ON A KNOWLEDGE-BASED MODEL OF STRUCTURE LEARNING:
METHODOLOGY AND IMPLEMENTATION

Dr. [vam Bruba *) and Dr. Frantisek Franek **)
MeMaster Ugaversity
Depurtaent of Computer Science and Systems
Hamilien, Ont., Canada, 185 4K1

ADBSTRACT

The learning systesn developed by the authors emulates
the learning-from-examples strategy with s perfect tencher, The
sysiem is able to process patterns represented by structures and
yiedds o chass description as o structere, 1t is similar in its sphit
to the INDUCE family of machine Jesrning algorithns developed
by Michaliki ot al. Unlike INDUCE, our model is written is
Prolog and‘r: designed :‘;MMW to denl with un-
certainty. The paper the adwmntages of this approach
together with & concise description of our model as a knowledge-
based system. In the conclusen, we discuss possiblo ways us Lo
extend our (bateh) model to & sequential learning aystem that
could process both strectural and pemerical information within
one unit,

1. INTRODUCTION

Lesmming systems have been investigated] for mnsy years
and ealy recontly wore perceived Lo be a good means for auto-
wintie knowledge acquisition. Architecture of lowming systems
depends above all an the ropementation of recogeized patterss
and the acquired knowledge. There are two mnjor approaches:

1. mumerical {statistical, fentuse) appronch;

2. structural approach (a relational structue, semantic network
etc.).

Structure-lenrning systesss are one of the useful means
for the acquinition of a knowledge, However, most developed
stpectire-dearning systems indicate several wenknesses (see e,
(1x

- magoraty of working learuing systems nre not sequential, ie
all training patterns have to be stored in the memory of the
kamming system;

» they aze not ablo to process both structurnl and mumerical
data;

« mest systems lack processing of uncertainty.

Therefore, we have been boking into possible modeds that
coudd process both struetural and numerical information within
the unit. However, as the initial model, we developed nnd imple-
mented o structure-learming system that is able to procoes strue-
turally deseribed concepts without any of numerical
supporting data. Our paper desciibes this (strictly stroctural)
wiodel of learning.

We view learning as hewristic senrch thromgh a spaco of
possible class (comeept) descriptions [14], We studied some ma-

49< 15y

chine leaming algorithens and found cut that Hays-Roth's imnodel
of learnisg (program Sprouter, [9]), Vere's inductive leasming sys-
tem {program Thoth, [18]), and the family of INDUCE systems
developed by Michalki ot al. [1], [8], [13] were most promss-
ing vohicles for our project. The structure-leamming system =v
developed uses the concept of 'leaming-from-examples’, and is
sirmilar in its spirit to Mickalski's ieas employed in INDUCE.
Unlike INDUCE which was implementod in Pascal, our lenrming
systemn is written in Prolog. The advastage of this approach
comaits in that
- the inference engine of our lenrning system utilizos all powes-
ful Prolog utilities ke pattern matching, backtracking, Est

processing;

- the source code is much shorter, rendable, nnd easily chnage-
able;

» no specinl deseription lasguage bad 10 be developed because
Prolog terims ean be used for both pattern and closs (conoept |
description;

- the knowledge base rules that are strictly logeal need nos be
supplied explicitly but the Proleg logic is utilzed diectly

2. TERMINOLOGY AND METHODOLOGY

Although we have been trying to follow the termnology
and methodology of [8], [13], [15], we have found out that - in
soxius Cases - Lhe termmology introduced eg. by 8], |71, [LO]. [26]
s more adequate and meamingful Moceover, we are wnng the
language Prodog (fallewing the tersinalogy of [4]) for deseribing
all objects and concepts involved in lenrming, Therefose, we ase
mtroducng thas section in order o present our terminology.

We enll the objects to be recognized ns palierms ruther
than facts, obaervable statements, situstions, of events. As for
the sets the patterns ase to be grouped into, we prefer the ‘old-
fashioned” clssses to concepls (but we will use both terms fre
quently). A set of patterns used for learning (training) whoch 1=
supplied by & teachor s called frassing set, nnd the patterns are
called treining patterss, Sumilarly to [12] we denote the trainng
patterns of the given trnined class 33 posstive (training) patterns
(or examples), those of the other classes as negedive (trnimmg)
patterns. Therefore we distmguish two classes: 21 s the dass
(comcept) to be lenrsmed (positive patterns), z2 mdicates the
other class(es) (presented by negative patterns).

