
Algorithms to Compute the Lyndon Array?

Frantisek Franek1, A. S. M. Sohidull Islam2, M. Sohel Rahman3, and

W. F. Smyth1,3,4

1 Algorithms Research Group
Department of Computing & Software

McMaster University, Hamilton, Canada
{franek/smyth}@mcmaster.ca

2 School of Computational Science & Engineering
McMaster University, Hamilton, Canada

sohansayed@gmail.com

3 Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology

msrahman@cse.buet.ac.bd

4 School of Engineering & Information Technology
Murdoch University, Perth, Australia

Abstract. In the Lyndon array λ = λx[1..n] of a string x = x[1..n],
λ[i] is the length of the longest Lyndon word starting at position i of x.
The computation of λ has recently become of great interest, since it was
shown (Bannai et al., The “Runs” Theorem) that the runs in x are
computable in linear time from λx. Here we describe two algorithms for
computing λx based on previous results known in different context, but
for which no explicit exposition in this context had been given. These two
algorithms execute in O(n2) time in the worst case. The third algorithm
presented that executes in Θ(n) time had been suggested and discussed
previously, and we provide a more substantial discussion and prove of
correctness for one of its steps. This algorithm achieves its linearity at
the expense of prior computation of both the suffix array and the inverse
suffix array of x. We then go on to sketch a new algorithm and its two
variants that avoids prior computation of global data structures and
indicate that in worst-case these algorithms perform in O(n logn) time.

1 Introduction

If x = uv for some u and nonempty v, then vu is said to be the |u|th rotation
of x, written vu = R|u|(x). If there exists a string u and an integer e > 1 such
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that x = ue, then x is said to be a repetition ; otherwise x is primitive. A
primitive string x that is lexicographically strictly least among all its rotations
Rk(x), k = 0, 1, . . . , |x|−1, is said to be a Lyndon word.

The Lyndon array λ = λx[1..n] of a given nonempty string x = x[1..n]
gives at each position i the length of the longest Lyndon word starting at i. Note
that equivalently we could store in the ith position of the Lyndon array the end
position of the longest Lyndon word starting in i. We will use the notation L[i]
to indicate the end position for the longest Lyndon word starting at i.

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a b
λ = 2 1 5 2 1 2 1 3 2 1
L = 2 2 7 5 5 7 7 10 10 10

(1)

Since being Lyndon really depends on the order of the underlying alphabet
of the string, the Lyndon array of a string will change when we change the order
of the alphabet. The Lyndon array has recently become of interest since Bannai
et al. [2] showed that the two Lyndon arrays, one with respect to a given order
of the alphabet and the other with respect to the inverse of that order, can be
used to compute all the maximal periodicities (“runs”) in a string in linear time.

In this paper we describe four algorithms to compute λx. Section 2 makes
various observations that apply generally to the Lyndon array and its computa-
tion. In Section 3 we describe two algorithms that are based on previous results
known in a different context, and we present them here explicitly in the context
of computing Lyndon arrays. These two algorithms perform in O(n2) time in
the worst case, where n is the length of the input string. Despite the high worst
case complexity, in practice these algorithms perform very well as they are sim-
ple and straightforward to implement and do not require any complicated data
structures; they could be characterized almost as in-place. The third algorithm
discussed in this section had been described previously and we provide a more
substantial discussion and prove correctness of one of its steps that we could not
find anywhere in the literature. This algorithm is simple and worst-case linear-
time, but requires suffix array construction and so is a little slower. Section 4
describes two variants of an algorithm we designed that uses only elementary
data structures (no suffix arrays). One variant is O(n2) in the worst case, the
other indicates O(n log n) time, but with no clear advantage in processing time.
Section 5 describes the results of preliminary experiments on the algorithms;
Section 6 outlines future work.

2 Preliminaries

Here we make various observations that apply to the algorithms described below.

