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Abstract

In this paper we consider the problem of scheduling for energy efficient road-side infrastructure. In certain
scenarios, vehicle locations can be predicted with a high degree of accuracy, and this information can be used to
reduce downlink infrastructure-to-vehicle energy communication costs. The paper first presents off-line scheduling
results which provide lower bounds on the energy needed to satisfy arriving vehicular communication requirements.
We show that the packet-based scheduling case can be formulated as a generalization of the classical single-machine
job scheduling problem with a tardiness penalty, referred to as α-Earliness-Tardiness. A proof is given which shows
that even under a simple distance-dependent exponential radio path loss assumption, the problem is NP-complete.
The remainder of the paper then focuses on timeslot-based scheduling. We formulate this problem as a Mixed
Integer Linear Program (MILP) which is shown to be solvable in polynomial time using a proposed minimum
cost flow graph construction. The paper then introduces three energy efficient online traffic scheduling algorithms
for common vehicular scenarios where vehicle position is strongly deterministic. The first, Greedy Minimum Cost
Flow (GMCF), is motivated by our minimum cost flow graph formulation. The other two algorithms have reduced
complexity compared with GMCF. The Nearest Fastest Set (NFS) scheduler uses vehicle location and velocity
inputs to dynamically schedule communication activity. The Static Scheduler (SS) performs the same task using a
simple position-based weighting function. Results from a variety of experiments show that the proposed scheduling
algorithms perform well when compared to the energy lower bounds in vehicular situations where path loss has a
dominant deterministic component so that energy costs can be estimated. Our results also show that near-optimal
results are possible but come with increased computation times compared to our heuristic algorithms.

I. INTRODUCTION

Vehicular ad hoc networks (VANETs) will become a major commercial force in the near future. These

systems will enable applications ranging from road safety, to those involving context-aware advertising

and in-vehicle Internet media streaming. Recognizing the importance of VANETs, the FCC has licensed

the operation of dedicated short range communication (DSRC) in the 5.9 GHz frequency band [1]. A new

standard for vehicular networks, known as Wireless Access in Vehicular Environment (WAVE), has been

developed based on the IEEE 802.11 wireless LAN standard [2].

VANETs define two modes of communication, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure

(V2I). In the latter case, fixed infrastructure can be used to broadcast safety messages or can be used as a

gateway to the Internet. Vehicular network infrastructure will eventually evolve into a platform which will

permit an even larger variety of mobile applications. Unlike many traditional wireless networks, vehicles
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are often moving very quickly, and may only remain in an RSU radio coverage area for a relatively short

period of time. In addition, since multiple vehicles may be present in the RSU coverage area, the question

arises as to the order with which vehicles should be served. Extensive research has already considered

this problem and various schedulers have been proposed as will be discussed in Section I-A.

In many highway locations, deploying roadside infrastructure is difficult due to the unavailability or

prohibitive expense of wired electrical power. In these situations, an alternative to wired power connections

is to operate some of the RSUs using an energy sustainable source such as solar power. In these types

of node designs, it is well-known that the energy provisioning costs are a strong function of average

power consumption and that they can be a significant fraction of the total node cost [3][4]. This motivates

the need for energy efficient vehicular roadside infrastructure. In vehicular infrastructure, proper traffic

scheduling can lead to significant improvements in energy efficiency due to the strong dependence of

power consumption on RSU-to-vehicle distance [5].

In this paper, energy efficient road-side unit scheduling is considered. In certain vehicular installations,

the location of vehicles passing through the RSU radio coverage area can be predicted with a high

degree of accuracy. This information can then be used to reduce downlink infrastructure-to-vehicle energy

communication costs. The paper starts by presenting off-line scheduling bounds which provide lower

limits on the energy needed to satisfy vehicular communication requests. The paper considers both packet

and timeslot based scheduling. In the former case, the problem can be formulated as a generalization of

the classical single-machine job scheduling problem with earliness and tardiness penalties, referred to as

α-Earliness-Tardiness. Even under a simple distance-dependent exponential radio path loss assumption, the

problem is shown to be NP-complete. The paper also considers packet-based scheduling. This version of

the problem can be formulated as a Mixed Integer Linear Program (MILP), which is shown to be solvable

in polynomial time by modeling it as a minimum cost flow problem and using the integrality property

of its solution. The paper then introduces online traffic scheduling algorithms for the common vehicular

scenario where there is a strong deterministic radio path loss component. The first algorithm (Greedy

Minimum Cost Flow (GMCF)) is based on a local optimization using our minimum cost flow model. Two

other algorithms are proposed with reduced complexity compared with the GMCF Algorithm. The first

algorithm, the Static Scheduler (SS), assigns time slots according to a simple position-based weighting

function. The second is a Nearest Fastest Set (NFS) scheduler that uses vehicle location and velocity

inputs to dynamically assign communication slots. Results from a variety of experiments show that the
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proposed scheduling algorithms perform well when compared to the energy lower bounds in vehicular

situations where path loss has strong deterministic components. Our results also show that near-optimal

results are possible but come with increased computation times compared to our heuristic algorithms.

The remainder of the paper is organized as follows. In Section I-A a brief overview is given of related

work. In Section II we give a detailed description of our system assumptions. Section III formulates lower

bounds on the energy performance of the offline RSU scheduling problem. In Section III-A2 the packet-

based scheduling problem is shown to be a generalization of the classic single machine job scheduling

problem with earliness and tardiness penalties. The complexity of this problem is considered in this

section and a proof of NP-completeness is given in the Appendix. Following this, in SectionIII-B1 the

timeslot-based scheduling problem is formulated as a mixed integer linear program and in Section III-B2

a minimum cost flow formulation is used for offline scheduling. These provide lower bounds on the

energy consumption needed to satisfy arriving vehicular requirements. The paper then introduces online

scheduling algorithms in Section IV. In Sections IV-B, IV-C and IV-D, the Greedy Minimum Cost Flow

(GMCF), Static, and Nearest Fastest Set schedulers are introduced. Performance comparisons are then

presented in Section V Finally, in Section VI, the paper presents the conclusions of our work.

A. Related Work

VANET research has spanned a wide variety of topics in recent years. This includes applications [6],

routing protocols [7], authentication [8], and the performance analysis of the IEEE 802.11p standard

[9]. Several studies (e.g., [10] and [11]), have illustrated the suitability of IEEE 802.11p for highway

applications and in [12],[13] and [14], proxy vehicles are used to improve roadside unit utilization, and

to decrease vehicle contention.

Vehicle transmitter power control has been used as a mechanism for trading off network connectivity

and reduced interference levels between vehicles (e.g., [9], [15] and [16]). The energy efficiency for

VANETs however, has typically not been an issue, as vehicles are usually assumed to have unlimited

energy reserves. Moreover, from the roadside infrastructure point of view, most work assumes urban

settings where wired power is available at reasonable cost.

