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Equilibria for networks with malicious users?

Abstract. We consider the problem of characterizing user equilibria and optimal solutions

for selfish routing in a given network. We extend the known models by considering malicious

behaviour. While selfish users follow a strategy that minimizes their individual cost, a malicious

user will use his flow through the network in an effort to cause the maximum possible damage

to this cost. We define a generalized model, present characterizations of flows at equilibrium

and prove bounds for the ratio of the social cost of a flow at equilibrium over the cost when

centralized coordination among users is allowed.

1. Introduction

The general framework of a system of non-cooperative users can be used to

model many different optimization problems such as network routing, traffic or

transportation problems, load balancing and distributed computing, auctions
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and many more. Game Theoretic techniques can be used to model and analyze

such systems in a natural way. The performance of a system of non-cooperative

users is measured by an appropriate cost function which depends on the be-

haviour, or strategies of the users. For example in the case of network routing,

the total, system-wide cost can be defined as the total routing cost, or the total

latency experienced by all the users in the network. On the other hand, there is

also a cost associated with each individual user (for example the latency expe-

rienced by the user). It is a well known fact that if each user optimizes her own

cost, then they might choose a strategy that does not give the optimal total cost

for the entire system, also known as social cost [P20]. In other words, the selfish

behaviour of the users leads to a sub-optimal performance.

Koutsoupias and Papadimitriou [KP99] initiated the study of the coordination

ratio (also referred to as the price of anarchy): How much worse is the perfor-

mance of a network of selfish users where each user optimizes her own cost, com-

pared to the best possible performance that can be achieved on the same system?

This question has been studied in various different models (e.g. [RT02], [SM03])

and bounds for the coordination ratio have been shown for many interesting

cases. The discrepancy in the network performance between selfish (uncoordi-

nated) and optimized (coordinated) behavior is to be expected: typically, the

selfish users use a local heuristic (e.g., the usage of the fastest path to send

flow), that doesn’t take into account the overall picture of the network, while

the central coordinator is not restricted by the usage of a particular heuristic and
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has the whole network picture at her disposal. Therefore, the rather surprising

fact is the existence of small coordination ratio bounds for non-trivial cases.

A basic assumption of the models considered so far is that the users are

considered to be selfish and non-malicious: the user optimizes her own utility or

payoff, and does not care about the performance of the system or the cost induced

to other users by her strategy. In this work, we are motivated by the following

setting: Suppose that a content provider supplies live feed to a number of clients

through a network, using the fastest possible connection to each client at any

time. The speed of the connection depends on the congestion of the network

links (as congestion increases, the link delay also increases). The clients will

remain connected to the provider’s server as long as the feed delay is acceptable,

otherwise they will terminate the connection. At the same time, a malicious user

pretends to be a client stationed at any other point in the network, so it can

request feed from the provider. The flow that this malicious user can request is

limited (he cannot afford more than a certain (limited) number of simultaneous

connections), but what he can do is to constantly look for switching to a different

network node that will make the connection slower. If he knows that the provider

tries to be fair to all its customers (i.e., they should all experience more or less the

same delay), then his own delay is an indication of the delay the other customers

are experiencing. Therefore, if at some point he manages to increase his delay

to unacceptable levels, he knows that the other customers will deny the services

of the provider. The natural question that arises then is, how much degradation

of the network performance can be expected from such malicious behavior?
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We try to formulate and (partially) answer such questions by extending the

existing selfish routing models to include malicious users. As in the example

above, a malicious user will choose a strategy that will cause the worst possible

performance for the entire network. Such malicious behaviour can be found in

practice in settings such as the internet (for example in ‘denial of service’ at-

tacks). While in terms of Wardrop equilibria, the extension of the selfish model

considered before is quite straight-forward, the existence of malicious users forces

us to a different model for the ‘social optimum’. We no longer have an objective

function that can be minimized by the centralized coordination among the users,

since in our setting some of the users still can be coordinated to minimize it,

but at the same time there is a (malicious) user that tries to maximize it. This

leads naturally to the formulation of the ‘social optimum’ objective as a minimax

problem instead of just a minimization problem. As a result, we cannot refer to

an ‘social optimum’ that is a global minimizer of the social cost objective. In-

stead, we have to compare the worst Wardrop equilibrium to the saddle-points

of the minimax problem. We define the ‘social optimum’ as the minimum cost

achieved by the set of saddle-points. The fact that this set is (usually) non-

convex makes the exact characterization of the ‘social optimum’ (and therefore

the coordination ratio) more difficult to characterize than the previous models.

Nevertheless, in this paper we show that in the very general setting considered

by Roughgarden and Tardos [RT02], their results can be extended to the case

of systems with malicious users.
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Previous Work: Many of the Game Theoretic tools used for analyzing sys-

tems of non-cooperative users derive from results in traffic models and trans-

portation, including work of Dafermos and Sparrow [DS69], Beckmann, McGuire

and Winsten [BMW56] and Aashtiani and Magnanti [AM81]. More recently,

Nash equilibria and their applications were used for routing problems and the

internet. Koutsoupias and Papadimitriou [KP99] considered the coordination

ratio for load balancing problems (routing on a network of parallel links). The

model they considered allowed multiple equilibria, and the coordination ratio

compared the worst case equilibrium cost to the optimal routing cost. Their

bounds were improved in subsequent work on the same model by Mavronico-

las and Spirakis [MS01], and Czumaj and Vöcking [CV02]. Roughgarden and

Tardos [RT02] considered a different model for selfish routing, where there is

a unique Wardrop equilibrium and proved bounds for the coordination ratio,

including results for the special case of linear utility functions. Other work in

this model includes results on the topology of the underlying network [Rou01a,

Rou02], algorithms and bounds for Stackelberg scheduling strategies [Rou01b],

etc.

In Sections 2-4 we present the general setting of our study: first, we present

the selfish routing model with malicious users and the notion of Wardrop equi-

libria for it (Section 2), and prove the existence of Wardrop equilibrium flows

under certain constraints for the latency functions; then, in Section 3 we define

the ‘social optimum’ as the solution (saddle-points) of a minimax program and

give characterizations of these saddle-points; finally in Section 4 we connect the
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previous two sections with the use of the coordination ratio measure which com-

pares the Wardrop equilibria of Section 2 to the saddle-points of Section 3. After

this general setting, we study a set of particular disutility functions for the good

and malicious users. These functions are defined in Section 5. For this case, the

Wardrop equilibria are compared with the saddle-points of the minimax program

in Section 4, first to get a bicriteria result (Section 6), and then to get upper

bounds first for the instructive case of linear latency functions (Section 7.1) and

then for more general latency functions that satisfy certain assumptions (Section

7.2). We conclude with a short discussion and open problems.

