±1 (1, 0.5)ga [1,2/1,5]

±1 (0.6, 1)ga [1,3/1,2]

±1 (1, 1)ga [1,3/1,5]

±1 (1, 1)gt [1,4/1,3]

±1 (0.5, 1)gt [1,4/1,4]

±1 (0.6, 0.8)ga [1,6/1,2]

±10 (0.6, 0.8)ga [5,6/1,2]

±2
±3
±4
±5
±6
±7

±8
±9
±11

±1 (1, 0.8)ga [1,6/1,5]±12
±11

F2 Concatenate= (,)¢ D1

F3 Concatenate= (,)¢ D2

(0.6, 0.5)gaa [1,2,3/1,2,5]

(0.6, 0.5)gat [1,2,4/1,2,3]

(0.6, 0.4)gaa [1,2,6/1,2,5]

(0.4, 0.5)gca [1,2,3/1,2,5]

(0.4, 0.5)gct [1,2,4/1,2,3]

(0.5, 0.5)gca [1,2,3/1,4,5]±1
±1
±1
±1
±1

±1±2
±2
±2
±3
±3

±4±7
±8
±12
±7
±8

(0.4, 0.4)gca [1,2,6/1,2,5]±1±3±12

±7

±12 a
[6/2]

[6/5]

(0.6, 0.8)

(1, 0.8)

±10 (1, 0.8)ga [5,6/1,5]±12

(0.5, 0.4)gca [1,2,6/1,4,5]±1±4±12
(0.6, 1)gat [1,3,4/1,2,3]±1±6±8

it
er

at
io

n
4 F4 Concatenate= (,)¢ D3

(0.6, 0.4)gata [1,2,4,6/1,2,3,5]

(0.4, 0.4)gcta [1,2,4,6/1,2,3,5]

(0.6, 0.8)gata [1,3,4,6/1,2,3,5]

±1
±1
±1

±2
±3
±6

±8
±8
±8

±12
±12

± ±12

D1

± g1
±10 g

±

D2

±

D3

1 ga
±1 gc
±1 ga
±1 ga
±1 ga

±2
±3
±5
±6
±7

±1 gt±8

±
±10 ga±11

1 ga±11

gaa
gat

1
±1

±2
±2

±7
±8

gct±1±3±8

gta±1±8±12

± gat1±6±8

D4

gata
gcta
gata

±1
±1
±1

±2
±3
±6

±8
±8
±8

±12
±12

± ±12

(0.6, 0.8)gaa [1,3,6/1,2,5]±1±6±12
(1, 0.8)gta [1,4,6/1,3,5]±1±8±12

Figure 7. Computation trace of MiCO (Step 2). Each line represents a common subsequence p. The
values [/] are the indices where p occurs in Y /X; (,) are πX(p) and πY (p)

Concatenate(d,δ) (MiCO pseudo-code, line 14), and the set D2 is established by call-
ing !Dominate(dδ,D1) (MiCO pseudo-code, line 14). The algorithm performs the same
procedure for the second and third iterations in which sets D3 and D4 are respectively
computed. In the fifth iteration, the set D5 is empty after calling Concatenate(d,δ);
thus, the set D4, consisting of three length-4 common subsequences of X and Y ,
is returned as the answer. Fig. 8 depicts, in a more schematic form, these longest
common subsequences found by the proposed algorithm.

Notice that only the current setD needs to be stored; we do not need the additional
data structure Fi, it is only used for clarity purposes. Furthermore, there are some
additional optimizations of the algorithm that were not illustrated in the example.
For instance, the size of ∆ can be decreased in each iteration and, therefore, we do
not need to concatenate the elements d ∈ Di, at each iteration i, with all the elements
δ in the initial set.

5 Conclusions

In this work we presented a new algorithm for the LCS problem applied to weighted
sequences. This algorithm works under a multiobjective perspective, which allows
tackling the LCS problem as an optimization problem. The time complexity of the
algorithm depends on the total number of matches between the two input weighted

D.Becerra et al.: A Multiobjective Approach to the Weighted LCS Problem 73

1g 0.4c
0.6a

0.5t
0.5c

1t 1a

1g

1a

1t

1g

0.5c
0.5a

1 3 52 4

1

2

4

5

6

3

X

Y

0.2t
0.8a

±1

±2
±3

±6

±8

±12

t

a

g

a

c

a

¼X ()= () = 0.6gata±1±2±8±12 ¼X

¼Y ()= () = 0.4gata±1±2±8±12 ¼Y

¼X ()= () = 0.4gcta±1±3±8±12 ¼X

¼Y ()= () = 0.4gcta±1±3±8±12 ¼Y

¼X ()= () = 0.6gata±1±6±8±12 ¼X

¼Y ()= () = 0.8gata±1±6±8±12 ¼Y

Figure 8. WLCS reported by MiCO

sequences, the number of dominant common subsequences detected during the com-
putation and the length of the weighted longest common subsequence.

The main contributions of the paper can be summarized as follows: i) an algo-
rithm that returns all the dominant LCSs between two weighted sequences, and ii) a
framework to tackle the LCS problem as a multiobjective optimization problem.

References

1. A. Amir, Z. Gotthilf, and B. Shalom: Weighted LCS. Journal of Discrete Algorithms, 8
2010, pp. 273–281.

2. A. Amir, C. Iliopoulos, O. Kapah, and E. Porat: Approximate matching in weighted
sequences. Lecture Notes on Computer Science, 4009 2006, pp. 365–376.

3. S. Bhowmick, M. Shafiullah, H. Rai, and D. Bastola: A Parallel Non-Alignment Based
Approach to Efficient Sequence Comparison using Longest Common Subsequences. Journal of
Physics: Conference Series, 256 2010, p. 012012.

4. P. Bonizzoni, G. Vedova, R. Dondi, G. Fertin, R. Rizzi, and S. Vialette: Exem-
plar Longest Common Subsequence. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 4 2007, pp. 535–543.

5. M. Cygan, M. Kubica, J. Radoszewski, W. Rytter, and T. Walen: Polynomial-Time
Approximation Algorithms for Weighted LCS Problem, in Combinatorial Pattern Matching,
R. Giancarlo and G. Manzini, eds., vol. 6661 of Lecture Notes in Computer Science, Springer
Berlin - Heidelberg, 2011, pp. 455–466.

6. D. Gusfield: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, 1997.

7. W. Hsu and M. Du: New algorithms for the LCS problem. J. Computer and Systems Sciences,
19 1984, pp. 133–152.

8. J. Hunt and T. Szymanski: A fast algorithm for computing longest common subsequences.
Communications of the ACM, 20(5) 1977, pp. 350–353.

9. C. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsaka-
lidis: Efficient algorithms for handling molecular weighted sequences. Exploring New Frontiers
of Theoretical Informatics, 155 2004, pp. 265–278.

10. C. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsaka-
lidis: The weighted suffix tree: An efficient data structure for handling molecular weighted
sequences and its applications. Fundamenta Informaticae, 71(2) 2006, pp. 259–277.

11. E. Lander: Initial sequencing and analysis of the human genome. Nature, 409 2001, pp. 860–
921.

12. D. Maier: The complexity of some problems on subsequences and supersequences. Journal of
the ACM (JACM), 25(2) 1978, pp. 322–336.

74 Proceedings of the Prague Stringology Conference 2012

13. C. Makris and E. Theodoridis: String Data Structures for Computational Molecular Biol-
ogy. Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications,
1 2011, pp. 3–27.

14. K. Perdikuri and A. Tsakalidis: Motif extraction from biological sequences: Trends and
contributions to other scientific fields. Information Technology and Applications, 2005. ICITA
2005. Third International Conference on, 1 2005, pp. 453–458.

15. O. Saetrom, O. Snove Jr, and P. Saetrom: Weighted sequence motifs as an improved
seeding step in microRNA target prediction algorithms. RNA, 11(7) 2005, p. 995.

New and Efficient Approaches to the

Quasiperiodic Characterisation of a String

Tomáš Flouri1, Costas S. Iliopoulos2,3, Tomasz Kociumaka4, Solon P. Pissis1,5⋆,
Simon J. Puglisi2⋆⋆, William F. Smyth2,3,6, and Wojciech Tyczyński4

1 Heidelberg Institute for Theoretical Studies, 35 Schloss-Wolfsbrunnenweg,
Heidelberg D-69118, Germany

{tomas.flouri,solon.pissis}@h-its.org
2 King’s College London, Dept. of Informatics, The Strand, London WC2R 2LS, UK

{c.iliopoulos,simon.puglisi}@kcl.ac.uk
3 University of Western Australia, School of Mathematics and Statistics, 35 Stirling Highway,

Crawley, Perth WA 6009, Australia
4 University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, Warsaw, Poland

{kociumaka,w.tyczynski}@mimuw.edu.pl
5 University of Florida, Florida Museum of Natural History, 1659 Museum Road,

Gainesville, FL 32611, USA
6 McMaster University, Dept. of Computing and Software, 1280 Main St. West,

Hamilton, Ontario L8S 4K1, Canada
smyth@mcmaster.ca

Abstract. A factor u of a string y is a cover of y if every letter of y lies within some
occurrence of u in y; thus every cover u is also a border – both prefix and suffix – of
y. A string y covered by u thus generalises the idea of a repetition; that is, a string
composed of exact concatenations of u. Even though a string is coverable somewhat
more frequently than it is a repetition, still a string that can be covered by a single u
is rare. As a result, seeking to find a more generally applicable and descriptive notion
of cover, many articles were written on the computation of a minimum k-cover of y;
that is, the minimum cardinality set of strings of length k that collectively cover y.
Unfortunately, this computation turns out to be NP-hard. Therefore, in this article, we
propose new, simple, easily-computed, and widely applicable notions of string covering
that provide an intuitive and useful characterisation of a string and its prefixes: the
enhanced cover and the enhanced cover array.

Keywords: periodicity, quasiperiodicity, covers

1 Introduction

The notion of periodicity in strings and its many variants have been well-studied
in many fields like combinatorics on strings, pattern matching, data compression,
automata theory, formal language theory, and molecular biology (cf. [18]). Periodicity
is of paramount importance in many applications – for example, periodic factors in
DNA are of interest to genomics researchers [16] – as well as in theoretical studies
in combinatorics on words. Not long ago the term regularity [10] was coined to cover
such variants, and a recent survey [22] provides coverage of the exact regularities
so far identified and the sequential algorithms proposed to compute them. In this
article, in an effort to capture a more natural characterisation of a string in terms of
its factors, we introduce a new form of regularity that is both descriptive and easy to
compute.

⋆ Supported by the NSF-funded iPlant Collaborative (NSF grant #DBI-0735191).
⋆⋆ Supported by a Newton Fellowship.

Tomáš Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J. Puglisi, William F. Smyth, Wojciech Tyczyński: New and Efficient
Approaches to the Quasiperiodic Characterisation of a String, pp. 75–88.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

76 Proceedings of the Prague Stringology Conference 2012

a b a a a b a a a b a a a b a a a b

Figure 1. Periodicity in string abaaabaaabaaabaaab

A string y is a repetition if y = uk for some non-empty string u of length m and
some integer k ≥ 2; in this case, y has period m (see Fig. 1). But the notion of period-
icity is too restrictive to provide a description of a string such as x = abaababaaba,
which is covered by copies of aba, yet not exactly periodic. To fill this gap, the idea
of quasiperiodicity was introduced [1,2]. In a periodic string, the occurrences of the
single periods do not overlap. In contrast, the quasiperiods of a quasiperiodic string
may overlap. Quasiperiodicity thus enables the detection of repetitive structures that
would be ignored by the classical characterisation of periods (see Fig. 2 in contrast
with Fig. 3). The most well-known formalisation of quasiperiodicity is the cover of
string. A factor u of length m of a string y of length n is said to be a cover of y if
m < n, and every letter of y lies within some occurrence of u. Note that a cover of y
must also be a border – both suffix and prefix – of y. Thus in the above example aba
is a cover of x = abaababaaba.

a b a a b a a b a a a b a a a b

Figure 2. Quasiperiodicity in string abaabaabaaabaaab

a b a a b a a b a a a b a a a b

Figure 3. Periodicity in string abaabaabaaabaaab

In [3], Apostolico, Farach, and Iliopoulos described a recursive linear-time algo-
rithm to compute the shortest cover of a string y of length n, if it has a cover;
otherwise to report that no cover exists. Breslauer [4] introduced the minimal cover
array C – an array of size n of integers such that C[i], for all 0 ≤ i < n, gives the
shortest cover of y[0 . . i], or zero if no cover exists. Moreover, he described an on-
line linear-time algorithm to compute C. In [19,20], Moore and Smyth described a
linear-time algorithm to compute all the covers of y. An O(log(log n))-time parallel
algorithm was given later by Iliopoulos and Park in [13]. Finally, Li and Smyth [17]
introduced the maximal cover array CM – an array of size n of integers such that
CM[i] gives the longest cover of y[0 . . i], or zero if no cover exists – and showed that,
analogous to the border array [21], CM actually specifies all the covers of every prefix
of y. They then described a linear-time algorithm to compute CM.

Still it remains unlikely that an arbitrary string, even on alphabet {a, b}, has a
cover; for example, changing the above example x to x′ = abaaababaaba yields a
string that not only has no cover, but whose every prefix also has no cover. Accord-
ingly, in an effort to extend the descriptive power of quasiperiodicity, the notion of
k-cover was introduced [14]: if for a given string y and a given positive integer k there

T.Flouri et al.: NewandEfficient Approaches to the Quasiperiodic Characterisation of a String 77

exists a set Ck of factors of y, each of length k, such that every letter of y lies within
some occurrence of some element of Ck, then Ck is said to be a k-cover of y; a minimal
k-cover if no smaller set has this property. Originally it was thought, incorrectly, that
a minimal k-cover of a string y could be computed in time polynomial in n [14], but
then later the problem was shown to be NP-complete for every k ≥ 2 [8], even though
an approximate solution could be computed in polynomial time [11].

Our contribution. We have seen that while the notion of cover captures very well
the repetitive nature of extremely repetitive strings, nevertheless most strings, and
particularly those encountered in practice, will have no cover, and so this measure of
repetitiveness breaks down. More strings will have a useful k-cover, but this feature
is hard to compute. Therefore we introduce a new and more natural and applicable
form of quasiperiodicity.

– Enhanced cover. A border u of a string y is an enhanced cover of y, if the
number of letters of y which lie within some occurrence of u in y is a maximum
over all borders of y (see Fig. 5).

This gives rise to the following data structure.

– Enhanced cover array. An array of size n of integers is the enhanced cover array
of y, if it stores the length of the enhanced cover for every prefix of y.

In this article, we present efficient methods for computing all enhanced covers and
the enhanced cover array of a string, and, in particular, the minimal enhanced cover
and the minimal enhanced cover array. These methods are based on the maintenance
of a new, simple but powerful data structure, which stores the number of positions
covered by some prefixes of the string. This data structure allows us to compute
the minimal enhanced cover of a string of length n in time O(n) and the minimal
enhanced cover array in time O(n log n).

The rest of this article is structured as follows. In Section 2, we present basic
definitions and notation used throughout this article, and we also formally define the
problems solved. In Section 3, we prove several combinatorial properties of the borders
of y, which may be of independent interest. In Section 4, we show how to compute
a few auxiliary arrays, which will be used for designing the proposed algorithms. In
Section 5, we present an algorithm for computing the minimal enhanced cover of y. In
Section 6, we present an algorithm for computing the minimal enhanced cover array
of y. In Section 7, we present some experimental results. Finally, we briefly conclude
with some future proposals in Section 8.

