
1

Simulation of Neural Nets in McESE.

F. Franek and I. Bruha
Dept. of Comp. Sci. & Systems

McMaster University
Hamilton, Ontario, L8S 4L8 Canada

Email: franya@mcmaster.ca, bruha@mcmaster.ca

Abstract.

McESE - McMaster Expert System Environment - is a software environment to
help build expert systems. The production rules in McESE have form T1 & T2 & ... & Tn

=F=> T, where F is so-called certainty value propagation function (CVPF), and it takes as its
arguments the certainty values of the left-hand side terms T1, ..., Tn, and returns a certainty
value to be assigned to the right-hand side term T. In effect, F is a procedural knowledge
added to the declarative knowledge contained in the rule. The mechanism of CVPFs allows
the user of McESE to treat uncertainty in the way he desires. The problems associated with
correct specification of CVPFs led the authors to replace CVPFs by neural nets and "train"
the resulting hybrid of rule-based expert system and neural nets. It was realized during the
project that the ability to specify these neural nets from within the McESE system was
crucial in order to carry out the needed tests and experiments. It turned out that the
machinery of McESE (i.e. rule parser, rule compiler, and inference engine) after slight
enhancements allows to simulate neural nets within McESE with any topology desired. In
the paper these enhancements and their background are discussed.

1. Introduction.

It is well known that both major directions of AI research into intelligent systems
Neural Nets and Expert Systems are almost complementary in their strengths and
weaknesses; while Neural Nets are not so good in higher-level reasoning (mainly for the
lack of symbolic representation and explanation facilities), they are reasonably good in
imprecise classification and recognition; on the other hand Expert Systems are reasonably
good in higher-level reasoning, but they are fundamentally weak in handling imprecise and
uncertain knowledge. This weakness in handling uncertainty in Expert Systems has been
addressed by many researchers. The authors of this paper have also contributed a bit towards
the solution of the problem. Our approach, though, was more practical than theoretical



2

(mainly because most of the main methods of dealing with uncertainty in Expert Systems are
rigorous on their surface only, in their essence they are more ad-hoc methods than well-
founded theories - for a more thorough discussion see e.g. [J]). We have designed and built a
software tool to help create expert systems, so-called McESE - McMaster Expert System
Environment (see [FB1], [FB2], [F], [L], [C]). We had had several objectives on our mind
when we were designing the system, but one of them was to give the user of McESE
building an expert system a possibility to deal with uncertainty in any way he desires.

McESE knowledge base consists of a set of rules in the form

     T1 & T2 & ... & Tn =F=> T

where T1, ... , Tn, and T are so-called McESE terms. A McESE term consists of a weight
(which has the same range as McESE certainty values, i.e. real numbers between 0 and 1
inclusive) -when omitted the default value is 1, followed by a predicate (with or without
variables), and possibly followed by a threshold directive. The predicate can be negated.
The certainty value of such a term is determined from the certainty value of the predicate for
the given instantiation of variables. The certainty value of a negated predicate is 1 less the
certainty value of the predicate. If the threshold directive is used, then (a) if the certainty
value of the predicate is bigger than (or bigger or equal to, it depends on the form of the
threshold directive) the value given by the threshold directive, the certainty value of the term
is 1, else (b) the certainty value of the term is 0. In case the threshold directive is omitted, the
certainty value of the predicate becomes the value of the term. As the final step, this
certainty value is multiplied by the weight of the term.

The so-called CVPF (certainty value propagation function) F takes as its
arguments the certainty values of the left-hand side terms T1, ... , Tn and returns the certainty
value to be assigned to the right-hand side term T. Thus, each rule contains not only the
declarative knowledge (the relations among different predicates and their weights), but also
a procedural knowledge (F) of how to handle and propagate uncertainty within this
particular rule. F can be a user-created program, or any of the McESE built-in functions (see
[J]). Each rule can have a different CVPF, or several rules can share one. It is clear that
CVPFs ought to be non-decreasing functions: when the certainty of one of the left-hand side
terms increases, the certainty of the right-hand side term should not decrease.



