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Abstract—Digital twin (DT) has attracted a lot of attention
from both industry and academia since it was proposed over a
decade ago. A DT can be viewed as a virtual implementation of a
real physical system and used as a representation of the physical
system for various applications. Despite the great potential of
DTs in various fields, implementing DTs to obtain the desired
functionality is not always straightforward. Specifically, accurate
real-time synchronization between the features at a physical
system and its DT is essential for the DT to represent the
physical system. In this case, appropriate networking support
is a key component to enable future DT development and
applications. Currently, the research on DTs from a networking
standpoint is still at an early stage, and only limited work has
been done on DT implementation in practical systems. To fill
this gap, this paper investigates networking-related issues for
DTs. Based on the existing literature, a feature-based method is
provided for describing the desired properties and quality of DTs
from the networking perspective. A stage-based implementation
framework is presented for creating large-scale DTs for complex
physical systems by considering various networking constraints.
Networking-related challenging issues and open research topics
are discussed at the end.

Index Terms—Digital twin, DT features, DT properties, stage-
based DT implementation.

I. INTRODUCTION

Digital twin (DT) is a concept where a digital/virtual
representation is created for a physical system (PS) of interest.
The DT can be used to complement the PS for a variety
of purposes in the design, evolution, and deployment stages.
The DT idea was originally introduced for “product life cycle
management” [1], but since then it has been applied in many
other areas such as industrial manufacturing. The first use
of DTs in manufacturing was for various purposes such as
improving product performance, flexibility, and competitive-
ness through simulation, data acquisition and communications,
cyber-physical interaction, and advanced analytics [2]–[8].
DTs have been successfully used in the creation of cost- and
time-effective designs of space vehicles by NASA [9] and in
other areas of aviation [10], [11]. The use of DTs has also been
applied to fields such as healthcare and telemedicine [12]–
[14], smart homes [15], [16] and smart cities [17]–[22]. A
review of DT applications in the industry is given in [23],
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a comprehensive survey of DTs in the IoT field is provided
in [24], and [25] summarizes the existing work on applications
of DTs in smart cities and DT-based smart city projects.

Although the “DT” terminology has been widely used in
many applications, its use in networking scenarios is at a
relatively early stage. Since the inception of the DT concept,
the DT functionality has evolved along with advances in
various technologies including networking techniques, as sum-
marized in [10], [26], [27]. However, the implementation of
fully functional DTs for complex physical objects or systems
requires further investigation. In [4], DT was defined as a “rich
representations of products that are virtually indistinguishable
from their physical counterparts”. Although achieving this goal
is difficult, if not impossible, in most cases, a fully functional
DT implementation should replicate (in software) the key
aspects of its physical counterpart such as in temporal, spatial,
and functional dimensions. In other words, a DT should be
capable of reflecting all the features of the physical system
that are required by an application. To achieve this goal,
networking support is critical for future DT implementations.

In the early days, DT creation and maintenance were often
limited by the capabilities of data transmission, processing,
and storage [28], [29]. Early DTs, for example, may consist of
an offline computer model/simulator that is used to predict the
behaviour of the physical system as its inputs evolved [4]. Data
collected from the real system would be manually provided to
the digital (or virtual) system so that the state of the digital
system can reflect the real physical system. This offline mecha-
nism obviously limits the ability of the DT to accurately reflect
the current state of the physical system. With the advancement
of sensing, communications, and networking technologies,
large volumes of data can be collected automatically and
exchanged between physical systems and the corresponding
digital systems with a low latency [3], [8], [30], [31]. The
real-time bidirectional information exchange and state update
between a physical system and its corresponding digital system
is referred to as “synchronization” between the two.

To realize the PS-DT synchronization, there have been
different proposals for DT architectural frameworks based on
targeted applications and intended functionalities [10], [24],
[26]. However, the study on DT framework design to achieve
a desired level of performance for a given application is still
in its infancy stage. In this work, we present a comprehensive
review of DT from a networking perspective. This paper is
different from [27], which summarizes the existing definitions,
characteristics, current applications, and general supporting
technologies for DT networks. DT implementation issues are
also described in [24], although it emphasizes software aspects
rather than networking ones.

The rest of the paper is organized as follows. The existing
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definitions of DTs are briefly reviewed, and a feature-based
method for describing DT quality is provided in Section II.
The desired DT properties are discussed in Section III with
an emphasis on their relationship to networking support.
Section IV describes possible architectures for placing a DT
in the network and Section V discusses the benefits of using
DTs in different applications. A stage-based implementation
framework is presented in Section VI for creating DTs of large
and complex physical systems, and several implementation
examples are provided in the same section. A summary of the
recent networking-based research work on DTs is presented
in Section VII, and some networking-related open research
problems and challenging issues are listed in Section VIII.
Section IX concludes the paper.

II. DT DEFINITIONS AND FEATURES

In this section, we first summarize the DT definitions from
the literature, while emphasizing the importance of networking
support in building and running DTs. We then introduce
features that describe quality of DTs and discuss factors that
affect quality of DTs.

A. Summary of Existing DT Definitions

When the concept of DT was first introduced by Michael
Grieves for Product Lifecycle Management (PLM) in 2003, it
was intended to be a “digital equivalent to a physical prod-
uct” [4]. Using mainly manual data synchronization delivery
and offline modeling, real-time electronic communications and
networking were not widely used to build DTs. In 2011, the
DT concept was used to create virtual sensors for predicting
aircraft structural lifetime under various flight conditions [32].
This “digital representation” incorporated some important
properties, e.g., structural defects or projected lifetime of the
actual physical product, i.e., the aircraft. Without real-time
synchronization between the physical and digital objects, DTs
were mainly used for fault diagnosis, predictive maintenance,
and performance analysis [33].

In 2012, a DT framework was defined to include three ele-
ments [9], i.e., the physical product, virtual (or digital) product,
and the linkage between them. This linkage includes two-way
interactions between the digital and physical products. The
work also emphasized the benefits of such interactions, i.e.,
“the physical product can be made more intelligent to actively
adjust its real-time behavior according to the recommendations
made by the virtual product” and “the virtual product can be
made more factual to accurately reflect the real-world state of
the physical product”. This idea defines the mutual interactions
between the physical and digital products, which implies that
real-time communications are required in DT implementations.

Building the virtual or digital product of a physical product
often exploits mathematical modeling, computer simulation,
and other forms of data processing. In 2013, a virtual repre-
sentation of the system was defined as “an integrated system
of data, models, and analysis tools applied over the entire
life cycle” of a product so that it can be used throughout
the lifetime of the product [34]. By connecting this definition
with that in [9], the importance of networking support for DTs

became more prominent. This is because real-time interactions
between the physical and digital products may require signif-
icant resources for communications, computations, and data
storage.

In 2014, Michael Grieves formally introduced DTs in a
whitepaper [4], where the DT was defined to include the same
three elements as in [9], and the digital systems should be
“virtually indistinguishable from their physical counterparts”.
Although achieving such virtual products was impractical in
many cases, various efforts have been made since then using
real-time synchronization between the physical and virtual
products, which help achieve this objective [6], [35].

As the DT concept was introduced into a wider range of
industrial applications [36]–[38], the concept has also been
extended to more general physical objects. In [33], a DT is
defined as “a living model of the physical asset or system,
which continually adapts to operational changes based on the
collected online data and information, and can forecast the
future of the corresponding physical counterpart”. According
to this DT definition, a physical object and its performance
can be mirrored by its virtual counterpart, which can predict
potential issues and the remaining lifetime of the physical
object. In other words, the physical and virtual systems should
influence and synchronize with each other continuously and
evolve together. The idea of mutual influence and synchro-
nization between the physical system and the DT has been
coupled with the Internet of Things for efficient sensing, data
collection, and data processing [24], [33].