2 Definitions and notation

An alphabet Σ is a finite non-empty set whose elements are called letters. A string on
an alphabet Σ is a finite, possibly empty, sequence of elements of Σ. The zero-letter
sequence is called the empty string, and is denoted by ε. The length of a string x is
defined as the length of the sequence associated with the string x, and is denoted by
|x|. We denote by x[i], for all 0 ≤ i < |x|, the letter at index i of x. Each index i, for
all 0 ≤ i < |x|, is a position in x when x 6= ε. It follows that the ith letter of x is the
letter at position i− 1 in x, and that x = x[0 . . |x| − 1].

78 Proceedings of the Prague Stringology Conference 2012

The concatenation of two strings x and y is the string of the letters of x followed
by the letters of y. It is denoted by xy. For every string x and every natural number
n, we define the nth power of the string x, denoted by xn, by x0 = ε and xk = xk−1x,
for all 1 ≤ k ≤ n. A string x is a factor of a string y if there exist two strings u and v,
such that y = uxv. A factor x of a string y is proper if x 6= y. Let the strings x, y, u,
and v be such that y = uxv. If u = ε, then x is a prefix of y. If v = ε, then x is a
suffix of y.

Let x be a non-empty string. An integer p, such that 0 < p ≤ |x|, is called a
period of x if x[i] = x[i + p], for all 0 ≤ i < |x| − p. Note that the length of a non-
empty string is a period of this string, so that every non-empty string has at least
one period. We define thus without any ambiguity the period of a non-empty string
x as the smallest of its periods. It is denoted by per(x). A border of a non-empty
string x is a proper factor of x (including the empty string) that is both a prefix and
a suffix of x. We define the border of a non-empty string x as the longest border of x.
By border(x), we denote the length of the border of x. The notions of period and of
border are dual. It is a known fact (cf. [9]) that, for any non-empty string x, it holds
per(x) + border(x) = |x|. The border array B of a non-empty string y of length n is
the array of size n of integers for which B[i], for all 0 ≤ i < n, stores the length of
the border of the prefix y[0 . . i] of y – zero if none.

A non-empty string u of length m is a cover of a non-empty string y if both
m < n, and there exists a set of positions P ⊆ {0, . . . , n − m} that satisfies both
y[i . . i + m − 1] = u, for all i ∈ P, and

⋃
i∈P{i, . . . , i + m − 1} = {0, . . . , n − 1}. In

other words, u is a cover of y, if every letter of y lies within some occurrence of u in
y, and u 6= y.

a b a a b a a b a a a b a a

Figure 4. Cover of string abaabaabaaabaa

A string u is the minimal cover of string y if u is the shortest cover of y. The
minimal cover array C of a non-empty string y of length n is the array of size n of
integers for which C[i], for all 0 ≤ i < n, stores the length of the minimal cover of the
prefix y[0 . . i] of y – zero if none.

Definition 1. A border u of a string y is an enhanced cover of y if the number of
letters of y which lie within occurrences of u in y is a maximum over all borders of y.

a b a a b a a b b a a b a a b a a b

Figure 5. Enhanced cover of string abaabaabbaabaabaab

Definition 2. We define as minimal enhanced cover the shortest enhanced cover
of y.

T.Flouri et al.: NewandEfficient Approaches to the Quasiperiodic Characterisation of a String 79

Definition 3. The minimal enhanced cover array MEC of a non-empty string y of
length n is the array of size n of integers for which MEC[i], for all 0 ≤ i < n, stores
the length of the minimal enhanced cover of the prefix y[0 . . i] of y – zero if none.

Example 4. Consider the string y = abaaababaabaaaababaa. The following table
illustrates the border array B of y, the minimal cover array C of y, and the minimal
enhanced cover array MEC of y. In this example, array C consists of only zeros, as a
minimal cover does not exist for any of the prefixes of y. In contrast, array MEC is a
more powerful data structure than array C, as apart from the minimal cover of every
prefix, it also contains the minimal enhanced cover of every prefix in the case when
a minimal cover does not exist. For instance, border abaa is the minimal enhanced
cover of y, as 15 letters of y lie within some occurrence of abaa in y.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
y[i] a b a a a b a b a a b a a a a b a b a a

B[i] 0 0 1 1 1 2 3 2 3 4 2 3 4 5 1 2 3 2 3 4
C[i] 0

MEC[i] 0 0 1 1 1 2 3 2 3 4 2 3 4 1 1 2 3 2 3 4

We consider the following problems for a non-empty string y.

Problem 5. Compute the minimal enhanced cover of y.

Problem 6. Compute the minimal enhanced cover array MEC of y.

3 Combinatorial properties of non-periodic borders

Definition 7. A string w is called periodic if it is non-empty and 2per(w) ≤ |w|.
Otherwise it is called non-periodic.

The efficiency of the algorithms in this article is a consequence of considering only
non-periodic factors. The following fact explains why this restriction is valid.

Fact 1 A periodic string always has a (proper) cover. As a consequence, the minimal
enhanced cover is never periodic.

Proof. Let w be a periodic string with the border u. As a factor of w, u has at least
two occurrences: as a prefix and as a suffix. Since 2|u| ≥ |w|, these occurrences cover v.
In particular, if w is an enhanced cover, then u is a shorter enhanced cover. Hence w
cannot be the minimal enhanced cover. ⊓⊔

We prove two combinatorial properties of non-periodic borders, which are then
used to prove the time complexities of our algorithms. The first one is simple fact, but,
with corollaries, is the main reason behind the restriction to non-periodic borders.

Fact 2 Let u and v be borders of y, such that |v| > |u|, and v is non-periodic. Then
|v| > 2|u|.

Proof. Clearly, u is a border of v, hence |v| − |u| is a period of v. However v is non-
periodic, so 2(|v| − |u|) > |v|, i.e. |v| > 2|u|. ⊓⊔

Corollary 8. The length of the kth shortest non-periodic border of y is at least 2k−1.
In particular, the total number of the non-periodic borders of y is at most log n.

80 Proceedings of the Prague Stringology Conference 2012

Proof. Let bk be the length of the kth shortest non-periodic border of y. From Fact 2,
bk+1 ≥ 2bk+1. Moreover, b1 ≥ 1. The first part of Corollary follows by induction. For
the second part, it is enough to see that if there were k > log n non-periodic borders,
then bk ≥ 2k − 1 > n− 1, which is clearly a contradiction. ⊓⊔

Note that by Corollary 8, the total number of occurrences of the non-periodic
prefixes of y is O(n log n). This is because if a prefix v ends with an occurrence of u,
then u = v or u is a border of v. This induces a one-to-one correspondence between
such occurrences – with exception of O(n) ones starting 0 – and the non-periodic
borders of prefixes of y. It turns out that, if we consider just the occurrences of
non-periodic borders of y, the number drops to O(n).

Before we proceed, let us introduce a notion, which we use across the proofs
below. Let X be an array of size n of integers for which X[i], for all 0 ≤ i < n,
stores the number of those non-periodic borders of the prefix y[0 . . i] of y, which are
simultaneously borders of y.

Lemma 9. The total number of occurrences of the non-periodic borders of y is linear.
More precisely

n−1∑

i=0

X[i] ≤ 2n.

Let us start with an auxiliary claim.

Claim. Let 0 ≤ i, j < n be integers. If X[i] > k then i ≥ 3 · 2k − 2. Moreover, if i < j,
X[i] > k and X[j] > k then j − i ≥ 2k.

Proof. Clearly, if u and v are non-periodic borders of y, then the shorter one is a non-
periodic border of the longer one. Thus X[i] > k if and only if the k + 1th shortest
non-periodic border of y is a border of y[0 . . i]. Let us denote this border by b. By
Corollary 8, |b| ≥ 2k+1 − 1. Any two occurrences of b in y must have their starting

positions distant by at least |b|+1
2
≥ 2k. A pair of closer occurrences would induce a

period of b no larger than |b|
2
, which may not exist, since b is non-periodic.

For the first part of the Claim, consider the occurrence starting at 0 and the
occurrence ending at i, i.e. starting at i− |b|+ 1. These are different occurrences, so
i ≥ |b| − 1 + 2k ≥ 3 · 2k − 2. In the second part, there are occurrences of b ending at
i and at j, which implies that j − i ≥ 2k. ⊓⊔

Proof (of Lemma 9). In the following proof, we use the Iverson bracket [P]. For a
logical statement P , the Iverson bracket [P] is by definition equal to 1 if P is satisfied,
and 0 otherwise.

Clearly for a non-negative integer m we have m =
∑∞

k=0[k < m]. Hence

n−1∑

i=0

X[i] =
n−1∑

i=0

∞∑

k=0

[k < X[i]] =
∞∑

k=0

n−1∑

i=0

[X[i] > k].

Let us bound the single term of the outer sum. This sum counts positions i such that
X[i] > k. By Claim, the first of them is at least 3 ·2k−2, and the distance between any
two such positions is at least 2k. This means that if we write them all in increasing
order, then the mth one is at least (m + 2) · 2k − 2. In particular, for m > n

2k
, the

T.Flouri et al.: NewandEfficient Approaches to the Quasiperiodic Characterisation of a String 81

mth position would be at least n+ 2 · 2k − 2 ≥ n, which is clearly impossible. Hence,
there cannot be more than n

2k
such positions, i.e.

n−1∑

i=0

[X[i] > k] ≤ n

2k
.

Therefore
n−1∑

i=0

X[i] =
∞∑

k=0

n−1∑

i=0

[X[i] > k] ≤
∞∑

k=0

n

2k
= 2n.

⊓⊔

4 Auxiliary arrays

Our algorithms make use of a few auxiliary arrays. In this section, we show how to
compute these arrays efficiently. Below we assume the availability of the border array
B, which is computable in linear time (see, e.g. [15,9,21]), and an array CB of size n
such that, for all 0 ≤ i < n, CB[i] is 1 if i + 1 is a border of y, and 0 otherwise. CB
is trivially computed from B as the borders of y are exactly the longest border of y
and its borders.

Definition 10. Given a string y of length n, the pruned border array A is an array
of size n of integers for which A[i], for all 0 ≤ i < n, stores the length of the longest
non-periodic border of y[0 . . i] – zero if none.

The pruned border array A of a string y can be computed by Algorithm 1 in linear
time. Algorithm 1 loops through the prefixes of y and in each step considers two
cases. If the longest border u of a prefix v is non-periodic, then u is the border of
v we are looking for. Otherwise, the longest non-periodic border of v is the longest
non-periodic border of u.

Algorithm 1: PrunedBorderArray
Input : The border array B of string y[0 . . n− 1]
Output: The pruned border array A

1 for i← 0 to n− 1 do
2 b← B[i]
3 if b = 0 or 2 · B[b− 1] < b then
4 A[i]← b

5 else
6 A[i]← A[b− 1]

Definition 11. Given a string y of length n, let R be an array of size n of integers
for which R[i], for all 0 ≤ i < n, stores the length of the longest non-periodic border
of y[0 . . i], which is also a border of y – zero if none.

R can be computed by Algorithm 2 in linear time. For each prefix v of y we
determine the longest non-periodic border u of v and consider the following cases. If
u is a border of y (in particular if u is empty), then clearly R[i] = A[i]. Otherwise,
the border we seek is a shorter non-periodic border of v, so the result for v is same
as for u.

82 Proceedings of the Prague Stringology Conference 2012

Algorithm 2: Array R
Input : The pruned border array A and array CB of string y[0 . . n− 1]
Output: Array R

1 for i← 0 to n− 1 do
2 b← A[i]
3 if b = 0 or CB[b− 1] = 1 then
4 R[i]← b

5 else
6 R[i]← R[b− 1]

Definition 12. Given a string y of length n, PCP is an array of size n of integers
for which PCP[i], for all 0 ≤ i < n, stores the number of letters of y which lie within
an occurrence of the non-periodic prefix of length i+1 having at least two occurrences
in y – zero if the prefix is periodic or does not have two occurrences.

The PCP array of string y can be computed by Algorithm 3. It takes as input the
pruned border array A of y. We also maintain an array LO of size n of integers, for
which LO[i], for all 0 ≤ i < n, stores the ending position of the last occurrence of the
non-periodic prefix of length i + 1 in y, not taking into account the occurrence as a
prefix. Fields corresponding to periodic prefixes are never read or written.

Algorithm 3: PositionsCoveredByPrefixesArray
Input : The pruned border array A[0 . . n− 1] of string y[0 . . n− 1]
Output: The PCP array

1 PCP← FillWithZeros
2 for i← 0 to n− 1 do
3 b← A[i]
4 while b > 0 do
5 if PCP[b− 1] = 0 then
6 PCP[b− 1]← min(2b, i+ 1)

7 else
8 PCP[b− 1]← PCP[b− 1] + min(b, i− LO[b− 1])

9 LO[b− 1]← i
10 b← A[b− 1]

The algorithm consists of an outer for loop, going through the pruned border
array A, and an inner while loop, iterating through the non-periodic borders of prefix
y[0 . . i]. If the first occurrence of some border of length b of y[0 . . i] is found (line 5),
we take the minimum between 2b, that is in case y[0 . . b − 1] does not overlap with
y[i− b+ 1 . . i], and i+ 1, that is in case they overlap (line 6). If another occurrence
of the same border is found (line 7), we update PCP[b − 1] by adding the minimum
between b, that is in case y[i− b+ 1 . . i] does not overlap with the last occurrence of
the border, and i − LO[b − 1], that is in case they overlap (line 8). Hence we obtain
the following result.

Theorem 13. The PCP array of a string of length n can be computed by Algorithm 3
in time O(n log n).

T.Flouri et al.: NewandEfficient Approaches to the Quasiperiodic Characterisation of a String 83

Proof. The algorithm consists of an outer for loop, going through the pruned border
array A, and an inner while loop, iterating through the non-periodic borders of prefix
y[0 . . i]. By Corollary 8, the number of non-periodic borders of each prefix is bounded
by log n. Hence, in overall, the time required is O(n log n). ⊓⊔

We define one more array, similar to PCP but restricted to borders of the whole
string only.

Definition 14. Given a string y of length n, PCB is an array of size n of integers
for which PCB[i], for all 0 ≤ i < n, stores the number of letters of y which lie within
an occurrence of the non-periodic prefix of length i+ 1, which is a border of y – zero
if the prefix is periodic or is not a border of y.

Example 15. Consider the string y = aabaabaabbaaabaabaa. The following table
illustrates the border array B of y, and the auxiliary arrays A, CB, R, PCP, and PCB
of y.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
y[i] a a b a a b a a b b a a a b a a b a a

B[i] 0 1 0 1 2 3 4 5 6 0 1 2 2 3 4 5 6 7 8
A[i] 0 1 0 1 1 3 4 5 3 0 1 1 1 3 4 5 3 4 5

CB[i] 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
R[i] 0 1 0 1 1 0 1 5 0 0 1 1 1 0 1 5 0 1 5

PCP[i] 13 0 15 14 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PCB[i] 13 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 Minimal enhanced cover

In this section, we show how to compute the minimal enhanced cover of string y. The
minimal enhanced cover of y can be computed by Algorithm 4. It takes as input the
array R of y. The algorithm consists of an outer for loop, going through the array R,
and an inner while loop, iterating through the non-periodic borders of prefix y[0 . . i]
which are also borders of y. The key idea is the on-line maintenance of the PCB array
(lines 5–8). Notice that array R considers only borders of the prefixes of y which are
also borders of y (line 3). The number of positions covered by the border of length b
is given by PCB[b− 1] (line 10).

By Lemma 9, the total number of occurrences of the considered borders is bounded
by 2n. Hence we obtain the following result.

Theorem 16. The minimal enhanced cover of a string of length n can be computed
in time O(n).