Observation 1 Let x = w1w2 · · ·wk be the Lyndon decompostion [5, 9] of x,
with Lyndon words w1 ≥ w2 ≥ · · · ≥ wk. Then every Lyndon word x[i..L[i]] of
length λ[i] is a substring of some wh, h ∈ 1..k.
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Proof. For some h ∈ 1..k− 1, consider wh with a nonempty proper suffix
vh, and for some t ∈ 1..k−h, consider wh+t with a nonempty prefix uh+t.
Since wh is a Lyndon word, wh < vh, and by lexorder, uh+t ≤ wh+t. Thus
vh > wh ≥ wh+t ≥ uh+t, and so vhwh+1 · · ·wh+t−1uh+t cannot be a Lyn-
don word for any choice of h or t.

Therefore to compute Lx it suffices to consider separately each distinct element
wh in the Lyndon decomposition of x. Hence, without loss of generality we
suppose that x is a Lyndon word and write it in the form x1x2 · · ·xm, where
for each r ∈ 1..m, |xr| = `r and

xr[1] ≤ xr[2] ≤ · · · ≤ xr[`r], (2)

while for 1 ≤ r < m,

xr[`r] > xr+1[1]. (3)

We call xr a range in x and the boundary between xr and xr+1 a drop. We
identify a position j in range xr, 1 ≤ j ≤ `r, with its equivalent position i in x
by writing i = Sr,j =

∑r−1
r′=1 `r′ +j.

Observation 2 Let i = Sr,j be a position in x that corresponds to position j in
range xr.

(a) If xr[j] = xr[`r], then L[i] = i.
(b) Otherwise, L[i] = i′, where i′ is the final position in some range xr′ , r′ ≥ r;

that is, i′ =
∑r′

s=1 `s.

Proof. (a) is an immediate consequence of (2) and (3). To prove (b), suppose
that x[i..L[i]] is a maximum-length Lyndon word, where L[i] falls within range
r′ but L[i] < i′. Since by (2) x[L[i]] ≤ x[L[i]+1], there are two consecutive
Lyndon words x[i..L[i]],x[L[i]+1] that by the Lyndon decomposition theorem
[5] can be merged into a single Lyndon word x[i..L[i]+1]. Thus x[i..L[i]] is not
maximum-length, a contradiction.

We see then that if xr[j] < xr[`r], then xr[j..`r] is a (not necessarily maximum-
length) Lyndon word, and for i = Sr,j , L[i] ≥ Sr,`r :

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a a a b | a a b | a b | a a b b
L = 13 13 4 4 9 7 7 9 9 13 13 12 13

(4)

More generally, the integer interval 〈i,L[i]〉 = i..L[i] satisfy a “Monge” prop-
erty that is exploited by Algorithm NSV∗ (Section 4):

Observation 3 Suppose positions i, j in x[1..n] satisfy 1 ≤ i < j ≤ n. Then
either L[i] ≤ j or L[i] ≥ L[j]: the intervals 〈i,L[i]〉 and 〈j,L[j]〉 are not overlap-
ping.
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Proof. Suppose two such intervals do overlap. Then the maximum-length Lyn-
don words w1 = x[i..L[i]] and w2 = x[j..L[j]] have a nonempty overlap, so that
we can write w1 = uv, w2 = vv′ for some nonempty v. But then, by well-
known properties of Lyndon words, w1 < v < w2 < v

′, implying that w1v
′ is

a Lyndon word, contradicting the assumption thatw1 is of a maximal length.

Expressing a string in terms of its ranges has the same useful lexorder prop-
erty that writing it in terms of its letters does:

Observation 4 Suppose strings x and y are expressed in terms of their ranges:
x = x1x2 · · ·xm, y = y1y2 · · ·yn. Suppose further that for some least integer
r ∈ 1..min(m,n), xr 6= yr. Then x < y (respectively, x > y) according as
xr < yr (respectively, xr > yr).

Proof. If xr < yr, then either

(a) xr is a nonempty proper prefix of yr; or
(b) there is some least position j such that xr[j] < yr[j].

In case (a), if r = m, then x is actually a prefix of y, so that x < y, while if
r < m, then by (3), xr+1[1] < yr[|xr|+1], and again x < y. In case (b) the
result is immediate. The proof for xr > yr is similar.

3 Basic Algorithms

Here we outline three algorithms for which no clear exposition in the context of
Lyndon arrays is available in the literature. We remark that the Lyndon array
computation is equivalent to “Lyndon bracketing”, for which an O(n2) algorithm
was described in [18].