Traffic scheduling at the roadside unit has been considered in [17] where simple schedulers are used

based on data size and deadline but without considering the energy consumption of the infrastructure. In

[18], an optimization is used to maximize the total throughput of a roadside RSU given the locations and

velocities of the vehicles in range. A scheduler was proposed which is suitable for use in the contention free
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Fig. 1. Roadside Unit (RSU) Example. Vehicle i is shown at two different times, t1 and t2, at distances di,t1 and di,t2 from the RSU,
respectively.

period of IEEE 802.11e. The energy consumption for the RSU however, was not taken into consideration.

It is this aspect that is considered in this paper.

II. SYSTEM DESCRIPTION

A roadside unit (RSU) is considered which is serving vehicles passing by in one direction as shown in

Figure 11 The figure shows a single Vehicle i at two different times, t1 and t2, and at distances di,t1 and

di,t2 from the RSU, respectively. We consider the energy consumption of the RSU radio interface that is

used to communicate with the vehicles in the downlink (i.e., RSU-to-vehicle) direction2. Note that since

vehicle radios are powered by the car engines, energy efficiency is not an issue on the vehicular side. We

assume that the RSU uses transmit power control so that a constant bit rate reception is achieved at each

vehicle with which the RSU communicates3. For this reason, the power consumption needed when the

RSU communicates to a nearby vehicle can be significantly lower than when it communicates with a more

distant vehicle. In the example shown in Figure 1, the RSU power consumption needed for communicating

with Vehicle i may be significantly less at time t2 compared with that at time t1 since di,t1 >> di,t2 . For

this reason, communication with Vehicle i at time t2 is preferable compared to time t1.

The RSU would like to minimize its long-term power consumption subject to satisfying the communi-

cation requests associated with the passing vehicles. We assume that a particular vehicular communication

may occur any time throughout the vehicle’s RSU transit time, i.e., the communications is delay tolerant

for the period of time during which a vehicle is within the RSU coverage range. In the results in Section V,

it is also assumed that a given vehicle travels at a constant speed when moving through the coverage area

of the RSU, which is typically the case in highway situations [19], however, different vehicles may be

1The methods and results in this paper are equally applicable to two-way vehicular traffic.
2Due to the coverage range normally associated with RSUs, the average power consumption of an energy efficient RSU design may be

strongly dominated by downlink transmission power.
3We have also considered the fixed transmit power, variable bit rate case, which will be published in future paper.
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moving at different speeds. Accordingly, we assume that the vehicles do not interact significantly within

the RSU coverage range considered [20]. When a vehicle first enters the coverage range area of the RSU,

it communicates its current position and speed to the RSU, information which may be obtained via GPS

inputs for example [21], and can be used to determine the vehicle’s position.

III. OFFLINE ENERGY BOUNDS

In this section we formulate lower bounds for the total RSU energy needed for downlink radio

transmission to serve a finite set of vehicular arrival demands. The bound formulation consists of deriving

the energy-optimal offline schedule where the entire vehicular arrival process and associated transmission

demands are made available to the scheduler. For this reason these bounds are not generally achievable

in practice since the scheduler has non-causal knowledge of future vehicular inputs. However, they are

important in that they establish limits on what can be achieved in practice and are compared with online

scheduling algorithms later in the paper.

Two cases are considered. The first assumes Packet-Based Scheduling. In this case contiguous downlink

time is allocated to satisfy each vehicular communication requirement. It is shown that this can be

formulated as a generalization of classic single machine job scheduling and a proof of NP-completeness

is given via a reduction to the well-known PARTITION problem [22]. The second case assumes Timeslot-

Based Scheduling where the each vehicle’s transmission requirement can be independently allocated across

non-contiguous timeslots. We present a mixed integer linear program and we give an algorithm based on

solving a minimum cost flow problem that runs in time which is polynomial in the number of timeslots.

A. Packet-Based Scheduling

In this section we will show that this case can be modeled using a classical single machine job scheduling

problem with deadlines [23]. Machine scheduling is first described, then our problem is formulated as a

generalization of this well-known problem.

1) Notation and Framework: In machine scheduling, n jobs are submitted for processing on m ma-

chines. The subscript i refers to a job while subscript j refers to a machine. The pair (i, j) refers to

processing job i on machine j. Processing time is represented by pij if it is machine dependent or pi if

it is machine independent. The Release Date ri is the arrival time of job i to the system. The due date,

ui, is the job deadline, and a penalty will occur if job i is completed after this time. The completion time
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of job i is denoted by Ci and the objective is also a function of the due date ui. The lateness of job i is

defined as

Li = Ci − ui , (1)

and the tardiness is defined by

Ti = max(Ci − ui, 0) = max(Li, 0). (2)

Lateness and tardiness are two of the basic due date related penalty functions [23].

We are interested in the total weighted tardiness, given by
∑n

i=1wiTi, i.e., the sum of tardiness of all

processed jobs, weighted by a weight wi. The earliness of job i is defined in a symmetric way as

Ei = max(ui − Ci, 0). (3)

Again, we are interested in the total weighted earliness, i.e.,
∑n

i=1wiEi, where the weights are the same

as those used for the total weighted tardiness above. When tardiness and earliness are combined in one

objective, the scheduler will try to have each job serviced exactly at its due date, otherwise a penalty of

wi will be paid by each job i for every unit of earliness or tardiness. In our case every vehicle defines a

job whose deadline is its arrival time at the RSU, and we would like to have it serviced at that time, i.e.,

using the minimum estimated RSU transmit power.

2) Earliness-Tardiness Single Machine Scheduling: We now formulate the minimum energy scheduling

problem as a generalization of single machine scheduling. Each vehicle has an associated request which

is equal to its job size in units of slot times. If we represent the RSU as a single machine, in order to

promote serving vehicles closest to the RSU, we can choose the objective function to be the minimization

of a combination of earliness and tardiness. In order to do this, we represent the due date ui for each

communication slot as the time at which vehicle i arrives exactly at a position closest to the RSU.

Executing job i before reaching the RSU is penalized (energy-wise) by the earliness component Ei, while

executing the job after leaving the RSU location is penalized (energy-wise) by the tardiness component,

Ti, of the objective function. Therefore, we can think of our problem as a schedule on a single machine

that minimizes the total weighted earliness and tardiness, i.e.,
∑n

i=1wi(Ei+Ti), or, if we use the standard

scheduling notation of Graham et. al. [23], 1||
∑n

i=1wi(Ei + Ti).

In our case, earliness and tardiness in time corresponds to increases in the power consumption with
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distance from the RSU. In this case the energy dependence of the objective on Ei and Ti is not linear

but is governed by RSU-to-vehicle path loss. For example, if we assume a standard distance-dependent

exponential radio path loss propagation model [24] the relationship between the distance and the required

transmission power needed to overcome path loss when the RSU is communicating with vehicle i at time

t is given by

Pi,t = ρP0

(
di,t
d0

)α
, (4)

where P0 is a reference power, α is the assumed propagation path loss exponent, d0 is a reference distance,

and di,t is the distance between vehicle i and the RSU at time t [24].