6 Minimal enhanced cover array

In this section, we show how to compute the minimal enhanced cover array MEC of
string y. Array MEC of y can be computed by Algorithm 5. It takes as input the
pruned border array A of y. Similarly as in the case of Algorithm PositionsCov-
eredByPrefixesArray, it goes through the pruned border array A, and iterates
through the pruned set of borders of prefix y[0 . . i]. Thus we are able to maintain
the PCP array on-line, and use it to compute array MEC. For each prefix y[0 . . i],
in addition to the maintenance of the PCP array, we store the maximum value of

84 Proceedings of the Prague Stringology Conference 2012

Algorithm 4: MinimalEnhancedCover
Input : The array R of string y[0 . . n− 1]
Output: The length ℓ of the minimal enhanced cover

1 PCB[0 . . n− 1]← FillWithZeros; δ ← 0; ℓ← 0
2 for i← 0 to n− 1 do
3 b← R[i]
4 while b > 0 do
5 if PCB[b− 1] = 0 then
6 PCB[b− 1]← min(2b, i+ 1)

7 else
8 PCB[b− 1]← PCB[b− 1] + min(b, i− LO[b− 1])

9 LO[b− 1]← i
10 if PCB[b− 1] > δ then
11 δ ← PCB[b− 1]
12 ℓ← b

13 else if PCB[b− 1] = δ and b < ℓ then
14 ℓ← b

15 b← R[b− 1]

Algorithm 5: MinimalEnhancedCoverArray
Input : The pruned border array A[0 . . n− 1] of string y[0 . . n− 1]
Output: The minimal enhanced cover array MEC

1 PCP[0 . . n− 1]← FillWithZeros
2 for i← 0 to n− 1 do
3 b← A[i]
4 ℓ← 0
5 δ ← 0
6 while b > 0 do
7 if PCP[i] = 0 then
8 PCP[i]← min(2b, i+ 1)

9 else
10 PCP[i]← PCP[i] + min(b, i− LO[b− 1])

11 if PCP[b− 1] ≥ δ then
12 δ ← PCP[b− 1]
13 ℓ← b

14 LO[b− 1]← i
15 b← A[b− 1]

16 MEC[i]← ℓ

PCP[b− 1], for each border of length b of that prefix, in a variable δ, and the length
b in a variable ℓ (lines 11–13).

By Theorem 13, the PCP array can be computed in time O(n log n). Hence we
obtain the following result.

Theorem 17. The minimal enhanced cover array of a string of length n can be com-
puted in time O(n log n).

T.Flouri et al.: NewandEfficient Approaches to the Quasiperiodic Characterisation of a String 85

7 Experimental results

We were able to verify the runtime of the proposed algorithms in experiments.

Fig. 6 illustrates the maximal ratio of the total number of occurrences of the non-
periodic borders of y, computed by Algorithm MinimalEnhancedCover, to the
length n of string, for all strings on the binary alphabet of lengths 1 to 31. These
ratios are known to be smaller than 2 by Lemma 9. However, values close to this
bound are not observed for small word length.

Figure 6. Maximal ratio of of the total number of occurrences of the non-periodic borders to the
length n of string, for all strings on the binary alphabet

Fig. 7 and Fig. 8 illustrate the maximal ratio of the number of operations of
AlgorithmMinimalEnhancedCoverArray to the length n of string, for all strings
on the binary alphabet of lengths 1 to 31, and the ratio of the number of operations
to the length n of string, for Fibonacci strings f3 to f45, respectively. These ratios are
known to be smaller than log n by Theorem 13.

The main observation from Fig. 7 is that, although the upper theoretical bound of
these ratios isO(log n), in practice, this is much less for strings on the binary alphabet.
Fig. 8 strongly indicates that these ratios are probably constant for Fibonacci strings;
something it would be interesting to show in the future.

In order to evaluate the performance of Algorithm MinimalEnhancedCover-
Array with real datasets, we measured the ratio of the number of operations to
the length of three DNA sequences: the single chromosome of Escherichia coli str.
K-12 substr. MG1655; chromosome 1 of Mus musculus (laboratory mouse), Build
37.2; and chromosome 1 of Homo sapiens (human), Build 37.2. The measured ratios
are 1.000006, 1.000000, and 1.001192, respectively, suggesting linear runtime of the
proposed algorithms in practical terms.

The implementation of the proposed algorithms is available at a website
(http://www.exelixis-lab.org/solon/asc.html) for further testing.

86 Proceedings of the Prague Stringology Conference 2012

Figure 7. Maximal ratio of the number of operations of Algorithm 4 to the length n of string, for
all strings on the binary alphabet

Figure 8. Ratio of the number of operations of Algorithm 4 to the length n of string, for Fibonacci
strings

8 Concluding remarks

There are several directions for future work. Our immediate target is to investigate
analogous data structures for other quasiperiodic notions such as the seed [12], the
left seed [7], and the right seed [6] of a string. We will also consider the following
problems for an array A of size n of integers.

Problem 18. Decide if A is the minimal enhanced cover array of some string.

Problem 19. When A is a valid minimal enhanced cover array, infer a string, whose
minimal enhanced cover array is A.

For certain applications, the definition of the minimal enhanced cover might not
be useful, since it primarily optimises the number of positions covered, while the
length of the enhanced cover cannot be controlled. We can extend this notion by

T.Flouri et al.: NewandEfficient Approaches to the Quasiperiodic Characterisation of a String 87

introducing the d-restricted enhanced cover of string y, which is the shortest border
of y of length not exceeding d which covers the largest number of positions among
borders no longer than d. The algorithm computing the minimal enhanced cover,
with almost no extra computations, can compute the d-restricted enhanced covers
for every positive integer d < n. Moreover, the algorithm computing the minimal
enhanced cover array can be given an additional array D of size n of integers as
input, and compute the D[i]-restricted enhanced cover of y[0 . . i], for all 0 ≤ i < n.
This also requires no additional effort.

Another interesting open problem is to allow the enhanced cover to be any factor of
the string – not only a border. A similar problem, though with different constraints on
the occurrences of the cover, is considered in the context of grammar compression [5],
but, to the best of our knowledge, no efficient solution for either problem has been
published.

References

1. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasiperiodicities in strings,
Tech. Rep. CSD-1R-I048, Purdue University, 1990.

2. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2) 1993, pp. 247–265.

3. A. Apostolico, M. Farach, and C. S. Iliopoulos: Optimal superprimitivity testing for
strings. Information Processing Letters, 39(1) 1991, pp. 17–20.

4. D. Breslauer: An on-line string superprimitivity test. Information Processing Letters, 44(6)
1992, pp. 345–347.

5. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat: The smallest grammar problem. IEEE Transactions on Information Theory, 51(7)
2005, pp. 2554–2576.

6. M. Christou, M. Crochemore, O. Guth, C. S. Iliopoulos, and S. P. Pissis: On the
right-seed array of a string, in Proceedings of the seventeenth annual International Computing
and Combinatorics Conference (COCOON 2011), B. Fu and D.-Z. Du, eds., vol. 6842 of Lecture
Notes in Computer Science, USA, 2011, Springer, pp. 492–502.

7. M. Christou, M. Crochemore, C. S. Iliopoulos, M. Kubica, S. P. Pissis, J. Ra-
doszewski, W. Rytter, B. Szreder, and T. Walen: Efficient seed computation revisited,
in Proceedings of the twenty-second annual Symposium on Combinatorial Pattern Matching
(CPM 2011), R. Giancarlo and G. Manzini, eds., vol. 6661 of Lecture Notes in Computer Sci-
ence, Italy, 2011, Springer, pp. 350–363.

8. R. Cole, C. S. Iliopoulos, M. Mohamed, W. F. Smyth, and L. Yang: The complexity
of the minimum k-cover problem. Journal of Automata, Languages and Combinatorics, 10(5/6)
2005, pp. 641–653.

9. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press, USA, 2007.

10. C. S. Iliopoulos, M. Mohamed, L. Mouchard, W. F. Smyth, K. G. Perdikuri, and
A. K. Tsakalidis: String regularities with don’t cares. Nordic Journal of Computing, 10(1)
2003, pp. 40–51.

11. C. S. Iliopoulos, M. Mohamed, and W. F. Smyth: New complexity results for the k-covers
problem. Information Sciences, 181(12) 2011, pp. 2571–2575.

12. C. S. Iliopoulos, D. Moore, and K. Park: Covering a string. Algorithmica, 16(3) 1996,
pp. 288–297.

13. C. S. Iliopoulos and K. Park: A work-time optimal algorithm for computing all string
covers. Theoretical Computer Science, 164(1–2) 1996, pp. 299–310.

14. C. S. Iliopoulos and W. F. Smyth: On-line algorithms for k-covering, in Proceedings of the
ninth Australasian Workshop on Combinatorial Algorithms (AWOCA 2008), Curtin University
of Technology, 1998, pp. 64–73.

15. D. E. Knuth, J. H. M. Jr., and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal on Computing, 6(2) 1977, pp. 323–350.

88 Proceedings of the Prague Stringology Conference 2012

16. R. Kolpakov, G. Bana, and G. Kucherov: mreps: efficient and flexible detection of tandem
repeats in DNA. Nucleic Acid Research, 31(13) 2003, pp. 3672–3678.

17. Y. Li and W. F. Smyth: Computing the cover array in linear time. Algorithmica, 32(1) 2002,
pp. 95–106.

18. M. Lothaire, ed., Applied Combinatorics on Words, Cambridge University Press, 2005.
19. D. Moore and W. F. Smyth: An optimal algorithm to compute all the covers of a string.

Information Processing Letters, 50(5) 1994, pp. 239–246.
20. D. Moore and W. F. Smyth: A correction to “An optimal algorithm to compute all the

covers of a string”. Information Processing Letters, 54(2) 1995, pp. 101–103.
21. W. F. Smyth: Computing patterns in strings, Addison-Wesley, 2003.
22. W. F. Smyth: Computing regularities in strings: a survey. European Journal of Combinatorics,

2012, (to appear).

The Number of Cubes in Sturmian Words

Marcin Pia֒tkowski1⋆ and Wojciech Rytter2,1⋆⋆

1 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Toruń, Poland

marcin.piatkowski@mat.umk.pl
2 Department of Mathematics, Computer Science and Mechanics,

University of Warsaw, Warsaw, Poland
rytter@mimuw.edu.pl

Abstract. We design an efficient algorithm computing the number of distinct cubes
in a standard Sturmian word given by its directive sequence (the special type of recur-
rences). The algorithm runs in linear time with respect to the size of the compressed
representation (recurrences) describing the word, though the explicit size of the word
can be exponential with respect to this representation. We give the explicit compact
formula for the number of cubes in any standard word derived from the structural
properties of runs (maximal repetitions). Fibonacci words are the most known subclass
of standard Sturmian words. It is known that the ratio of the number of cubes to the
size for Fibonacci words is asymptotically equal to 1

φ3 ≈ 0.2361, where φ =
√
5+1
2 . We

show a class of standard Sturmian words for which this ratio is much higher and equals
3φ+2
9φ+4 ≈ 0.36924841. An extensive experimentation suggests that this value is optimal.

Keywords: standard Sturmian words, cubes, repetitions, algorithm

1 Introduction

Problems related to finding repetitions in strings are fundamental in combinatorics
on words and have many practical applications (data compression, computational
biology, pattern matching, etc.), see for instance [5], [8], [12] and [13]. The structure
of repetitions is almost completely understood for the class of Fibonacci words, see
[10], [11], [16], however it is not well understood for general words.

The most important type of repetitions are runs (maximal repetition), which form
a compact representation of all repetitions in a word. Formally, a run in a word w is
an interval α = [i..j] such that w[i..j] = ukv (k ≥ 2) is a nonempty periodic subword
of w, where u is of the minimal length and v is a proper prefix (possibly empty)
of u, that can not be extended (neither w[i − 1..j] nor w[i..j + 1] is a run with the
period |u|).

In this paper we consider cubes: the nonempty words of the form α = x3. The
length of x is called the base of the cube and denoted by base(α). A number i is a
period of the word w if w[j] = w[i+ j] for all i with i+ j ≤ |w|. The minimal period
(min-period, in short) of w will be denoted by period(w).

⋆ The study is cofounded by the European Union from resources of the European Social Fund.
Project PO KL “Information technologies: Research and their interdisciplinary applications”,
Agreement UDA-POKL.04.01.01-00-051/10-00.

⋆⋆ Supported by the grant N206 566740 of the National Science Center

Marcin Pia֒tkowski, Wojciech Rytter: The Number of Cubes in Sturmian Words, pp. 89–102.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

90 Proceedings of the Prague Stringology Conference 2012

Example 1. Let α = (abab)3 be a cube. In this case we have:

base(α) = 4, period(α) = 2.

❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛❜ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜

❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛❜ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜

❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛❜ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜

❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛❜ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜

Figure 1. The structure of distinct cubes in the example binary word
w = ababaabababaabababaabababaababaab

Observe that two different runs could correspond to the identical subwords, if we
disregard their positions. Hence runs are also called the maximal positioned repeti-
tions. In this paper we are interested in counting distinct cubes, hence we identify
cubes with the same base, but perhaps multiple occurrences.

Example 2. Let w be as in Figure 1. There are 9 cubes:

ab · ab · ab, ba · ba · ba, ababaab · ababaab · ababaab,
babaaba · babaaba · babaaba, abaabab · abaabab · abaabab,
baababa · baababa · baababa, aababab · aababab · aababab,
abababa · abababa · abababa, bababaa · bababaa · bababaa.

The standard Sturmian words are extensively studied in combinatorics on words.
They are enough complicated to have many interesting properties and at the same
time they are highly compressible. Due to their regularity, many problems are much
easier for such strings compared with the general case. There are known exact formulas
for the number of runs, cubic runs (i.e. runs in which the period repeats at least
three times) and squares in standard words along with their density ratio (i.e. the
asymptotic quotient of the maximal number of considered repetitions by the length
of the word). See [2], [15] and [14] for details.

This paper is devoted to the investigation of the structure and the number of
cubes in standard Sturmian words. Denote by cubes(w) the number of cubes in a
word w. We present exact formulas for cubes(w) in any standard word w. We show
also the algorithm, which computes the number of cubes in any standard word in
linear time with respect to the size of its compressed representation – the directive
sequence – hence in time logarithmic with respect to the length of the word. We show
also a class of standard words reach in cubes and prove that for this class of strings

Marcin Pia֒tkowski and Wojciech Rytter: The Number of Cubes in Sturmian Words 91

the density ratio of distinct cubes equals 3φ+2
9φ+4

≈ 0.36924841, where φ =
√
5+1
2

. An

extensive computer experimentation suggests that this value is optimal.

Some useful applets related to problems considered in this paper can be found on
the web site: http://www.mat.umk.pl/~martinp/stringology/applets/

2 Standard Sturmian words

Standard Sturmian words (standard words in short) are one of the most investigated
class of strings in combinatorics on words, see for instance [1], [4], [6], [12], [17],
[18], [19] and references therein. They have very compact representations in terms of
sequences of integers, which has many algorithmic consequences.

The directive sequence is the integer sequence: γ = (γ0, γ1, . . . , γn), where γ0 ≥ 0
and γi > 0 for i = 1, 2, . . . , n. The standard word corresponding to γ, denoted by
Sw(γ), is described by the recurrences of the form:

x−1 = b, x0 = a, . . . , xn = x
γn−1

n−1 xn−2, xn+1 = xγn
n xn−1 (1)

where Sw(γ) = xn+1. For simplicity we denote qi = |xi|.
The sequence of words {xi}n+1

i=0 is called the standard sequence. Every word oc-
curring in a standard sequence is a standard word, and every standard word occurs
in some standard sequence. We assume that the standard word given by the empty
directive sequence is a and Sw(0) = b. The class of all standard words is denoted by
S.

Example 3.
Consider the directive sequence γ = (1, 2, 1, 3, 1). We have Sw(γ) = x5, where:

x−1 = b q−1 = 1

x0 = a q0 = 1

x1 = (x0)
1 · x−1 = a · b q1 = 2

x2 = (x1)
2 · x0 = ab · ab · a q2 = 5

x3 = (x2)
1 · x1 = ababa · ab q3 = 7

x4 = (x3)
3 · x2 = ababaab · ababaab · ababaab · ababa q4 = 26

x5 = (x4)
1 · x3 = ababaabababaabababaabababa · ababaab q5 = 33

Without loss of generality we consider here the standard Sturmian words starting
with the letter a, therefore we assume that γ0 > 0. The words starting with the
letter b can be considered similarly.