3.1 Folklore — Iterated MaxLyn

This algorithm, see Figure 1, is based on Duval’s linear time algorithm for Lyn-
don factorization, [10] – it is the application of its first step which we refer to as
MaxLyn since it returns the size of the longest Lyndon word starting at that
position. This process is iterated for all positions in the input string and this
thus gives immediately O(|x|2) worst case complexity for an input string x. Since
Duval’s algorithm is in-place, this algorithm is simple and almost in-place, ex-
cept the space for the Lyndon array. Below, we sketch the reasons the algorithm
provides the correct answer.

For a string x of length n, recall that the prefix table π[1..n] is an integer
array in which for every i ∈ 1 . . n, π[i] is the length of the longest substring
beginning at position i of x that matches a prefix of x. Given a nonempty string
x on alphabet Σ, let us define x′ = x$, where the sentinel $ < µ for every letter
µ ∈ Σ.
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Observation 5 x is a Lyndon word if and only if for every i ∈ 2 . . n, x′[1+k] <
x′[i+ k], where k = π[i].

This result forms the basis of the algorithm given in Figure 1 that computes the
length max ∈ 1 . . n − j + 1 of the longest Lyndon factor at a given position j
in x[1..n]. Its efficiency is a consequence of the instruction i ← i + k + 1 that
skips over positions in the range i + 1 . . i + k − 1, effectively assuming that for
every position i∗ in that range, i∗ + π[i∗] ≤ i+k. Lemma 11, given in Appendix
1, justifies this assumption. Simply repeating MaxLyn at every position j of x
gives a simple, fast O(n2) time and O(1) additional space algorithm to compute
λx.

procedure MaxLyn(x[1 . . n], j, Σ,≺) : integer
i← j + 1; max← 1
while i ≤ n do
k ← 0
while x′[j + k] = x′[i+ k] do
k ← k + 1

if x′[j + k] ≺ x′[i+ k] then
i← i+ k + 1; max← i− 1

else
return max

Fig. 1. Algorithm MaxLyn

Recent work on the prefix table [4, 6] has confirmed its importance as a
data structure for string algorithms. In this context it is interesting to find that
Lyndon words x can be characterized in terms of πx:

Observation 6 Suppose x = x[1 . . n] is a string on alphabet Σ such that x[1]
is the least letter in x. Then x is a Lyndon word over Σ if and only if for every
i ∈ 2 . . n,

(a) i+ πx[i] < n+ 1; and
(b) for every j ∈ i+ 1 . . i+ πx[i]− 1, j + πx[j] ≤ i+ πx[i].

In Appendix 1, the reader can find an additional result that justifies the
strategy employed by MaxLyn (Figure 1).

3.2 Recursive Duval Factorization: Algorithm RDuval

Rather than independently computing the maximum-length Lyndon factor at
each position i, as MaxLyn does, Algorithm RDuval recursively computes the
Lyndon decomposition, [10], into maximum factors, at each step taking advan-
tage of the fact that L[i] is known for the first position i in each factor, then re-
computing with the first letters removed. This again gives immediate worst case
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complexity of O(n2). We consider it only because it allows for a more refined
discussion of the complexity in special cases for strings over binary alphabets
giving an average case complexity of O(n log n), see below.

By Observation 1, whenever x = x[1..n] is a Lyndon word, we know that
L[1] = n. Thus computing the Lyndon decomposition x = w1w2 · · ·wk, w1 ≥
w2 ≥ · · · ≥ wk, allows us to assign λ[ij ] = |wj |, where ij is the first position of
wj , j = 1, 2, . . . , k.

Algorithm RDuval applies this strategy recursively, by assigning λ[ij ] ←
|wj |, then removing the first letter ij from each wj to form w′j , to which the
Lyndon decomposition is applied in the next recursive step. This process con-
tinues until each Lyndon word is reduced to a single letter.