With all the previous DT definitions, reference [24] defined
a consolidated DT as “the constant entanglement between
an artifact (the PO) and its software representations (the
LO)”, where PO is the physical object or system, and LO
is the logical or virtual object of the PO. The “constant
entanglement” is achieved through the communication linkage
between the physical and virtual objects.

Consistent with the consolidated DT definition, refer-
ence [23] discusses the fundamental parts of DT modeling,
including physical, virtual, and connection aspects. Physical
modeling deals with issues surrounding the definition, descrip-
tion, and extraction of key features of the physical system.
Virtual modeling builds a representation of the physical system
based on these features and on the behavior data provided
by the physical model. The connection model is the linkage
between the physical and virtual parts which supports a
frequent transfer of data between the physical and the virtual
systems. This real-time data synchronization allows the DT to
reflect the true status and behaviour of the physical system
and represent the physical system to interact with third-party
applications.

DT functionality has evolved from a “digital representa-
tion” of a static physical product to one that continuously
evolves with the latter. This trend has increased importance
of networking communications. The implementation of DTs
often requires multiple types of network resources, e.g., com-
putation, communication, and storage resources. Both physical
and virtual modeling consumes computation resources, and the
computation resource requirement increases with the increas-
ing complexity of many modern systems. The synchronization



3

between the DT and its physical counterpart is typically
realized by communication links using network connections.
In addition, communications are required to support the inter-
actions between the DT and third-party applications. DTs may
also have significant data storage requirements. In addition
to storing data for modeling the physical system, the DT
may also maintain historical data of the physical system for
long-term behavior modeling and future state prediction [7],
[32], [33], [39]. Therefore, the joint allocation of multiple
types of network resources [40]–[42] is an important issue
for successfully implementing and maintaining DTs.

B. DT Features

The existing DT definitions as summarized above are all
descriptive, which is not convenient for evaluating quality of
the DTs or analyzing their performance. In this section we
describe a feature-based method that provides a consistent
framework for evaluating DT quality in different situations.

Consider a physical system (PS), and its state at time t
is denoted as s(t). Sometimes one may be interested in a
particular subset of the system state. Therefore, we define
multiple types of system state, sk(t),∀k ∈ K, where K is a set
of different state types. Note that different subsets of system
states may have common system state types depending on the
particular focus.

Various features that reflect the PS behavior can be derived
from the system state. For example, a feature for a temperature
sensor could provide an average of temperature readings taken
over the past 24 hours. Let i ∈ I represent the ith defined
feature of the PS, and fi(t, s(ts)) represent the feature i output
at time t based on the PS state at time ts. In the temperature
sensor case, this feature at time t would provide the average
temperature over the one-day period prior to time ts. The
distinction between times t and ts in fi(t, s(ts)) provides for
the case where a feature based on the system state at time ts
requires computational processing, and as a result, the feature
is not available until time t, where t − ts is the processing
latency. This definition also applies to the DTs, where a PS
feature provided by a DT at time t may be based on a past
PS state at time ts. In this case, the time difference may also
include both communications latency between the PS and DT
and feature processing time at the DT.

In a more general case, for example, a substate of a man-
ufacturing plant could include temperature, humidity, noise,
etc., at different locations. Based on this, features such as
whether a given machine is within a safe working condition
can be provided. The PS is characterized by all its features
as f(t) = [fi(t, s(ts(i))), i ∈ I]. In this case, the ith feature
at time t may have used state information at different times,
ts(i).

A DT is intended to reflect the state and actions of its PS
as closely as needed. As discussed above, because of latencies
caused by communications and data processing, the current
state at the DT may not be the same as that at the PS. That
is, if we define s̃(t) to be the PS state available at time t
at the DT, then typically s̃(t) 6= s(t). For the same reasons,
features offered at the DT on behalf of the PS will often not

exactly reflect the current PS features. Let ∆t be the age of
the PS state information at the DT, i.e., s̃(t) = s(t − ∆t).
We therefore define the features offered by the DT as f̃(t) =[
f̃i(t, s̃(ts)), i ∈ I

]
, where f̃i(t, s̃(ts)) is the ith feature of the

PS reflected at the DT at time t, and this feature information is
based on the received and processed data at the DT at time ts.
Although the state at the PS changes in continuous time, the
update of information at the DT may be initiated at discrete
time instants.

Ideally, a feature at the DT is an exact replica of that at the
PS. That means that the difference between fi(t, s(ts)) and
f̃i(t, s̃(td)) should be zero, i.e.,

fi(t, s(ts)) = f̃i(t, s̃(td)) (1)

∀ t ≥ 0, i ∈ I, where ts and td are the state information times
used to create the feature at the PS and DT, respectively. Note
that ts ≤ td since the state information available at the DT is
at best a delayed version of that at the PS. Equation (1) simply
states that this delay has no effect under ideal conditions.

In a practical application, achieving a DT that exactly
reflects the PS features at all times as defined by (1) is often
difficult for a variety of reasons, such as
• the state information at the DT is normally obtained

by synchronizing with the PS, which often happens
periodically at discrete time instants;

• the features available at the DT incur processing delays
at the DT; and

• the number of features is too large for the DT due to
limited resources for data storage and processing.

Depending on its intended use, a DT can be deployed to
represent only a subset of the features of the PS. A DT
implementation is considered fully functional, if it implements
all PS features with an acceptable level of deviation.

III. DT PROPERTIES

In this section, we review some specific DT properties that
are dependent on networking support, including promptness,
similarity, reliability, composability, scalability, and flexibility
(or adaptability). Although these properties have been intro-
duced and discussed before [3], [24], they will be described
in a manner that incorporates the DT feature definition in
Subsection II-B.

Promptness. Promptness assesses the value of a feature
from an application viewpoint as the age of information (AoI)
used to generate that feature changes. Consider a given PS
feature i and time value ts ≤ t. If

dp(fi(t, s(ts))) ≤ εp,i, (2)

we say that an application’s promptness measure of feature
i (defined by dp(·)) is εp,i-conformant for the given time
parameters. In this expression, the function dp(·) assesses the
quality of feature i at time t using the PS state information
at time ts, i.e., s(ts) was used to generate the feature. If,
for example, the importance to an application were the time
since a feature was created, the function dp(·) defines the
level of acceptability associated with the feature’s age after
a time period t − ts. In general, dp(·) is a non-decreasing
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function of t− ts. When a feature’s age expires at some time
threshold, dp(·) may exceed εp,i, indicating the unacceptability
of the feature. In a DT implementation, the state information
will typically incur latencies due to the state synchronization
process. A feature provided by the DT may therefore be a
delayed version that is available from the PS directly. The
promptness assesses the importance of this latency offset to a
given application.

Fig. 1 shows the synchronization delay of information from
a PS to its DT. In this example we assume that data syn-
chronization between the PS and the DT happens periodically
every T seconds. Consider the system state data generated at
time ts, and define τPL as the data transmission delay from
the PS to the DT. If the communication channel capacity
between the PS and the DT is sufficient, such that all the
state data generated within one T interval is delivered to the
DT before the end of the same interval, then the AoI of the
state data at the DT is at most T + τPL. Upon receiving the
state data of the PS, the DT may have to process the data and
extract various features as would be the case at the PS without
the DT. The data processing may include data cleaning,
classification, modeling, etc. Let Ci be the data processing
time for feature i at the DT, then ∆ti = T + τPL + Ci

is the maximum AoI at the DT for feature i. The DT is
responsible for interacting with applications on behalf of the
PS. Defining τLA,j to be the communication delay from the
DT to application j, then the maximum AoI of feature i at
the application is ∆ti + τLA,j = T + τPL + Ci + τLA,j ,
which is also the upper bound of t− ts. Let ∆t∗ij be the AoI
requirement of application j for feature i of the given PS, then
∆ti + τLA,j ≤ ∆t∗ij should be satisfied for all j ∈ J , where
J is a set of the applications that depend on the DT to obtain
information of feature i of the PS. If a DT is responsible
for interacting with multiple applications on behalf of the
PS, the AoI at the DT should satisfy the requirement of the
application with the most stringent promptness requirement.
That is, ∆ti ≤ minj∈J (∆t∗ij − τLA,j). Based on this, we can
define ∆t∗i = minj∈J (∆t∗ij − τLA,j) as the AoI threshold of
feature i of the DT for supporting the applications in J .