As we have nlieady meationed, nny pattem or class will be
described by means of Prolog terms. More precisely, & patiers
er class deseription s a comjunction of cdementary descriplions,

Au elementary description is symbolized by u Prolog strue.
ture, be a functor followed by one or more its companents, or
an operation, All built-in Prolog predicates can be used. To
reach the expressive power of Michalski’s VL [11], [13], we anly
added the infix operation A ., 3 (avalueinrange A to B
clusive).

For the purposes of the lenrning algorithm, we distinguish
tue types of components of elementary descriptions:

- mdissduals, ie. elementary objects involved in deseriptions of
both patterns and classcs, .. vindowl , window2 , carlj
- propertics of funclors such as size, shape, color .

It the same way, we distinguish two types of functoes:

- relational fanetors, usually with arity 2 or more, that express
relationships botween (among) their components (which are
individuals), or unary functors that express truthvalue state
ments, .8,

lafrof (vindowl, vindow2)

/o uizdovl is left to window2 e/
clear(bi)

/eobject bl is clears/

+ aiinbute functors that express property values of indivaduals,
.8

colexr(bi, red)
/*individual bl is of red colers/
length(cart, 3)
/*length of carl is 3 unitse/
size(ul, 2 .., 3)
Jesize of the individual w! is within
the interval 2 to 3 o/

We say that a claas description cevers a pattern if all ol-
ementary descriptions of the given cluss description mateh the
pattern description. Furthermore, a class description is comsis-
tent if it does not cover any training pattern from any other
class (ie. negative patterns). A class deseription is complete if
it covers all training patierns of the class being learned (ie. all
positive patterns)

Following [1], [13], [15] we define & charecteristic class de-
scription as a complete description that characterizes the class,
ideally a hargest possible complete description. A discriminand
class description is a complete and consistent deseription that
discriminates betwoen closses, ideally the smallest possible cour-
plete and consstent one.

Similarly, we distinguish two modes of leasning:

(1) Batch mode. All training patterns (positive and negative)
must be read in and stored in the internal memory (database)
of the learning system. The class description is formed by pro-
cessing all trpining patterns.

(8) Incremental mode. A few training patterns are read in and

processed altogether in order to form an initial class deserip-

tion or & relatively small set of such initinl descriptions. The
bateh mode of learning can be used for that. After that, new
training patterns are read subsequently and the existing class
description(s) is (are) modified (refined) accordingly. There are
two additional peasibilities of the incremental maode:

(a) Nonsequential mode. All training patterns (both the matial
omes ond the subsequently rend) must be kept in the interual
memory (database).

(b) Sequential mode. The learning system forgets the initial
Lrnining set as soon a3 the inilial class description(s) is (are)
created in the batch mode. The system remembers the latest
modification(s) of the class description(s) and ane or & few current
trnining pattorns. This matehes the sequentiality of Jeaming
prvewnen [3, [101], [17).

4. LEARNING AS A PRODUCTION SYSTEM

Inductive lenrning can be charncterizod a8 o search pro-
cess in o spoace of cluss descriptions. Therefore, we formulate
lensning system as o production systemn [14] with the following
pasts:

1. Database (a5 & set of facts) represents specific knowledge
about the concept (class) to be leamed. In our system, the ini-
tinl datnbase is formed by training set of positive nnd negative
training exnmples,

2. Knowledge base (ns = set of production rules) represents
gesernl knowledge which is used for finding n required cluss de
seription. Production rules of the lenrning system ase used to
form more general (or less general) class descriptions from the
already existing cnes. The production rules are invoked cither

» in forward regime as generalizetion reles, ie. a more genern)
claan description s ereated (useally if existing class deserip.
tion is sot complete), or

- m backward regine as specializetion rales, ie. u more specific
(leas general) cluss description is formed (wseally when exist-
ing class cleseription is not consistent).