The asymptotic time required for RDuval is bounded above by n times the
maximum depth of the recursion, thus O(n2) in the worst case — consider,
for example, the string x = an−1b. However, to estimate expected behaviour,
we can make use of a result of Bassino et al. [3]. Given a Lyndon word w,
they call w = uv the standard factorization of w if u and v are both
Lyndon words and v is of maximum size. They then show that if w is a binary
string (Σ = {a, b}), the average length of v is asymptotically 3|w|/4. Thus each
recursive application of RDuval yields a left Lyndon factor of expected length
|w|/4 and a remainder of length 3|w|/4 to be factored further. It follows that
the expected number of recursive calls of RDuval is O(log4/3 n). Hence

Lemma 7 On binary strings RDuval executes in O(n log4/3 n) time on average.

Example 8 For
1 2 3 4 5 6 7 8 9 10 11 12

x = a a b a a b b a b b a b
λ = 12 2 1 9 3 1 1 3 1 1 2 1

the factors considered are first 1–12, then

• 2–3 and 4–12 in the first level of recursion;
• 3, 5–7, 8–10 and 11–12 in the second level;
• 6, 7, 9, 10, 12 in the third level.

Positions are assigned as follows: λ[1]← 12;λ[2]← 2,λ[4]← 9;λ[3]← 1,λ[5]←
3,λ[8]← 3,λ[11]← 2;λ[6]← 1,λ[7]← 1,λ[9]← 1,λ[10]← 1,λ[12]← 1.

3.3 NSV Applied to the Inverse Suffix Array

The idea of the “next smaller value” (NSV) array for a given array x had been
proposed in various forms and under various names [1, 11, 12, 16].

Definition 9 (Next Smaller Value) Given an array x[1..n] of ordered val-
ues, NSV = NSVx[1..n] is the next smaller value array of x if and only if
for every i ∈ 1..n, NSV[i] = j, where

(a) for every h ∈ 1..j−1, x[i] ≤ x[i+h]; and
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(b) either i+j = n+1 or x[i] > x[i+j].

Example 10
1 2 3 4 5 6 7 8 9 10

x = 3 8 7 10 2 1 4 9 6 5
NSVx = 4 1 2 1 1 5 4 1 1 1

As shown in various contexts in [12], NSVx can be computed in Θ(n) time using
a stack. Our main observation here, also mentioned in [13], is that λx can be
computed merely by applying NSV to the inverse suffix array ISAx. Proof of this
claim can be found in Appendix 2; here we present the very simple Θ(n)-time,
Θ(n)-space algorithm for this calculation:

procedure NSVISA(x[1 . . n]) : λx[1 . . n]
Compute SAx (see [15, 17])
Compute ISAx from SAx in place (see [17])
λx ← NSV(ISAx) (in place)

Fig. 2. Apply NSV to ISAx

4 Elementary Computation of λx Using Ranges

In this section we describe an approach to the computation of λx that applies
a variant of the NSV idea to the ranges of x. Figure 3 gives pseudocode for
Algorithm NSV∗ that uses the NSV stack ACTIVE to compute λ. The processing
identifies ranges in a single left-to-right scan of x, making use of two range
comparison routines, COMP and MATCH. COMP compares adjacent individual
ranges xr and xr+1, returning δ1 = −1, 0,+1 according as xr < xr+1, xr =
xr+1, xr > xr+1. MATCH similarly returns δ2 for adjacent sequences of ranges;
that is,

Xr = xrxr+1 · · ·xr+s, for some s ≥ 1;

Xr+s+1 = xr+s+1xr+s+2 · · ·xr+s+t, for some t ≥ 1.

Algorithm NSV∗ is based on the idea encapsulated in Lemma 15 of Appendix
2, the main basis of the correctness of Algorithm NSVISA (see Figure 2). We
process x from left to right, using a stack ACTIVE initialized with index 1. At
each iteration, the top of the stack (say, j) is compared with the current index
(say, i). In particular, we need to compare sx(i) with sx(j), where sx(i) ≡
x[i..n]. As long as sx(i) � sx(j), NSV∗ pushes the current index and continues
to the next. When sx(i) ≺ sx(j), it pops the stack and puts appropriate values
in the corresponding indices of λx. As noted above, especially Observations 1–3,
ranges are employed to expedite these suffix comparisons.
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procedure NSV* (x,λ)
nextequal← 0n; period← 0n

push(ACTIVE)← 1
. x[n+1] = $, a letter smaller than any in Σ.
for i← 2 to n+1 do
prev ← 0; j ← peek(ACTIVE)