Remark 4.
The special kind of standard words are well known Fibonacci words. They are formed
by repeated concatenation in the same way that the Fibonacci numbers are formed
by repeated addition. By the definition Fibonacci words are standard words given by
directive sequences of the form γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds
to a sequence of n ones).

92 Proceedings of the Prague Stringology Conference 2012

The number N = |Sw(γ)| is the (real) size of the word, while (n + 1) = |γ| can be
thought as its compressed size. Observe that, by the definition of standard words, N is
exponential with respect to n. Each directive sequence corresponds to a grammar-
based compression, which consists in describing a given word by a context-free gram-
mar G generating this (single) word. The size of the grammar G is the total length
of all productions of G. In our case the size of the grammar is proportional to the
length of the directive sequence.

2.1 The structure of cubes in standard words

The main idea of the computation of distinct cubes in a standard word Sw(γ0, . . . , γn)
is the partition of them into separate categories depending on the length of their
periods. In this section we define the concepts of the i-partition of standard words
and the generative run, which will be crucial in cubes enumeration. The following
fact is a direct consequence of recurrent definition of standard words.

Fact 1
Every standard word Sw(γ0, . . . , γn) can be represented as a sequence of concatenated
words xi and xi−1, and has the form:

xα1
i xi−1 x

α2
i xi−1 . . . x

αs
i xi−1 xi or xβ1

i xi−1 x
β2
i xi−1 . . . x

βs
i xi−1,

where αk, βk ∈ {γi, γi + 1}, and xi are as in equation (1).

Such a decomposition of a standard word w is called the i-partition of w. The block
xi is then the repeating block and the block xi−1 – the single block.

Example 5. Recall the word Sw(1, 2, 1, 3, 1) from Example 3. We have then:

Sw(1, 2, 1, 3, 1) ababaabababaabababaabababaababaab

1− partition x2
1 x0 x

3
1 x0 x

3
1 x0 x

3
1 x0 x

2
1 x0 x1

2− partition x2 x1 x2 x1 x2 x1 x
2
2 x1

3− partition x3
3 x2 x3

4− partition x4 x3

See Figure 2 for comparison.

The following facts characterize the possible bases of distinct cubes in standard words.
Their thesis are consequence of the very special structure of the subword graphs
(especially their compacted versions) of those words. For more information on the
subword graphs of standard words see for instance [3] and [17].

Lemma 6 (See [9]).
Let w = Sw(γ0, . . . , γn) be a standard Sturmian word and v be a factor of w such that
|xi| ≤ |v| < |xi+1|, where xi are as in equation (1). Then:

1. There is at most one position in xi (respectively xi−1) such that any occurrence of
v in w which starts in some xi-block (respectively xi−1-block) of the i-partition of
w has to start at this particular position in xi (respectively xi−1).

2. If v can start at position k in xi and at position l in xi−1 (k and l are uniqye
by 1), then we have k = l.

Marcin Pia֒tkowski and Wojciech Rytter: The Number of Cubes in Sturmian Words 93

Lemma 7.
The base of each cube in the standard word Sw(γ0, . . . , γn) has the length k · |xi|, where
0 < k < γi and xi’s are as in equation (1). The min-period of each cube equals qi for
some 0 ≤ i ≤ n.

Proof. Let w = Sw(γ0, . . . , γn) be a standard word and v = u3 be a cube in w such
that |xi| ≤ |u| < |xi+1|. We denote v = u(1) · u(2) · u(3) to be able to refer to each
occurrence of u in v. Due to Lemma 6, the factors u(1), u(2) and u(3) start at the same
(within the block) position l of some blocks of the i-partition of w. The distance
between two consecutive l position could be either k · |xi| or k · |xi| + |xi−1|. Recall
that every occurrence of xi−1 block is separated by γi or γi + 1 occurrences of the
xi block. Since |v| < |xi+1| and |xi+1| = γi|xi| + |xi−1| we have k < γi and the only
possible base of v is |u| = k · |xi|, for 0 < k < γi. Moreover, every standard word xi

is primitive, hence the minimal period of v has the length |xi| = qi.

We say that a cube is of type i if its min-period equals qi. The number of distinct
cubes of the type i in the word Sw(γ) is denoted by πi(γ).

Example 8. Let Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab be a standard
word. We have 2 cubes of the type 1 and 7 cubes of type 3, see Figure 1 and Example 2
for comparison.

For each 0 ≤ i ≤ n let gen-run(i) be the value (as a word) of the longest run with
minimal period equal to qi. It is called a generative run of type i (see Figure 2 for an
example).

①✷ ①✷ ①✷ ①✷ ①✷①✶ ①✶ ①✶ ①✶

①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶ ①✵ ①✵ ①✵ ①✵①✵

❛ ❛ ❛ ❛ ❛❜ ❜ ❜ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

❣�✁✂✄☎✁✆✟✞

Figure 2. The 1-partition (above) and 2-partition (below) of the word Sw(1, 2, 1, 3, 1). We have
gen-run(1) = x3

1xo, gen-run(2) = x2
2x1. The first generative run produces two different cubes, the

second produces no cubes

Lemma 9 (See [3]).
Each generative run of the type i is of the form:

gen-run(i) = (xi)
α · y,

where y is a proper prefix of xi.

Example 10. Let w = Sw(1, 2, 1, 3, 1) (see Figure 1). The generative run of type 1 has
the form gen-run(1) = (x1)

3x0 and generates two cubes (ab)3 and (ba)3. On the other
hand the generative run of type 2 has the form gen-run(2) = (x2)

2x1 and does not
generate any cube.

94 Proceedings of the Prague Stringology Conference 2012

3 Formula and algorithm for counting the number of cubes

In this section we present and prove formulas for the number of distinct cubes in any
standard word, that depend only on its compressed representation – the directive
sequence. The following zero-one function for testing the value of the remainder of
the division by 3 of a nonnegative integer x will be useful to simplify those formulas:

3k(x) =




1 if x mod 3 = k

0 if x mod 3 6= k
.

Recall that qi = |xi| and πi is the number of cubes of the type i in the word Sw(γ).

Theorem 11 (Main-Formulas).
The number of cubes in standard word Sw(γ0, γ1, . . . , γn) is given by the formula:

cubes(γ0, γ1, . . . , γn) =
n∑

i=0

πi(γ0, γ1, . . . , γn),

where:

(1) (i ∈ [0, n− 3]) ⇒ πi(γ) =
⌊γi + 1

3

⌋
qi + 31(γi) ·

(
qi−1 − 1

)

(2) πn−2(γ) =





⌊
γn−2 + 1

3

⌋
qn−2 + 31(γn−2) ·

(
qn−3 − 1

)
if γn > 1

⌊
γn−2

3

⌋
· qn−2 + 32(γn−2) ·

(
qn−3 + 1

)
if γn = 1

(3) πn−1(γ) =

⌊
γn−1

3

⌋
· qn−1 + 32(γn−1) ·

(
qn−2 − 1

)

(4) πn(γ) =

⌊
γn − 1

3

⌋
· qn + 30(γn) ·

(
qn−1 + 1

)

The proof of the above theorem is a matter of Section 4. Let us see some examples.

Example 12. Let Sw(1, 2, 1, 3, 1) be a standard word. Using formulas from Theorem 11
we have:

π0(1, 2, 1, 3, 1) = π2(1, 2, 1, 3, 1) = π4(1, 2, 1, 3, 1) = 0

π1(1, 2, 1, 3, 1) = 2 π3(1, 2, 1, 3, 1) = 7

and finally
cubes(1, 2, 1, 3, 1) = 9.

See Example 8 and Figure 1 for comparison.

Marcin Pia֒tkowski and Wojciech Rytter: The Number of Cubes in Sturmian Words 95

The number of cubes in Fibonacci words is given by the formula

cubes(Fn) = fn−3 − n+ 2,

where fk denotes the k-th Fibonacci number (see [7] for the proof). As the next
example we derive this formula using results from Theorem 11.

Example 13. Recall that the n-th Fibonacci word Fn is defined as:

Fn = Sw(1, 1, . . . , 1︸ ︷︷ ︸
n

).

Hence
(γ0, γ1, . . . , γn−1) = (1, 1, . . . , 1),

and for each i = 0, 1, . . . , n− 4, we have

πi(1, 1, . . . , 1) = fi−1 − 1.

Moreover

πn−3(1, 1, . . . , 1) = πn−2(1, 1, . . . , 1) = πn−1(1, 1, . . . , 1) = 0.

Taking into account the identity

k∑

i=−1

fi = fk+2 − 1

we have

cubes(1, . . . , 1︸ ︷︷ ︸
n

) =
n−4∑

i=0

(fi−1 − 1) =
n−5∑

i=−1

(fi − 1)

= fn−3 − 1− (n− 3) = fn−3 − n+ 2

Theorem 14.
The number of cubes in a standard word Sw(γ) can be computed in linear time with
respect to the length of the directive sequence γ (which is at least logarithmically
smaller than the real length of the whole word Sw(γ)).

Proof.
The formulas for the number of cubes in a standard word Sw(γ) depend directly on
the components of the directive sequence γ and the numbers qi (namely |xi|), see
Theorem 11. Recall that, by the equation (1), we have

qi+1 = γi · qi + qi+1,

hence every number qi can be computed by iteration of the equation (1) i times.
We can compute the numbers q0, q1, . . . , qn consecutively and at each step i of the
computation remember the number of cubes related to the value of qi. The number
of iterations performed by the algorithm corresponds directly to the length of the
directive sequence, hence it has the time complexity O(|γ|). See Algorithm 1 for
details.

96 Proceedings of the Prague Stringology Conference 2012

Algorithm 1: Cubes(Sw(γ))

1 cubes ←− 0;

2 q−1 ←− 1;
3 q0 ←− 0;

4 for k := 0 to n do
5 qk ←− γk qk−1 + qk−2 ;
6 update cubes depending on the value of γk;

7 return cubes;

4 Proof of Theorem 11

Let us denote by ŵ the word w with two last letters removed and by w̃ the word w
with two last letters exchanged.

The following fact will be useful in proofs and can be shown by a simple induction,
see for instance [12].

Lemma 15.
Let xi be as in equation (1) and i > 1. Then:

(a) xi−1 · xi = xi · x̃i−1

(b) The length of the longest prefix of xi−1xi with period qi equals |xix̂i−1|.

Example 16. Recall the word Sw(1, 2, 1, 3, 1) from Example 3. We have x2 = ababa,
x1 = ab and x̃1 = ba. Therefore

x1 · x2 = ab · ababa = ababa · ba = x2 · x̃1.

Let us fix throughout this section a standard word w = Sw(γ0, γ1, . . . , γn). We show
each point of Theorem 11 separately.

①✷①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✶①✶ ①✶

❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

Figure 3. The illustration of Lemma 17: the structure of gen-run(2) and cubes of type 2 in the word
Sw(1, 2, 4, 1, 2)

Lemma 17.

(a) i ≤ n− 3 =⇒ gen-run(i) = (xi)
γi+2 · x̂i−1

(b) The point (1) from Theorem 11 is correct.

Marcin Pia֒tkowski and Wojciech Rytter: The Number of Cubes in Sturmian Words 97

Proof.

Point (a)
Let w = Sw(γ0, γ1, . . . , γn) be a standard word. Due to Fact 1 its i-partition has
the form:

xα1
i xi−1 x

α2
i xi−1 . . . x

αs
i xi−1 xi or xβ1

i xi−1 x
β2
i xi−1 . . . x

βs
i xi−1,

where αk, βk ∈ {γi, γi + 1}. Let us consider the inner factor

v = (xi)
γi+1 · xi−1 · xi.

Due to Lemma 15 the longest periodic prefix of v with period of the length |xi|
(namely the generative run of type i) has the form:

(xi)
γi+2 · x̂i−1

and this concludes the proof of this point.

Point (b)
It is obvious that every cube of type i must be derived from the generative run

of type i. Therefore, we have cubes with the bases: qi, 2 · qi, . . . ,
⌊
γi+1
3

⌋
· qi. Each

of them could be shifted to the right qi − 1 times producing altogether qi distinct
cubes with the same base.

Moreover, if γi mod 3 = 1, the subword v = (xi)
γi+2 is also a cube. According to

the structure of the generative run, v could be shifted to the right qi−1 − 2 times
producing altogether qi−1 − 1 distinct cubes with the same base. See Figure 3 for
an example of this case.

Finally the number of cubes of type i is given as:

πi(γ) =
⌊γi + 1

3

⌋
· qi + 31(γi) ·

(
qi−1 − 1

)
.

This completes the proof of the lemma.

Lemma 18.

(a) gen-run(n− 2) =




(xn−2)

γn−2+2 · x̂n−3 for γn > 1

(xn−2)
γn−2+1 · xn−3 for γn = 1

(b) The point (2) from Theorem 11 is correct.

Proof.

Point (a)
The case of γn > 1 folows the same argumentation as in proof of Lemma 17, hence
we can assume γn = 1. The standard word w = Sw(γ0, . . . , γn−1, 1) has the form:

w =

γn−1︷ ︸︸ ︷
(xn−2 · · · xn−2︸ ︷︷ ︸

γn−2

·xn−3) · · · (xn−2 · · · xn−2︸ ︷︷ ︸
γn−2

·xn−3) ·xn−2 · (xn−2 · · · xn−2︸ ︷︷ ︸
γn−2

·xn−3).

The longest run with the period of the length qi (namely the generative run of
type i) is the suffix of w:

(xn−2)
γn−2+1 · xn−3

and this concludes the proof of this point.

98 Proceedings of the Prague Stringology Conference 2012

Point (b)
Similarly as in the proof of Point (a) we assume γn = 1. Every cube of type n− 2
is derived from the generative run of type n − 2. Therefore we have qn−2 cubes
for each base length: qi, 2 · qi, . . . , ⌊γn−2

3
⌋ · qi. Moreover, if γn−2 mod 3 = 2, the

factor (xn−2)
γn−2+1 is also a cube, which could be shifted qn−3 times. Hence we

have qn−3 + 1 additional cubes with the base γn−2+1
3
· qn−2. See Figure 4 for an

example of this case.

Finally we have

πn−2(γ) =

⌊
γn−2

3

⌋
· qn−2 + 32(γn−2) ·

(
qn−3 + 1

)

and the proof is complete.

①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷①✶ ①✶ ①✶

❛ ❛ ❜ ❛❜ ❜ ❜ ❜ ❜ ❜ ❜ ❜❜

❣�✁✂✄☎✁✆✝✞

Figure 4. The illustration of the Lemma 18: the structure of gen-run(2) and cubes of the type 2
(i.e. type n− 2) in the word Sw(2, 1, 2, 2, 1)

Lemma 19.

(a) gen-run(n− 1) = (xn−1)
γn−1+1 · x̂n−2

(b) The point (3) from Theorem 11 is correct.

Proof.

Point (a)
By definition the word w = Sw(γ0, γ1, . . . , γn) has the form:

w =

γn︷ ︸︸ ︷
(xn−1 · · · xn−1︸ ︷︷ ︸

γn−1

·xn−2) · (xn−1 · · · xn−1︸ ︷︷ ︸
γn−1

·xn−2) · · · (xn−1 · · · xn−1︸ ︷︷ ︸
γn−1

·xn−2) ·xn−1.

Due to Lemma 15 the longest periodic factor of w with period of the length |xn−1|
(namely the generative run of type n− 1) has the form:

(xn−1)
γn−1+1 · x̂n−2

and this concludes the proof of this point.