3. Domesn-apecific bnowledge characterizes the nssunp-
tions and constrains related to both pattern and class deserip-
tions, Such specifications cannot be comprised directly in the
database since they do not have charncter of training exnmples.
Nor can they be involved in the knowledge base because they
are specific for a given set of problems.

1. Inferemce emgine (control system) finds out whick pro-
duetion rules are npplicable, chooses one among these rules and
upplies it. More specifieally it involves severnl procedures, smong
them the interpreter for the forward regime and ome for the
backward regime,

In the following, we shall have a more detail Jook ut the
components of our production system,

Detsbasre. The ¥-th training pattern belonging to the class
Z s represented by a set of elesentnry descriptions expressed
by the Prolog fact
patterndescr(¥,2,D)

where D is an elementary description for the given traizing
pattern. Note that in real implementation we use a set of facts
(clementsry descriptions) rather than their comjunction for de-
scnibing patterss.

As soon s o class description begins to be formed, the
elomentnry class descriptions will be atored in the databuse as
the Prolog facts

classdaescr(Z,D)

where D s an clementary description of the class Z . Note that
in real implementation, a set of facts classdescr(.,) stored
in the Prolog database is used for the class description, rather
than a conjunction of elementary descriptions.

Domein-specific bnowledge of our learning system currently
involves the following picces of knowledge which can be pro-
cessed by the inference engine:

{(a) Domain of Bnesr functors, If an attzibute functor has an
ordered set of its property valies then it s called n Loear func-
tor; the interval of its property values can be specified by the
(meta)functor linearfuncter . E.g if we consider the linear
functor size(I,V) :the size of the individual I s the number
¥ within the interval 1 and 100 , then we specify

linearfunctor(size, 2, 1..100).

Here 2 depicts the 20d argument of the functor is its linear
property.

(b) Hierarchical tree of structural functors. If an attribute func-
tor has a hierarchical set of its property valucs then it is called n
structural functor. Eg. the functor shape cam have propesty
values such as oval window , rectangularwisdov etc.; these
vnlues are "subsets’ (or "subnodes”) of n more genernl valuo win-
dov. Thus a set of property values of a structural functor can
be defined by o hierarchical tree structure. We use the following
(meta)functor:

strectursl functor (shape,2).
/¢ 2nd arg of shape is structurale/

and the Prolog operator :~ for defining & hierarchical tree
/ehierarchical tree for shape */

shape(X, evalwindow) :- shape(X, windew).
shape(X, rectasgularwindew) :- shape(X, window).
shape(X, window) :- shape(X, apertura).
shape(X, door) :- shape(X, aperture).

(c) Relstionship among functors. We cun captlure some relations
of functors wsed in pattern and class deseriptions, e g inverso
functors;

rightof (X,Y) :- lerter(Y,X).
l‘!uctor rightof i3 imverze to leftof #/

symanetnic functors:
souck(X,¥) :- touch(¥Y X).
;!gmiomofﬁmin terms of more general functors and the
ike.
Knowledge bose of our system involves these production
rules (see [13]) that we group to two subsets:
(n) Syntar rules

1. The Dropping Condition Rule: a class description can
be generalized by removing an elementasy class description.

2, The Turning Constands Into Vanables Rule if two (or
more) elementasy class descriptions with the same functor -
volve various 'types’ of individuals then they can be replaced
by a single elementary description with a single mdivadual of &
'general’ (e, not specified) type.

(b) Semantic rules

1. The Domain Ertension Rule: ¥ two elementary class
descriptions are formed by the sume linear functor whese prop-
erty value is A and B respectively, then they ean be roplaced
by a single elementury class description whose propesty value
is specified by the interval & .. B . The same extension rule
can be applied f the existing clemmwy deseriptions involve

interval(s) already. Eg if
classdescr(zl, size(wl, 2)).
classdescr(zl, window(w1)).
classdescr(zl, size(w2, 3..4)).
classdescr(zl, window(v2)).

then they ean be replaced by

classdescr(z!l, size(w, 2..4)).
classdescr(zl, window(v)).