Different applications may have different tolerance about
the AoI. As an example, when dp(fi(t, s(ts))) is defined as

dp(fi(t, s(ts))) =

{
0, if t− ts ≤ ∆t∗ij
∞, otherwise

(3)

the feature i information provided by the DT is either accept-
able or unacceptable at application j.

Note that the promptness requirement for a DT is not only
determined by the application requirements but also dependent
on the dynamics of the PS. More specifically, if the evolution
of the system state in the real system is more abrupt and
random, then the state data should be updated more frequently,
i.e., the update period T should be smaller; meanwhile, the
values of τPL, Ci, and τLA,j should also be smaller in order
to reduce the AoI at the application.

Similarity. In contrast to promptness, similarity considers
the quality of features from a functional viewpoint. For exam-

0

Fig. 1. AoI at DT and application

ple, given a feature i, if for any ts ≤ t,

ds(fi(t, s(ts)), f̃i(t, s(ts)) ≤ εs,i, (4)

then εs,i sets the similarity of feature i for the given set
of times. As discussed above, f̃i is the feature provided by
the DT at time t. Note that if the same state information,
i.e., s(ts), is used by the DT and PS, and the mechanism
used to create the feature at the PS and the DT is identical,
then the two terms in the argument of ds will be equal, and
ds(fi(t, s(ts)), f̃i(t, s(ts)) = 0. The reason that they are not
the same may be that the DT uses a “noisy” version of PS
state information or that the feature generation at the DT is
different than it would be at the PS. Note that the similarity
is the highest when εs,i = 0. In this case, the DT provides
identical performance from the application viewpoint.

Suppose for a given application, the required similarity for
feature i is ε∗s,i, where i ∈ I, and define ε∗s = [ε∗s,i, i ∈ I]. The
level of ε∗s-similarity of a DT can be defined as the fraction
of the features of the PS that have a similarity level of at least
εs,i, or

S(ε∗s) =

∣∣∣Ĩ∣∣∣
|I|

, (5)

where Ĩ = {i ∈ I, | (4) holds when εs,i = ε∗s,i}. Based on
this definition, S(ε∗s) = 1 if εs,i ≤ ε∗s,i and (4) holds for all
i ∈ I.

The similarity level as defined in (5) can be further extended
by considering the importance of multiple features to a given
application. For example, if wij represents the weight or
importance of feature i to application j, then the level of ε∗s-
similarity of the DT to the application can be defined as

Sj(ε
∗
s) =

∑
i∈Ĩ wijIi∑
i∈I wijIi

, (6)

where Ii is an indicator function with Ii = 1 if (4) holds when
εs,i = ε∗s,i and Ii = 0 otherwise. Based on this definition,
the same DT may have different similarity levels for different
applications.

Both higher promptness and higher similarity require more
network resource support, since system states must be more
frequently measured, transmitted and processed, and features
of the PS should be extracted with higher accuracy and lower
delay. In practical implementation, since PSs vary from one
another in terms of their statuses and conditions, the featured
data required to characterize their status and behaviors are
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different. Therefore, the data collection and processing can
be tailored for different PSs and applications to minimize
resource consumption. For example, for static or low-mobility
users, location information can be collected and processed at
a low rate, reducing communication and computing resource
consumption. On the other hand, since different types of
network resources jointly affect promptness and similarity, it
is possible to trade off the resource usage while maintaining
an acceptable level of promptness and similarity. For example,
when the network is congested, and communications between
the PS and DT experience a longer delay, more computation
resources can be allocated at the DT to reduce the data
processing delay.

Composability. Composability is about integrating the DTs
of smaller systems into a DT of a larger system or merging
multiple DTs that reflect different features of the same system
into a new DT [43]–[46]. Let K = ∪Nn=1Kn, where Kn is
the nth set of system states. For a practical system, each Kn

can include all states of a subsystem, a subset of the states
of the entire system, or a subset of the states of a subsystem.
Integrating DTs may be needed in different scenarios. Scenario
1: DTs may be created for relatively independent PSs, which
later on become subsystems of a larger system. Scenario
2: multiple DTs are created separately to support different
applications, and the system states used by the DTs are not
the same. At some point, it is found that in order to support an
application, a DT should be created to use the system states
that have already been used in the multiple existing DTs. In
both scenarios, the ability of integrating the existing DTs helps
save both time and cost.

A typical example for scenario 1 is for geographically
distributed PSs, which have components or subsystems in dif-
ferent geographical areas. It is natural to treat each component
or subsystem, such as a department in an organization or
a warehouse in a store. As the inter-department businesses
increase, integrating the department DTs into an organization
DT helps improve the work efficiency. Similarly, by integrating
the DTs of individual warehouses into a DT for the entire store,
the warehouse resources may be better utilized. Another ex-
ample is where multiple manufacturers along the same supply
chain have increasingly more dependence on one another and
want to jointly optimize their resource allocations by merging
their individual DTs into one DT. For scenario 2, we use the
connected vehicle network as an example. For applications
such as collision avoidance and road navigation, a DT (DT
1) can be created by collecting the system states related
to locations, moving speeds and direction, etc., of vehicles.
Another DT (DT 2) can be created to support communication
network resource allocations for entertainment applications,
which require system states related to types of entertainment
applications, time of using the applications, etc. Later on, it
is found that DT 2 may work more efficiently in network
resource allocations if the system states related to vehicle
locations, moving speeds and directions are also considered.

When integrating multiple existing DTs into a new one, the
mutual interactions or dependency of the corresponding phys-
ical objects should be taken into consideration and redundant
information that is available in multiple existing DTs should

be removed. This requires additional network resources for
both data communication and data processing.

Scalability. Scalability is about the increase in complexity
in building and maintaining a DT when the number of the
system states (i.e., |K|) increases. As a simple example, if
the PS includes N devices, K state types from each device,
and each state type may take V different values, then the
total number of system states is V NK . Therefore, the number
of system states increases exponentially with the number of
devices and state types. The PS size, in terms of number of
components or types of data to be collected, may increase with
time as the system expands. Given this, one goal in the DT
designs is that the amount of network resources required does
not increase exponentially as the system size increases.

Scalability is also about the quality of the DT when the PS
extends in geographical area. In this case, the communication
quality, e.g., communication delay, tends to deteriorate as the
distance increases. How to maintain good quality DTs in this
case can be a challenging issue.

Reliability. Since a DT works as a replica of its PS, its
reliability is important to both its PS and the applications.
The reliability includes both data reliability and operation
reliability. The data reliability refers to the completeness,
accuracy and consistency of the data of the physical system
states available at the DT, and the operation reliability is about
how well the DT can support the applications.

As discussed in Section III, system features that are offered
by the DT may not exactly reflect that of the original PS
due to a lack of similarity. This can be caused, for example,
by inaccurate state information transmitted during the PS-
DT synchronization process. An example of this is where PS
state information is compressed before synchronizing with the
DT. Therefore, the level of data reliability largely depends on
the quality and quantity of data transmitted during synchro-
nization. In general, higher data reliability makes it possible
to achieve higher operational reliability. However, achieving
higher data reliability requires more network and computa-
tional resources. The reliability required by the applications
can be used to determine the required level of data reliability
at the DT and plan the network resource allocation.