To properly model the energy distance dependence in this case, we define for each vehicle i, d̂(i) as

the distance that the vehicle is from the RSU at the time that the middle of it’s message transmission

occurs. This can be expressed as

d̂i = d̄i + d0 + d̃i, (5)

where d̄i is a normalized distance from the RSU to vehicle i at the time that the middle of the message

is being transmitted, e.g., if d̄ = 0, the middle of the message is being transmitted at the point closest to

the RSU (i.e., the optimum power position). d̃i is the additional distance that the vehicle was from when

the middle of the message was transmitted to where the vehicle was when the edge of the message was

transmitted (it could be the front or back edge of the message). Therefore,

d̄i = vi|Ci − ui|. (6)

i.e., Ci and ui are defined as above in units of seconds referenced to the middle of the packet, i.e., |Ci−ui|

is how long in seconds the packet was early or tardy as previously discussed. vi is vehicle i’s velocity.

Also,

d̃i = vipi/2, (7)

where pi is vehicle i’s packet transmission time. Then the transmit power needed for this packet is given

by

Pt = ρP0

(
d̄i + d0 + d̃i

d0

)α

(8)

= ρP0

(
|Ci − ui|vi + vipi/2 + d0

d0

)α
(9)
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= hi (|Ci − ui|+ ri)
α , (10)

where hi and ri are additional constants specific to vehicle i. The total energy required for this packet

transmission is therefore piPt. The total energy needed to communicate to all n vehicles is therefore given

by
n∑
i=1

pihi(|Ci − ui|+ ri)
α . (11)

Note that a minimum energy scheduler must minimize Equation 11. The scheduling system described

above can be represented in the standard form of Graham et. al. [23] as

1||
n∑
i=1

yi(|Ci − ui|+ ri)
α, (12)

where yi = pihi. It can be seen that when α = 1 and ri = 0 for all i, Equation 12 reduces to conventional

earliness/tardiness as discussed in Section III-A1. This is therefore a generalization of the classical

Earliness-Tardiness single machine scheduling problem, which we refer to as α-Earliness-Tardiness.

In the Appendix we provide a proof of the complexity of this problem showing its NP-completeness

by a reduction to the PARTITION problem [22]. This result establishes the complexity of optimal packet-

based energy scheduling even when propagation is governed by simple distance dependent exponential

path loss.4 The proof given can also be easily extended to less restrictive cases than this by specifying

arbitrary path loss values and by modifying the weights used in defining the instance of PARTITION.

In the remainder of the paper we focus on the timeslot-based scheduling case. This is more practical

from a general scheduling viewpoint, and it will be shown that polynomial algorithms are possible even

in the offline scheduling case.

B. Timeslot-Based Scheduling

In this section we consider the timeslot-based scheduling case where packets that make up a vehicle’s

transmission requirement can be independently assigned to (non-contiguous) time slots. A mixed integer

linear program is first presented and a polynomial complexity algorithm is given based on solving a

minimum cost flow graph.

1) Mixed Integer Linear Program Formulation: An offline MILP optimization is formulated whose

output gives a schedule that achieves minimum energy consumption and satisfies RSU-to-vehicle com-

4Note that this result is true for all α ≥ 1 so we do not need to know α’s exact value in practice in order to establish the NP-completeness.
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munication requirements. We are given an input vehicle traffic trace consisting of N vehicles indexed by

the set N = {1, ..., N} . Each vehicle has a communication requirement, Ri bits, for vehicle i and the

vehicles pass completely by the RSU during the time period T = {1, ..., T}. Our objective is to minimize

the total downlink energy needed to process the vehicular requests. This can be easily written as mixed

integer linear program (MILP), i.e.,

minimize
Ki,t

T∑
t=1

N∑
i=1

ρLi,tKi,t (13)

subject to ∑
t∈T

Ki,t ≥ Ri/B, ∀i ∈ N (14)

N∑
i=1

Ki,t ≤ 1, ∀t ∈ T (15)

Ki,t ∈ {0, 1}, ∀{i, t|i ∈ N , t ∈ T ,Li,t ≤ Lmax} (16)

Ki,t = 0, ∀{i, t|i ∈ N , t ∈ T ,Li,t > Lmax}. (17)

In Equation 13, Ki,t is a binary decision variable equal to 1 if the RSU transmits to Vehicle i at time t

and 0 otherwise. The objective uses the propagation path loss, Li,t, for Vehicle i at time t to calculate the

total downlink energy needed by the RSU to serve the demands of the vehicles and ρ is an energy scaling

factor. Constraint 14 ensures that the scheduler satisfies the communication demands of all the vehicles

where B is the number of packet (payload) bits carried per timeslot. Constraint 15 and the restrictions

on Ki,t ensure that the RSU communicates with at most a single vehicle during each time slot. Note that

in the above optimization, when a vehicle is outside of the maximum coverage range of the RSU, which

corresponds to a path loss exceeding Lmax, the associated values of Ki,t are set to zero.

The above model ensures that vehicle requirements are met with minimum expended energy and

provides a lower bound on the energy needed by any realizable scheduling algorithm. Although we have

solved this optimization directly for small problem sizes5, solutions in general may require exponential

time-complexity due to the MILP formulation. In the next section we present a polynomial complexity

algorithm that can be used to perform this optimization instead, based on a minimum cost flow graph

formulation.
5This can be done using standard techniques such as branch-and-bound methods [5].
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2) Minimum Cost Flow Graph Formulation: In this model, we modify the above MILP formulation,

without any loss of generality, to a graph problem that can be solved using a minimum cost flow algorithm.

Letting

Ui,t = ρLi,t, (18)

we can write the objective as

minimize
Ki,t

T∑
t=1

N∑
i=1

Ui,tKi,t. (19)

Note that the RHS of Constraint 14 can be made integral without changing the feasibility set, and therefore

can be written as
T∑
t=1

Ki,t ≥ dRi/Be, ∀i ∈ N , (20)

and as we are seeking the minimum, Equation 20 can be tightened to

T∑
t=1

Ki,t = dRi/Be, ∀i ∈ N . (21)

The problem after modification can now be written as

minimize
Ki,t

T∑
t=1

N∑
i=1

Ui,tKi,t (22)

subject to (23)
T∑
t=1

Ki,t = dRi/Be, ∀i ∈ N (24)

Nv∑
i=1

Ki,t ≤ 1, ∀t ∈ T (25)

Ki,t ∈ {0, 1}, ∀{i, t|i ∈ N , t ∈ T ,Li,t ≤ Lmax} (26)

Ki,t = 0, ∀{i, t|i ∈ N , t ∈ T ,Li,t > Lmax} (27)

Ui,t ≥ 0, ∀i ∈ N , t ∈ T (28)

In this form the optimization can be viewed as a standard Minimum Cost Flow Problem [25]. This is

shown in the graph of Figure 2, where G = (V , E) is defined by a set V of vertices (nodes) and a set E of

edges (arcs) connecting the nodes. For each edge (i, j) ∈ E we associate a capacity Ci,j that denotes the

maximum flow on the edge. Each edge (i, j) also has an associated cost, Ui,j , that denotes the cost per
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Fig. 2. Minimum Cost Network Flow Graph Representation, G. Each edge is labeled with an ordered pair, (Ci,j , Ui,j), where Ci,j and
Ui,j are the capacity and cost of using edge (i, j). The input and output links, I and O, carry a flow of

∑N
i=1Hi with a 0 edge cost.

unit flow on that edge. These are written as ordered pairs, (Ci,j, Ui,j), on each graph edge in Figure 2.