2. The Hierarchy Climbing Rule if two elementary cass
descriptions save focmed by the sume struetural functor whose
properly walue 3s A and B respectively, then they can be
replaced by a single elementury description whose property value
is a move general value of both A and 83 . Eg if

classdaescr(zl, shapelw, window)).
classdescr(zl, shape(d, doeor)).

them these two elementary class deseription can be replaced by
classdescr(z1, shape(x, aperture)).

For the demonstsation of the actual representation, let us
fo;r e.g. on the Dropping Condition Rule whach has the form
1

If D1 and D2 aere dementary descriptions of the class z1
then it con be genershized fo: D1 s clementary deseriphon of
z1 (e, D2 3 remeved)

In our Prolog based system the Dropping Condition Rule
in forwnrd regime has the form which can be expressed as fol-
levws:

classdescr(=zt, Dl), classdeser(z1,D2), D2 \=» D1 --->
erase{classdescr(zt D2)).

Here the operastar ===> denotes a gemeralization rule (a pro-
duction rale in the forward regime), classdescr(Z,D) means:
D s an clementacy description of the dass Z. The procedure
erase issimnilar to balt-in retract bot it s affected by Prolog

backtrocking,

The Drapping Condition Mule in reverse ordes (backward
regine) has the form:

classdescr(z1,01), patterndescr(.,=1,D2) ===
add(class descr{z1,02)).

Here the operator <--- denotes a specialization rule (& pro-
duction rulein the backward regune), patterndescs(N,Z,D)
means: D is an elementacy description of the 5-th tralning pat-
tern of the cluss 2. The procedure add is the backtracking.
denendent varsien of assarss .

4. TOP LEVEL FLOW CHART OF THE LEARNING
ALGORITHM

The rule-based structure-Jenrning algorithm we developod

and implemented in Prolog has the following attributes:

- it is & Tearning-from-examples’ with & "perfect’ teacher (i.c.
the teacher knows the problem to be learned completely, in-
troduces as helpful as possible examples, and does not make
mistakes),

- 1t s a knowledge-acquisition learning (not a skill-refinement
one),

3 works in the batch mode,

- &t uses both positive and negative training patterns,

produces a discrminant class descriplion (eitber Lhe first
description generated, or & minimol one among several clnas
descriptions generated).

Here s the top level flow chast of the Jeaming algorithm:

- Read in the Srst trmining pattern x1 that has to belong to
the given class 21 (i.0, the first positive training poattern).

. By decomposing the description of the training patters xi
create all possible class descriptions each consisting of one
elementary description of x1 . Insert them to the list PLAU-
SIDLE of plausible class descriptions so that a sublist of rela-
tionnl functoes of xt will be followed by thot of attribute
functoss, Furthermore, order these sublists according to their
arities (the functors with highest arity come fiest).

. Read in the rest of the trmining set, Le. training patterns
belonging to the given class 21 (positive examples) and those
belonging to other cloases (negative examples).

. Form a consistent class description:

4.1 Take the first consmistent class description from the hst
PLAUSISLE (and resnove it from this list).

4.2 If there is no consistent one in PLAUSIBLE, take the first
(imconsistent) closs description <dl from PLAUSIBLE
and extend it (i.e. add conjunction of one or more ol-
cmentary descriptions to it) so that it becomes a consis-
tent class description. However, the extended description
should not have more than Ned elementary descriptions
(¥ed is a given threshold).

4.3 If no consistent extension of the class descrption cdl
can be found, ce if the extension of cdl hns more than
Ned eclementary descriptions, then fuil this process of
extension; the backtracking is called to consider another
extension of cdl or to take another plausible clnss deo-
scription from the list PLAUSTIBLE which will be tbm ex-
temded it i the same way.

Thus, the result of this step is a consistent class description
consisting of one elementary description or a conpunction of
elementary descnptions.

. If the above (consistent) class description is not complete gen-
eralize 1t by uwsing the semantic produection rules (in forward
regime). If & complete generalization cannot be found, the
backiracking s mvoked to comnsider another extension of a
previous class description, or to take & new plassible class
description. Thus, the result & a consistent nnd comnplete
(i.e, diseriminant) description of the given class 21

. ¥ we require a minimal discriminant class dencnpmn (nmong

the Geet Hod sonscatad Adssadandlana whasre Mad o & aaobasd

given integer) then the backtracking i invoked to consder
ssother generalization or extension of an already processed
class deseription, or even to take another plausble deseription
from the list PLAUSIBLE which will be processed in the same
way. This is done until Bed consistent nnd complete claw
descriptions will be gencrated; afferwards, the minunum class
description (ie. that with the minimum number of functors
and thewrr components) will be chosen as the result.