2. The selfish routing model

We are given a directed network G = (V, E) and k source-sink pairs of nodes

(si, ti), i = 1 . . . k. There are also two special nodes sM , tM connected to G with

edges (sM , si), (ti, tM ), i = 1 . . . k. A commodity i with demand ri is associated

with each pair (si, ti), i = 1 . . . k, and a commodity M of demand F is associated

with pair (sM , tM ). Let Pi (PM ) be the set of acyclic paths from si to ti (sM

to tM ). A latency function lP (·) is associated with each path P . For a flow f

on G, lP (f) is the latency (cost) of path P for this particular flow. Notice that

in general this latency depends on the whole flow f , and not only on the flow

fe through each edge e ∈ P . In this paper we adopt the additive model for the

path latencies, i.e. lP (f) =
∑

e∈P le(fe), where le is the latency function for edge

e and fe is the amount of flow that goes through e. In fact, the flow f is the

combination of a good flow fG
e and a malicious flow fM

e , so le is in fact a function
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le(f
G
e , fM

e ) : R
2
+ → R+. We also let P be the set of all available paths in the

network and assume that for every source-sink pair there is at least one path

joining the source to the sink. The cost for a flow f = (fG, fM ) through edge e

is given by a function ce : R
2
+ → R+, defined as

ce(F
G
e , fM

e ) := fG
e · le(f

G
e , fM

e ).

Note that this cost function gives the cost inflicted on the good flow. Let

C(fM , fG) :=
∑

e∈E

ce(f
M
e , fG

e ))

be the social cost of f . We will use the shorthand (G, r, F, l) to describe an

instance of the model.

Commodities i = 1 . . . k model selfish, but otherwise ‘good’ users who want to

just use the network in order to satisfy their demands with the smallest possible

cost (i.e. latency for every unit of flow routed). Commodity M models a selfish

‘malicious’ user who wants to use his own flow F in such a way that will do the

biggest possible damage to the total cost of the good players. Intuitively, the

malicious user that we define later more precisely tries to route his/her flow so

that the social cost C(·) is as big as possible. Of course this is just a specific

malicious behavior we try to model here. This doesn’t preclude the modelling of

other kinds of malicious users in some future work.
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For the definition of the classic traffic or Wordrop equilibrium model 1, we

use the following general formulation by Aashtiani and Magnanti [AM81]:

Definition 1 A flow f = ∪P∈PfP is at Wardrop equilibrium for instance

(G, r, F, l) iff it satisfies the following constraints:

(TP (f) − ui)fP = 0 for all P ∈ Pi, i = 1 . . . k (1)

(TP (f) − uM )fP = 0 for all P ∈ PM

TP (f) − ui ≥ 0 for all P ∈ Pi, i = 1 . . . k

TP (f) − uM ≥ 0 for all P ∈ PM

∑

P∈Pi

fP − ri = 0 for all i = 1 . . . k

∑

P∈PM

fP − F = 0

f ≥ 0

u ≥ 0

1 We use this classic (amongst the OR community) definition of Wardrop (or traffic) equilib-

ria since we find it less cumbersome for our exposition (usually this definition is also formulated

as a variational inequality- we use the equivalent formulation of [AM81] again because it facili-

tates our exposition.) Another definition of equilibria (as used for example in [RT02], [Rou02])

is the notion of Nash equilibria, where each commodity is comprised by individual users, each of

them carrying an infinitesimal amount of the flow. Wardrop equilibria can be seen as the limit

of Nash equilibria when this infinitesimal amount of flow tends to 0, as is shown in [HM85]. To

avoid confusion, note that when we refer to ‘users’, we refer to commodities specified by their

Origin-Destination pairs, their (fixed) demands, and the set of network paths they are allowed

to use. We make no reference to Nash equilibria or infinitesimal users as defined in this kind

of equilibria.
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where TP is the delay time or general disutility for path P , fP is the flow through

path P , and u = (u1, . . . , uk, uM ) is the vector of shortest travel times (or gen-

eralized costs) for the commodities.

Note that TP does not need to be the same function for all paths P (and, indeed,

it will be a different function for the good and the malicious users). Also we

emphasize that TP need not be the path latency (the latter is given by function

lP ). In what follows we define precisely the functions TP for all users, and thus

we define completely the equilibrium model of Definition 1.

The first four equations are the conditions for the existence of a Wardrop

traffic equilibrium. They require that the general disutility for all paths P that

carry flow fP > 0 is the same and equal to u for every user, and less or equal

to the disutility of any path with zero flow. Any flow that complies with this

definition of a Wardrop equilibrium, also satisfies the following alternative char-

acterization:

Lemma 1. A flow that is feasible for instance (G, r, F, l) is a Wardrop equilib-

rium iff for every commodity i (i can be the malicious commodity M) and every

pair of paths P1, P2 ∈ Pi with fP1
> 0, TP1

(f) ≤ TP2
(f).

2.1. Existence of Wardrop equilibrium

The model of Definition 1 is very general. It turns out that the existence of

a Wardrop equilibrium in this model can also be proved under very general

assumptions. More specifically, the following theorem follows immediately from

Theorem 5.4 in [AM81]:
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Theorem 1. Suppose that TP is a positive continuous function for all P ∈ P.

Then there is a flow that satisfies the conditions of Definition 1.

A function is positive if its values are positive. In order to make sure that the

disutility functions we use later are positive, and therefore a Wardrop equilibrium

always exists, from now on we make the following natural assumption:

Assumption 1 We assume that the latency function for every edge is an in-

creasing function of the total flow, i.e. as the good or malicious (or both) flows

increase for an edge, its latency also increases.

Assumption 1 will be used throughout this paper in order to make sure that

Theorem 1 holds, and a Wordrop equilibrium exists.