For example, the capacity and cost of edge (S, 1) in the figure is given by H1 and 0, respectively.

We associate with each vertex i ∈ V a number bi which represents the supply/demand of the vertex.

If bi > 0, the node is a supply node; if bi < 0 node i is a demand node and node i is a transshipment

node if bi is zero. In our problem, the set of nodes is given by V = {S}∪N ∪T ∪{D}. The flow enters

and exits the graph at dummy nodes S and D, respectively and all other nodes are transshipment. The

first column of nodes represents all vehicles in N and the second column represents all time slots in T .

Each vehicle node has edges connected to the time slot nodes during which the vehicle is inside the RSU

coverage range. For this reason, slower moving vehicles will have larger numbers of vehicle-to-timeslot

graph edges, i.e., higher total RSU-to-vehicle capacity. The capacity for an edge from the source S to a

vehicle node i ∈ N is the communication requirement for vehicle i denoted Hi where

Hi = dRi

B
e. (29)

The capacity for an edge from any time slot node to the destination D is 1. This capacity prevents time

slots from being used more than once. The edges between a vehicle i ∈ N and a time slot t ∈ T also has

a capacity of 1. This ensures that only one unit of transmission requirement can be assigned to a given

time slot.
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The cost for using the edges originating from Node S and terminating at Node D is zero as these are

dummy flow collection nodes. The cost of using the edges between nodes i ∈ N and t ∈ T is given

by Ui,t which can be computed from Equation 18. Finding the minimum cost flow for graph G provides

the minimum energy the RSU must consume to schedule vehicle transmission requirements for the input

traffic trace.

Now the importance of transforming the data in Constraints 14 to the integral data in Constraints 20

becomes apparent, because we can used the Integrality Property Theorem (e.g., Theorem 9.10 in K.

Ahuja et. al. [25]), which states that “If all edge capacities and supplies/demands of nodes are integer,

the Minimum Cost Flow problem always has an integer minimum cost flow”. Accordingly, the resulting

flow between the vehicle nodes N and time nodes T is integer. Coupled with the fact that the capacity of

these edges is 1, the resulting flow is a binary matrix, Ki,t, for i ∈ N and t ∈ T . When Ki,t = 1, the RSU

communicates with vehicle i at time t and when Ki,t = 0 the slot t is not used for this communication.

Since S and D are dummy nodes, the Ki,t part of the flow is the vehicle schedule that we can now

compute using standard flow algorithms that run in time polynomial in T and N .

IV. ONLINE TIMESLOT-BASED SCHEDULING ALGORITHMS

A. Motivation and Notation

The results in Section III-B give a lower bound on the downlink RSU energy needed to fulfil vehicular

packet requirements. In order to compute these bounds, the energy costs associated with a given packet

transmission must be known. Although it is difficult to precisely know this information in general

situations, in certain scenarios excellent estimates of this cost can be readily made [26][27]. Accordingly,

we consider a highway scenario where vehicles travel at a constant speed through the RSU coverage

area [19]. When vehicles enter the RSU coverage area, they announce their location and speed, information

that can subsequently be used to estimate future energy transmission costs6. The results we present

in Section V show that provided that the deterministic components of path loss are dominant, large

improvements in performance are possible7. This would typically be the case in highway situations.

Three online algorithms are introduced which attempt to reduce total energy and which have different

processing time complexity. In the following sections, t′ is used to denote the current time slot. The

6This information can be obtained from GPS readings at the vehicle, for example.
7We assume that downlink power control is used during RSU-to-vehicle communication. This can be accomplished in a variety of ways

such as using a short two-way handshake prior to user data packet transmission.
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vehicle arriving at the RSU coverage range at time t′ is denoted v′. The algorithms are applicable for

more than one vehicle arriving at the same time slot but for simplicity of the presentation we assume one

vehicle can arrive during a time slot. The set N ′ contains all vehicles inside the RSU coverage range at

t′ with unsatisfied communication requirements. Vehicle i ∈ N ′ unsatisfied demand at time t′ is denoted

H ′i. The energy cost that the RSU expends to communicate with vehicle i at time slot t is denoted Ui,t

and is computed according to Equation 18. As each vehicle has a different arrival time to the RSU and

different speed, the time slot representing its departure time t′′i from the RSU coverage can be different.

For i ∈ N ′ the set of time slots between t′ and t′′i is called Ti. The time elapsed between current time

and the departure of last vehicle of N ′ is T ′ =
⋃
i∈N ′ Ti.

B. Greedy Minimum Cost Flow (GMCF)

In Greedy Minimum Cost Flow (GMCF), the vehicle schedule is obtained using a greedy version of

the bound formulation from Section III-B2. However, unlike the bound which incorporates all vehicle

communication requirements at once, GMCF constructs a graph similar to the one in Figure 2 but limited

to those vehicles that are currently inside the RSU coverage range.

GMCF is executed upon arrival of a new vehicle v′ into the RSU range at time t′. The directed graph

constructed for GMCF is similar to that of Figure 2 with N ′ replacing the vehicle column and T ′ replacing

the time slot column. The capacity between Node S and Node i ∈ N ′ is given by H ′i which represents

Vehicle i’s unsatisfied communications requirements at time t′. The supply, I ′, to Node S is the demand

O′ from Node D, i.e.,

I ′ = −O′ =
∑
i∈N ′

H ′i. (30)

Let this graph be denoted G′(V ′, E ′), where V ′ = {S} ∪ N ′ ∪ T ′ ∪ {D} and E ′ is the set of edges

between S,N ′, T ′ and D. Let flow F ′ be the minimum cost flow for graph G′(V ′, E ′) and let the part

of F ′ representing flows between vehicle nodes i ∈ N ′ and time slots t ∈ T ′ be K ′i,t. Then, K ′i,t is the

schedule for vehicles i ∈ N ′ during the time period T ′ or until a new vehicle enters the RSU range. In

the latter case, the remaining unexecuted part of K ′i,t is ignored and the algorithm is restarted. Whenever

Vehicle i is served, its corresponding unsatisfied demand H ′i is reduced by 1.