In practical scenarios, random channel conditions, network
congestion, and unexpected link and/or server failures, can
all affect the data reliability and the operation reliability.
Achieving higher reliability may require additional network
resources, such as backup communication links, servers, etc.
When network resources are limited, there may be a tradeoff
between reliability and promptness/similarity. In this case, the
achieved promptness and/or similarity may have to be reduced
for some features.

Flexibility (adaptability). Being a replica of its physical
counterpart, a DT should adaptively reflect changes in the
PS, including not only state changes, but also hardware and
software upgrades, changes to the operation modes, etc. This
may result in an adjustment to data collection, e.g., types of
the system states and frequencies at which different types
of state data are sensed. This can change the mathematical
modeling, computer simulations, etc., and further affect the
requirements on the networking resources. For example, for
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building a DT of a school, changing from in-person exams
to online exams at the school may involve changes to data
collection, data processing, and data storage partially because
of the significant differences between online and in-person
proctoring [47]–[49]. Achieving smooth transitions for the
DT to adapt to changes in the PS may require the designers
to know possible future directions of the PS and plan the
resource deployment and allocation accordingly, which can be
difficult in practical applications. In terms of network resource
allocations, two traditional ways for accommodating possible
changes are resource reservation and prioritization. When
applied to supporting DTs, the former is always reserving
a certain amount of resources for a given DT, regardless of
its current requirement. The reserved resources help absorb
some changes to the resource requirements when the PS
experiences changes. However, this can result in significant
waste in resource utilization. In contrast, prioritization means
that DTs requiring higher quality are given a higher priority
to use the network resources when the network does not have
sufficient resources to support all DTs, and this is at the price
of sacrificing the performance of DTs with low priorities.

IV. DT PLACEMENT ARCHITECTURES

A DT is a digital replica of its PS. Depending on the
structure of the PS, the application requirements, and the
network resource availability, the DT of a PS can be hosted at
a single server, distributed among multiple servers, organized
in a primary-secondary architecture, or formed by a cybertwin
or a network of DTs of the individual components/subsystems
of the PS.

A. Centralized DT

In this case, the DT is assigned to and executed on a single
server. When the PS is geographically small, the DT may
be placed at an edge server adjacent to the same network as
the PS. This will help to reduce latencies by minimizing the
path lengths needed for communication. The quality of the
DT will be affected by the conditions within the network and
the capacity of the edge server that hosts it. Since the PS and
the DT communicate through the same local area network, this
setting is especially suitable when the DT interacts solely with
its PS, or it interacts with third-party applications through the
same network. Examples of this type of DTs are described
in [50] for small size electromechanical products, [51] for
small-scale production lines, and [52] for individual network
devices and servers.

Alternatively, the DT can be located at a remote server, in
which case the communications latency between the PS and
the DT may be much higher. The additional delay helps the
PS to access a more powerful cloud server to host its DT. This
helps reduce the computation time, which can be prohibitively
long for complicated PSs if the DT is hosted by an edge server.
Routing, traffic scheduling, and resource reservation can be
made to minimize the end-to-end communication delay, such
as the machine learning-based routing scheme with mobility
prediction in [53] and the delay-aware routing and scheduling
algorithm in [54].

B. Distributed DT

In contrast to the centralized DT case, the DT can be
distributed across multiple servers, each hosting the digital
representation of a subset of the PS features. This is a more
suitable arrangement for large scale PSs that have many
components or subsystems. For example, when building the
DT of a network of connected vehicles, one server could be
used to collect system state data in one region, such as a
community or a city. Based on the collected data, features
such as traffic density, possibility of traffic accidents, need
for car maintenance, etc., can be extracted at the DT by
different servers. Examples of this type of DTs also include
the cyber-physical system in [55] and the edge computing
networks in [56]. In [55] individual physical devices have their
separated DTs, and in [56] each end device and edge server
are individually twined in the virtual space.

Implementing the digital representation of the subsystems
or reflecting the subsets of features of the PSs at different
servers helps distribute network loads, which makes it possible
to extract more accurate PS feature information at the DT.
However, this requires the PS to communicate with multiple
servers that host the DT, and may also require the servers to
interact with each other when the features hosted at different
servers have mutual dependencies. The information exchanges
among the servers incur additional delays in the DT operation.

In addition, since the PS has to communicate with multiple
servers that host the DT, quality of the DT is affected by the
communication conditions between the PS and the multiple
servers and the processing capabilities of these servers.

C. Primary-Secondary DT

A special case of the distributed DT implementation is orga-
nizing the DT operation in a hierarchical fashion. A primary
DT component directly interacts and synchronizes with the
PS. The primary DT component also interacts with one or
multiple secondary DT components, which do not interact
directly with the PS. Such a scheme was introduced in [24]. It
has the advantages of a centralized DT implementation for the
primary DT component, while it also provides the flexibility of
a distributed DT implementation for the secondary DT com-
ponents. However, it has the disadvantage of extra latencies
due to the updating between the DT components.

D. Network of DTs or DT Network

As DTs proliferate, multiple DTs may communicate with
each other, i.e., DTs of different PSs may interact on behalf
of their respective PSs, which creates a network of DTs [57]–
[59]. As an application, networks of DTs can be used to
develop new network architectures and protocols. In [60], a
cybertwin-based network architecture was proposed to replace
the traditional end-to-end communication model with a cloud-
to-end communication version. The cybertwin is similar to a
DT and is a representation of a physical object, e.g., a person
or a thing in the Internet of Things. Cybertwins “serve as
a communications assistant, network data logger, and digital
asset owner of humans and things” [60]. The proposed archi-
tecture aims to ensure that next generation networks are more
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flexible, scalable, reliable, and secure. In [61], cybertwins
located at edge servers are used to collect user-level informa-
tion, aggregate end user traffic into different service groups,
and map quality of experience at the application level into
the service-level QoS demands. This helps achieve fine grain
resource orchestration for virtual networks and enhance quality
of service (QoS) provisioning in sliced virtual networks.

The cybertwin or network of DTs can serve as a centralized
space that collects, stores, and processes global information of
the PS. In [62], a cybertwin is considered for a space-ground
integrated network, where the cybertwin consists of a DT of
a satellite and DTs of base stations and vehicles. With the
mutual information exchanges among the DTs of the network
components, all the DTs can obtain the global information
of the network. One example application of the cybertwin is
for individual BSs to make beamforming decisions that are
optimum to the global network. A similar network of DTs is
considered in [63] for an air-ground network. In this network
of DTs, DTs of ground devices within a certain area are
maintained at a central ground server, and a DT of a drone
is maintained by having the drone contact the central server
instead of individual devices in the ground network. This
allows the DT of the drone to efficiently obtain the global
network information. In [64], a DT network is created by
integrating DTs of individual satellites in a network. The DT
network reproduces the operation state of a satellite network,
predicts the dynamic network topology, and performs virtual
routing at the DT network before assigning it to the real
network. A DT network can also play an important role in
collaborative driving, which requires to make time sensitive
decisions based on status of other vehicles. By creating DTs of
individual vehicles, each vehicle only updates its information
to its own DT. The DTs form a network that supports efficient
information exchange among the DTs so that each DT can
make a globally optimum driving decision for its vehicle.
This helps reduce frequent information exchanges among
autonomous vehicles and improve reliability and efficiency of
autonomous driving [65] .

V. BENEFITS OF USING DTS

Although networking support is a necessary aspect for
implementing DTs and DT-based applications, a network DT,
which is a DT created as a digital replica of a real network,
helps improve network performance in various ways. This
section starts with discussing the general benefits of using
DTs, then focuses on the benefits of using network DTs.

A. General applications
PS as an application. A DT can be used for management,

optimization, and prediction for its own PS. The benefits of
using DTs in this context include:
• With DTs emulating their PSs in dedicated servers, the

design, operation, and maintenance of the PSs can be
simplified, allowing for their real-time monitoring and
control.

• Through smart analysis of data in DTs, the status of the
PS can be predicted to enable more intelligent mainte-
nance and avoid potential failures.