3. Social optimum when malicious users are present

The existence of a malicious user forces us to redefine the notion of ‘social opti-

mum’ [P20]. In addition to a set of users that collectively strive to minimize their

collective cost, we have a user who strives to maximize this same cost. Therefore

we define the ‘socially best’ flow in terms of a minimax problem. Note that in

such a setting the notion of an “optimal flow” is replaced by the notion of a

flow “in equilibrium”. Therefore our work compares a Wardrop equilibrium to a

minimax equilibrium (as opposed to the comparison of a Wardrop equilibrium

to an optimal solution of a minimization problem, as in [RT02]).

In what follows, we denote the flow of the good users by fG, and the flow

of the malicious user by fM (recall that we denote by f the total flow). We
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consider the following minimax formulation:

max
fM

min
fG

∑

e∈E

ce(f
M
e , fG

e ) subject to: (MINMAX)

∑

P∈Pi

fG
P = ri ∀i ∈ {1, . . . , k}

∑

P∈PM

fM
P = F

fG
e =

∑

P∈P:e∈P

fG
P ∀e ∈ E

fM
e =

∑

P∈P:e∈P

fM
P ∀e ∈ E

fG
P ≥ 0 ∀P ∈ P

fM
P ≥ 0 ∀P ∈ P

where ce(f
M
e , fG

e ) is the cost of flow (fM
e , fG

e ) passing through edge e, i.e., the

objective function is C(fM , fG). We call this minimax formulation (MINMAX).

The solution(s) to (MINMAX) are called saddle-points. The saddle-points are

defined as follows:

Definition 2 A flow (f̄G, f̄M ) is said to be a saddle-point of C (with respect to

maximizing in fM and minimizing in fG) if

C(f̄G, fM ) ≤ C(f̄G, f̄M ) ≤ C(fG, f̄M ), ∀fM , ∀fG. (2)

We also refer to (MINMAX) saddle-points as (MINMAX) equilibria.
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3.1. Characterization of saddle-points

A saddle-point is not always guaranteed to exist. But under certain assumptions,

we can show that (at least one) saddle-point exists. We assume the following for

the cost function C(fM , fG):

Assumption 2 The functions ce(f
M
e , fG

e ) are continuous, differentiable, con-

vex with respect to fG, and concave with respect to fM for all e ∈ E.

An example of such functions is the linear latency functions case le(f
G
e , fM

e ) :=

ae(f
G
e + fM

e ) + be studied later. Following the methods of Dafermos and Spar-

row [DS69], and under Assumption 2, we can prove the following theorem for

the properties of saddle-points for (MINMAX).

Theorem 2. Under Assumption 2, a feasible flow f̄ = (f̄M , f̄G) is a solution

(saddle-point) to the minimax problem (MINMAX) if and only if it has the

following properties:

∑

e∈P

∂ce

∂fG
e

(f̄) ≤
∑

e∈P ′

∂ce

∂fG
e

(f̄), ∀i = 1 . . . k, ∀P, P ′ ∈ Pi with f̄G
P > 0 (3)

∑

e∈P

∂ce

∂fM
e

(f̄) ≥
∑

e∈P ′

∂ce

∂fM
e

(f̄), ∀P, P ′ ∈ PM with f̄M
P > 0 (4)

In particular, the above imply that for every ‘good’ user i = 1, . . . , k, and the

malicious user we have:

∑

e∈P

∂ce

∂fG
e

(f̄) =
∑

e∈P ′

∂ce

∂fG
e

(f̄) = Ai, ∀P, P ′ ∈ Pi with both f̄G
P , f̄G

P ′ > 0 (5)

∑

e∈P

∂ce

∂fM
e

(f̄) =
∑

e∈P ′

∂ce

∂fM
e

(f̄) = B, ∀P, P ′ ∈ PM with both f̄M
P , f̄M

P ′ > 0 (6)
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Proof. The proof is a straight-forward extension to the proof of Theorem 1.2

in [DS69]. First we prove the sufficiency of conditions (3), (4), i.e. we prove that

if conditions (3), (4) are satisfied by a feasible flow f̄ = (f̄G, f̄M ), then f̄ is a

saddle point for (MINMAX). In order to show this, we have to show two things:

1. For every feasible flow f̄ + ∆f̄G = (f̄G + ∆f̄G, f̄M ), C(f̄) ≤ C(f̄ + ∆f̄G)

(i.e. if we perturb the flow of the ‘good’ users by ∆f̄G by reallocation, so

that the new flow is still feasible, the total cost cannot decrease).

2. For every feasible flow f̄ + ∆f̄M = (f̄G, f̄M + ∆f̄M ), C(f̄) ≥ C(f̄ + ∆f̄M )

(i.e. if we perturb the flow of the malicious user by ∆f̄M by reallocation, so

that the new flow is still feasible, the total cost cannot increase).

Here we show (1). Showing (2) is completely analogous.

The change of the cost because of the reallocation of the ‘good’ flow is

∆C =
∑

e∈E

[

ce(f̄
G
e + ∆f̄G

e , f̄M
e ) − ce(f̄

G
e , f̄M

e )
]

Assumption 2 implies that the functions ∂ce

∂fG
e

(fG
e , fM

e ) are non-decreasing

functions of fG
e (because of the convexity of ce(f

G
e , fM

e ) with regard to fG
e ).
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Therefore we can apply the Mean Value Theorem with respect to fG
e to get

∆C ≥
∑

e∈E

∂ce

∂fG
e

(f̄G
e , f̄M

e ) · ∆f̄G
e

=

k
∑

i=1

∑

P∈Pi

∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) · ∆f̄G
e

=

k
∑

i=1

∑

P∈Pi

∆f̄G
P ·

∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e )

≥

k
∑

i=1

∑

P∈Pi

∆f̄G
P · Ai

=

k
∑

i=1

Ai

∑

P∈Pi

∆f̄G
P = 0

where the second inequality is due to (3) and (5) together with the fact that if

f̄G
P = 0 then ∆f̄G

P ≥ 02, and the last equality is due to the fact that the flow for

user i was reallocated, but its total value didn’t change (it remained ri), since

it remained feasible.

By repeating the same argument for the case of reallocation of flow for the

malicious user (and by using the concavity of ce with respect to fM
e ), we can

show that the total cost cannot decrease. Therefore conditions (3) and (4) are

sufficient.