Marcin Pia֒tkowski and Wojciech Rytter: The Number of Cubes in Sturmian Words 99

Point (b)
According to the structure of gen-run(n − 1) we have qn−1 cubes for each base
length: qn−1, 2 · qn−1, . . . , ⌊γn−1

3
⌋ · qn−1. Moreover, if γn−1 mod 3 = 2, the factor

(xn−1)
γn−1+1 is also a cube, which could be shifted qn−1 − 2 times. Hence we have

qn−2− 1 additional cubes with the base γn−1+1
3
· qn−1. See Figure 5 for an example

of this case.

Finally we have

πn−1(γ0, γ1, . . . , γn) =

⌊
γn−1

3

⌋
· qn−1 + 32(γn−1) ·

(
qn−2 − 1

)
.

and this concludes the proof.

①✸ ①✸ ①✸
①✷

❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛❜❛ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

Figure 5. The illustration of the Lemma 19: the structure of gen-run(3) and cubes of the type 3
(i.e. type n− 1) in the word Sw(1, 1, 2, 2, 1)

Lemma 20.

(a) gen-run(n) = (xn)
γn · xn−1

(b) The point (4) from Theorem 11 is correct.

Proof.

Point (a)
By definition the word w = Sw(γ0, γ1, . . . , γn) has the form:

w = xn · xn · · · xn︸ ︷︷ ︸
γn

·xn−1.

Since xn−1 is the prefix of xn, the value of generative run of type n is the whole
word w.

Point (b)
According to the structure of gen-run(n) we have qn cubes for each base length:
qn, 2 · qn, . . . , ⌊γn−1

3
⌋ · qn. Moreover, if γn mod 3 = 0, the factor (xn)

γn is also a
cube, which could be shifted qn−1 times. Hence we have qn−1 +1 additional cubes
with the base γn

3
· qn. See Figure 6 for an example of this case.

Finally we have

πn(γ0, γ1, . . . , γn) =

⌊
γn − 1

3

⌋
· qn + 30(γn) ·

(
qn−1 + 1

)

and this completes the proof.

100 Proceedings of the Prague Stringology Conference 2012

①✸ ①✸ ①✸
①✷

❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

Figure 6. The illustration of Lemma 20: the structure of gen-run(3) and cubes of the type 3
(i.e. type n) in the word Sw(1, 1, 2, 3)

Proof (of Theorem 11).
The sets of distinct cubes of type i and distinct cubes of type j are disjoint for i 6= j.
Therefore, the thesis of Theorem 11 follows by summing up the formulas for number
of cubes of all types from Lemma 17, Lemma 18, Lemma 19 and Lemma 20.

5 Standard words with large number of cubes

In this section we show the family of standard words rich in cubes. Experimental evi-
dence shows that asymptotically this family achieves the highest ratio of the number
of cubes to the length of the word.

Theorem 21.
Let γk = (1, . . . , 1︸ ︷︷ ︸

k

, 2, 3, 1) be a directive sequence and wk = Sw(γk) be a standard

word. We have:

lim
k→∞

cubes(wk)

|wk|
=

3φ+ 2

9φ+ 4
≈ 0.36924841 . . .

where φ =
√
5+1
2

.

Proof. Denote by fk the k-th Fibonacci numer:

f−1 = 1; f0 = 1; f1 = 2; f2 = 3; f4 = 5; . . .

By definition of standard words we have

|Sw(γk)| = 9fk + 4fk−1.

According to Theorem 11 we have

πi = fi−1 − 1 for i = 0, . . . , k − 1,

πk = fk−1 + 1, πk+1 = 2fk + fk−1, πk+2 = 0.

Taking into account the well known identity

k∑

i=−1

fk = fk+2 − 1

Marcin Pia֒tkowski and Wojciech Rytter: The Number of Cubes in Sturmian Words 101

we obtain
k−1∑

i=0

(fi−1 − 1) =
k−2∑

i=−1

(fi − 1) = fk − k − 1.

Altogether we have

cubes
(
Sw(γk)

)
= 3fk + 2fk−1 − k.

Denote by

βk =
fk
fk−1

.

Then we have
lim
k→∞

βk = φ.

Therefore

lim
k→∞

cubes(wk)

|wk|
= lim

k→∞
3fk + 2fk−1 − k

9fk + 4fk−1

= lim
k→∞

3βk + 2−O(1)

9βk + 4

=
3φ+ 2

9φ+ 4

≈ 0.36924841 . . .

Remark 22. The extensive experimentation strongly suggests that the coefficient 3φ+2
9φ+4

from the last theorem equals also the upper bound for the asymptotic ratio between
the number of cubes and size of a standard words, see Table 1 for some examples.

Directive sequence Length Cubes Ratio
(1, 1) 46368 10926 0.2356366459

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1) 138069388 50878017 0.3684959985

(5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1) 1028890 379883 0.3692163399

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1) 125574 46349 0.3690971061

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2) 222491 50529 0.2271058155

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1) 96917 28637 0.2954796372

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1) 154231 46349 0.3005167573

(1, 3, 1) 81790 28637 0.3501283775

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1) 169358 61475 0.3629884623

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 1) 213142 72421 0.3397781761

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
40

, 2, 3, 1) 3073549228 1134903130 0.3692483985

Table 1. The example standard words with the number of cubes and cubes density

102 Proceedings of the Prague Stringology Conference 2012

References

1. J. Allouche and J. Shallit: Automatic Sequences. Theory, Applications, Generalizations,
Cambridge University Press, 2003.

2. P. Baturo, M. Pia֒tkowski, and W. Rytter: The number of runs in Sturmian words,
in Proceedings of the 13th international conference on Implementation and Applications of
Automata, vol. 5148 of Lecture Notes in Computer Science, Springer, 2008, pp. 252–261.

3. P. Baturo, M. Pia֒tkowski, and W. Rytter: Usefulness of directed acyclic subword graphs
in problems related to standard Sturmian words. International Journal of Foundations of Com-
puter Science, 20(6) 2009, pp. 1005–1023.

4. J. Berstel: Sturmian and Episturmian words: a survey of some recent results, in Proceedings
of the 2nd international conference on Algebraic informatics, vol. 4728 of Lecture Notes in
Computer Science, Springer, 2007, pp. 23–47.

5. J. Berstel and J. Karhumaki: Combinatorics on words: a tutorial. Bulletin of the EATCS,
79 2003, pp. 178–228.

6. J. Berstel, A. Lauve, C. Reutenauer, and F. Saliola: Combinatorics on Words:
Christoffel Words and Repetitions in Words, CRM monograph series, Providence, R.I: American
Mathematical Society, 2009.

7. M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and
T. Walen: On the maximal number of cubic runs in a string, in Proceedings of the International
Conference on Implementation and Applications of Automata, 2010, pp. 227–238.

8. M. Crochemore and W. Rytter: Jewels of Stringology: Text algorithms, World Scientific,
2003.

9. D. Damanik and D. Lenz: The index of Sturmian sequences. European Journal of Combina-
torics, 23(1) 2002, pp. 23–29.

10. C. S. Iliopoulos, D. Moore, and W. F. Smyth: A characterization of the squares in a
Fibonacci string. Theoretical Computer Science, 172(1–2) 1997, pp. 281–291.

11. R. M. Kolpakov and G. Kucherov: On maximal repetitions in words, in Proceedings of
12th International Symposium on Fundamentals of Computation Theory, vol. 1684 of Lecture
Notes in Computer Science, Springer, 1999, pp. 374–385.

12. M. Lothaire: Algebraic Combinatorics on Words, vol. 90 of Encyclopedia of mathematics and
its application, Cambridge University Press, 2002.

13. M. Lothaire: Applied Combinatorics on Words, vol. 105 of Encyclopedia of Mathematics and
its Application, Cambridge University Press, 2005.

14. M. Pia֒tkowski and W. Rytter: Computing the number of cubic runs in standard Sturmian
words, in Proceedings of the 16-th Prague Stringology Conference, Czech Technical University,
2011, pp. 106–120.

15. M. Pia֒tkowski and W. Rytter: Asymptotic behaviour of the maximal number of squares
in standard Sturmian words. International Journal of Foundations of Computer Science, 23(2)
2012, pp. 303–321.

16. W. Rytter: The structure of subword graphs and suffix trees of Fibonacci words. Theoretical
Computer Science, 363(2) 2006, pp. 211–223.

17. M. Sciortino and L. Zamboni: Suffix automata and standard Sturmian words, in Proceedings
of the 11th International Conference on Developments in Language Theory, vol. 4588 of Lecture
Notes in Computer Science, Springer, 2007, pp. 382–398.

18. J. Shallit: Characteristic words as fixed points of homomorphisms, Tech. Rep. CS-91-72,
University of Waterloo, Department of Computer Science, 1991.

19. H. Uscka-Wehlou: Digital lines, Sturmian words, and continued fractions, PhD thesis, De-
partment of Mathematics, Uppsala University, 2009.

Quasi-linear Time Computation of the Abelian

Periods of a Word

Gabriele Fici1, Thierry Lecroq2, Arnaud Lefebvre2, Élise Prieur-Gaston2, and
William F. Smyth3

1 I3S, CNRS & Université Nice Sophia Antipolis, France
Gabriele.Fici@unice.fr

2 LITIS EA4108, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
{Thierry.Lecroq,Arnaud.Lefebvre,Elise.Prieur}@univ-rouen.fr

3 Department of Computing and Software,
McMaster University, Hamilton ON L8S 4K1, Canada

smyth@mcmaster.ca

Abstract. In the last couple of years many research papers have been devoted to
Abelian complexity of words. Recently, Constantinescu and Ilie (Bulletin EATCS 89,
167–170, 2006) introduced the notion of Abelian period. In this article we present two
quadratic brute force algorithms for computing Abelian periods for special cases and a
quasi-linear algorithm for computing all the Abelian periods of a word.

Keywords: Abelian period, Abelian repetition, weak repetition, design of algorithms,
text algorithms, combinatorics on words

1 Introduction

An integer p > 0 is a (classical) period of a word w of length n if w[i] = w[i+ p] for
any 1 6 i 6 n−p. Classical periods have been extensively studied in combinatorics on
words [16] due to their direct applications in data compression and pattern matching.

The Parikh vector of a word w enumerates the cardinality of each letter of the
alphabet in w. For example, given the alphabet Σ = {a, b, c}, the Parikh vector of
the word w = aaba is (3, 1, 0). The reader can refer to [6] for a list of applications of
Parikh vectors.

An integer p is an Abelian period for a word w over a finite alphabet Σ =
{a1, a2, . . . , aσ} if w can be written as w = u0u1 · · ·uk−1uk where for 0 < i < k
all the ui’s have the same Parikh vector P such that

∑σ
i=1P [i] = p and the Parikh

vectors of u0 and uk are contained in P [11]. For example, the word w = ababbbabb
can be written as w = u0u1u2u3, with u0 = a, u1 = bab, u2 = bba and u3 = bb, and
3 is an Abelian period of w with Parikh vector (1, 2) over Σ = {a, b}.

This definition of Abelian period matches that of weak repetition (also called
Abelian power) when u0 and uk are the empty word and k > 2 [12].

In the last couple of years many research papers have been devoted to Abelian
complexity [13,1,8,3,14,2,4,20]. Efficient algorithms for Abelian Pattern Matching
(also known as Jumbled Pattern Matching) have been designed [10,5,6,17,18,7].

Recently [15] gave algorithms for computing all the Abelian periods of a word of
length n in time O(n2 × σ). This was improved to time O(n2) in [9].

In this article we present a quasi-linear time algorithm for computing the Abelian
periods of a word. In Section 2 we give some basic definitions and notation. Section 3
presents brute force algorithms while Section 4 presents our main contribution. Fi-
nally, Section 5 contains conclusions and perspectives.

Gabriele Fici, Thierry Lecroq, Arnaud Lefebvre, Élise Prieur-Gaston, William F. Smyth: Quasi-linear Time Computation of the Abelian Periods of a Word,
pp. 103–110.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

104 Proceedings of the Prague Stringology Conference 2012

2 Notation

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet of cardinality σ and Σ∗ the set
of words on alphabet Σ. We denote by |w| the length of the word w. We write w[i]
for the i-th symbol of w and w[i . . j] for the factor of w from the i-th symbol to the
j-th symbol, with 1 6 i 6 j 6 |w|. We denote by |w|a the number of occurrences of
the symbol a ∈ Σ in the word w.

The Parikh vector of a word w, denoted by Pw, counts the occurrences of each
letter of Σ in w; that is Pw = (|w|a1 , . . . , |w|aσ). Notice that two words have the
same Parikh vector if and only if one word is a permutation of the other.

Given the Parikh vector Pw of a word w, we denote by Pw[i] its i-th component
and by |Pw| the sum of its components. Thus for w ∈ Σ∗ and 1 6 i 6 σ, we have
Pw[i] = |w|ai and |Pw| =

∑σ
i=1Pw[i] = |w|.

Finally, given two Parikh vectors P ,Q, we write P ⊂ Q if P [i] 6 Q[i] for every
1 6 i 6 σ and |P| < |Q|.

Definition 1 ([11]). A word w has an Abelian period (h, p) if w = u0u1 · · ·uk−1uk

such that:

– Pu0 ⊂ Pu1 = · · · = Puk−1
⊃ Puk

,
– |Pu0| = h, |Pu1| = p.

We call u0 and uk resp. the head and the tail of the Abelian period. Notice
that the length t = |uk| of the tail is uniquely determined by h, p and |w|, namely
t = (|w| − h) mod p.

The following lemma gives a bound on the maximum number of Abelian periods
of a word.

Lemma 2 ([15]). The maximum number of Abelian periods for a word of length n
over the alphabet Σ is Θ(n2).

Proof. The word (a1a2 · · · aσ)n/σ has Abelian period (h, p) for any p ≡ 0 mod σ and
h < p. ⊓⊔

A natural order can be defined on the Abelian periods.

Definition 3. Two distinct Abelian periods (h, p) and (h′, p′) of a word w are ordered
as follows: (h, p) < (h′, p′) if p < p′ or (p = p′ and h < h′).

Definition 4 ([9]). Let w be a word of length n. Then the mapping pr : Σ → A,
where A is the set of the first σ prime numbers, is defined by:

pr(σi) = i-th prime number.

The P-signature of w is defined by:

P-signature(w) = Πn
i=1pr(w[i]).

Definition 5 ([9]). Let w be a word of length n. Then the mapping s : Σ → B,
where B is the set of the first σ − 1 powers of n+ 1 and 0, is defined by:

s(σi) =

{
0 if i = 1

(n+ 1)i−2 otherwise.

G.Fici et al.: Quasi-linear Time Computation of the Abelian Periods of a Word 105

The S-signature of w is defined by:

S-signature(w) =
n∑

i=0

s(w[i]).

Observation 1 ([9]) For a word w of length n the array Pr of n elements is defined
by

Pr[i] = Π i
j=1pr(w[j]),

then

P-signature(w[k . . ℓ]) =

{
Pr[ℓ]/Pr[k − 1] if k 6= 0

Pr[ℓ] otherwise.

Observation 2 ([9]) For a word w of length n the array S of n elements is defined
by

S[i] =
i∑

j=1

s(w[j]),

then

S-signature(w[k . . ℓ]) =

{
S[ℓ]− S[k − 1] if k 6= 0

S[ℓ] otherwise.

Example 6. w = abaab:

i 1 2 3 4 5
w[i] a b a a b

pr(w[i]) 2 3 2 2 3
Pr[i] 2 6 12 24 72

i 1 2 3 4 5
w[i] a b a a b

s(i) 0 1 0 0 1
S[i] 0 1 1 1 2

P-signature(w[3 . . 5]) = S-signature(w[3 . . 5]) =
P-signature(aab) = S-signature(aab) =

Pr[5]/Pr[2] = 72/6 = 12 S[5]− S[2] = 2− 1 = 1

3 Brute Force Algorithms

We will first focus on the case where we consider periods without head nor tail.
In the remaining of the article we will write that a word w has Abelian period p

whenever it has Abelian period (0, p). When the tail is also empty, for a word w of
length n an Abelian period p must divide n. We define:

– P [i] is the set of Abelian periods of w[1 . . i];
– V [i] = P(w[1 . . i]) is the Parikh vector of w[1 . . i].