3

The basic McESE software (for all extensions), i.e. rule parser, rule compiler, and
the inference engine together with the explanation component are programmed in C. The
reason for the choice of C was threefold: the speed of execution (and hence the speed of
McESE inference), the compactness of the resulting code, and the low-level functionality of
C allowing to work with complex data structures.

While experimenting with McESE and building sample expert systems we had
realized that it had always been easier to state a rule than to give the corresponding CVPF.
So we proposed to "fuse" Expert Systems and Neural Nets to emulate the CVPFs (see
[FB3]). Such combination separates and preserves the strong aspects of both methods, and
complements them in their weak aspects.

One of the important goals in the design of McESE was to allow the user to build
expert systems using the "usual" programming methods and languages. This is facilitated by
"extending" a particular programming language so it can deal with McESE knowledge
bases. At this point of time extensions of LISP (so-called McESE-FranzLISP, see [F], and
McESE-Allegro CL, see [C]), an extension of SCHEME (so-called McESE-SCHEME, see
[L]), and an extension of C (so-called McESE-C) are completed. In a particular McESE
extension the whole expert system is thus built using just one programming language (that
one of the extension) plus the language of McESE rules. This "homogeneity" of McESE
extensions had caused some problems to our project, for it required that the neural nets for
the emulation of CVPFs be programmed outside of McESE and carried as an "appendix" to
a McESE extension.

   It was realized early in the project that the ability to specify these neural nets from
within the McESE extension was crucial in order to carry out the needed tests and experi-
ments. It turned out that the McESE rule formalism together with some custom made CVPFs
and the way the McESE inference engine works allow us to define and built within any
McESE extension (be it McESE-FranzLISP, McESE-Allegro CL, McESE-SCHEME, or
McESE-C) an expert system that simulates desired behaviour of a neural net with a
particular topology. Since every McESE extension allows that a CVPF is another expert
system, the expert systems simulating CVPFs can easily be integrated with the underlying
expert system into a single expert system. Thus the whole project of emulation of CVPFs as
described above can be carried within a McESE extension. This simplifies the project
significantly, for it allows of testing of different expert systems programmed in different



4

languages, as well as experimenting with the neural nets during the testing.

2. How the McESE inference works.

   In order to describe the simulation of neural nets in McESE, we have to discuss the
working of the McESE inference engine in greater details.

   A backward chaining inference is triggered by a query of a knowledge base, i.e. a
request to evaluate a particular predicate. Of course, in the query the variables of the
predicate must be instantiated with programming "objects". The inference engine will
evaluate all rules in the knowledge base whose right-hand side term contains the given
predicate. Since there may be more than one such rule, only the maximal and minimal
evaluations are recorded and the maximal (or minimal, it depends on the form of the query)
evaluation is returned to the expert system by the inference engine. Only the rule whose
CVPF returns a value that exceeds a threshold given in the rule (if any) is considered "fired".
The evaluation of rules is recursive: in order to evaluate a rule, all its left-hand side terms
must be evaluated (by a recursive call to the inference engine), of course with all variables of
the left-hand side predicates instantiated with the "objects"; when completed, the
corresponding CVPF is applied to the certainty values of the left-hand side terms and the
resulting value is assigned to the right-hand side term, from which the value of the predicate
is determined.

   For example: consider a simple rule

R1[>.3]: 0.8*P(x)[>=.5] & Q(y) =F=> ~R(x,y).