In order to prove the necessity of (3) and (4), assume that (f̄G, f̄M ) is a saddle

point for (MINMAX) and condition (3) doesn’t hold, i.e., there are paths P, Q

with f̄G
P > 0 and such that

∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) −
∑

e∈Q

∂ce

∂fG
e

(f̄G
e , f̄M

e ) = ε > 0 (7)

2 Hence ∆f̄G
P ·

P

e∈P
∂ce

∂fG
e

(f̄G
e , f̄M

e ) ≥ ∆f̄G
P · Ai for all P ∈ Pi.
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If a portion ∆f of f̄G
P is reallocated to path Q, the change of the total cost will

be

∆C =
∑

e∈P\Q

[ce(f̄
G
e −∆f, f̄M

e )−ce(f̄
G
e , f̄M

e )]+
∑

e∈Q\P

[ce(f̄
G
e +∆f, f̄M

e )−ce(f̄
G
e , f̄M

e )]

(8)

From the Mean Value Theorem for the convex function (on fG
e ) ce(f

G
e , fM

e ) we

have that

ce(f̄
G
e − ∆f, f̄M

e ) − ce(f̄
G
e , f̄M

e ) ≤ −
∂ce

∂fG
e

(f̄G
e − ∆f, f̄M

e ) · ∆f

ce(f̄
G
e + ∆f, f̄M

e ) − ce(f̄
G
e , f̄M

e ) ≤
∂ce

∂fG
e

(f̄G
e + ∆f, f̄M

e ) · ∆f

and therefore (8) implies that

∆C ≤



−
∑

e∈P\Q

∂ce

∂fG
e

(f̄G
e − ∆f, f̄M

e ) +
∑

e∈Q\P

∂ce

∂fG
e

(f̄G
e + ∆f, f̄M

e )



∆f. (9)

Since functions
∑

e∈P\Q
∂ce

∂fG
e

(f̄G
e − ∆f, f̄M

e ) and
∑

e∈Q\P
∂ce

∂fG
e

(f̄G
e + ∆f, f̄M

e )

are continuous on ∆f , we can choose 0 < ∆f ≤ fG
P such that

∑

e∈P\Q

∂ce

∂fG
e

(f̄G
e − ∆f, f̄M

e ) >
∑

e∈P\Q

∂ce

∂fG
e

(f̄G
e , f̄M

e ) −
ε

3

∑

e∈Q\P

∂ce

∂fG
e

(f̄G
e + ∆f, f̄M

e ) <
∑

e∈Q\P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) −
ε

3

Hence we have that

∆C <



−
∑

e∈P\Q

∂ce

∂fG
e

(f̄G
e , f̄M

e ) +
∑

e∈Q\P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) +
2ε

3



∆f

=



−
∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) +
∑

e∈Q

∂ce

∂fG
e

(f̄G
e , f̄M

e ) +
2ε

3



∆f

(7)
< −

ε

3
∆f < 0
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which contradicts the fact that (f̄G, f̄M ) is a saddle point. Hence (3) must hold.

In exactly the same way, we can show that (4) must hold as well. ut

Conditions (3) and (4) are simply the Kuhn-Tucker conditions for prob-

lem (MINMAX) [Roc70]. We sketched the proof of Theorem 2 here because the

same proof techniques apply in the proof of Theorem 8 later.

4. Wardrop vs. Minimax equilibria

The saddle-points of (MINMAX) give us the social cost achieved in a system with

both good and malicious users, provided there is a central authority that can

direct the flow of each good user so that the total cost is the minimum possible,

in the presence of an all-knowing malicious coordinator who wants to maximize

the social cost. This cost, which is a quantitative estimate of the ‘social cost’ that

can be achieved by a central coordinator, may be quite different to the total cost

achieved by the lack of such a coordinator, i.e. by allowing each user (good or

malicious) to act selfishly3. Here, we define natural selfish behaviors for both the

good and malicious users, in accordance with the general model of Definition 1.

Our aim will be to estimate how far can selfishness push the total cost from the

optimal coordinated one (i.e. the best saddle-point of (MINMAX)). In order to

do this, we use the new notion of ‘social optimum’ in the definition of the price of

3 As was pointed out by an anonymous reviewer, one can see the good and malicious coor-

dinators as two selfish players as well, playing at a level above the coordinated users. But the

users under coordination are no longer allowed to act selfishly.
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anarchy or coordination ratio, defined by Koutsoupias and Papadimitriou [KP99]

and used by Roughgarden and Tardos [RT02].

Definition 3 (Coordination ratio) Let (G, r, F, l) be an instance of the rout-

ing problem on network G with latency function le(·) for every edge e, with k

good users with demands ri, i = 1, . . . , k and a malicious user with flow F . Then

the coordination ratio ρ(G, r, F, l) for this instance is defined as follows:

ρ(G, r, F, l) =
worst Wardrop equilibrium

best saddle-point of (MINMAX)
. (10)

In case the Wardrop equilibrium or/and the (MINMAX) equilibrium is/are

unique, then the ‘worst’ or/and ‘best’ in the definition above can obviously be

omitted. For the class of latency functions we study here, the Wardrop equilibria

values need not be the same, since the bounds for the coordination ratio proven

later also hold if ‘worst’ is replaced by ‘any’ in Definition 3. For the saddle-

point values, we either prove(Theorem 5) or it follows from our assumptions (cf.

discussion at the beginning of Section 7.2) that they all have the same cost.

But in other cases, we should emphasize that it may be very difficult (or even

impossible) to characterize the ‘best saddle-point of (MINMAX)’ (e.g. when the

set of these equilibria is not convex, as is usually the case).

Why is this definition of coordination ratio natural? We view the

coordination ratio as a measure of comparison between the network performance

when there is an all-knowing central coordinating authority for the good as well

as the malicious users, and the network performance when all users are selfish.

Note that in both sides of this comparison we don’t get rid of the malicious
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behavior. We consider this to be natural, in view of the fact that the existence

of malicious behavior is independent of the level of coordination. This becomes

somewhat clearer when one starts thinking what can happen if, for example,

malicious behavior is not allowed in the coordinated version (note that in this

case instead of (MINMAX) we get the usual minimization definition of social

cost.) If this is the case, how should the flow of the malicious user be treated?