. COMP compares suffixes specified by i, j of two ranges.
δ1 ← COMP(x[j],x[i]); δ2 ← 1

while (δ1 ≥ 0 and δ2 > 0) do
if δ1 = 0 then δ2 ← MATCH(x[j],x[i])
if δ2 > 0 then

if prev = 0 or nextequal[j] 6= prev then λ[j]← i−j
else
λ[j]← offset ← prev−j
if period[prev] = 0 then

if λ[prev] > offset then
λ[j]← λ[j]+λ[prev]

else
if nextequal[j] = prev and offset 6= λ[prev] then
λ[j]← λ[j]+period[prev]

if λ[prev] = offset then
. Current position is a part of periodic substring

if period[prev] = 0 then
period[j]← period[prev] + 2× offset

else
period[j]← period[prev]+offset

pop(ACTIVE)
prev← j; j ← peek(ACTIVE)
. Empty stack implies termination.
if j = 0 then EXIT
δ1 ← COMP(x[j],x[i])

. Finished processing i — it goes to stack.
if δ2 = 0 then nextequal[j]← i
push(ACTIVE)← i

Fig. 3. Computing λx using modified NSV

Two auxiliary arrays, nextequal and period, are required to handle situ-
ations in which MATCH finds that a suffix of a previous range at position j
equals the current range at position i. Thus, when δ2 = 0, the algorithm assigns
nextequal[j]← i before i is pushed onto ACTIVE. Then when a later MATCH
yields δ2 = 0, the value of period — that is, the extent of the following period-
icity — may need to be set or adjusted, as shown in the following example:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x = a a a b a a b a a b a a b a b
nextequal = 0 5 0 0 8 0 0 11 0 0 0 14 0 0 0

period = 0 12 0 0 9 0 0 6 0 0 0 4 0 0 0

A straightforward implementation of COMP and MATCH could require a
number of letter comparisons equal to the length of the shorter of the two se-
quences of ranges being matched. However, by performing Θ(n)-time preprocess-
ing, we can compare two ranges in O(σ) time, where σ = |Σ| is the alphabet size.
Given Σ = {µ1, µ2, . . . , µσ}, we define Parikh vectors Pr[1..σ], where Pr[j] is the
number of occurrences of µj in range xr. Since ranges are monotone nondecreas-
ing in the letters of the alphabet, it is easy to compute all the Pr, r = 1, 2, . . . ,m,
in linear time in a single scan of x. Similarly, during the processing of each range
xr, any value Pr,j , the Parikh vector of the suffix xr[j..`r], can be computed in
constant time for each position considered. Thus we can determine the lexico-
graphical order of any two ranges (or part ranges) xr and xr′ in O(σ) time
rather than time O(max(`r, `r′)). The variant of NSV∗ that uses Parikh vectors
is called PNSV∗; otherwise NPNSV∗ for Not Parikh.

In Appendix 3 we describe briefly another approach to this suffix comparison
problem, which we believe achieves run time O(n log n) by maintaining a simple
data structure requiring O(n log n) space.

Now consider the worst case behaviour of Algorithm NSV∗. Given the initial

string x0 = ahbahc0, h ≥ 1, c0 > b > a, let x
(h)
k = xk = xk−1x

∗
k−1, k =

1, 2, . . . , with x∗k−1 identical to xk−1 except in the last position, where the letter

ck > ck−1 replaces ck−1. Then xk has length n = (h+1)m, where m = 2k+1 is the
number of ranges in xk. We believe and are working towards a proof that xk is a
worst-case input for Algorithm NSV∗, which requires O(n log n) range matches
in such cases. Since PNSV∗ compares two ranges in O(σ) time, it therefore would
require O(σn log n) time in the worst case, thus O(n log n) for constant σ.