3.1 Abelian periods with neither head nor tail

In a first step we set P [i] = {i} for all the divisors of n. Then we process the positions
i of w in ascending order: if j ∈ P [i] and Pw[i+ 1 . . i+ j] = Pw[1 . . j], then we add
j to P [i+ j]. This test can be done in O(σ) time by precomputing the Parikh vectors
of all the prefixes of w or in constant time using signatures. At the end of the process
P [n] contains all the Abelian periods of w with neither head nor tail (see algorithm
in Figure 1).

106 Proceedings of the Prague Stringology Conference 2012

AbelianPeriodsNoHeadNoTail(w, n)
1 V [i]← P(w[1 . . i]), ∀ 1 ≤ i ≤ n
2 P [i]← ∅, ∀ 1 ≤ i ≤ n
3 for i← 1 to n/2 do
4 if n mod i = 0 then
5 P [i]← {i}
6 for i← 1 to n− 1 do
7 for j ∈ P [i] do
8 if V [i+ j]− V [i] = V [j] then
9 P [i+ j]← P [i+ j] ∪ {j}

10 return P [n]

Figure 1. Compute the Abelian periods with no head and no tail of a word w of length n

AbelianPeriodsNoHeadWithTail(w, n)
1 V [i]← P(w[1 . . i]), ∀ 1 6 i 6 n
2 P [i]← {i}, ∀ 1 6 i 6 n/2
3 P [i]← ∅, ∀n/2 < i 6 n
4 for i← 1 to n− 1 do
5 for j ∈ P [i] do
6 if i+ j > n then
7 if V [n]− V [i+ 1] ≤ V [j] then
8 P [n]← P [n] ∪ {j}
9 else if V [i+ j]− V [i] = V [j] then

10 P [i+ j]← P [i+ j] ∪ {j}
11 return P [n]

Figure 2. Compute the Abelian periods without head and with a possibly non-empty tail of a word
w of length n

Example 7. w = abaababbbabaabbabbaaabbababbaa:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

w[i] a b a a b a b b b a b a a b b a b b a a a b b a b a b b a a

P {1}{2}{3} {5}{6} {10} {15} {10} {10}

{3}

Theorem 8. The algorithm AbelianPeriodsNoHeadNoTail computes all the Abe-
lian periods with neither head nor tail of a word w of length n in time O(n2 × σ) if
the test in line 8 is performed by comparing Parikh vectors and in time O(n2) if the
test in line 8 is performed by using S-signatures or P-signatures.

3.2 Abelian periods without head with tail

Now we consider Abelian periods without head and with a possibly non-empty tail.
We adapt the previous algorithm by setting P [i] = {i} for 1 6 i 6 n/2 (see algorithm
Figure 2).

Theorem 9. The algorithm AbelianPeriodsNoHeadWithTail computes all the
Abelian periods without head and with tail of a word w of length n in time O(n2× σ)
if the tests in lines 7 and 1 are performed by comparing Parikh vectors and in time
O(n2) if the test in lines 7 and 1 are performed by using S-signatures or P-signatures.

G.Fici et al.: Quasi-linear Time Computation of the Abelian Periods of a Word 107

4 Quasi-Linear Time Computation of Abelian Periods with
neither Head nor Tail

In a linear-time preprocessing phase we compute Pw[j], j = 1, 2, . . . , σ, the compo-
nents of the Parikh vector of the word w. Also we compute

g = gcd(Pw[1],Pw[2], . . . ,Pw[σ])

and q = n/g. Without loss of generality we suppose σ ≥ 2 and g > 1. In O(
√
g) time

we compute a stack D of all divisors 1 ≤ d ≤ g of g in ascending order.

Definition 10. The word w is an Abelian repetition of period p and exponent
e if p | n and each of the e substrings

w[1 . . p],w[p+ 1 . . 2p], . . . ,w[n− p+ 1 . . n]

contains (p× Pw[j])/n = Pw[j]/e occurrences of the letter σj ∈ Σ for any j.

In other words, an Abelian repetition of period p and exponent e is the concate-
nation of e strings all having the same Parikh vector P of length p.

Observation 3 The only possible Abelian periods p of w are of the form p = d× q,
where d is an entry in D. Thus the smallest period is d× q, where d is the least such
entry.(Note that the last element of D is g.)

Definition 11 (Segment). A factor w[i . . j] is a segment of w if:

1. i = k × q + 1 with k > 0;
2. j − i+ 1 = t× q with t > 1;
3. Pw[i..j][k]/(j − i+ 1) = Pw[k]/|w| for every letter σk ∈ Σ;
4. there does not exist a j′ < j such that j′−i+1 = t′×q and Pw[i..j′][k]/(j

′−i+1) =
Pw[k]/|w| for every letter σk ∈ Σ.

In other words segments:

– start at positions multiples of q plus one;
– are non-empty and of length multiple of q;
– have the same proportion of every letter as the whole word w;
– are of minimal length.

Since we suppose that w has Abelian period p ∈ 1 . . n/2, it follows that either w
itself is a segment or else consists of a concatenation of segments. Note that a segment
is a minimum-length substring of Abelian period p.

Lemma 12. The word w has Abelian period d × q if and only if for every k =
0, 1, . . . , n/(d× q)− 1, k × d× q + 1 is the starting position of a segment of w.

We begin by computing the segments of w (see Figure 3), making use of the
precomputed values q and Pw. We compute a Boolean array L of n elements: for
1 6 i 6 n, L[i] = 1 iff i is the starting position of a segment, L[i] = 0 otherwise.

Observation 4 If p is an Abelian period of w with neither head nor tail and T is
the length of the longest segment of w divided by q, then p > T .

108 Proceedings of the Prague Stringology Conference 2012

ComputesSegments(w, n, q,Pw)
1 (i, T)← (1, 0)
2 L← 0n

3 while i 6 n do
⊲ Start a new segment

4 (i0, j, t, count)← (i, 0, 0, 0σ)
5 while j 6 σ do

⊲ See if t partitions of length q form a segment
6 t← t+ 1
7 for k ← 1 to q do
8 j ← w[i]
9 count[j]← count[j] + 1

10 i← i+ 1
⊲ Check counts of letters 1 . . j from position i0

11 j ← 1
12 t′ ← t× q
13 while j 6 σ and count[j] = (t′ × Pw[j])/n do
14 j ← j + 1

⊲ Update the array L and the maximum segment length T
15 L[i0]← 1
16 T ← max{T, t}
17 return (L, T)

Figure 3. Compute a Boolean array L of the starting positions of the segments of w ordered from
left to right, also the maximum number T of factors of length q in any segment

The procedure that computes L visits each position i inw once, and corresponding
to each i performs constant-time processing: the internalwhile loop updates j at most
σ times corresponding to each partition of length q > σ.

Proposition 13. The algorithm ComputesSegments(w, n, q,Pw) computes the
segments of a word w of length n on an alphabet of size σ in time O(n).

Example 14. w = abaababbbabaabbabbaaabbababbaa: n = 30, Pw = (15, 15)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

w[i] a b a a b a b b b a b a a b b a b b a a a b b a b a b b a a

L[i] 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0
T 0 1 1 1 1 1 1 3

w is thus a concatenation of segments: w = ab · aababb · ba · ba · ab · ba · bbaa · ab ·
ba · ba · bbaa and T = 3.

The procedure, given in Figure 4, scans all the multiples of the divisors d ∈ D,
their number is equal to the sum of the divisors of g which is in O(n log log n) [19].

In practice, the case where d = 1 is treated in lines 5 and 7. If T = 1, it means
that w can be segmented into factors of length q: q is then an Abelian period of w.
The case where d = g is treated outside the main loop, at the end of the algorithm:
it corresponds to the trivial case where the Abelian period is n.

Example 15. w = abaababbbabaabbabbaaabbababbaa: n = 30, Pw[1] = Pw[2] =
15, g = 15, q = 2, D = (1, 3, 5, 15) and T = 3. Since T 6= 1, q is not an Abelian
period: case d = 1 is done. When d = 3, p = 7 and 7 is not a starting position of a
segment. When d = 5, p = 11 and 11 is a starting position of a segment then p = 21

G.Fici et al.: Quasi-linear Time Computation of the Abelian Periods of a Word 109

ComputesPeriod(w, n)
1 Compute Pw, g,D
2 q ← n/g
3 (L, T)← ComputesSegments(w, n, q,Pw)
4 R← ∅

⊲ Deal quickly with easy cases
5 if T = 1 then
6 R← R ∪ {q}
7 d← Pop(D)

⊲ Fast forward in D past impossible cases
8 repeat
9 d← Pop(D)

10 until d > T
11 while d < g do
12 p← d× q + 1

⊲ Test if all multiples of p are starting positions of segments
13 while p < n do
14 if L[p] = 1 then
15 p← p+ d× q
16 else break
17 if p > n then
18 R← R ∪ {d× q}
19 d← Pop(D)
20 if q 6= n then
21 R← R ∪ {n}
22 return R

Figure 4. In ascending order of divisors d of g, use the array L to determine whether or not w is
an Abelian repetition of period d× q

and 21 is a starting position of a segment: 10 is an Abelian period. The case where
d = 15 is trivial since it corresponds to Abelian period n. Thus the algorithm returns
{10, 30}. In the worst case the algorithm could have scanned all the multiples of 3
(they are 5) and all the multiples of 5 (they are 3) less than or equal to 15.

Theorem 16. The algorithm ComputesPeriod(w, n) computes all the Abelian pe-
riods of w in time O(n log log n).

5 Conclusions and perspectives

In this article we gave brute force algorithms for computing Abelian periods for a
word w of length n in the two following cases: no head, no tail and no head with tail.
These algorithms run in time O(n2) but is this complexity tight? We also present a
quasi-linear time algorithm for computing all the Abelian periods of a word in the
case no head, no tail. Does an algorithm of the same complexity exist for a word w
of length at most n + q − 1 containing a substring of length n that is an Abelian
repetition with neither head nor tail of some period dq ≤ n?

110 Proceedings of the Prague Stringology Conference 2012

References

1. S. Avgustinovich, A. Glen, B. Halldórsson, and S. Kitaev: On shortest crucial words
avoiding abelian powers. Discrete Applied Mathematics, 158(6) 2010, pp. 605–607.

2. S. Avgustinovich, J. Karhumäki, and S. Puzynina: On Abelian repetition threshold.
RAIRO Theoretical Informatics and Applications, 46(1) 2012, pp. 3–15.

3. F. Blanchet-Sadri, J. I. Kim, R. Mercas, W. Severa, and S. Simmons: Abelian square-
free partial words, in Proceedings of the 4th International Conference Language and Automata
Theory and Applications, A.-H. Dediu, H. Fernau, and C. Mart́ın-Vide, eds., vol. 6031 of Lecture
Notes in Computer Science, Springer, 2010, pp. 94–105.

4. F. Blanchet-Sadri, A. Tebbe, and A. Veprauskas: Fine and Wilf ’s theorem for Abelian
periods in partial words, in Proceedings of the 13th Mons Theoretical Computer Science Days,
2010.

5. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták: On Table Arrangements, Scrabble Freaks,
and Jumbled Pattern Matching, in Proceedings of the 5th International Conference on Fun with
Algorithms, FUN 2010, P. Boldi and L. Gargano, eds., vol. 6099 of Lecture Notes in Computer
Science, Springer, 2010, pp. 89–101.

6. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták: Algorithms for jumbled pattern matching
in strings. International Journal of Foundations of Computer Science, 23(2) 2012, pp. 357–374.

7. P. Burcsi, F. Cicalese, G. Fici, and Zs. Lipták: On Approximate Jumbled Pattern Match-
ing in Strings. Theory of Computing Systems, 50(1) 2012, pp. 35–51.

8. J. Cassaigne, G. Richomme, K. Saari, and L. Zamboni: Avoiding Abelian powers in binary
words with bounded Abelian complexity. International Journal of Foundations of Computer
Science, 22(4) 2011.

9. M. Christou, M. Crochemore, and C. S. Iliopoulos: Identifying all Abelian periods
of a string in quadratic time and relevant problems. International Journal of Foundations of
Computer Science, 2012, (accepted, see also Report arXiv:1207.1307v1).

10. F. Cicalese, G. Fici, and Zs. Lipták: Searching for jumbled patterns in strings, in Proceed-
ings of the Prague Stringology Conference 2009, J. Holub and J. Žďárek, eds., Czech Technical
University in Prague, Czech Republic, 2009, pp. 105–117.

11. S. Constantinescu and L. Ilie: Fine and Wilf ’s theorem for abelian periods. Bulletin of the
European Association for Theoretical Computer Science, 89 2006, pp. 167–170.

12. L. J. Cummings and W. F. Smyth: Weak repetitions in strings. Journal of Combinatorial
Mathematics and Combinatorial Computing, 24 1997, pp. 33–48.

13. J. D. Currie and A. Aberkane: A cyclic binary morphism avoiding Abelian fourth powers.
Theoretical Computer Science, 410(1) 2009, pp. 44–52.

14. M. Domaratzki and N. Rampersad: Abelian primitive words, in Proceedings of the 15th
Conference on Developments in Language Theory, G. Mauri and A. Leporati, eds., vol. 6795 of
Lecture Notes in Computer Science, Springer, 2011.

15. G. Fici, T. Lecroq, A. Lefebvre, and É. Prieur-Gaston: Computing Abelian periods in
words, in Proceedings of the Prague Stringology Conference 2011, J. Holub and J. Žďárek, eds.,
Czech Technical University in Prague, Czech Republic, 2011, pp. 184–196.

16. M. Lothaire: Algebraic Combinatorics on Words, Cambridge University Press, 2002.
17. T. M. Moosa and M. S. Rahman: Indexing permutations for binary strings. Information

Processing Letters, 110(18-19) 2010, pp. 795–798.
18. T. M. Moosa and M. S. Rahman: Sub-quadratic time and linear space data structures for

permutation matching in binary strings. Journal of Discrete Algorithms, 10 2012, pp. 5–9.
19. G. Robin: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J.

Math. Pures Appl. (9), 63(2) 1984, pp. 187–213.
20. A. Samsonov and A. Shur: On Abelian repetition threshold. RAIRO Theoretical Informatics

and Applications, 46(1) 2012, pp. 147–163.

A Computational Framework for Determining

Square-maximal Strings⋆

Antoine Deza, Frantisek Franek, and Mei Jiang

Advanced Optimization Laboratory
Department of Computing and Software

McMaster University, Hamilton, Ontario, Canada
{deza,franek,jiangm5}@mcmaster.ca
http://optlab.cas.mcmaster.ca/

Abstract. We investigate the function σd(n) = max{s(x) | x is a (d, n)-string}, where
s(x) denotes the number of distinct primitively rooted squares in a string x and (d, n)-
string denotes a string of length n with exactly d distinct symbols. New properties
of the σd(n) function are presented. The notion of s-cover is presented and discussed
with emphasis on the recursive computational determination of σd(n). In particular,
we were able to determine all values of σ2(n) for n ≤ 53 and σ3(n) for n ≤ 42 and to
point out that σ2(33) < σ3(33); that is, among all strings of length 33, no binary string
achieves the maximum number of distinct primitively rooted squares. Noticeably, these
computations reveal the unexpected existence of pairs (d, n) satisfying σd+1(n + 2) −
σd(n) > 1 such as (2,33) and (2,34), and of three consecutive equal values: σ2(31) =
σ2(32) = σ2(33). In addition we show that σ2(n) ≤ 2n− 66 for n ≥ 53.