Third party applications. A DT can interact with appli-
cations on behalf of the PS. A DT may be especially useful
when the PS information is required by multiple applications
and/or when the direct interaction with the PS is costly/noisy.
For example, in 5G networks, both handover and navigation
tasks need to receive location-based information from the
end users. To alleviate duplicated information transmission
in wireless networks, the user location information can be
retrieved from the DT instead of the PS. Furthermore, in
handover management, considering that end users may have
a high level of mobility and fluctuating channel conditions,
making handover decisions based on the PS information may
suffer from the ping-pong effect, which increases the numbers
of handovers and reduces the quality of the mobile user’s
connection. When using a DT, user features (e.g., user’s daily
routine and mobility patterns) can be utilized to conduct user
trajectory prediction, which facilitates more efficient handover
decisions with reduced ping-pong effect and decreased han-
dover resource consumption.

The main benefits of using DTs in this context include:

• When a user has multiple devices (e.g., mobile phones,
tablets, wearable devices, etc.), these devices possess
similar behavior patterns and can be characterized by the
same user DT. On this account, when multiple devices
interact with the same application, the required informa-
tion can be retrieved from the user DT only once, which
tremendously mitigates the network traffic burden.

• Powered with data processing capabilities, DTs can help
reduce the noise from the data generated at the PS and
filter out unnecessary data. Moreover, instead of utilizing
the tremendous raw data, the user features and/or behav-
ior patterns can be further extracted in DTs with reduced
data dimension before forwarded to applications, leading
to reduced network traffic load. These features/behavior
patterns also provide better characterization of PSs, en-
abling more efficient, flexible, and precise resource man-
agement with enhanced resource utilization.

• DT implementation can be customized for different ap-
plications by constructing different DT components, each
of which is tailored to one or multiple applications. This
helps simplify the PS by outsourcing the application-
related tasks to the DT.

Consider a supplier-distributor-retailer chain as an example.
The suppliers manufacture goods, which are distributed by the
distributors to the retailers. Customers order the goods through
the retailers. A DT can be created for each retailer, so that the
state of the retailer, such as information of goods provided
from different distributors and information of orders placed
by customers, is updated at the DT periodically. The state
information is then processed at the DT to extract features
such as the demands of different goods, which assist the
retailer to make decisions about what goods and from which
distributors it should purchase next. In addition, complicated
learning models can be built in the DT so that it can use
the historical data to predict future demands and supplies in
order to optimize its long-term revenue. This is an example of
using the DT to optimize the performance of its own PS (i.e.,
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the retailer). Meanwhile, the DTs of the retailers can interact
with different distributors by providing retailing information
of goods from the individual distributors. In such interactions,
the DTs of the retailers can help optimize operations of the
distributors, which are considered as third party applications.
In addition, the individual distributors and suppliers may each
build their own DTs, and the DTs of the suppliers, distributors,
and retailers can be integrated and form a distributed DT of
the full supply chain.

B. DT of Networks

In its initial use cases, a DT was meant to span the entire
life-cycle of a product, from its design to manufacturing and
eventually to its disposal stage [1], [4], [66]. When a DT is
created for a network, it should not only reflect the network
features, but also evolve with the real network in terms of
both software and hardware upgrades, until the disposal of
the network. During this process, the DT of a network helps
optimize network operations and management. As an example,
using DTs can provide the network orchestrator with a re-
liable simulation environment, which is especially important
before applying large-scale decisions on the actual physical
network. As a direct use case of building DTs, the virtual
model of a real network can be duplicated and placed inside
routers. This provides the routers with the current states of
the surrounding nodes and helps them make better routing and
forwarding decisions [67]. By analyzing the past and current
work conditions, diagnosing potential issues, predicting the
future performance, and helping make decisions on changes
to network deployment, operations, and other aspects, the DT
of a network not only influences the network operations in
real-time, but also evolves with the real network throughout
its lifetime. With all the network entities mapped to the
cyber space using DTs, communications and applications can
be provided across the physical and cyber spaces and more
services can be provided across the physical and cyber spaces.
For example, an end-to-end connection in the physical space
can be replaced with an end-DT-DT-end connection. Such
cross-space services benefit from the use of DTs and the cross-
space resource management [68].

Using the DT of networks is a natural way to achieve
software defined networks (SDNs). The basic principle of
software defined networking is to decouple the network control
and the data forwarding functions, making the network more
suitable for dynamic computing and storage needs in various
application scenarios. The network control is directly pro-
grammable and centrally managed through a software-based
SDN controller. The central controller has a global view of
the network operation by collecting the status of network
devices and other operational data. With powerful computation
power, the controller can run complicated learning algorithms
to optimize routing decisions, balance traffic load, and help
the network adapt to dynamically varying topology, traffic
and propagation conditions. Although the current SDNs or
SDNs with artificial intelligence also make control decisions
based on present and past collected data, creating a DT of
an SDN allows the network to benefit from the intelligence

built in the DT. For example, possible changes in the net-
work architecture can be applied first to the DT in order to
observe the eventual outcome caused by these changes. This
helps network operators skip through the transient states and
plan the network operations more effectively. Performance of
any new function models, such as routing strategies or load
balancing criteria, can be simulated at the DT to examine
the performance of such models based on possible behaviors
of the network components. This not only helps predict the
network performance but also diagnoses potential problems.
In addition, the prediction results can be used to influence the
network evolvement, such as software and hardware upgrade,
resource deployment and resource allocations [69]. In addition,
the SDN controller can work with DTs of individual network
elements, such as network users, user devices, and commu-
nication channels, to optimize the network operations [56],
[70]–[72].

DT and network slicing are the two key elements that form
the holistic network virtualization for 6G [73]. By creating
DTs of end users, extensive historical and real-time data can
be collected that characterize the service demands and QoS
satisfaction of the users. With the powerful processing capa-
bility of the DTs to emulate complicated network management
strategies, adaptive and customizable resource allocations can
be achieved for network slices based on various user and
network conditions.

VI. STAGE-BASED DT IMPLEMENTATIONS

A DT may need to operate on many different levels of
granularity [74] in the temporal, spatial, and functional dimen-
sions. This can be difficult to enforce for large and complicated
systems that have high device heterogeneity, cover a wide ge-
ographical area, and support diverse applications. In this case,
the number of system states needed to represent the system
condition, and the number of features needed to support the
applications may be extremely large. In addition, the timing
constraints imposed on the DT when producing an accurate
reflection of the PS features, or when supporting applications,
may vary from very loose to very tight. The amount of
networking resources required for building DTs of such PSs
can also be prohibitively high. As a result, the straightforward
implementation of a fully functional DT of a complex PS
operating within a complex interactive environment may be
extremely hard or even impossible. Therefore, incremental
transitional stages of a DT implementation are necessary and
practical, allowing some applications to take advantage of the
(partially functional) DT. Depending on the physical system
and applications to be supported, the transition can happen
in different ways. In this section, we first present the general
ideas for stage-based DT implementations, based on which
a five-stage implementation framework is described. The im-
plementation ideas for two specific PSs, a space-air-ground
integrated network and a network of connected vehicles, are
then provided. Finally, the generic implementation framework
is integrated with two existing DT structures.
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A. General Ideas

A stage-based DT implementation starts from implementing
a partially-functional DT based on the DT features given in
Subsection II-B and the properties defined in Section III.
Multiple partially-functional DTs are integrated to reflect more
complete behavior of the PS and support more applications.

The stage-based implementation of a DT can evolve along
the following paths:
• In the temporal dimension, the DT implementation can

start from reflecting features with relatively loose prompt-
ness, i.e., larger ∆t∗i . In this case, the data sensing
and collecting frequency, the PS-DT and DT-application
communication data rates, and/or the data processing
speed at the DT can be relatively lower. This helps reduce
the amount of communication and computation resources
needed to implement the DT.