Reference [25] provides several algorithms for solving the minimum cost flow problem in polynomial

time. Although algorithms such as Capacity Scaling, Cost Scaling and Double Scaling are polynomial,

they are not strongly polynomial. For example, the Double Scaling Algorithm solves the problem in
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O(nm logU log(nC)), where n is number of nodes, m number of edges, C is the maximum cost

and U is the maximum capacity. In GMCF, the cost over an edge can be quite large. Algorithms

such as Repeated Capacity Scaling and Enhanced Capacity Scaling provide strongly polynomial time

execution. For example, the complexity for Enhanced Capacity Scaling is O((m log n)(m + n log n)) is

an improvement as they do not depend on C or U .

In GMCF the number of nodes, n is v+ t, where v is the number of vehicles inside the coverage range

and t is the number of time slots needed to exit the RSU coverage range. As for the number of edges, m

it can be assumed to be m = v × t as if N ′ and T ′ are fully connected. Substituting these values in the

Enhanced Capacity Scaling complexity, the GMCF complexity can be expressed as O(v2t2 log(v + t))

Although the GMCF algorithm achieves good energy usage, running the algorithm can be time con-

suming. In the following sections we introduce two heuristics, i.e., Static Scheduler (SS) and Nearest

Fastest Set (NFS) which are more efficient from a time complexity viewpoint.

C. Static Scheduler (SS)

The basic idea in SS is to sort vehicles according to the energy they would use if they were served

at energy optimal positions. The algorithm is static in the sense that these weights do not change as the

vehicle propagates through the RSU coverage range. SS serves vehicles with high energy costs first in

order to reduce the total energy required. For example, if two vehicles with equal demands are travelling

a different speeds it is better to serve the faster vehicle first in order to avoid the extra energy costs of

serving it at higher distances. SS would allocate the faster vehicle all its requested time slots and then

search for other time slots to assign to the slower vehicles.

SS is executed upon the arrival of a new vehicle v′ into RSU range at time t′. The algorithm consists

of two phases, namely, weight computation and scheduling. In the weight computation phase, the weight

W ′
i for each vehicle i ∈ N ′ is computed by finding its optimal energy cost. This can be best described by

using a minimum cost flow graph as in Figure 2 but restricted solely to the vehicle in question. We denote

that flow graph as Gi for Vehicle i. An example of this is shown in Figure 3, and contains one source

node i which generates a flow equal to Vehicle i’s remaining demand H ′i at time t′. It also contains node

D which is a dummy destination node with demand equal to −H ′i. The intermediate nodes represent time

slots of the set Ti, starting at t′ and ending with t′′i . The edge capacity between the vehicle i node and

time node t ∈ Ti is set to 1. The cost Ui,t over these edges is computed according to Equation 18. The

capacity and cost for edges between time node t ∈ Ti and dummy destination D are 1 and 0 respectively.
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Fig. 4. Example Flow Graph, M , for the SS Algorithm. This is used in the scheduling phase. Shaded slots have already been assigned for
communication with higher priority vehicles.

The minimum cost flow for graph Gi is computed and the cost associated with this flow is the weight

W ′
i for Vehicle i.

In the scheduling phase a single graph, M , is formed as shown in Figure 4. The graph consists of

one vehicle source node, time nodes and a dummy destination node D. Initially, the time nodes consists

of all elements of the set T ′. The edge capacity and cost from any time node to the D node are 1 and

0 respectively. Vehicles are sorted according to their weights W ′
i where i ∈ N ′. In weight descending

order, schedules are computed for each vehicle one at a time. Let vehicle i ∈ N ′ be the currently selected

vehicle. The supply to the vehicle node i is set to be H ′i and demand by D node is set to −H ′i. The

capacity of edges between vehicle i node and time t ∈ T ′ is set to 1. The cost, Pi,t, of these edges is set
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as

Pi,t =

 di,t, if t ∈ Ti

∞, otherwise.
(31)

Setting the cost to∞ for time slots when Vehicle i will be outside RSU coverage range prevents selecting

them in the schedule. Let the flow F be the flow that minimizes the cost for graph M . Let the part of F

specifying the flows between vehicle i and nodes t ∈ T ′ be K ′i,t. K
′
i,t is the schedule for vehicle i. The

set of time nodes in graph M is updated according to

T ′ = T ′ − {t|K ′i,t = 1, t ∈ T ′}. (32)

This removes the time slots already scheduled to serve Vehicle i from the set of available time slots for

remaining vehicles. The vehicle following Vehicle i in weight order is selected. Graph M supply, demand,

and edge costs are updated according to the following vehicle requirements and distances in the same

way like vehicle i. The flow that minimizes the cost for the updated M is found for the new vehicle and

the process is repeated until all vehicles are scheduled. After the scheduling phase has been executed for

all vehicles i ∈ N ′, the schedule for all vehicles would be K ′i,t where i ∈ N ′ and t ∈ T ′. This schedule

will execute until the last vehicle of N ′ exits or a new vehicle arrives into the RSU range.

In determining the complexity of SS, we will use the same notation as in the complexity analysis of

GMCF, where v is the number of vehicles inside the range and t is the number of time slots needed for

them to exit the RSU range and we add to them Hm as the maximum number of slots a vehicle can

demand.

SS is invoked upon the arrival of each new vehicle. In the weight computation phase, the process of

finding the weight is executed for each vehicle. Finding the weight is equivalent in complexity to finding

the minimum of an array of length t. As we find the minimum Hm number of times for each v vehicle,

the complexity of weight computation phase can be stated as O(Hmvt).

In the scheduling phase, the search for the highest weight among vehicles is O(v). Scheduling the

vehicle with the highest weight is similar to finding the minimum of an array of length t repeated Hm

times. As this is repeated for each vehicle, the complexity of the scheduling phase can be stated as

O(Hmvt). Thus the total complexity of SS is O(Hmvt). This is a big improvement over GMCF provided

that Hm < vt, which is safe to assume.
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D. Nearest Fastest Set (NFS) Scheduler

The Nearest Fastest Set (NFS) Scheduler uses vehicle inputs in a simpler and more dynamic way than

SS. The motivation is to dynamically change the weight of the vehicles according to remaining demands.

If a vehicle is selected for communication from the RSU at the current time slot, its weight is reduced

while the weight of other vehicles is increased. The notion of “fastest” comes from the role that vehicle

speed plays in weight computation. Consider the case where two vehicles are together and moving away

from the RSU. If they are moving at different speeds, then serving the faster one first will lead to lower

overall energy consumption. This is clearly due to the fact that in the next time step the faster vehicle will

be farther away from the RSU. NFS uses this by embedding the effect of vehicle proximity and velocity

in the weight calculation when considering which vehicle to serve in a given time slot. The execution

details of NFS are explained below.

NFS consists of preparation, execution and updating phases. The preparation phase is invoked upon

the arrival of a new vehicle v′ into RSU range at time t′. The time slots during which vehicle v′ will be

closest to the RSU are identified. This is done using a graph Gv′ similar to the one used in the weight

computation phase of SS algorithm and shown in Figure 3. Vehicle v′ requirements H ′v′ constitutes the

supply to the vehicle node. Dummy destination node demand is set to −H ′v′ . The time slot nodes in G′v

represent the time slots in the set Tv′ . The capacities for all the edges in graph Gv′ are set to 1. The costs

over the edges between vehicle v′ node and time node t ∈ Tv′ is set to Uv′,t which is computed according

to Equation 18. The costs over edges ending in node D are set to 0.