Should it become the flow of one more good user, assuming that the malicious

user will still want to route his flow regardless? Or should it disappear from

the network, since in the case a central authority exists a malicious user has no

incentive to send any flow? Moreover, one should see (MINMAX) not as another

game (although it can also be seen as such), but as an optimization problem for

two central coordinators: a good one that tries to minimize his/her cost, and

a malicious one, that tries to maximize the good coordinator’s cost. Hence our

“coordination ratio” as defined above tries to capture exactly the coordination

ratio without removing the malicious behavior, and therefore we believe it is a

quite natural definition. As is mentioned in the open problems section, currently

we do not have a persuading definition for the ‘price of evil’, i.e., we don’t

know what would be the meaning of a comparison between a selfish setting with

malicious users and a centrally coordinated network without malicious users. In

our opinion, this is the greatest modelling challenge this work leaves open.

Effective malicious users So far we have not specified exactly what the

strategy of a malicious user should be. We have only assumed that intuitively

a malicious user wants to hurt the performance of the good users. But what
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seems intuitively to be malicious behavior, may turn out to be beneficial. A

simple example is the Braess paradox, shown in Figure 1. Suppose that there is

one good user (commodity) with demand equal to 6, and edge latency functions

that depend on the flow x that goes through an edge as shown in the figure. Then

if the network (a) is used, at equilibrium the flow will be split evenly between

paths 1 → 2 → 4 and 1 → 3 → 4, with a latency of 83 for both paths, and a total

cost of 498. But if network (b) is used, then at equilibrium the flow will split

in three equal parts, using paths 1 → 2 → 4, 1 → 3 → 4 and 1 → 2 → 3 → 4,

each with a latency of 92, for an overall cost of 552 > 498. This well known

phenomenon can be reversed, if we consider also a malicious user for network

(b), who (naively) believes that edge (2, 3) actually helps the traffic, for the same

reasons that the well-intentioned network builders put the edge there in the first

place. Hence the malicious user appropriates the use of vertices 2, 3 and routes

his flow from 2 to 3. Suppose that he has 1000 units of flow at his disposal (so

he has overwhelming power in his hands!) Routing this flow will force the good

user to revert to the behavior he exhibited in network (a), which in fact is an

improvement! Hence it is obvious that not all models of ‘malicious’ behavior are

really malicious. Here we are interested only in malicious users that really hurt

the performance of a network, i.e., they are effective:

Definition 4 A malicious user for (G, r, F, l) is effective iff ρ(G, r, F, l) ≥ 1.

As part of our results, we show that the malicious user behavior we consider in

the next section is effective.
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Fig. 1. The Braess paradox.

5. A specific model of good and malicious behavior

According to the model of Definition 1, the selfish users will base their decisions

for picking flow paths on their individual notion of general disutility TP , for

every path P . This disutility is very easy to be defined for the ‘good’ users: it is

simply the latency of the path, i.e.

TP (fG, fM ) := lP (fG, fM ) (=
∑

e∈P

le(fe)), ∀i = 1, . . . , k, ∀P ∈ Pi (11)

For the malicious user though, the form of his general disutility in fact deter-

mines how powerful or weak this user can be. In this paper we study malicious

players that base their decisions exclusively on the costs of individual paths. The

malicious player exhibits a rather greedy behavior, and does not (or cannot4)

take into account the impact of his decisions on the whole network (e.g. by solv-

ing (MINMAX) so that his allocation of flow will have the worst impact on the

4 maybe because of lack of resources, e.g. time in an on-line scenario
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‘social cost’ he might be able to achieve more damage than looking greedily at

the costs of individual paths). Let R :=
∑K

i=1 ri. Define

M(r, F ) := 1 +
∑

e∈E

R ·
∂le

∂fM
e

R, 0.

The definition of M(·) may seem cryptic, but we need it in order to be able to

guarantee the existence of a Wardrop equilibrium (Theorem 1) when we define

the disutility functions for the malicious user.

Lemma 2. M(r, F ) >
∑

e∈E fG
e · ∂le

∂fM
e

(fG
e , 0) for any fG that satisfies the given

(good) demands.

Proof. Since the edge latency functions le are concave with respect to fM
e (be-

cause the ce’s are concave with respect to fM
e from Assumption 2), the function

∂le
∂fM

e

(fG
e , fM

e ) is decreasing with respect to fM
e , so its maximum value for a par-

ticular fG
e is ∂le

∂fM
e

(fG
e , 0), which is also positive because le increases when fM

e

increases (Assumption 1.) Hence

∑

e∈E

fG
e ·

∂le
∂fM

e

(fG
e , 0) ≥

∑

e∈E

fG
e ·

∂le
∂fM

e

(fG
e , fM

e )

The same reasoning can be used to show that

∑

e∈E

fG
e ·

∂le
∂fM

e

(R, 0) ≥
∑

e∈E

fG
e ·

∂le
∂fM

e

(fG
e , 0)

and then the lemma follows easily. ut

The general disutility for the malicious user paths is defined as follows:

TP (fG, fM ) := M(r, F ) −
∑

e∈P

fG
e ·

∂le
∂fM

e

(fG
e , fM

e ), ∀P ∈ PM (12)



22 George Karakostas, Anastasios Viglas

In other words, the malicious player always tries to send his flow through a path

with the biggest possible congestion increase for every unit of flow he allocates to

this path, i.e. the malicious player follows a “best value for your money” policy.

Lemma 2 implies that TP (fG, fM ) > 0, ∀P ∈ PM .

6. Bicriteria Bound

As in the case of [RT02] we can prove a “bicriteria” result that gives an upper

bound for the ratio between the cost at Wardrop equilibrium and the cost of the

saddle-point solution.

Theorem 3. If f = (fG, fM ) is a flow at Wardrop Equilibrium for (G, r, F, l)

and f̂ = (f̂G, f̂M ) is a saddle-point of (MINMAX) for (G, 2r, F, l) then C(f) ≤

C(f̂).

Proof. Recall that for any flow f = (fG, fM )

C(f) =
∑

e

fG
e · le(f

G
e , fM

e ).