• In the functional dimension, the DT implementation can
start from smaller subsets of features and gradually
integrate more features, i.e., from smaller |Ĩ| to larger
|Ĩ| until Ĩ = I.

• In the spatial dimension, DTs can be implemented for
smaller sets of Kn’s, and then integrated gradually, until
the DT based on the full set of K is implemented.

The three implementation dimensions are not independent
of one another, and their combinations also depend on the
application requirements. For example, if a DT of a city is to
be built for infrastructure planning, the designer should first
identify what features of the city are needed (such as energy
consumption per capita, household income, etc.). Based on
the analysis of required features, the system states can be
incrementally determined; the incremental implementation of
the DT is allowed by a sufficient relaxation of requirements
imposed by the application. Note that, in this particular case,
the functional and spatial dimensions are directly dependent.
Another example is collision avoidance in vehicular networks.
Collision avoidance requires real-time information, such as
the location, moving speed, and moving direction of vehicles
within a limited geographic area. These requirements can be
satisfied by a bare-bones implementation of the DT, and thus,
collision avoidance can be served by the DT during all stages
of its implementation, and not necessarily by only the (final)
fully-functional DT implementation.

Several implementation examples are given in Table I. For
the smart city DTs, the system state includes many types of
data from a large number of system components distributed
across large geographical areas. The current implementations
of smart city DTs, such as [75]–[80], focus on some specific
applications, such as energy efficiency [75], [77], infrastructure
planning [76], [78], [79], and disaster management [80], which
are all time insensitive. For supporting these applications, the
delay for collecting data from a large scale system and the
time needed to process the large amount of data from different
sources is less of a concern, compared to the accuracy of the
model when it is used for predicting future state of the city.

On the other hand, the DT applications for smart manu-
facturing, such as product design, production planning, fault
diagnosis, and predictive maintenance [50], [51], [81]–[85],

are designed for small scale PSs. The DTs can be positioned
close to the PSs, which reduces the data transmission delay
between the PS and the DT. Also, the volume of data is
typically small for small scale PSs, which leads to reasonably
small data processing delays at the DTs. Therefore, tight
synchronization can be achieved between the DTs and their
PSs, which is important to optimize manufacturing operations.
Similarly, the DTs used in mobile computation offloading are
also for small size PSs, such as end devices [52], [56], [86]–
[88], base stations and edge servers [70], [71]. These DTs are
used for supporting computation offloading decisions, resource
allocations, and secure and reliable computation in the edge
networks, which require short delay in making the decisions.

In the functional dimension, the number of features ex-
tracted from the current smart city DTs is a small portion of the
features that can possibly be extracted due to the complicated
nature of the PSs. For the smart manufacturing and edge
computation network examples, the current implementation
examples emphasize extracting features of the PSs that help
improve or optimize the short-term PS operation, while more
features can possibly be extracted in future DT implemen-
tations for similar PSs. For example, in edge computing
networks, the current emphasis is to make better computation
offloading decisions, which involves features of the networks
such as device mobility, traffic conditions, channel variations,
etc. Additional features, such as server lifetimes, satisfaction
level of end users, etc., may be extracted to help network
owners consider changes to resource deployments and long-
term resource allocation policies.

TABLE I
DT IMPLEMENTATION EXAMPLES

PS Temporal Functional Spatial
DT example ∆t∗i |Ĩ| |K̃n|
Smart city Large Small Large
[75]–[80]

Edge network Small Small - Small
[52], [56], [70], [71], [86]–[89] medium

Smart manufacture Small Small - Small
[50], [51], [81]–[85] medium

A stage-based implementation of a DT also provides de-
signers with time and opportunities to better understand the
physical system and/or application requirements, such as the
types of states needed to accurately represent the system and
the features used by applications.

B. Five-Stage Implementation Framework

Following the ideas in the previous subsection, we present
one specific framework for the stage-based DT implementation
for PSs that span large geographical areas. In the spatial
dimension, we divide the types of the system states into the
component level, subsystem level, and global level, and use
sets KC , KS , and KG, respectively, to represent the types
of system states at these levels. For example, in a connected
metropolitan vehicular network, the moving speed of a car
is at the component level, while its departure and destination
locations may belong to either a subsystem or at the global
level. At each spatial level, the implementation is divided into
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stages that start from a low promptness level for a subset
of the features, and gradually transit to achieving the target
promptness of all features. This framework is given in Table II.
It includes five stages, and is explained below.

TABLE II
EXAMPLES OF STAGE-BASED DT IMPLEMENTATIONS

Stages Components Subsystems Global system
k ∈ KC k ∈ KS k ∈ KG

Stage 1 ∆ti =∞, ∀i ∈ I
Stage 2 ∆t∗i < ∆ti ≤ ∞ ∆ti =∞

for i ∈ Ĩ ⊆ I ∀i ∈ I
Stage 3 ∆ti ≤ ∆t∗i ∆t∗i < ∆ti <∞ ∆ti =∞

∀i ∈ I for i ∈ Ĩ ⊆ I ∀i ∈ I
Stage 4 ∆ti ≤ ∆t∗i ∆t∗i < ∆ti <∞

∀i ∈ I for i ∈ Ĩ ⊆ I
Stage 5 ∆ti ≤ ∆t∗i , ∀i ∈ I

From the second to the fourth columns, each represents a
level of physical (or spatial) size.
• The component level represents the lowest spatial size.

Higher promptness should first be achieved at this level,
since the volume of data sensed at the same components
is relatively small and can be collected and processed at
an edge server with shorter communication and compu-
tation delay.

• At the subsystem level, a larger volume of data should be
collected and processed as the number of components in a
subsystem increases; furthermore, the mutual dependence
of components in the subsystem should also be reflected
in the digital representation. As the size of the subsystem
increases in terms of both the number of components
and the geographical space, the complexity to model the
system increases. In addition, the larger communication
delay and delay variation between individual components
and the DT makes it difficult to achieve a high level of
promptness.

• The third column represents the entire system that inte-
grates all the subsystems and components. The complex-
ity for achieving high promptness at this level for a large
system can be prohibitively high.

Each row in Table II represents an implementation stage
that is represented by the level of promptness and similarity
of the DT.
• In stage 1, DTs do not exist, and there are only physical

systems at all levels in the spatial dimension.
• In stage 2, a certain level of synchronization is achieved

at the component level but the promptness is still below
the target for some or all the features; and there is no
synchronization at the subsystem and global levels in
the spatial dimension. Depending on the volume of data
and the availability of communication bandwidth and
computing resources, this stage may be omitted.

• In stage 3, the target promptness is achieved for all the
features at the component level; a certain level of syn-
chronization is achieved for some but not all the features
at the subsystem level, and not all features have achieved
the target promptness. There is no synchronization at the
global level.

• In stage 4, the target promptness is achieved for all the
features at the component and subsystem levels. At the
global level, not all the features have achieved their target
promptness.

• In stage 5, a fully functional DT is finally implemented.
All features have achieved their target promptness at all
spatial levels.

This stage-based implementation includes system decom-
position and DT integration. Decomposition refers to the
division of the physical system into a series of consecutively
finer (smaller) subsystems, all the way down to individual
components. Integration refers to the creation and consecutive
integration into ever larger subsystem-level DTs, starting with
individual component-level DTs, and going all the way up to
a fully-functional DT for the full system.

The division of a system (or subsystem) into smaller subsys-
tems can be performed in various ways. Some systems can be
naturally divided into relatively independent subsystems based
on geographical locations or functionalities. For example, a
city can be divided into different communities, a university
consists of multiple campuses, and a company has multiple
departments. On the other hand, the division of some systems
may not be straightforward, especially when the components
in the system are interrelated or coupled in complicated ways.

For every implementation stage of the framework, the
following issues arise:

• How many component DTs and subsystem DTs should
be created for each PS?