The query is to evaluate R(O1,O2), where O1 and O2 are some programming objects
(functions, variables, structures, pointers, ... ). Firstly, the inference engine is called to
evaluate P(O1). Let us assume that the inference engine returns 0.7. The value of the term
P(x) [>=.5] will be set to 1, as 0.7 >= 0.5 ([>=.5] is the threshold directive of the first term).
Thus the value of the term 0.8*P(x) [>=.5] is set to 0.8. Secondly, the inference engine is
called to evaluate Q(O2). Let us assume that the inference engine returns 0.5. Hence the
value of the term Q(y) is set to 0.5. Thirdly, the inference engine invokes the CVPF F with
arguments 0.8 and 0.5. Let us suppose that F returns 0.4. Hence the value assigned to the
right-hand side term ~R(x,y) is 0.4, and so the value of the predicate R(O1,O2) is set to the



5

value (1-0.4), i.e. 0.6. Since 0.4 > 0.3 (as stipulated by the threshold directive of the whole
rule), the rule is considered "fired" and the value of R(O1,O2) is left as 0.6.

   It is clear that this recursive (backward chaining) calling of inference engine must
stop somewhere. In fact it does stop when so-called level 0 predicates are reached: those are
predicates which occur only on left-hand side of rules (at this point it is important to remark
that no reasoning cycles are allowed in McESE rules, so all predicates are stratified into
levels). The interpretation of level 0 predicates is that they represent facts and observations,
while predicates on higher levels represent conclusions based on facts and observations, and
conclusions of lower levels. The level 0 predicates are evaluated by so-called predicate
service procedures, which represent the connection of the knowledge base to the "real"
world - they evaluate the level 0 predicates based on the input data.

If a rule has no CVPF specified, then the default CVPF is used during the
inference. The user of McESE can specify the default CVPF. It can be any of the McESE
built-in functions, or a user-programmed one.

   From the above description of the way the inference engine works, it is clear that
during inference evaluation of a predicate several other predicates may have been evaluated
as well. A McESE function eval can fetch this value for any particular predicate (which has
been evaluated during the last call to inference engine from the top level - this constitutes the
so-called inference cycle).

3. The compiled McESE knowledge base.

   When the inference engine is evaluating a rule and is about to apply the
corresponding CVPF, it finds the address of that subprogram (which realizes the CVPF) in
the so-called compiled knowledge base, which is a stratified linked data structure resident
in main memory. The McESE compiler, when parsing the rules and building the
corresponding data structure, prepares a list of all CVPFs used in the knowledge base. When
the knowledge base is opened (and loaded into main memory), the addresses of
corresponding subprograms are filled in, including the built-in functions. If a CVPF is one of
the built-in functions, the user of McESE does not have to specify it (i.e. program it), he just
refers to it by name in a rule. This setup allows us to extend the set of built-in functions as
we desire without a need to modify McESE in any significant fashion. It is also clear that



6

from the programming point of view an expert system can be used as a CVPF (the expert
system being nothing else but a program), as long as it has an appropriate input (certainty
values) and an appropriate output (a certainty value). (Not only the CVPFs can be experts
systems, also a predicate service procedure can be implemented as an expert system. This
allows for a natural hierarchical integration of McESE expert systems, but this topic exceeds
the scope of this paper and so we shall not discuss it here.)

   In the compiled knowledge base each rule has a "node" in which each term has its
own memory, where its weight, sign, and threshold directive are "remembered", and where a
link to the corresponding predicate "node" is stored. In each predicate node the last minimal
and maximal evaluations are stored, together with the last instantiation of the variables.

4. The methodology of the simulation of Neural Nets in McESE.

   The topology of the multilayer perceptron to be simulated is given by the McESE
rules, where the terms on the left-hand side represent nodes in one layer, and the term on the
right-hand side represents a node in the next layer. In this way the size of each layer and the
number of layers are defined.