5 Preliminary Experimental Results

We have done some preliminary tests on the implementations of the two variants
of NSV∗, with and without employing Parikh vectors. The equipment used was
an Intel(R) Core i3 at 1.8GHz and 4GB main memory under a 64-bit Windows
7 operating system. For each length 10000,20000...100000 we generated 500 ran-
dom strings for alphabets of sizes σ = 2, 4 and 8. The results indicate, that at
least for random strings, the processing time seems linear. The processing time
for “with Parikh vectors” is greater because of the initial pre-processing. The
data and the corresponding graphs are in Figures 8..11 below.
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Fig. 4. Processing times in seconds for the implementation without Parikh vec-
tors

Fig. 5. Processing times for random strings over the binary alphabet; without
Parikh vectors

Fig. 6. Processing times for random strings over the alphabet of size 4; without
Parikh vectors
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Fig. 7. Processing times for random strings over the alphabet of size 8; without
Parikh vectors

Fig. 8. Processing times in seconds for the implementation with Parikh vectors

Fig. 9. Processing times for random strings over the binary alphabet; with
Parikh vectors
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Fig. 10. Processing times for random strings over the alphabet of size 4; with
Parikh vectors

Fig. 11. Processing times for random strings over the alphabet of size 8; with
Parikh vectors

6 Future Work

There is reason to believe [14] that the Lyndon array computation is less hard
than suffix array construction. Thus the authors conjecture that there is a linear-
time elementary algorithm (no suffix arrays) to compute the Lyndon array.
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Appendix 1

The following result justifies the strategy employed in Algorithm MaxLyn (Fig-
ure 1):

Lemma 11 Suppose that for some position i in a Lyndon word x[1..n], k =
π[i] ≥ 2. Then for every j ∈ i+ 1 . . i+ k − 1, π[j] ≤ i+ k − j.

Proof. The result certainly holds for i + k = n + 1, so we consider i + k ≤ n.
Assume that for some j ∈ i+ 1 . . i+ k − 1, π[j] > i+ k − j. It follows that

x[1 . . i+ k − j + 1] = x[j . . i+ k], (5)
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while x[j − i+ 1 . . k] = x[j . . i+ k− 1]. Since x is Lyndon, therefore x[1 + k] ≺
x[i+ k], and so we find that

x[j − i+ 1 . . 1 + k] ≺ x[j . . i+ k]. (6)

From (5) and (6) we see that x[1..k + 1] has suffix x[j − i+ 1..k + 1] satisfying
x[j − i+ 1..k + 1] ≺ x[1..i+ k − j + 1], contradicting the assumption that x is
Lyndon.

Appendix 2

Here we prove Theorem 12 that justifies th algorithm given in Figure 2:

Theorem 12 For a given string x = x[1..n] on alphabet Σ, totally order by
≺, let ISA = ISA≺x. Then for every i ∈ 1..n, the substring x[i..j] is a longest
Lyndon factor with respect to ≺ if and only if

(a) for every h ∈ i+1..j, ISA[j] < ISA[h]; and
(b) either j = n or ISA[j+1] < ISA[i].

The following well-known result is needed to prove Lemma 14:

Lemma 13 (Duval, Lemma 1.6, [9]) Suppose x ∈ Σ+, where Σ is an al-
phabet totally ordered by ≺. Let x = uru1b, where u is nonempty, r ≥ 1, u1 a
possibly empty proper prefix of u, and the letter b 6= u[|u1|+1].

(a) If b ≺ u[|u1|+1], then u is a longest Lyndon prefix of xy for any y;

(b) if b � u[|u1|+1], then x is Lyndon with respect to ≺.

For a given string x[1..n], let sx(i) = x[i..n] denote the suffix of x beginning
at position i. When clear from context we write just s(i).

Lemma 14 Consider a string x = x[1 . . n] over alphabet Σ totally ordered by ≺.
Let x[i . . j] be the longest Lyndon factor of x starting at i. Then sx(i) ≺ sx(k)
for every k ∈ i+1..j and either j = n or sx(j+1) ≺ sx(i).