• Where should the component, subsystem, and global
system DTs be located?

• How should each (cloud/edge) server allocate commu-
nication, computing, and storage resources for each DT
implementation?

Answering these questions requires solving complicated net-
work resource allocation problems, if the DTs are supported
by existing network resources. When deploying additional
network resources is an option, such as adding servers or
communication links to the network, answering the above
questions requires solving joint resource deployment and re-
source allocation problems. In addition, domain knowledge
related to the PS is often required to build its DT. More
discussions about the DT implementation issues are provided
in Section VIII.

Following the above framework, two implementation exam-
ples are given in the following subsections.

C. DT Implementation for a Space-Air-Ground Integrated
Network

Consider a space-air-ground integrated network (SA-
GIN) [90]–[94]. In the spatial dimension, the entire system
is naturally divided into the ground, air, and space networks,
which form the three top-level subsystems of the SAGIN. Each
of the three spatially separated networks can be further divided
into multiple subnetworks that form the next-level subsystems.
The subsystems can be further divided into components, such
as base stations (BSs), routers, and user equipment in the
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ground network, drones and balloons in the air network, and
satellites in the space network.

Building the DT for the entire SAGIN can start from
building DTs for the individual components. The state at each
component should be synchronized with that at the DT, which
processes the state information and extracts the features of the
component. In addition, profiling the individual components
may also help the system to predict possible malfunctions
and lifetime of the components. Consider a cellular BS as
an example. The state information may include the number of
busy channels, number of associated users, number of active
connections, types of traffic carried by active connections,
transmission power and data transmission speed to each user.
Based on this information, the DT of the BS can extract
features of the BS, such as whether the BS is overloaded.

The DTs of the components belonging to the same sub-
system are integrated into the DT of the subsystem. For the
ground network, its DT is built by integrating the DTs of the
BSs, user equipment (UE) devices, gateways, and routers. Note
that the DT of the ground network can be located in a different
server as the DTs of the individual components. In this case,
additional communication resources are required for the com-
ponent DTs to forward state information to the subsystem DT.
For example, the DT of a BS can pass information including
possible user handoffs and co-channel interference conditions
to the DT of the cellular network, which uses the information
to make decisions on channel allocations, handoffs, and traffic
load balancing.

This type of information aggregation is repeated until
reaching the highest level DT, which is the DT of the entire
system. At this level, data collected from the entire system can
be used to coordinate network-wide operations, e.g., end-to-
end routing, long-term traffic profile modeling, and network
resource deployment. The system DT can also be utilized to
make strategies about possible system configuration changes,
such as adding or removing some drones in specific areas.

D. DT Implementation for a Network of Connected Vehicles

In this section we consider the case of constructing the DT
for a network of connected vehicles in order to help facilitate
network management and planning. From the temporal dimen-
sion, the DT can be created to support network management
functions that require information with different time scales
[95], [96]. Examples of real-time functions include collision
avoidance and road traffic navigation. This requires the DT to
track real-time locations, moving speeds and directions for
vehicles, etc., which form a subset of the network states.
Data belonging to this subset of the system state should be
transmitted to and processed at the DT with very low delay,
e.g., less than 10ms, so that the extracted feature information,
such as distances to neighboring vehicles, can be useful for
collision avoidance, assisted driving [97], [98], and other time-
critical applications.

The DT can also be used to prevent road accidents caused by
mechanical or electrical failures [98]. To support this function,
the DT should keep tracking battery levels for electric vehicles,
mechanical conditions of vehicles on roads, etc., which form

a different subset of the network state. In order to extract
features such as whether the car brake would be safe for
the next few minutes or how long the battery can keep the
car running, the DT should not only process the current state
data but also the battery energy consumption and other vehicle
running data in the past few minutes or hours.

The DT can also be constructed to reflect behavior of the
network over a longer time period. For example, the DT
stores system state data, including users’ positions and service
requests. After accumulating the data over days or months,
the DT can extract system features including individual users
travel patterns, usage of various mobile applications among
road users, etc. This allows the DT to effectively predict user
locations and content requirements in social-aware networks
and make optimum decisions on mobile edge caching [99]. In
vehicular networks, historical data of drivers can be used to
model and predict driver behaviors, based on which optimum
decisions can be made for personalized driving guidance
or insurance pricing [98]. Furthermore, by processing the
system state data over months or years, the DT can extract
features of the system including traffic density, service demand
distribution, and resource utilization, which helps the network
operators to make decisions on the network infrastructure de-
ployment. In this case, supporting the delay-tolerable functions
does not require high data transmission rates or short data
processing times. However, a large storage space and high
computational power are required for storing and processing
the historical system state data.

E. DT Structures
The generic five-stage framework can be integrated with

different design and implemention structures when building
DTs of complicated PSs. Below we introduce two DT imple-
mentation structures, a layered structure [74] and a modular
structure [100].

The concept of “key-components” is proposed in [74] for
modeling and building DTs. The key-components for a PS can
be defined at different levels to enable different applications,
and the different levels provide a layered structure for DT
implementations. For instance, in a smart city or intelligent
vehicular network, a set of “low-level” key-components can
be defined for building the DTs that are used to model and
predict the mechanical performance of vehicles. A different set
of “high-level” key-components can be defined for building
DTs that are used to support Car-as-a-Service. Building the
latter DTs directly on top of the “high-level” components
avoids processing unnecessary “low-level” details, which helps
reduce the implementation complexity of the “high-level”
DTs. This layered structure also allows a subset of the key-
components at the same or different granularity levels to be
integrated into a DT based on specific services and applica-
tions. When integrating the layered design with the stage-
based framework, key-components can be defined from the
spatial dimension. For example, the granularity levels vary
from individual physical components and subsystems to global
systems.

With a modular structure, the DT of a complicated PS can
be broken into smaller parts, each of which can be developed
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and improved independently. The modular structure of DTs
in [100] is based on the basic building blocks referred to
as Digital Maps (DMaps). Each DMap implements a specific
functionality of the DT. Higher level tasks and applications
can be achieved by integrating the related DMaps that are
needed by the tasks or applications. Using such a structure,
different DMaps can be individually developed and updated
without affecting other DMaps. A DMap, once implemented,
can be used in multiple DTs or support different applica-
tions. This structure is used to design the 5G and beyond
networks in [100], where the DMaps are implemented based
on subsets of network components or ranges of IP addresses.
The DMap-based modular architecture easily fits the stage-
based framework from the functional dimension. Starting from
stage 2, new DMap modules can be built incrementally toward
achieving the temporal objectives of the DT in the respective
spatial level of the stage.

Both the layered and modular structures provide flexibility
for building DTs of complicated PSs in an increasing manner.
Meanwhile, both structures require interactions of different
building blocks, i.e., DMaps or key-components. Therefore,
defining standardized building blocks and communication
protocols is essential for the composability, scalability, and
adaptation of the DTs.

VII. SUMMARY OF RECENT RESEARCH

For networking-related research on DTs, existing literature
falls into two general categories, the first is creating DTs
for different types of physical systems based on available
networking support, and the second is taking advantage of
the DTs for improving the network performance. This section
starts from the first category by summarizing the existing DT
solutions in intelligent manufacturing and different prototype
implementations of DT-based smart cities, and then introduces
recent work on applying DTs for network performance im-
provement. At the end, combination of machine learning (ML)
and DT-related networks is discussed.