Exnmple. Let us consider two classes: 21 is the dass
of houses I would buy, z2 indicates houses | would not buy,
Some of the truiming patterns ase on Fig. 1. E.g. the 1st teaining
pattesn of the desired class =1 can be described in our system
as follows:

inside(v,d)).
wall(s)).
door(d)).
inside(w,wi)).
vindeu(vi)).
lafza?(d,vi)) .
size(d,2)).
size(wi,1)).
adovelw,r)).

patterndescr(1, =1,
patterndescr(1, =1,
patterndescr(i, z1,
patterndescr(l, z1,
patterndescr(l, 21,
patterndescr(l, =1,
patterndescr(l, z1,
patterndescr(l, z1,
patterndescr(l, z1,
patterndescr(l, 21, touch(r,v)).
patterndescr(l, =1, roof(r)).

The domasin-specfic knowledge includes:
{a) Dosunin of linenr functors:
linearfunctor(size, 2, 1..100).
(b) Hiernzchicnl tree of structural functors:

ovalwindow(X) :- wvindou(X).
rectengularvindsu(X) :- windew(X).
window(X) := aperture(X).

door(X) :- aperture(X).

class #y

e
[o :

class 2) y

The learsing system, affer seanning the 1st training pat-
temn of the class 21, will form the list of all plausible class de-
scriptions. Since there is no consistent description among them,
the system will use the Dropping Condition Rule in backward
regime and the Domain Extension Rule in forward regime, and
finds the following consistent description of the class z1:

classdescr(zl, inside(w,x)).
classdescr(zl, wall(w)).
classdescr(zl, doar(x)).
clasadescr(zl, osize(x, 2..3)).

However, this description s not complete, therefore the system
will generalize it by using the Hiczarchy Climing rale:

classdescr(z1, inside(w,x)).
classdescr(zi, wall(u)).
classdescr(z!, aperture(x)).
classdescr(zi, size(x, 2..3)).

This set represents a discriminant description of the clnss z1 .

5. CONCLUSION

The purpese of the developmment of our learning algosithm
his not been, of course, just an implementation of an INDUCE-
like system in the programazing language Prolog. We chose the
INDUCE family (1], [13] among other machine learning systems
because it was a most promuising vehicle for our project. Asa
matter of fact, we have followed i principle these ideas of the
INDUCE fanuly:

- domadn-specific knowlodge should be & part of the problem
specification for the learming algorithun;

- adiscnminant class description is obtained by the ecampletion
through gemeralization of a consistent description;

- we used a reasomable subset of INDUCE's gemeranlization
rules.

The principle differences between INDUCE sad our learn-
ing algosithm are:

1. The eatire learning algocithm has been implemented
in the programming language Prolog (as a matter of fact, an
extension of Prolog, called McPOPLOG (2], [3] is being used).
We utilize all built-in Prolog procedures such as pattern matcl-
tng, bucktrncking, processing of clauses, structures and lists, ote.
The process of finding & diseriminant class deseription depends
on these procedures only. Theefore, the inference engine is
quite simple and straightforward.

2. We have not developed any language for pattern and
class description (suck as VL for INDUCE). Rather, we deseribe
patterns and classes by means of Prolog terms exclusively.

3. The knowledge base of our system is not confined to
the built-in production (generalzation or specinlization) rules
only. A user of our system can easily add uny new rule he/she
is convineed that it will help anlve the given problem, or spead
it up.

4. Last but not least, the man purpose of the development
and implementation of our learning algorithm was not the batch-
mode system. The entire system and representation of all objects
invalved had been developed and implemented in such a way ns
to allow an ensy extension to the incremental sequentinl mode,

and allow to process statistical (mumesical) data that will be
involved in both pattern and class descriptions.