If f is at Wardrop equilibrium, then the total latency along any flow path P for

good user i from si to ti, i = 1 . . . , k is the same, denoted by Li(f)5, and the

total cost can be expressed as C(f) =
∑

i Li(f)ri. Define a new latency function

l̄e(x, y) as follows:

5 Recall that is the same as TP for user i.
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l̄e(x, y) =















































le(x, y) if x > fG
e and y > fM

e

le(x, fM
e ) x > fG

e and y ≤ fM
e

le(f
G
e , y) x ≤ fG

e and y > fM
e

le(f
G
e , fM

e ) x ≤ fG
e and y ≤ fM

e

(13)

Note that the difference l̄e(x, fM
e ) − le(x, fM

e ) is zero for x ≥ fG
e . Therefore

the following is true for all x ≥ 0:

x(l̄e(x, fM
e ) − le(x, fM

e )) ≤ le(f
G
e , fM

e )fG
e . (14)

The new latency functions give a new cost (cost with respect to l̄) that is not

too far from the real cost:

∑

e

l̄e(f̂
G
e , fM

e )f̂G
e − C(f̂G, f̂M ) ≤

∑

e

l̄e(f̂
G
e , fM

e )f̂G
e − C(f̂G, fM )

=
∑

e

f̂G
e (l̄e(f̂

G
e , fM

e ) − le(f̂
G
e , fM

e ))

≤
∑

e

fG
e · le(f

G
e , fM

e )

= C(f)

(15)

The first inequality is due to the fact that f̂ = (f̂G, f̂M ) is a saddle-point for

(G, 2r, F, l), i.e. C(f̂G, fM ) ≤ C(f̂G, f̂M ) since (f̂G, fM ) is a feasible solution

for (MINMAX). The second inequality comes from (14) for x := f̂G
e .

Consider any path P ∈ Pi. From the definition of l̄e we have that

∑

e∈P

l̄e(0, fM
e ) =

∑

e∈P

le(f
G
e , fM

e ) = Li(f).
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and from the fact that l̄e(x, fM
e ) is an increasing function of x we get

∑

e∈P

l̄e(f̂
G
e , fM

e ) ≥
∑

e∈P

l̄e(0, fM
e ).

Therefore:

∑

e∈E

l̄e(f̂
G
e , fM

e ) · f̂G
e ≥

∑

i

∑

P∈Pi

f̂G
P

∑

e∈P

l̄e(f̂
G
e , fM

e )

≥
∑

i

∑

P∈Pi

Li(f)f̂G
P

=
∑

i

2Li(f)ri = 2C(f)

(16)

By combining (15) with (16) we get C(f) ≤ C(f̂). ut

The same proof also gives the following result:

Theorem 4. If f = (fG, fM ) is a flow at Wardrop Equilibrium for (G, r, F, l)

and f̂ = (f̂G, f̂M ) is a saddle-point of (MINMAX) for (G, (1 + γ)r, F, l), γ > 0

then C(f) ≤ 1
γ C(f̂).

At a first glance, it seems rather surprising that the bicriteria bounds of [RT02]

are quite robust against the existence of a malicious user. But if we look closer to

the quantities compared in the theorems above, we see that while the demands

of the good users are increased, the flow quantity at the disposal of the malicious

user remained the same. Intuitively, the malicious user has the same power to

disrupt the good users in both cases, and therefore if he settles with some strategy

to do so for the initial good demands, this strategy should work about as well
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when the latter demands increase. The same goes for the good users’ strategies

as well.

7. Upper bounds

In this section we use the techniques of [RT02],[Rou02] to derive upper bounds for

the coordination ratio. First (Section 7.1), we consider linear latency functions

in detail, mainly to show that the techniques of [RT02],[Rou02] apply directly to

our setting. This is extended to the more general setting of [Rou02] in Section

7.2. In both cases we prove that the malicious user as defined in Section 5 is

effective.

7.1. Special case: linear latency functions

In this section we deal with the special case of linear edge latency functions, i.e.

for every edge e ∈ E, le(f
G
e , fM

e ) = ae(f
G
e + fM

e ) + be for some ae > 0, be > 0.

Note that we assume that the latency for an edge is positive even if no flow

passes through it. This is a quite natural assumption (in all physical systems

there is always some delay in moving from point A to point B, even if there is

no congestion at all), and allows Theorem 1 to apply in this case. We modify

our shorthand notation to (G, r, F, a, b) to include the linear coefficient vectors.

In this special case we have

– TP (fG, fM ) :=
∑

e∈P (aef
G
e + aef

M
e + be), ∀i = 1, . . . , k, ∀P ∈ Pi

– TP (fG, fM ) := M(r, F ) −
∑

e∈P aef
G
e , ∀P ∈ PM
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Lemma 1 and Theorem 2 take a more specific form for the linear case:

Lemma 3. Let le(f
G
e , fM

e ) = ae(f
G
e +fM

e )+be with ae > 0, be > 0 be the latency

function for every edge e ∈ E of G.

(a) a flow f = (fG, fM ) is at Wardrop equilibrium iff

– for all users i = 1, . . . , k and paths P, P ′ ∈ Pi with fP > 0

∑

e∈P

(

aef
G
e + aef

M
e + be

)

≤
∑

e∈P ′

(

aef
G
e + aef

M
e + be

)

– for all paths P, P ′ ∈ PM with fP > 0

∑

e∈P

aef
G
e ≥

∑

e∈P ′

aef
G
e

(b) a flow f̄ = (f̄G, f̄M ) is an equilibrium (saddle-point) for (MINMAX) iff

– for all commodities i = 1, . . . , k and paths P, P ′ ∈ Pi with f̄P > 0

∑

e∈P

(

2aef̄
G
e + aef̄

M
e + be

)

≤
∑

e∈P ′

(

2aef̄
G
e + aef̄

M
e + be

)

– for all paths P, P ′ ∈ PM with f̄P > 0

∑

e∈P

aef̄
G
e ≥

∑

e∈P ′

aef̄
G
e

Note that the conditions for the malicious user paths are exactly the same in

both cases.