Let F be the flow that minimizes the cost for graph Gv′ . The weight Wv′,t′ for vehicle v′ is the cost of

the flow F . Let the array Zv′,t represent the part of the flow F that specifies the flow between the vehicle

v′ node and time slots t ∈ Tv′ . As all supply, demand, capacities and cost of graph Gv′ are integers, and

according to the Integrality Theorem, the flow F consists of integer values. As the maximum capacity of

any edge in Gv′ is 1, the Zv′,t is a binary array. Since the flow F minimizes the energy cost, in Zv′,t, the

time slots during which vehicle v′ is closest to the RSU are set to 1. These are the candidate time slots

during which vehicle v′ would like to communicate with the RSU.

As the preparation phase is executed for every vehicle i ∈ N ′ and t ∈ Ti currently inside the RSU range

upon their respective arrivals, there is already a weight Wi,t′ and separate Zi,t for each vehicle i ∈ N ′

identifying the time slots each vehicle would like to use.

The execution phase happens every time slot. Let the current time be t′. If there is no vehicle i ∈ N ′
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that requires the current time slot, then there is nothing to schedule and the execution phase and update

phase are terminated. But if not, let the set of contending vehicles be E . The weights of these vehicles

Wi,t′ are compared and the vehicle with the highest weight is allocated the current time slot t′. Let the

vehicle with the highest demand be x. Then the remaining demand for vehicle x is decreased by 1 as it

has been scheduled for downlink transmission in the current time slot. The candidate time slot array for

vehicle x is updated by setting Zx,t′ = 0 so its weight will be reduced.

The update phase is for the vehicles that contended for time slot t′. A new set of candidate time slots

and weights Wi,t′+1 for i ∈ E is computed. The start time is t′ + 1 instead of t′ because they will be

contending for future time slots following t′. These new candidate time slots and vehicle weights are

computed in the same way as in the preparation phase.

In determining the complexity of NFS, we again use the notation from before where v is the number of

vehicles inside the range and t is the number of time slots needed to exit the RSU coverage area and Hm

as the maximum vehicle requirement. The NFS preparation phase is executed upon the arrival of a new

vehicle. Unlike SS, this is executed not for all vehicles inside the range but only for the newly arriving

vehicle. Thus, the complexity of this phase is O(Hmt). In the execution phase, determining if one or more

vehicles requires communication with the RSU is an addition operation across all vehicle candidate slot

arrays. This is equivalent to O(v). Only when there are multiple candidates for a given time slot is the

update phase executed. The update phase complexity is equivalent to the preparation phase, but it involves

other vehicles inside the RSU, thus the update phase complexity is O(Hmvt). When compared SS, NFS

complexity is less. Only during the times of strong contention will NFS complexity become equal to that

of SS.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed algorithms is investigated. The theoretical bound for

energy required by the RSU to serve the input vehicle requirements as derived in Section III-B2 is referred

to as Bound in the graphs. The bound is compared to the online algorithms (GMCF, SS and NFS) proposed

in Section IV.

The online algorithms use knowledge of vehicle position and associated estimates of downlink trans-

mission energy costs. For this reason two sets of results will be presented. The first assumes that an

accurate prediction of energy costs is possible based on a deterministic path loss scenario using a distance

dependent exponential path loss model. These results will give an indication of the best-case potential
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for energy savings at RSU using the proposed algorithms. In many practical systems however, there

will be dominant deterministic propagation with random components due to effects such as shadowing.

For this reason we also present results which include errors due to strong shadowing components. It is

well-known that in highway scenarios with predominantly line-of-sight propagation, that average path

loss has strong deterministic components. A recent measurement based paper has confirmed this even

for the vehicle-to-vehicle case where average antenna heights are low compared with the RSU-to-vehicle

case [27]8.

In [28] and [29] vehicular traffic models were surveyed including those for intra-city and outside city

scenarios. Highway traffic models are known to vary greatly from those in urban settings. For example,

Reference [20] showed that car-to-car interaction was a minimum requirement for realistic highway traffic

flow models. A special characteristic of the highway environment is the tendency to maintain constant

speed for long durations. Reference [26] for example, models vehicles as belong to different classes with

different uniformly distributed speed ranges and in [19][30], vehicle arrivals were taken to be Poisson

distributed. The mobility model proposed in this paper is from [19] and [26]. The highway consists of

several lanes, which permit vehicles to pass each other without a change in speed. Vehicles traveling on

the highway belong to one of several classes. Each class has a Poisson arrival model and a desired speed

at which the vehicles travel. Vehicles from each class do not overtake each other but can overtake vehicles

from the other classes. There is a single RSU in the tested highway segment and vehicles travel in one

direction.

In the following two sections we present the results of experiments conducted using two and three

classes of vehicles. Large scale path-loss using a distance dependent exponential path loss model is used

in the first set of results. Following these results, we include random log-normal shadowing for two

different levels of shadowing. The random shadowing components are unknown to the scheduler which

bases its decisions on deterministic positional information. In the graphs, each plotted point is an average

of multiple runs to ensure the results are true representation of the performance of the algorithms. The

value of the points are normalized to the first point of the Bound graph in each figure.

In the first experiment the traffic consists of two classes of vehicles with arrival rates of λ1 = 1/22 and

λ2 = 1/22 vehicles/sec, respectively. The communication requirement for each vehicle was tested for low

and medium fixed values. The results are presented in Figure 5 for low demand and in Figure 6 for high

8The scenario that we consider also has the advantage that since the RSU is stationary, it can therefore measure and learn the propagation
environment, which would lead to increased accuracy.
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Fig. 5. Performance of GMCF, SS and NFS for Two Vehicle Classes under Light Loading. No Shadowing Components.
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Fig. 6. Performance of GMCF, SS and NFS for Two Vehicle Classes under Medium Loading. No Shadowing Components.

demand. Class 1 speed is maintained at 18 m/sec and Class 2 speed is tested for velocities: 18, 23, 28 and

33 m/sec. Each point is the average of 17 runs.

As vehicular speed increases, the amount of time slots the faster moving vehicles, i.e., Class 2, can

spend inside the communication range decreases. This forces the algorithms to communicate with the
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vehicles at more distant locations from the RSU in order to satisfy their communication requirements. So

as expected, this shows that the total energy needed is an increasing function of average vehicle speed.

Also, it can be seen in Figures 5 and 6 that the performance of the GMCF algorithm is very close to that

obtained from the lower bound. Under low demand levels as in Figure 5, even with the increase of Class

2 speed which allows vehicles to pass Class 1 vehicles, these periods of scheduling contention do not

seem to be long or frequent enough to result in significant increases in energy compared with the bound.