   For example the simple net with one hidden layer on Fig.1 can be given by rules:

   R1: I1 & I2 & I3 & I4 => H1

   R2: I1 & I2 & I3 & I4 => H2

   R3: H1 & H2 => O1

   R4: H1 & H2 => O2

   Thus, in general, the input nodes would be represented by level 0 McESE
predicates, the first hidden layer nodes by level 1 McESE predicates, and so on. Since all
McESE terms can be weighted (an omitted weight is 1 by default), we can preset all the
weights of the simulated neural net in the rules. Rules

R1: w1,1*I1 & w2,1*I2 & w3,1*I3 & w4,1*I4 => H1

R2: w1,2*I1 & w2,2*I2 & w3,2*I3 & w4,2*I4 => H2

R3: w5,1*H1 & w6,1*H2 => O1

R4: w5,2*H2 & w6,2*H2 => O2



7

will set the weight of the connection from I1 to H1 to w1,1, the weight of the connection from
I1 to H2 to w1,2, and so on.

Instead of pre-setting the wiegtht by hand, the McESE built-in function
randweights can be used to set the weights in a random fashion by specifying an extra rule
whose left-hand side terms are the output nodes, and the right-hand side term is a spurious
term RAND, and the CVPF is the McESE built-in function randweights, i.e.

     R5: O1 & O2 =randweights=> RAND.

During the initialization of the neural net the inference evaluation (in backward chaining
mode) of RAND will cause the random setting of all weights in the neural net.

   The default CVPF for the knowledge base representing the neural net is set to
sigma, which is one of the McESE built-in functions and which represents the so-called
nonlinearity (the sigmoid function) of the net.

   To simulate the classification mode of the multilayer perceptron, all the output
nodes (i.e. O1 and O2) must be evaluated given input values (i.e. i1, i2, i3, and i4). To do so,
and extra rule is added:

     R6: O1 & O2 =nil=> CLASSIF



8

with a spurious right-hand side term CLASSIF. Note that the McESE built-in function nil
returns 0 to any input. The inference evaluation of the spurious node CLASSIF is requested.
The inference engine in its backward chaining mode will evaluate all output nodes, thus the
inference evaluation of O1 is requested first. The inference engine will evaluate all nodes in
the hidden layer, H1 and H2, and to do so it must first evaluate the level 0 predicates, i.e.
nodes I1, I2, I3, and I4. The predicate service procedures for I1, I2, I3, and I4 must be set up to
fetch the (normalized) input values i1, i2, i3, and i4 (interpreted as certainty values of the
corresponding terms I1, I2, I3, and I4). Then rules R1 and R2 are fired to evaluate nodes H1

and H2. For example the left-hand side terms of rule R1 will be evaluated to w1,1*i1, w2,1*i2,
w3,1*i3, and w4,1*i4, and so, using the default CVPF sigma, H1 will be assigned the value h1

= sigma(w1,1*i1,w2,1*i2,w3,1*i3,w4,1*i4). Similarly, H2 will be assigned the value h2 =
sigma(w1,2*i1,w2,2*i2,w3,2*i3,w4,2*i4). Now, the value of O1 and can be determined. The rule
R3 is fired by the inference engine and O1 is assigned the value o1 = sigma(w5,1*h1,w6,1*h2).
Then, the inference value of O2 is requested and since now the values of H1 and H2 are
known to the inference engine (as it is within the same inference cycle), rule R4 is
immediately fired producing the value o2 = sigma(w5,2*h2,w6,2*h2) for O2. Now the
evaluation of CLASSIF can be completed by firing the rule R6 and assigning the value 0 to
CLASSIF. The McESE function eval can be now used to fetch the values of O1 and O2,
producing the complete vector of output values.

To simulate the learning mode of the neural net, an extra rule is needed: its left-
hand side terms are the output nodes, and the right-hand side term is a spurious term
LEARN, and the CVPF is the McESE built-in function backprop, i.e.

 R7: O1 & O2 =backprop=> LEARN.