For this special form of the edge latency functions, we can prove that the

saddle-point cost for (MINMAX) is unique:

Theorem 5. If f = (fG, fM ) and f̄ = (f̄G, f̄M ) are two saddle-points of

(MINMAX) with linear latency functions, then fG = f̄G and C(fG, fM ) =

C(f̄G, f̄M ).
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Proof. First we concentrate on a particular good user i and a particular flow path

P ∈ Pi. Theorem 2 implies that the following two complementarity conditions

hold:

fG
P

[

∑

e∈P

∂ce

∂fG
e

(fG
e , fM

e ) − Ai

]

= 0

f̄G
P

[

∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) − Āi

]

= 0

Also, Theorem 2 implies that

∑

e∈P

∂ce

∂fG
e

(fG
e , fM

e ) ≥ Ai

∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) ≥ Āi

From the above, it is clear that

(fG
P − f̄G

P )

[

∑

e∈P

∂ce

∂fG
e

(fG
e , fM

e ) − Ai −
∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) + Āi

]

≤ 0

By summing over all paths in Pi we get

∑

P∈Pi

(fG
P −f̄G

P )

[

∑

e∈P

∂ce

∂fG
e

(fG
e , fM

e ) −
∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e )

]

+(Āi−Ai)·
∑

P∈Pi

(fG
P −f̄G

P ) ≤ 0

and therefore

∑

P∈Pi

(fG
P − f̄G

P )

[

∑

e∈P

∂ce

∂fG
e

(fG
e , fM

e ) −
∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e )

]

≤ 0

due to the fact that for both flows
∑

P∈Pi
fG

P =
∑

P∈Pi
f̄G

P = ri. By summing

over all users i = 1, . . . , k we get

∑

e∈E

(fG
e − f̄G

e )

[

∂ce

∂fG
e

(fG
e , fM

e ) −
∂ce

∂fG
e

(f̄G
e , f̄M

e )

]

≤ 0 (17)
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We repeat the same arguments for the malicious user. More specifically, from

Theorem 2 we get that

fM
P

[

∑

e∈P

∂ce

∂fM
e

(fG
e , fM

e ) − B

]

= 0

f̄M
P

[

∑

e∈P

∂ce

∂fM
e

(f̄G
e , f̄M

e ) − B̄

]

= 0

Also, Theorem 2 implies that

∑

e∈P

∂ce

∂fG
e

(fG
e , fM

e ) ≤ B

∑

e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) ≤ B̄

Exactly as before we can show that

∑

e∈E

(fM
e − f̄M

e )

[

∂ce

∂fM
e

(fG
e , fM

e ) −
∂ce

∂fM
e

(f̄G
e , f̄M

e )

]

≥ 0 (18)

By substituting the cost function ce(f
G
e , fM

e ) = aef
G
e

2
+ aef

G
e fM

e + bef
G
e

in (17), (18), we get

2
∑

e∈E

ae(f
G
e − f̄G

e )2 +
∑

e∈E

ae(f
G
e − f̄G

e )(fM
e − f̄M

e ) ≤ 0 (19)

∑

e∈E

ae(f
G
e − f̄G

e )(fM
e − f̄M

e ) ≥ 0 (20)

which implies that fG
e = f̄G

e , ∀e ∈ E. But this implies that C(fG, fM ) =

C(f̄G, f̄M ), because otherwise, for example if C(fG, fM ) < C(f̄G, f̄M ), we

would also have C(f̄G, fM ) = C(f̄G, f̄M ), and f̄ is not a saddle-point, con-

tradiction. ut

Lemma 3 implies the following



Equilibria for networks with malicious users 29

Lemma 4. Let (fG, fM ) be a Wardrop equilibrium flow for instance

(G, r, F, a, b). Then the following are true:

(a) the flow (fG/2, fM) is a (MINMAX) equilibrium for (G, r/2, F, a, b)

(b) the flow (fG, fM/2) is a (MINMAX) equilibrium for (G, r, F/2, 2a, b)

(c) ∂cP

∂fG (fG/2, fM ) = lP (fG, fM ) for all P ∈ P.

Proof. Parts (a), (b) follow directly from Lemma 3. For part (c), note that for

each path P

lP (fG, fM ) =
∑

e∈P

(aef
G
e + aef

M
e + be)

and

∂cP

∂fG
(fG/2, fM) =

∑

e∈P

(2aex + aey + be)

∣

∣

∣

∣

∣

(x=fG/2,y=fM )

.

ut

In what follows, let ∆G
i (f̄G, f̄M ) := ∂ci

∂fG (f̄G, f̄M ) be the minimum marginal cost

of increasing f̄G on an si − ti path, and Li(f
G, fM ) is the disutility for user i

in Wardrop equilibrium (fG, fM ).

Lemma 5. Let (f̄G, f̄M ) be a (MINMAX) equilibrium for instance (G, r, F, a, b).

Then for any δ > 0 a feasible flow for instance (G, (1 + δ)r, F, a, b) has cost at

least

C(f̄G, f̄M ) + δ

k
∑

i=1

∆G
i (f̄G, f̄M )ri.

Proof. Lemma 4.4 in [RT02]. ut

We now prove our main theorem for the coordination ratio in the linear case.
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Theorem 6. For instance (G, r, F, a, b), 1 ≤ ρ(G, r, F, a, b) ≤ 4
3 .

Proof. Let (fG, fM ) be a Wardrop equilibrium flow and (f̄G, f̄M ) a (MINMAX)

equilibrium in (G, r, F, a, b). Then, according to Lemma 4, flow (fG/2, fM ) is a

(MINMAX) equilibrium for instance (G, r/2, F, a, b) and flow (fG, fM/2) is a

(MINMAX) equilibrium for instance (G, r, F/2, 2a, b). Therefore

C(f̄G, f̄M ) ≥ C(f̄G, fM )

≥ C(fG/2, fM) +

k
∑

i=1

∆G
i (fG/2, fM )

ri

2

= C(fG/2, fM) +
1

2

k
∑

i=1

Li(f
G, fM )ri

= C(fG/2, fM) +
1

2
C(fG, fM )

(21)

where the first inequality comes from the fact that (f̄G, f̄M ) is a (MIN-

MAX) equilibrium for (G, r, F, a, b), the second inequality holds because of Lem-

mata 4(a) and 5, the third equality is due to Lemma 4(c), and the fourth equality

holds because in a Wardrop equilibrium (fG, fM ) the latency for every si − ti

path that carries some flow is equal to Li(f
G, fM ).