Keywords: string, square, primitively rooted square, maximum number of distinct
primitively rooted squares, parameterized approach, (d, n− d) table

1 Introduction

In [2] the notion of an r-cover was introduced as a means to represent the distribution
of the runs in a string and thus describe the structure of the run-maximal strings.
Ignoring the number of distinct symbols d, a key assertion from [2] states that es-
sentially any run-maximal string has an r-cover. A similar approach was adapted
for run-maximal (d, n)-strings in [1] and we show in Section 2 how this approach
can be adapted for square-maximal (d, n)-strings. This notion is used to speed up
computations of the maximum number of distinct primitively rooted squares.

We encode a square as a triple (s, e, p) where s is the starting position of the square,
e is the ending position of the square, and p is its period. Note that e = s + 2p − 1.
The join x[i1 .. ik] ∪ x[j1 .. jm] of two substrings of a string x = x[1 .. n] is defined
if i1 ≤ j1 ≤ ik + 1 and then x[i1 .. ik] ∪ x[j1 .. jm] = x[i1 .. max{ik, jm}], or if
j1 ≤ i1 ≤ jm + 1 and then x[i1 .. ik] ∪ x[j1 .. jm] = x[j1 .. max{ik, jm}]. Simply
put, the join is defined when the two substrings either are adjacent or overlapping.
The join S1 ∪ S2 of two squares of x encoded as S1 = (s1, e1, p1) and S2 = (s2, e2, p2)
is defined as the join x[s1 .. e1] ∪ x[s2 .. e2]. The alphabet of x is denoted by A(x),
(d, n)-string refers to a string of length n with exactly d distinct symbols, s(x) denotes
the number of distinct primitively rooted squares in a string x, and σd(n) refers to
the maximum number of distinct primitively rooted squares over all (d, n)-strings,

⋆ This work was supported by the Natural Sciences and Engineering Research Council of Canada
and MITACS, and by the Canada Research Chair program, and made possible by the facilities of
the Shared Hierarchical Academic Research Computing Network (http://www.sharcnet.ca/).

Antoine Deza, Frantisek Franek, Mei Jiang: A Computational Framework for Determining Square-maximal Strings, pp. 111–119.
Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

112 Proceedings of the Prague Stringology Conference 2012

i.e. σd(n) = max{s(x) | x is a (d, n)-string}. A singleton is a symbol which occurs
exactly once in the string under consideration. To simplify the notation, for an empty
string ε we set s(ε) = 0 and σd(0) = 0.

2 Computational approach to distinct primitively rooted
squares

In the computational framework for determining σd(n) we will be discussing later, we
first compute a lower bound of σd(n) denoted as σ−

d (n). It is enough to consider (d, n)-
strings x that could achieve s(x) > σ−

d (n) for determining σd(n), thus significantly
reducing the search space. The purpose of this section is to introduce the necessary
conditions that guarantee that for such an x, s(x) > σ−

d (n) for a given σ−
d (n). The

necessary conditions are the existence of an s-cover and a sufficient density of the
string, see Lemmas 5, 9, 10. The s-cover is guaranteed through generation, while the
density is verified incrementally during the generation at the earliest possible stages.
Note that the notion of s-cover, though similar to r-cover for runs, see [1,2], is slightly
different.

Definition 1. An s-cover of a string x = x[1 .. n] is a sequence of primitively rooted
squares {Si = (si, ei, pi) | 1 ≤ i ≤ m} so that

(1) for any 1 ≤ i < m, si < si+1 ≤ ei + 1 and ei < ei+1, i.e. two consecutive squares
are either adjacent or overlapping;

(2)
⋃

1≤i≤m

Si = x;

(3) for any occurrence of square S in x, there is 1 ≤ i ≤ m so that S is a substring
of Si, denoted by S ⊆ Si.

Lemma 2. An s-cover of a string is unique.

Proof. Let us assume that we have two different s-covers of x, {Si | 1 ≤ i ≤ m}
and {S ′

j | 1 ≤ j ≤ k}. We shall prove by induction that they are identical. By
Definition 1 (3), S1 ⊆ S ′

1 and, by the same argument, S ′
1 ⊆ S1, and thus S1 = S ′

1.
Let the induction hypothesis be Si = S ′

i for 1 ≤ i ≤ t. If
⋃

1≤i≤t Si = x, we have
t = m = k and we are done. Otherwise consider St+1. By Definition 1 (3), there is S ′

v

so that St+1 ⊆ S ′
v and v > t. We need to show that v = t+1. If not, then St+1 would

neither be a substring of S ′
t nor of S ′

t+1 contradicting Definition 1 (3). Therefore
St+1 ⊆ S ′

t+1. By the same argument, S ′
t+1 ⊆ St+1 and so St+1 = S ′

t+1. ⊓⊔
Lemma 3. If a string admits an s-cover, then it is singleton free.

Proof. Let {Sj | 1 ≤ j ≤ m} be the s-cover of x = x[1 .. n]. For any 1 ≤ i ≤ n,
x[i] ∈ St for some t by Definition 1 (2). Since St is a square, the symbol x[i] occurs
in x at least twice. ⊓⊔
Before we can define what a dense string is, we must first define the notion of a core
of a square, similarly to the core of a run, see [1,6]. For a square, its core is the set of
indices formed by the intersection of the indices of all its occurrences in the string.

Definition 4. The core vector k(x) of a (d, n)-string x is defined by ki(x) = the
number of cores of squares of x containing i for i = 1, . . . , n. A singleton-free (d, n)-
string x is dense, if its core vector k(x) satisfies ki(x) > σ−

d (n)−s(x[1 .. i−1])−mi for
i = 1, . . . , n, where mi = max {σd′(n−i) : d−|A(x[1 .. i−1])| ≤ d′ ≤ min(n−i, d)}.

A.Deza et al.: A Computational Framework for Determining Square-maximal Strings 113

Lemma 5. If a (d, n)-string x is not dense, then s(x) ≤ σ−
d (n).

Proof. The proof follows from the basic observation that for any string x, s(x) ≤
s(x[1 .. i − 1]) + s(x[i + 1 .. n]) + ki(x) for any i. Note that the inequality occurs
when there are the same type of squares in both x[1 .. i − 1] and x[i + 1 .. n]. If
x is not dense, then for some i0, ki0(x) ≤ σ−

d (n) − s(x[1 .. i0 − 1]) − mi0 . Then
s(x) ≤ s(x[1 .. i0 − 1]) + s(x[i0 +1 .. n]) + ki0(x) ≤ s(x[1 .. i0 − 1]) +mi0 + ki0(x) ≤
s(x[1 .. i0 − 1]) +mi0 + σ−

d (n)− s(x[1 .. i0 − 1])−mi0 = σ−
d (n). ⊓⊔

Lemma 6. If the core vector k(x) of a (d, n)-string x satisfies ki(x) > 0 for
i = 1, . . . , n, then x has an s-cover.

Proof. We build an s-cover by induction: Since the k1(x) ≥ 1, 1 is in at least one core,
hence there must be at least one square starting at position 1. Among all squares
starting at position 1, set the one with the largest period to be S1. Suppose that
we have built the s-cover {Si = (si, ei, pi) : i ≤ t}. If ⋃1≤i≤t Si = x, we are done.
Otherwise

⋃
1≤i≤t Si = x[1 .. et] where et < n. Since ket+1(x) ≥ 1, there is at least

one square (s, e, p) in x so that s ≤ et +1 ≤ s+2p− 1. From all such squares choose
the leftmost ones, and among them choose the one with the largest period and set
it as St+1. It is straightforward to verify that all the conditions of Definition 1 are
satisfied and that we have built the s-cover of x. ⊓⊔
Note that for a (d, n)-string, having an s-cover implies being singleton free. However
it does not imply that every ki(x) ≥ 1, even though it is quite close to it. Consider
the s-cover {Sj = (sj, ej, pj) : 1 ≤ j ≤ m} of x. If S1 has another occurrence in x
and there is no other square in x starting at position 1, then 1 is not in any core and
k1(x) = 0. Similarly, if the s-cover has two consecutive adjacent squares Sj and Sj+1,
if there is no other square occurring at position sj+1, and if the square Sj+1 has some
other occurrence, then ksj+1

(x) = 0. In this sense, the s-cover is a computationally
efficient structural generalization of the property that every ki(x) ≥ 1.

Lemma 7. Let {Si = (si, ei, pi) | 1 ≤ i ≤ m} be an s-cover of x. Let k = k(x) be
the core vector of x. Then for any 1 ≤ i < m and the core vector k′ = k(x[1 .. ei]),
(∀ 1 ≤ j < si+1)(k

′
j ≥ kj).

Proof. Let us assume that for some i = 1, 2, . . . m−1 there is a j so that kj > k′
j. Then

there must exists a square (s, e, p) in x = x[1 .. em] that is not a square of x[1 .. ei],
i.e. e > ei and s < si+1, so it is an intermediate square violating the definition of
s-cover, see Definition 1 (3). ⊓⊔
Lemma 8. If a square-maximal (d, n)-string x has an s-cover with two consecutive
adjacent squares, then σd(n) ≤ σd1(n1) + σd2(n2) for some 2 ≤ d1, d2 ≤ d ≤ d1 + d2
and some n1, n2, possibly equal to zero, such that n1 + n2 = n.

Proof. Let {Si : 1 ≤ i ≤ m} be the s-cover of x and let Sj ∩ Sj+1 = ∅. Then
s(x) ≤ s(x1) + s(x2), where x1 =

⋃

1≤i≤j

Si and x2 =
⋃

j<i≤m

Si. Therefore σd(n) =

s(x) ≤ s(x1)+s(x2) ≤ σd1(n1)+σd2(n2) where x1 and x2 are, respectively, a (d1, n1)-
and a (d2, n2)-string. ⊓⊔
Lemma 9. If a singleton-free square-maximal (d, n)-string x does not have an
s-cover, then σd(n) = σd(n− 1).

114 Proceedings of the Prague Stringology Conference 2012

Proof. Since x does not have an s-cover, there exist some i0 such that ki0 = 0 by
Lemma 6. Remove x[i0] to form a (d, n − 1)-string y. This will not decrease the
number of distinct squares in x since there is no core of any square containing i0.
Then σd(n) = s(x) ≤ s(y) ≤ σd(n − 1). Since σd(n) ≥ σd(n − 1) (see [4]), therefore
σd(n) = σd(n− 1). ⊓⊔

Lemma 10. If a square-maximal (d, n)-string has a singleton, then σd(n) =
σd−1(n− 1).

Proof. Remove the singleton to form a (d − 1, n − 1)-string y with σd(n) = s(x) ≤
s(y) ≤ σd−1(n−1). Since σd(n) ≥ σd−1(n−1) (see [4]), therefore σd(n) = σd−1(n−1).

⊓⊔

3 Heuristics for a lower bound σ−
d (n)

Recall that σ−
d (n) denotes the best available lower bound for σd(n). The higher the

value of σ−
d (n), the less computational effort must be spent on determining σd(n).

For d = 2, generate L2(n), the set of (2, n)-strings which admit an s-cover and are
balanced over every prefix (the frequencies of a’s and b’s differ by at most a predefined
constant), have a maximum period bounded by at most a predefined constant, and
contain no triples (aaa or bbb). Then we set

σ−
2 (n) = max {σ2(n− 1), max

x∈L2(n)
s(x)}.

For d ≥ 3, we simply set σ−
d (n) = max {σd−1(n− 1), σd−1(n− 2) + 1, σd(n− 1)}.

The heuristic was found to be quite efficient in the fact that in almost all cases it
gave the appropriate maximum value.

4 Generating special (d, n)-strings admitting an s-cover

Rather than generating strings, we generate their s-covers. By special we mean only
s-covers that have no consecutive adjacent squares. The generation proceeds by ex-
tending the partially built s-cover in all possible ways. Every time a potential square
of the s-cover is to be extended by one position, all previously used symbols and the
first unused symbol are tried. For each symbol, the frequency counter is checked that
the symbol does not exceed n+2− 2d. Once a symbol is used, the frequency counter
is updated. When the whole s-cover is generated, the counter is checked whether
all d symbols occurred in the resulting string; if not, the string is rejected. A typ-
ical implementation of the generation of the s-cover would be through recursion as
backtracking is needed. For computational efficiency reasons we opted instead for a
user-stack controlled backtracking implemented as a co-routine Next() allowing us
to call the co-routine repeatedly to produce the next string. Note that the strings
are generated in a lexicographic order. The generation of the s-cover follows these
principles: The generator for the first square is created by iterative calls to Next()

producing all the possible generators. Each generator is checked for the additional
properties (must be primitive, did not create an intermediate square in the partial
string, etc.) before it is accepted. For each subsequent square, its generator may be
partially or fully determined. If it is partially determined, iterative calls to Next() are
used to generate all possible completions of the generator. The complete generator is

A.Deza et al.: A Computational Framework for Determining Square-maximal Strings 115

checked and accepted or rejected. In addition, if the density of the string being gener-
ated is to be checked, we use Lemma 7 and the core vector of the partially generated
string to reject the string or allow it to be extended further.

5 Recursive computation of σd(n)

First, σ−
d (n) is computed by the heuristic of Section 3. Then it is verified that σd1(n1)+

σd2(n2) ≤ σ−
d (n) for any 2 ≤ d1, d2 ≤ d ≤ d1 + d2 and any n1 + n2 = n. Then Ud(n),

the set of all dense special (d, n)-strings admitting an s-cover is generated as described
in Section 4. It follows that

σd(n) = max {σ−
d (n), max

x∈Ud(n)
s(x)}.

To see that, first consider the existence of a square-maximal (d, n)-string with single-
tons: by Lemma 10, σd(n) = σd−1(n− 1). Then consider the existence of a singleton-
free square-maximal string x not in Ud(n):
(i) either x does not have an s-cover, in which case by Lemma 9, σd(n) = σd(n− 1);
(ii) or x has an s-cover with two consecutive adjacent squares and by Lemma 8,
σd(n) ≤ σd1(n1) + σd2(n2) for some 2 ≤ d1, d2 ≤ d and some n1 + n2 = n, and so
σd(n) ≤ σ−

d (n);
(iii) or x has a special s-cover, but is not dense and by Lemma 5, σd(n) ≤ σ−

d (n).

6 Recursive computation of σd(2d)

To compute the values on the main diagonal we can use s-covers satisfying additional
necessary parity condition. The s-cover {Si = (si, ei, pi) : 1 ≤ i ≤ m} of x = x[1 .. n]
satisfies the parity condition if for any 1 ≤ i < m, A(x[1 .. ei]) ∩ A(x[si+1 .. n]) ⊆
A(x[si+1 .. ei]).

Lemma 11. The singleton-free part of a square-maximal (d, 2d)-string x with all its
singletons at the end has an s-cover satisfying the parity condition.

Proof. We can assume that x has 0 ≤ v ≤ d−2 singletons, all at the end. Let k(x) be
the core vector of x. Suppose the singleton-free part x[1 .. 2d−v] does not have an s-
cover, then there exist some 1 ≤ i0 ≤ 2d−v such that ki0(x) = 0. Remove x[i0] to form
a (d, 2d− 1)-string y. Therefore, σd(2d) = s(x) ≤ s(y) ≤ σd(2d− 1) = σd−1(2d− 2),
a contradiction. So x[1 .. 2d− v] has an s-cover {Si : 1 ≤ i ≤ m}. Let us assume that
the s-cover does not satisfy the parity condition. Then either
(i)

⋃
1≤i≤t Si and

⋃
t<i≤m Si for some 1 ≤ t ≤ m are adjacent and their respective

alphabets have at least one symbol in common, say c. If we replace c in
⋃

1≤i≤t Si by
a new symbol ĉ /∈ A(x), we get a new (d+ 1, 2d)-string y so that s(y) ≥ s(x). Thus
σd(2d) = s(x) ≤ s(y) ≤ σd+1(2d) = σd(2d− 1) = σd−1(2d− 2), a contradiction, or
(ii)

⋃
1≤i≤t Si and

⋃
t<i≤m Si for some 1 ≤ t ≤ m are overlapping, and there is a

symbol c occurring in
⋃

1≤i≤t Si and in
⋃

t<i≤m Si, but not in the overlap St ∩ St+1. If
we replace c in

⋃
1≤i≤t Si by a new symbol ĉ /∈ A(x), we get a new (d+1, 2d)-string y so

that s(y) ≥ s(x). Thus σd(2d) = s(x) ≤ s(y) ≤ σd+1(2d) = σd(2d−1) = σd−1(2d−2),
a contradiction. ⊓⊔
With additional assumptions, Lemma 11 can be strengthen to exclude consecutive
adjacent squares from the s-cover of a square-maximal (d, 2d)-string.