Proof. Because x[i . . j] is Lyndon, therefore for any i < k ≤ j, x[i . . j] ≺
x[k . . j] and so s(i) ≺ s(k). If j = n, we are done. So we may assume j < n,
and we want to show that s(j+1) ≺ s(i). Suppose then that s(j+1) 6≺ s(i).
Since s(i) and s(j+1) are distinct, it follows that s(i) ≺ s(j+1). If we let
d = lcp(s(i), s(j+1)) + 1, two cases arise:

(a) 0 ≤ d ≤ j − i.
Here i ≤ i + d ≤ j. Thus x[i . . i+d−1] = x[j+1 . . j+d] and x[i+d] ≺
x[j+1+d], and so for j < k ≤ j+1+d, x[i . . j+1+d] ≺ x[k . . j+1+d]. Since
x[i . . j] is Lyndon, x[i . . j] ≺ x[k . . j] and so x[i . . j+1+d] ≺ x[k . . j+1+d]
for any i < k ≤ j. Thus x[i . . j+1+d] is Lyndon, contradicting the assump-
tion that x[i . . j] is the longest Lyndon factor starting at i.
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(b) 0 < j − i ≤ d.
Let d = r(j − i) + d1, where 0 ≤ d1 < j − i. Then r ≥ 1 and x[i . . j+1+d] =
uru1b where u = x[i . . j],

u1 = x[j+r(j−i)+1 . . j+r(j−i)+d1−1] = x[j+r(j−i)+1 . . j+d−1]

is a prefix of x[i . . j], and x[i+d] ≺ x[j+1+d], so that by Lemma 13 (b),
x[i . . j+1+d] is Lyndon, contradicting the assumption that x[i . . j] is the
longest Lyndon factor starting at i.

Thus s(j+1) ≺ s(i), as required.

Lemma 15 describes the property of being a longest Lyndon factor of a string
x in terms of relationships between corresponding suffixes.

Lemma 15 Consider a string x = x[1 . . n] over an alphabet Σ with an ordering
≺. A substring x[i . . j] is a longest Lyndon factor of x with respect to ≺ if and
only if sx(i) ≺ sx(k) for every k ∈ i+1..j and either j = n or sx(j+1) ≺ sx(i).

Proof. Let (A) denote {x[i . . j] is a longest Lyndon factor of x} and let (B)
denote {s(i) ≺ s(k) for any 1 ≤ k ≤ j and s(j+1) ≺ s(i)}. Then (A) ⇒ (B)
follows from Lemma 14, so we need to prove that (B) ⇒ (A).

Suppose then that (B) holds, and let x[i . . k] be a longest Lyndon factor of x
starting at position i. If k < j, then by Lemma 14, s(k+1) ≺ s(i), a contra-
diction since k+1 ≤ j. If k > j, then by Lemma 14, s(i) ≺ s(j+1) because
j+1 ≤ k, which again gives us a contradiction. Thus k = j and x[i . . j] is a
longest Lyndon factor of x.

Now we reformulate Lemma 15 in terms of the inverse suffix array ISA of x using
the relationship that s(i) ≺ s(j)⇐⇒ ISA[i] < ISA[j], thus yielding Theorem 12,
as required. Hence the Lyndon array can be computed in a simple three-step
algorithm, as shown in Figure 2, that executes in θ(n) time and uses only one
additional array of integers.

Appendix 3

Here we describe a simple data structure that yields an alternative approach to
Algorithm NSV∗, based on the comparison of longest Lyndon factors as described
in Lemma 15. The dictionary of basic factors [7, 8] of string x[1..n] consists
of a sequence of arrays Dt, 0 ≤ t ≤ log n. The array Dt records information about
factors of x of length 2t — that is, the basic factors. In particular, Dt[i] stores
the rank of x[i..i+ 2t − 1], so that

x[i..i+ 2t − 1] � x[i..i+ 2t − 1]⇔ Dt[i] ≤ Dt[i].

This dictionary requires O(n log n) space and can be constructed in O(n log n)
time as follows. D0 contains information about consecutive symbols of x and
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hence can be computed in O(n log n) time by sorting all the symbols appearing
in x and mapping them to numbers from 1 and onward. Once Dt is computed,
we can easily compute Dt+1 by spending O(n) time on a radix sort, because
u[i..i + 2t+1 − 1] is in fact a concatenation of the factors u[i..i + 2t − 1] and
u[i+ 2t..i+ 2t+1 − 1].

Once this dictionary is computed, we can compare any two factors by compar-
ing two appropriate overlapping basic factors (i.e., factors having length power of
two), which is done by checking the corresponding D array from the dictionary.
This will require constant time and hence each suffix-suffix comparison can be
done in constant time.