Under heavier loading, as in Figure 6, with Class 2 speed at 33 m/sec, periods of contention become

longer, thus forcing the GMCF algorithm to communicate with vehicles at larger distances. The price

paid for GMCF’s good performance is a relatively long computation time needed to solve the associated

minimum cost flow problem.

In these results the SS scheduler consistently requires more energy than the Bound or GMCF. But as

shown earlier, its computational requirements are much less than that required by GMCF. Under light

vehicular load, the energy required by SS is almost twice that required by the bound as shown in Figure 5

and grows linearly. Under heavier loading, as in Figure 6, the increase becomes more dramatic. This is

due to the static nature of the algorithm. As the difference between Class 1 and Class 2 velocities increase,

many more vehicle interactions occur, creating longer periods of scheduling contention which are more

difficult for the scheduler to efficiently resolve. In these periods, unlike the GMCF algorithm which seeks

minimum energy for all the vehicles currently inside the RSU coverage range, SS tries to minimize the

total energy by seeking local minima for individual vehicles in order of their weightings. This drawback

of static scheduling is illustrated next with the following example. Suppose two vehicles V1 and V2 are

inside the RSU coverage range, and V1’s speed is must lower than that of V2, and the remaining demands

are 2 and 1 units of timeslots, respectively. Assume also that both vehicles are closest to the RSU at the

same time. Since the candidate location for V2 is at the same minimum RSU distance, SS serves V1 at

this location, causing V2 to be served at a more distant location, significantly raising the energy cost for

serving V2, and resulting in a higher overall energy cost. If V2 had been served at the location the lowest

distance, the total energy would have been lower than what SS would choose.

As for the NFS scheduler, although it is a dynamic algorithm compared to SS in terms of continuously

reevaluating weights for contending vehicles after assigning a timeslot, scheduling contention is not

addressed until they actually happen. This way, if a contention arises, it is resolved by assigning a slot in

the future, which prevents more past energy efficient slots from being used. This explains the increased
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energy required by NFS compared with the others.

We have also simulated results using a first-come-first-served, i.e., FCFS, scheduler. In this algorithm

the RSU places each vehicle request in a FCFS queue and immediately begins service in that order. As

a result, FCFS tends to serve vehicles at the outer edge of the RSU coverage area, resulting in very high

power consumption values. When compared with the results of our algorithms, FCFS usually results in

total energy requirements which are orders of magnitude higher than that of the algorithms shown in our

graphs. For this reason we have not presented these results, but this method is clearly a poor approach

when energy efficiency is desired.

We now present results for three classes of vehicles. The first class maintains a speed of 18 m/sec

across all experiments. The second class is tested for four different speeds, 18, 20, 22 and 24 m/sec. The

third class is tested also for four different speeds, 18, 23, 28 and 33 m/sec. The arrival rate, λ, for each

class is 1/30 vehicles/second. The results presented here are the average of 10 independent experiments.

In Figure 7, all three classes travel at 18 m/sec. The total energy needed by the four algorithms are

compared against different levels of normalized demand, ranging from 4 to 10. It can be seen that as

before, the GMCF algorithm is very close to the lower bound. This is partially due to the uniformity of

the traffic, as all vehicles from all three classes are traveling at the same speed. The scheduling contention

tends to be minimal, so there is less value in the bound’s use of non-causal information. The behavior

of the SS algorithm is similar to the former experiment where under low demand levels, the energy

requirement growth is almost a linear relation to that of GMCF. But at high demand levels, the increase

in SS energy demand starts to increase with higher rates than that of GMCF and the bound. The weakness

of the NFS algorithm is more evident here. As the demand increases, scheduling contention increases and

NFS can only solve it by allocating slots in the forward direction, wasting more energy efficient slots in

the backward direction.

In Figure 8, Class 1 vehicles are traveling at 18 m/sec, Class 2 at 24 m/sec and Class 3 are traveling at

33 m/sec. This causes the vehicles to interact with each other creating longer and more complex periods

of scheduling contention not envisioned by the online heuristics compared to the bound computation.

This is why we can see in this figure that when the demand is high, there is a clear difference between

the bound and the GMCF algorithm. The NFS and SS behavior is close to that of Figure 7, but as the

contention periods are longer and more frequent, the increase in energy requirements as demand increases

is steeper than that of Figure 7.
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Fig. 7. Energy Requirements for Three Vehicle Classes Traveling at the same Speed. No Shadowing Components.
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Fig. 8. Energy Requirements for Three Vehicle Classes Traveling at Different Speeds. No Shadowing Components.
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The results shown above consider the case where the schedulers are able to accurately predict the

energy costs of each vehicle communication. These results clearly show that it is possible to significantly

decrease the energy costs of RSU downlink transmission. In the next set of results we include propagation

shadowing effects which results in unpredictable randomness in these estimates. A conventional log-

normal shadowing model is used with zero mean and standard deviations of σ ∈ {4, 12} dB [31] [32].

The simulation results include three classes of vehicles. The performance of the different algorithms has

been tested for various demand levels and different mixes of vehicle class speeds are examined. Class 1

always maintains a speed of 18 m/s for all experiments. Class 2 speeds are 18, 20, 22 and 24 m/s. Class

3 speeds are 18, 23, 28 and 33 m/s. The presented results are the average of 8 random iterations. The

energy required by the two shadowing cases is given by the solid and dashed lines, respectively. In the

graph legend, “-s1” and “-s2” are appended to the algorithm names for the two shadowing cases. Note

that for these two scenarios we have recomputed the lower bound using knowledge of the path loss values,

which gives an absolute bound on system performance.

Figure 9 shows the performance when all classes have a speed of 18 m/s and Figure 10 when Class 1,

2 and 3 has speeds of 18, 24 and 33 m/s, respectively. To simplify these two graphs we have not included

results for the lower bound. Figure 11 shows the required energy to serve vehicles with a communication

requirement of 8 timeslots under different velocity mixes. In this graph we have also included the lower

bound calculation. An interesting phenomenon occurs when random shadowing components are included.

Since the bound is aware of these values, it routinely schedules packet transmissions at greater distances

from the RSU, provided that the shadowing gives a favourable path loss. This does not happen in our

algorithms and for this reason the power consumption bound decreases when randomness is introduced.

From these figures, it can be seen than increasing the random shadowing component significantly

increases the energy required by the RSU compared to the non-random case, as would be expected.

However, the relative performance between the different algorithms is maintained, i.e., GMCF is still

close to the bound except in situations where there is heavy demand and high differences in vehicle

speeds.

When comparing the energy needed to satisfy vehicle communication requirements with and without

random shadowing components we find that significant increases in power consumption results from the

scheduler’s unawareness of these values. However, Figures 9, 10 and 11 indicate that provided there is a

known dominant component of path loss, then there is a high value in using the algorithms. These and other
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Fig. 9. Scheduling Performance with Two Levels of Log-normal Shadowing.