116 Proceedings of the Prague Stringology Conference 2012

Lemma 12. Let σd′(2d
′) = d′ for any d′ < d. Either σd(2d) = d or for every square-

maximal (d, 2d)-string x with v singletons all at the end, 0 ≤ v ≤ d− 2, its singleton-
free part x[1 .. 2d − v] has an s-cover satisfying the parity condition and which has
no consecutive adjacent squares.

Proof. The existence of the s-cover {Si | 1 ≤ i ≤ m} of x[1 .. 2d − v] satisfying the
parity condition follow from Lemma 11. We need to prove that either σd(2d) = d
or there are no adjacent squares in the s-cover. Since σd′(2d

′) = d′ for any d′ < d,
σd′(n

′) ≤ n′ − d′ for any n′ − d′ < d. Let us assume that the s-cover of x has two
adjacent squares St and St+1. Let x1 =

⋃
1≤i≤t Si and let x2 =

⋃
t<i≤m Si. Then

s(x) ≤ s(x1) + s(x2) where x1 and x2 are, respectively, a (d1, n1)- and a (d2, n2)-
string with n1 + n2 = 2d − v and d1 + d2 ≥ d − v. Since the s-cover satisfies the
parity condition, A(x1) and A(x2) are disjoint and hence d1 + d2 = d− v. Therefore
(n1 − d1) + (n2 − d2) = d. Since both x1 and x2 are singleton-free, n1 − d1 > 0 and
n2 − d2 > 0. Hence n1 − d1 < d and n2 − d2 < d, and therefore σd(2d) = s(x) ≤
s(x1) + s(x2) ≤ σd1(n1) + σd2(n2) ≤ (n1 − d1) + (n2 − d2) = d. ⊓⊔

Since the number of distinct squares in a singleton-free (d, 2d)-string is at most d,
we do not need to consider singleton-free strings. Moving a singleton to the end
of a string does not decrease the number of distinct squares, therefore we shall only
consider (d, 2d)-strings that have singletons at the end. We can set σ−

d (2d) = σd−1(2d−
2) + 1 and thus consider only the strings that have the non-singleton part dense.
By Lemma 12 we need only to consider strings whose s-covers of the non-singleton
part satisfy the parity condition with no consecutive adjacent squares. Moreover,
the number of singletons must be at least ⌈2d

3
⌉, see [4]. Let Tv denote the set of all

singleton-free σ−
d (2d)-dense (d−⌈2d

3
⌉, 2d−⌈2d

3
⌉)-strings admitting an s-cover satisfying

the parity condition with no consecutive adjacent squares. Then we set

σd(2d) = max {d, max
x∈Tv

s(x)}.

7 Additional properties of σd(n)

Though fundamental properties of σd(n) were presented previously in [4], here we
present some additional properties concerning the gaps between consecutive values in
the (d, n−d) table where the value of σd(n) is the entry on the d-th row and the (n−d)-
th column. Lemma 13, respectively Lemma 14, shows that the difference between any
two consecutive entries along a row, respectively between any two consecutive entries
on the main diagonal, in the (d, n− d) table is bounded by 2.

Lemma 13. For any 2 ≤ d ≤ n, σd(n+ 1)− σd(n) ≤ 2.

Proof. Let (d, n+1)-string x = x[1 .. n+1] be square-maximal, then s(x) = σd(n+1).
Without a loss of generality we can assume that the first symbol of x is not a singleton
– otherwise we can move all singletons from the beginning of x to the end of x without
destroying any square type. Let y = x[2 .. n + 1]. Then y is a (d, n)-string and
s(y) ≤ σd(n). By Fraenkel-Simpson [5], there are at most two rightmost occurrences
of squares starting at the same position in a string. In other words, the removal
of x[1] destroyed at most two square types. That is, s(x) − 2 ≤ s(y). Therefore,
σd(n+ 1)− 2 ≤ s(y) ≤ σd(n), implying σd(n+ 1)− σd(n) ≤ 2. ⊓⊔

A.Deza et al.: A Computational Framework for Determining Square-maximal Strings 117

Lemma 14. For any 2 ≤ d, σd+1(2d+ 2)− σd(2d) ≤ 2.

Proof. By Lemma 13, σd+1(2d + 2) − σd+1(2d + 1) ≤ 2. By the results from [4],
the entries under and on the main diagonal along a column are constant; that is,
σd+1(2d+ 1) = σd(2d). Therefore, σd+1(2d+ 2)− σd(2d) ≤ 2. ⊓⊔

Lemma 15. For any d ≥ 2, if there is a square-maximal singleton-free
(d, 2d + 1)-string x, then there exists a square-maximal (d, 2d + 1)-string y of the
form y = aaabbccdd . . .

Proof. Since x contains no singletons, then x contains exactly d−1 pairs and 1 triple.
To prove there exists a square-maximal string in the form that all pairs consist of
adjacent symbols and the triple also consists of adjacent symbols, we need to show
the non-adjacent symbols can be moved together without reducing the number of
distinct squares. Let us suppose that there is a non-adjacent pair of c’s in x.

(i) If the c’s did not occur in any square, then we could move both c’s to the end of
the string without destroying any square type. Moreover, we would gain a new square
cc, contradicting the square-maximality of x.
(ii) If the c’s occur in exactly one square ucvucv, where u and v are some strings, we
can move both c’s to the end of x to form a new string y. The new squares created
by this move are uvuv and cc while the old square ucvucv was destroyed. If uvuv
did not exist in any other part of x, then s(y) > s(x) which contradicts the square-
maximality of x; thus uvuv already existed in some other part of x, so we lost the
square ucvucv, but gained cc, so s(y) = s(x).
(iii) If the c’s occur in more than one square, these squares must form a non-trivial
run, i.e. a run with a non-empty tail. Since there is only one symbol t occurring in x
3 times, the only form of such a non-trivial run can be tucvtucvt. If u = v = ε, then
the run is tctct containing two distinct squares tctc and ctct. We can change it to
tttcc, destroying the two squares tctc and ctct, but gaining two new squares tt and
cc. If either u 6= ε or v 6= ε, then by moving both c’s to the end of x, we destroy
the two distinct squares tucvtucv and ucvtucvt, but gain three new squares tuvtuv,
uvtuvt, and cc. Note that neither tuvtuv nor uvtuvt can exist anywhere else in x
for the lack of t’s. Thus we have more distinct squares than x, which contradicts the
maximality of x.
Since we can move safely all pairs together to the end of x, the symbols of the triple
will end up also adjacent at the beginning of the string. ⊓⊔

Lemma 16 shows that the two entries of the (d, n− d) table in the same column just
above the main diagonal must be identical.

Lemma 16. For any 3 ≤ d, σd(2d+ 1) = σd−1(2d).

Proof. We prove it by induction. Let (Hd) be the statement that σd(2d+1) = σd−1(2d).
(Hd) for 2 ≤ d ≤ 10 is true from the values in the (d, n − d) table computed so far,
see [4]. This takes care of the base case of the induction. Thus let us assume that H1

through Hd−1 are true, and let us prove that (Hd) is true. Let (d, 2d+ 1)-string x be
square-maximal. If x contains a singleton, remove it to form a new (d− 1, 2d)-string
y. Then σd(2d + 1) = s(x) ≤ s(y) ≤ σd−1(2d) and since σd(2d + 1) ≥ σd−1(2d),
see [4], thus σd(2d + 1) = σd−1(2d). If x contains no singletons, by Lemma 15 we

118 Proceedings of the Prague Stringology Conference 2012

can assume that it has the form aaabbccdd . . . Remove a pair from z forming a new
(d − 1, 2d − 1)-string y. Then σd(2d + 1) − 1 = s(x) − 1 = s(y) ≤ σd−1(2d − 1) and
since σd(2d + 1) − 1 ≥ σd−1(2d − 1) by [4], therefore σd(2d + 1) = σd−1(2d − 1) + 1.
Since Hd−1, σd−1(2d) ≥ σd−2(2d− 2) + 1 and σd(2d+ 1) ≥ σd−1(2d) according to [4],
hence σd(2d+ 1) = σd−1(2d). ⊓⊔

Corollary 17 demonstrates the fact that the difference between any two consecutive
entries on the two diagonals immediately above the main diagonal of the (d, n − d)
table is also bounded by 2.

Corollary 17. For any 3 ≤ d, σd(2d + 1) − σd−1(2d − 1) ≤ 2 and σd(2d + 2) −
σd−1(2d) ≤ 2.

Proof. By Lemma 13, σd−1(2d) − σd−1(2d − 1) ≤ 2, and by Lemma 16, σd−1(2d) =
σd(2d+1). Therefore, σd(2d+1)−σd−1(2d−1) ≤ 2. Similarly, σd(2d+2)−σd(2d+1) ≤ 2
by Lemma 13, and σd(2d + 1) = σd−1(2d) by Lemma 16. Therefore, σd(2d + 2) −
σd−1(2d) ≤ 2. ⊓⊔

Remark 18. Fraenkel-Simpson [5] gave the upper bound of 2n − 8 for n ≥ 5 and
any d, and σ2(n) ≤ 2n − 29 for n ≥ 22. Ilie [8] provided an asymptomatic bound of
2n−Θ(log n). We slightly improve Fraenkel-Simpson’s bounds with: for any 2 ≤ d ≤ n
and n ≥ d0+2, σd(n) ≤ 2n−d0−2d, where d0 is the maximum d such that σd(2d) = d
is known. Currently, d0 = 23. In addition, since σ2(53) = 40 we get σ2(n) ≤ 2n− 66
for n ≥ 53. Similarly, since σ3(42) = 31, σ4(32) = 22, σ5(33) = 23, σ6(28) = 17,
σ7(30) = 18, σ8(25) = 14, σ9(23) = 12 and σ10(23) = 11, we get σ3(n) ≤ 2n− 53 for
n ≥ 42, σ4(n) ≤ 2n− 42 for n ≥ 32, σ5(n) ≤ 2n− 43 for n ≥ 33, σ6(n) ≤ 2n− 39 for
n ≥ 28, σ7(n) ≤ 2n− 42 for n ≥ 30, σ8(n) ≤ 2n− 36 for n ≥ 25, σ9(n) ≤ 2n− 34 for
n ≥ 23 and σ10(n) ≤ 2n− 35 for n ≥ 23.

Proof. By Lemma 14, σd(n) ≤ d0 + 2k, where n − d = d0 + k and k ≥ 1. Thus
σd(d0 + k + d) ≤ d0 + 2k = 2(d0 + k + d)− d0 − 2d. Therefore, σd(n) ≤ 2n− d0 − 2d
for n ≥ d0 + 2.

8 Computational Results

We implemented the described algorithms in C++, and ran the programs in parallel
on the SHARCNET computer cluster. We were able to compute all σ2(n) values for
n ≤ 53 in a matter of hours. The 10 largest new values are: σ2(44) = 33, σ2(45) =
34, σ2(46) = 35, σ2(47) = 36, σ2(48) = 36, σ2(49) = 37, σ2(50) = 37, σ2(51) =
38, σ2(52) = 39 and σ2(53) = 40. The results and sample square-maximal strings
may be found at [3]. Whenever the computation required determining the number
of distinct primitively rooted squares in a concrete string, a C++ implementation of
the Franek, Jiang, and Weng’s algorithm [7] was used. The values of interest include:
three consecutive equal values: σ2(31) = σ2(32) = σ2(33), the unexpected existence
of pairs (d, n) satisfying σd+1(n + 2) − σd(n) > 1 such as (2,33) and (2,34), and
σ2(33) < σ3(33); that is, among all strings of length 33, no binary string achieves the
maximum number of distinct primitively rooted squares.

A.Deza et al.: A Computational Framework for Determining Square-maximal Strings 119

9 Conclusion

We presented the notion of s-cover as a structural generalization of a uniform dis-
tribution of squares in a string. We showed that it is sufficient to consider special
strings admitting an s-cover in order to recursively determine the maximum number
of distinct primitively rooted squares σd(n). Based on these observations, we pre-
sented an efficient computational framework with significantly reduced search space
for computations of σd(n) based on the notion of density and exploiting the tightness
of the available lower bound. We used an implementation of this algorithm to obtain
the previously unknown values of σd(n), and in particular σ2(n) up to n = 53.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada and by the Canada Research Chair program, and made possible by
the facilities of the Shared Hierarchical Academic Research Computing Network
(http://www.sharcnet.ca/).

References

1. A. Baker, A. Deza, and F. Franek: Computational framework for determining run-maximal
strings, AdvOL-Report 2011/06, McMaster University, 2011.

2. A. Baker, A. Deza, and F. Franek: On the structure of run-maximal strings. Journal of
Discrete Algorithms, 14 2012, pp. 10–14.

3. A. Deza, F. Franek, and M. Jiang: Square-maximal strings,
http://optlab.mcmaster.ca/~jiangm5/research/square.html.

4. A. Deza, F. Franek, and M. Jiang: A d-step approach for distinct squares in strings. Lecture
Notes in Computer Science, 5029 2011, pp. 77–89.

5. A. S. Fraenkel and J. Simpson: How many squares can a string contain? Journal of Com-
binatorial Theory Series A, 82 1998, pp. 112–120.

6. F. Franek and J. Holub: A different proof of Crochemore-Ilie lemma concerning microruns,
in London Algorithmics 2008: Theory and Practice, College Publications, London, UK, 2009,
pp. 1–9.

7. F. Franek, M. Jiang, and C. Weng: An improved version of the runs algorithm based
on Crochemore’s partitioning algorithm, in Proceedings of Prague Stringology Conference 2011,
Prague, Czech Republic, 2011, pp. 98–105.

8. L. Ilie: A note on the number of squares in a word. Theoretical Computer Science, 380 2007,
pp. 373–376.

Author Index

Aronovich, Lior, 3
Asher, Ron, 3

Becerra, David, 64

Cleophas, Loek, 28

De Agostino, Sergio, 18
Deza, Antoine, 111

Fici, Gabriele, 103
Flouri, Tomáš, 75
Franek, Frantisek, 111

Hanneforth, Thomas, 42
Harnik, Danny, 3
Hirsch, Michael, 3
Holley, Guillaume, 53

Iliopoulos, Costas S., 75

Jiang, Mei, 111

Klein, Shmuel Tomi, 3
Kociumaka, Tomasz, 75

Kourie, Derrick G., 28

Lecroq, Thierry, 103
Lefebvre, Arnaud, 103

Mendivelso, Juan, 64

Peterlongo, Pierre, 53
Pi ↪atkowski, Marcin, 89
Pinzón, Yoan, 64
Pissis, Solon P., 75
Prieur-Gaston, Élise, 103
Puglisi, Simon J., 75

Rytter, Wojciech, 89

Smyth, William F., 75, 103

Toaff, Yair, 3
Tyczyński, Wojciech, 75

Venter, Fritz, 28

Watson, Bruce W., 1, 28, 42

120

	Invited Talk
	Contributed Talks
	Author Index