For the cost C(fG/2, fM) of the (MINMAX) equilibrium for instance

(G, r/2, F, a, b), we have

C(fG/2, fM) =
∑

e∈E

(
1

4
aef

G
e

2
+

1

2
aef

G
e fM

e +
1

2
bef

G
e )

≥
1

4

∑

e∈E

(aef
G
e

2
+ aef

G
e fM

e + bef
G
e )

=
1

4
C(fG, fM )

(22)

From inequalities (21), (22) we get C(f̄G, f̄M ) ≥ 3
4C(fG, fM ), therefore

ρ(G, r, F, a, b) ≤ 4
3 .
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For the lower bound of the ratio we have:

C(f̄G, f̄M ) ≤ C(fG, f̄M )

=
∑

e∈E

(ae(f
G
e )2 + aef

G
e f̄M

e + bef
G
e )

=
∑

e∈E

(2ae(f
G
e )2 + 2aef

G
e

f̄M
e

2
+ bef

G
e ) −

∑

e∈E

ae(f
G
e )2

= C(fG,
f̄M

2
) −

∑

e∈E

ae(f
G
e )2

≤ C(fG, fM/2) −
∑

e∈E

ae(f
G
e )2

= C(fG, fM )

where C(fG, f̄M

2 ) in the fourth line is the cost of flow (fG, f̄M

2 ) for instance

(G, r, F/2, 2a, b), and the inequality in the fifth line is due to the fact that flow

(fG, fM/2) is a (MINMAX) equilibrium for instance (G, r, F/2, 2a, b). Hence

1 ≤ ρ(G, r, F, a, b). ut

Note that the lower bound for the coordination ratio is tight, since

ρ(G, r, F, a, b) = 1 if G is just a path with the sources for all users in one end, and

all the sinks in the other. Note that the upper bound is also tight, since [RT02]

show that this bound is tight when there are no malicious users (F = 0).

7.2. More general latency functions

The techniques used in the previous section for upper-bounding the coordina-

tion ratio were a straight-forward extension of the techniques in [RT02]. In fact,

we can invoke the techniques of [Rou02] to obtain upper-bounds for much more
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general latency functions. But before we generalize the results of the previous sec-

tion, we have to assume that a saddle-point of (MINMAX) exists. Also we don’t

give a direct proof of the uniqueness of the saddle-points value for (MINMAX)

like Theorem 5, but we will assume that Assumption 2 holds, and this implies

uniqueness of the saddle-value (cf. [Roc70] Chapter 36, especially Lemma 36.2.)

Definition 5 ([Rou02], Def. 3.1) A collection L of latency functions is stan-

dard if it contains a non-zero function and if for each l ∈ L, the function x · l(x)

is convex on [0, +∞).

In our setting, fG
e plays the role of x and le(f

G
e , fM

e ) plays the role of l(x) in the

definition above (as well as in the two definitions below.) For this very general

family of latency functions l, Roughgarden [Rou02] defines the anarchy value

α(l) of l, that turns out to capture exactly the notion of the price of anarchy for

l. In the following definition, l̂ is the good marginal cost function for l, i.e., for

each edge e l̂e(f
G
e ) = ∂

∂fG
e

fG
e le(f

G
e , fM

e ).

Definition 6 ([Rou02], Def. 3.2) Let l be a non-zero latency function such

that x · l(x) is convex on [0, +∞). The anarchy value α(l) of l is

α(l) = sup
r>0:l(r)>0

[λµ + (1 − λ)]−1

where λ ∈ (0, 1) satisfies l̂(λr) = l(r) and µ ∈ [0, 1] is defined by µ = l(λr)/l(r).

Definition 7 ([Rou02], Def. 3.3) The anarchy value α(L) of a standard class

L of latency functions is

α(L) = sup
06=l∈L

α(l).
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When our latency functions (as functions of fG) belong to a latency functions

class L as the ones above, then the proof of Roughgarden’s [Rou02] main result

carries over to our setting:

Theorem 7. ([Rou02], Thm. 3.9) Let L be a standard class of latency func-

tions with anarchy value α(L), and l(fG, fM ) a latency function that belongs to

L as a function of fG, and satisfies Assumptions 1,2. Let (G, r, F, l) denote an

instance of selfish routing with malicious user. Then ρ(G, r, F, l) ≤ α(L).

We also show that the malicious user defined by (12) is effective when the class

of latency functions L satisfies Assumption 2:

Theorem 8. If L satisfies Assumption 2, then ρ(G, r, F, l) ≥ 1.

Proof. Let f, f̄ be a Wardrop equilibrium and a saddle point respectively for

instance (G, r, F, l). Then, if C(·) is the social cost function, and since f̄ is a

saddle point, we have

C(f̄G, f̄M ) ≤ C(fG, f̄M )

Since f is a Wordrop equilibrium, we have

TP (fG, fM ) ≤ TP ′(fG, f̄M ), ∀P, P ′ ∈ PM with fM
P > 0

which implies that

∑

e∈P

∂ce

∂fM
e

(fG, fM ) ≥
∑

e∈P ′

∂ce

∂fM
e

(fG, f̄M ), ∀P, P ′ ∈ PM with fM
P > 0

Hence, it follows that

C(fG, f̄M ) ≤ C(fG, fM )
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in a way completely analogous to the proof of Theorem 2. ut

Again, this is a tight lower bound for the same reason as in the previous sec-

tion. The tightness of the upper bound is also proven by Roughgarden [Rou02]

(Theorem 4.4.)

8. Discussion and open problems

Our study concentrated on a single malicious user, but it is obvious from the

above that it can be extended to many malicious users (each with his/her own

flow rate and set of available paths PM), just as we can have many good users.

It should be clear though that by allowing a single malicious user, the malicious

behavior is potentially more powerful, because the single malicious user can

allocate any portion of his/her flow rate to a specific set of paths, which is a

subset of the available paths. This is not the case when a particular subset is

allocated to a separate malicious user who must route a specific amount of flow

through them. Therefore, it is not surprising that our results extend to a setting

with many malicious users, since they hold for the potentially more powerful

setting with a single malicious user (and the same set of available paths).

The model presented in our work gives rise to many open problems. It would

be very interesting to present a natural definition and results connecting the so-

cial cost of an equilibrium point in a network with malicious users and the cost

in an equivalent instance without malicious users. This would give a clearer char-

acterization of the negative impact of the presence of malicious flow. The model
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defined in our work gives rise to unique saddle-points and Wardrop equilibria. It

would be interesting to consider a more general model that allows multiple equi-

libria (for example, by adding capacities for the edges in the network [SM03])

and analyze the performance of the system in the presence of malicious users.
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