18 23 28 33
0

10

20

30

40

50

60

70

80

90

Speed

E
n

e
rg

y

 

 

GMCF−s1
NFS−s1
SS−s1
GMCF−s2
NFS−s2
SS−s2

Fig. 10. Scheduling Performance with Two Levels of Log-normal Shadowing.

results that we have obtained show that although the overall energy costs increase with increases in energy

cost uncertainly, in practical highway scenarios there will clearly be a dominant enough deterministic path

loss component that can be used to significant increase energy savings using the proposed algorithms.
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VI. CONCLUSIONS

Roadside infrastructure can be used to provide a wide variety of commercial services for vehicular

networks. One particular challenge is that of providing roadside radio coverage in highway locations where

wired electricity is not available. In this case, roadside units (RSUs) powered by renewable energy such

as solar or wind power, is a viable alternative. The cost of provisioning this type of roadside infrastructure

is dependent on the average power consumption of the RSU, and can be significantly reduced by energy

efficient scheduling. In this paper, we have considered the problem of satisfying vehicular communication

requirements while minimizing the downlink energy needed by the roadside unit.

The associated scheduling can be either packet-based or timeslot-based. We first showed that for packet-

based scheduling the offline problem can be formulated as a generalization of the classical single-machine

job scheduling problem with earliness and tardiness penalties, referred to as α-Earliness-Tardiness. A

proof was given which shows that the problem is NP-complete even under a simple distance-dependent

exponential radio path loss assumption. In the timeslot-based scheduling case, we formulate the problem

as a Mixed Integer Linear Program (MILP) which was shown to be solvable in time which is polynomial

in the number of timeslots using a minimum cost flow graph construction. These formulations provide

lower bounds on the energy requirements needed to satisfy arriving vehicular communication requests.

The paper then introduced energy efficient online traffic scheduling algorithms. The first was motivated
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by a greedy implementation of the MILP formulation which optimizes over finite overlapping time

windows. This is referred to as Greedy Minimum Cost Flow (GMCF). Two other algorithms with reduced

complexity compared with GMCF were then proposed. The Nearest Fastest Set (NFS) scheduler uses

vehicle location and velocity inputs to dynamically schedule communication activity. The Static Scheduler

(SS) performs the same task using a simple position-based weighting function. Results from a variety of

experiments show that the proposed scheduling algorithms perform well when compared to the energy

lower bounds in vehicular situations where path loss has strong deterministic components so that energy

costs can be estimated. Our results also show that near-optimal results are possible but come with increased

computation times compared to our heuristic algorithms.

APPENDIX

In this section we show the NP-completeness of the α-Earliness-Tardiness Problem formulated in

Section III-A2. This is done by a reduction from the well-known PARTITION PROBLEM [22]. In the

decision version of PARTITION we are given a set of n integers and must answer the question: “Can we

divide the given set into two subsets such that the sum of the numbers in each set are equal?” Our proof

is by reduction of PARTITION to the following version of α-EARLINESS-TARDINESS where α ≥ 1.

INPUT: n jobs, each job i = 1, . . . , n with its own processing time pi, weight wi, shift amount ri, and

due date Di.

OUTPUT: A single-machine (non-preemptive) schedule of the jobs that minimizes

n∑
i=1

wi(|Ci −Di|+ ri)
α

where Ci is the completion time of job i in the schedule. Note that we assume that all our input data are

integers and that jobs can only start at integral time points.

Theorem 1. α-EARLINESS-TARDINESS is NP-complete for any real α ≥ 1.

Proof: Suppose we are given an instance of PARTITION with n objects, each with a value pi, i =

1, . . . , n. Let P :=
∑n

i=1 pi. We define an instance of α-EARLINESS-TARDINESS as follows:

• We have n + 3 jobs: Jobs 1, 2, . . . , n correspond to the PARTITION objects; each has processing

time pi, weight 1, and due date D1. Job n+ 1 has processing time pn+1 = 1, weight w and due date
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Fig. 12. Schedule S ′.

D1 (as jobs 1, . . . , n). Job n+ 2 has processing time pn+2 = l and weight w, defined as follows:

l := n
1
α (1 + P ), w := n(2P + l + 1)α + 1

and due date D2. Job n+ 3 has processing time pn+3 = l and weight w (just like job n+ 1), but due

date D3. Parameters D1, D2, D3 are defined next.

• All the jobs will have one of the following three due dates:

D2 := P + l, D1 := D2 +
P

2
+ 1, D3 := D1 +

P

2
+ l.

• Every job j has rj =
pj
2
.

First we show that any optimal schedule for this instance must schedule jobs n+ 1, n+ 2, n+ 3 so that

they finish exactly on their due date. Indeed, suppose that there is an optimal schedule S such that at

least one of these three jobs finishes earlier or later than its due date by at least 1 time unit. Then let S ′

be a schedule where these three jobs are neither early nor late, and the rest n jobs are scheduled right

before job n + 2 in any order (say in order 1, 2, 3, . . . , n). So S ′ is as shown in Figure 12. Going from

schedule S to schedule S ′, the following will happen.

• Due to jobs n+ 1, n+ 2, n+ 3, the cost decreases by at least w: Assume that job n+ 1 doesn’t finish

on its due date (the other cases are similar, or even better for our argument in case more than one

of jobs n + 1, n + 2, n + 3 don’t finish on their due date). Then the cost decrease in S ′ due to the

special jobs is at least

w(1 +
pn+1

2
)α − w(

pn+1

2
)α ≥ w.

• Due to jobs 1, 2, . . . , n, the cost increases by at most
∑n

j=1(3P/2 + l+ 1 +
pj
2

)α ≤ n · (2P + l+ 1)α,

since we are going from earliness/tardiness penalty of at least 0 in S (actually pj
2

but 0 suffices for
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our purposes) to at most (2P + l + 1)α in S ′ for each such job.

Therefore

cost(S ′)− cost(S) ≤ n · (2P + l + 1)α − w < 0,

which contradicts the optimality of S. Hence, in any optimal schedule jobs n + 1, n + 2, n + 3 finish

exactly at times D1, D2, D3 respectively. Next, we look at the optimal cost difference between the cases

of the existence of a partition and the non-existence of such a partition.

• If a partition exists, then there is a schedule that doesn’t schedule any of jobs 1, 2, . . . , n before or

after jobs n + 2 and n + 3. In any such schedule, each of jobs 1, 2, . . . , n, say job j, incurs a cost

of at most (1 + P/2 +
pj
2

)α ≤ (1 + P )α, for a total cost of the optimal cY ES < n(1 + P )α (note that

n ≥ 2, so not all processing times can be P ).

• If a partition doesn’t exist, at least one of jobs 1, 2, . . . , n, say job j, must be scheduled before

job n + 2 or after job n + 3. Therefore, the cost of the optimal schedule will have a cost cNO ≥

(l + P/2 +
pj
2

)α ≥ lα = n(1 + P )α.

By our choice of l, we have cY ES < n(1+P )α ≤ cNO, and the decision problem “Is there a partition?”

has the same answer as “Is there a schedule with cost smaller than n(l + P )α?”
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