Future research and development will include firs: of all
the extension of our leamung system by processing of umcer-
tainty, statistical support of class descriptions, and forget-
ting /retneving algonthm. We are going to extend our Jeamn-
ing systess in such a way as to be capable of processing both
structural and sumenienl data, Building an our expenience with
processing of uncertunty in genesal expest systems [19), the ex-
tendex] system will be able

- o process structured palterns together with their (numesical)
Likelibood (uncertainty) by using a so-called propagatios net
of likelihoods;

« to form class descriptions compeising both structural and sta-
tistical (numerical) attributes, by using reinforcement learn-
ing algorithms based on the Stochastic approximation theory
for madification of keliboads;

- to forget and retrieve pieces of knowledge (elementary class
descriptions) and thus it becomes n sequential learning algo-
rithm.

ACKNOWLEDGEMENT

*) Research supported by NSERC operating research grant
ABOG4.
**) Research supposted by NSERC operating research grant
OGP(025112 and by SERB 526397 grant.

REFERENCES

(1) Bentrup, J.A. - Mehler, G.J. - Riedesel, J.D.: "INDUCE 4:
A program for incrementally learning structural deseriptions
from examples”, Techn. Report UIUCDCS-F-87-058, Univ.
of Nlmais, Feh. 1987

(2] Brubas, I.: "Reference Manual of McPOPLOG", Techn. Re-
port 87-03, Dept. Compater Science and Systems, McMaster
Univ., May 1987

[3) Bruba, I: "Al multilanguage system McPOPLOG: the
power of communication between its subsystems”, The Cam-
puter Journal (accepted Sept. 1988)

[4) Clocksin, W.F, - Mellish, CS.: Programming in Prolog.
Spring-Verlag, 1984

[5) Diettesich, T.: "INDUCE 1.1 - The program deseription and
a user's guide”, Techn. Repoet, Dept. Computer Science,
Univ. Mincis, Urbana, 1078

[6] Duds, R.O. - Hast, P.E: Pattern Classification and Scene
Analysis. Wiley, New York, 1973

[7] Fu, KS.: Sequentinl Methods in Pattern Recoguition and
Mackine Learning. Academic Press, New York, 1968

[8] Garbenell, J.G. - Michalski, R.S. - Mitchell, TM.: "An
overview of machine leaming”™, in |12}

|9] Hayes-Roth, F. « McDermott, J.: "An interference match-
ing technique for inducing abstractsons®, Communications
of the ACM, Vol. 21, No. 5, pp. 401410, 1978

(10] Kotek, Z. - Bruba, I. - Jelinek, J.: Adaptive and Learning
Systems._ (In Czeck) SNTL, Prague, 1950

[13] Michalski, R.S.: "Pattern recognition as rale-guided induc-
tive mfevence”, IEEE Trans, Pattern Analysis and Machine

Intelligence, Vol. PAMI-2, No. 4, pp. 349-361, July 1980 [16] Tsypkin, Ya.Z.: Foundation of the Theory of Leasning Sys-
{12] Michalsky, R.S. - Carbozell, J.G. - Mitchell, T.M. (eds.): Ma- tems. Acndemic Press, New York, 1979

chine Learning, an Artificial Intelligence Approach. Tiogs [17] Vapuik, V.N. - Chervoayenkis, A.J.: Theory of Pattern

Publ Comp., California, 1953 Recoggition. (In Russian) Nauks, Moskva, 1974
[13]) Michalski, R.S.: "A theory and methodology of inductive [18] Vere, S.A.: "Induction of Concepts in the Predicate Caleu-

learning”, in [12] lus”, Proc. of Fourth Internstional Joint Conf Artifieinl
(14] Nilsson, N.J.: Principles of Astificial Intelligence. Tioga Pub- Intelligence (IJCAT), Thilisi, USSR, pp, 281.7, 1975

lishing Co., California, 1680 [19] Franek, F. - Bruha, [.: "McESE - McMaster expert system
{15] Reinke, R.E. - Michalski, RS.: "Ikncrementnl Learning of environment”, Proceedings of ICCI'S9, North-Holland, 1980

Concept Descriptions: A Method and Experimental Re-

sults™, in: Machine Intelligence 11, ed. D. Miclze, 1685