The whole process starts with a request for inference evaluation of LEARN. The whole
process up to the evaluation of all output nodes (i.e. O1 and O2) is the same as for the
classification mode, with the exception that the input values (i.e. i1, i2, i3, and i4) are taken
from the training set, again through the predicate service procedures. Then rule R7 is fired,
and the inference engine applies the CVPF backprop to the values o1 and o2. The McESE
built-in CVPF backprop is a subprogram to realize the back propagation training
algorithm. The reader can refer for a detailed description of this algorithm to [B], [BH], or
[BMC]. For the purpose of this paper it suffices to say that backprop compares the vector of



9

expected output values from the training set with the vector of actual output values (i.e.
[o1,o2] for our example) obtained through the inference, and according to parameters
maximum value for error signal, learning rate, and momentum term, modifies the weights
throughout the whole knowledge base, if necessary. backprop evaluates LEARN to 0 if
there has been a modification of a weight, if no modification has occurred, LEARN is
evaluated to 1. This is necessary for the user to be able to recognize at the top level when the
learning process stopped.

5. Conclusion.

The advantage of having the machinery of McESE take care of all aspects of the
specification and the behaviour of neural nets required in our project significantly
outweighed the effort needed to enhance the McESE. The set of McESE built-in functions
had to be extended by CVPFs randweights (to randomize weights), sigma (to define the
nonlinearity of neural nets), and backprop (to realize the back propagation learning
algorithm). The functions randweights and backprop must be built-in, for they require a
low-level access to the compiled knowledge base representing the net (i.e. to access to the
weights), which is not possible for the user from the top level. On the other hand, the
function sigma can be programmed at the top level, and hence replaced by the user, if he
desires so. The addition of randweights and backprop to the set of McESE built-in
functions did not pose any problems, thus the programming effort was all what was required.

In the future, if need be, other training algorithms may be added in the form of
McESE built-in functions. Meanwhile, the research of ours into a training algorithm for a
"cascade" of neural nets (and that what a compiled McESE knowledge base with neural nets
to emulate CVPFs in fact is) will continue. Such an algorithm would represent a significant
contribution towards a "seamless" fusion of Expert Systems and Neural Nets.

Bibliography

[B] I. Bruha, Neural Nets: Survey and Application to Waveform Processing,
 Informatica, 1 (1991), 27-42

[BH] I. Bruha and R. Ho, Evoked Potential Waveform Processing By a Two-Layer
 Perceptron: Heuristics for Optimal Adjustment of Its Parameters, Neuronet'90,



10

 Prague (1990), 285-287

[BMC] I. Bruha, G.P. Madhavan, and M.S-K. Chong, Use of Multilayer Perceptron for
 Recognition of Evoked Potentials, Internl. J. Pattern Recognition and Artificial
 Intelligence, 4, 4 (1990), 705-716

[C] A. Chlobowski, McESE Extension of Allegro Common Lisp, M.Sc. thesis, Dept.
of Comp. Sci. & Systems, McMaster University, 1991.

[F] F. Franek, McESE-FranzLISP: McMaster Expert System Extension of FranzLISP,
 in Computing and Information, North-Holland,1989.

[FB1] F. Franek, I. Bruha, An environment for extending conventional programming
languages to build Expert System Applications, Proceedings of IASTED

 Conference on Expert Systems, Zurich, 1989.

[FB2] F. Franek, I. Bruha, McESE – McMaster Expert System Environment, in
 Computing and Information, North-Holland, 1989.

[FB3] F. Franek, I. Bruha, A Way to Incorporate Neural Networks into Expert Systems,
Proceedings of IASTED Conference on Artificial Intelligence Application &
Neural Networks, Zurich, 1990.

[J] Z. Jaffer, Different treatments of uncertainty in Expert Systems and their
emulation in McESE, M.Sc. thesis, Dept. of Comp Sci. & Systems, McMaster

 University, 1990.

[L] D. Lentz, Notes on the Implementation of McESE SCHEME, Technical report
90-01, Dept. of Comp. Sci. & Systems, McMaster University, 1990.