A. Intelligent Manufacturing and Cyber-Physical Systems

Since it is first introduced in manufacturing, the DT concept
has been gaining substantial attention from manufacturing
companies. One important DT application is building virtual
workshops for intelligent manufacturing. Real-time mutual
interactions between the physical and the virtual systems
are important not only for real-time synchronization between
the two systems but also for continuous evolvement of both
systems. The convergence between the physical and virtual
systems is important for realizing various smart operations
in the manufacturing process, such as automatic control and
fault prediction [5]. In [81], a DT solution is developed for
optimizing operations of production lines. A virtual model
that imitates real-world behavior of production lines is built by
using a simulation software model. The virtual model is then
coupled with the real production system through asynchronous
connections that allow the virtual model and real system to
exchange data periodically (e.g., every 10ms). The DT can be
used to predict the performance of the real system in different

scenarios, and the information is used to help improve the
production efficiency. Since the PS is relatively “small” in the
spatial dimension, it is possible to use high-speed communica-
tion links to achieve fast data exchange between the PS and the
DT. The product DTs designed in [50] for electromechanical
products and in [51] for a production line are also for PSs that
span small areas so that Ethernet or other high speed local area
communication links can be used to achieve real-time PS-DT
communications. In addition, the volume of system state data
is also relatively small, given the size of the PSs, and this leads
to relatively short data processing delay at the DTs. Different
from the above manufacturing DTs, the DT designed in [101]
is for energy management in manufacturing systems. Since
the application is not time sensitive, there is less pressure on
real-time data communications and processing. This makes it
possible to run the DT for large systems, where collecting and
processing the system state data may be time consuming.

DTs and Cyber-physical systems (CPSs) are both important
in integrating the cyber (or virtual) and physical systems to
achieve smart manufacturing. CPSs are a new trend in the IoT
research community, where PSs act as sensors collecting real-
world data, which go through further analysis in the dedicated
computation modules, and the result is fed back to the PSs.
Both DT and CPS rely on real-time sensing at the physical
system, data processing at the cyber system, and mutual
interactions between the cyber and physical systems. However,
CPS emphasizes more on monitoring and controlling functions
of the cyber system on the physical system, and DT requires
the virtual system to be an exact replica of the physical
system and keep evolving with and influencing the physical
system. For this reason, DT can be used not only for real-
time optimization and control but also for error prediction and
longer term designs and optimization of the physical system.
DT is considered as a seamless integration between the cyber
and physical spaces in [2], where more detailed discussions
about the relationship and differences between CPS and DT
are provided. As cyber-systems have become increasingly
cloud-based, DTs can be used as a bridge between the cyber
and physical systems, so that the real-time state and feature
information at the DT helps the cyber system to make more
accurate and optimum decisions and support more time-critical
applications [55]. Large scale CPSs and DTs usually suffer
from networking issues such as poor synchronization between
the cyber (virtual) and physical systems due to communication
and/or data processing delay. A common DT platform is
needed so that various simulators, simulation engines, and
physical machines that are used to build the DT components
can share data, interwork, and support applications using stan-
dard interfaces [102]. A common DT platform also provides
standard tools for testing, deploying, managing, updating, and
integrating the DTs.

B. DT-based Smart Cities

The use of DTs in smart cities has been increasingly popular
for planning infrastructure deployment, anticipating public
problems, assisting communities in need, adjusting govern-
ment policies, etc. Although building a DT to comprehensively
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reflect all aspects of a city is not practical in a short term, DTs
are a critical tool towards smart cities. As such, prototype
DTs have been created for specific applications of smart
cities. Examples of these prototype DTs can be found in [75],
[76], [103]. The virtual Singapore designed by the Dassault
Systmes [75] helps achieve more efficient energy consumption
by collecting and processing city state data and guiding
operations of the city. The DT-based smart city for Dublin,
Ireland [76] is created for helping the city planning, such as
adding or removing buildings and blue spaces, by collecting
information from the citizens and processing the information
at the DT. The Vision Zero [103] program monitors road traffic
conditions, collisions, pedestrian injuries, etc. and makes use
of the information for managing traffic and improving road
safety.

Healthcare is an important type of applications for smart
cities. A DT-based ecosystem is designed in [104] for health-
care and well-being. In the proposed DT framework, health-
related data is collected from personal health devices, such as
smart phones; the data is processed and analyzed through an
AI-inference engine; and the results are fed back to the user
for personalized healthcare and well-being. The healthcare
DT framework is based on the ISO/IEEE 11073 standard,
which facilitates communications between personal devices
and servers that host the DTs.

The road system is an important part of a city infrastructure.
Implementation of the DT of the roads for a city is considered
in [19], where different road condition data is collected and
sent to cloud servers for extracting features of the road system.
The data includes live videos of the road traffic, GPS data, and
environmental measurements. When processed at the cloud
servers, information can be extracted to identify and track
persons and vehicles for various purposes, such as preventing
crimes, solving accident conflicts, or resolving accident con-
flicts. DT-assisted road traffic data prediction is used in [20]
for traffic management, where cameras on road crossings
are used to collect road traffic, which is then processed to
predict the traffic condition in nearby road crossings. Since the
geographical area considered in this work is relatively limited,
compared to other smart-city DTs, data can be collected and
processed within relatively short time delay. For example, the
traffic prediction in [20] can be performed on hourly basis.

For smart cities, the geographical size of the PS makes
it unlikely to achieve a fully functional DT. Since collecting
system state data in real-time is not practical, most applications
supported by the existing smart city DTs have been time-
insensitive. Meanwhile, extracting features needed by these
applications requires processing data from a large number of
places, people, or other components of a city over a long
period of time. The amount of network resources required to
communicate, store, and process the high volume of data is
extremely high. In addition, the DTs for supporting different
applications collect data based on different types of city states,
use different data processing methods, and adopt different sim-
ulation models. This makes it difficult to extend the existing
smart city DTs for supporting other applications. In addition,
building the DT of a city or other large systems requires
large volumes of data in different formats, multiple simulation

models, different data fusion platforms, etc., which may not be
interoperable without consistent guidelines to follow. A T-Cell
framework developed by the digital urban European Twins
(DUET) project provides a common environment that allows
models, data, and simulations to dynamically interact in order
to facilitate decision making in DT-based smart cities [18].

C. DTs for Network Performance Improvement

Recent enhancements in mobile network infrastructure have
facilitated the support for strict performance requirements and
new functions, and brought new intelligent services to the
edge of the networks. Although making the optimal deci-
sions and prediction is challenging due to the dynamic and
heterogeneous nature of the networks, deployment of DTs
provides real-time monitoring of the networks and perception
data for the decision-making module. In [52], [56], [70], [71],
DT networks are formed for making offloading decisions in
mobile edge computing (MEC) networks. The DT networks
are created by integrating DTs of different network elements,
such as DTs of individual IoT devices [52], [105], DTs
of individual end devices and edge servers [56], DTs of
mobile users, base stations, and edge servers [70], or DTs of
vehicles and RSUs [95], [96]. The DTs collect real-time state
information of their PSs and extract the information that is
needed to make task offloading decisions for mobile devices.
The DT network in [71] includes a DT for each edge server
and a DT for the entire MEC system. The DT of the MEC
system reflects the interactions in the MEC system, such as
offloading decisions of mobile users.

Deviation often exists between information reflected at a
practical DT and the true information at the PS. This can be
caused by many factors, such as varying network conditions
and limited network resource availability. Such discrepancy
affects the performance of the applications that depend on
DTs to obtain information of real systems. The effects of this
discrepancy are considered in [71], [106] when making deci-
sions for mobile computation offloading. The work in [107]
further considers different factors, including packet loss during
data synchronization between the PS and the DT and biases
in communication, computation, and storage resources, that
cause the information discrepancy, analyzes the information
deviations, and uses the derived deviation information to
make computation offloading decisions and allocate network
resources.

By synchronizing the system state at the physical and the
digital systems, the DT networks enable network providers to
estimate and predict the dynamic changes of the device loca-
tions, traffic demands, communication channels, and resource
availability, and make decisions on computation offloading and
resource allocations. However, maintaining the DTs requires
real-time communications and data processing. The additional
amounts of network resources for hosting the DTs are often not
considered in the existing work on DT networks. In addition,
the amount of network resources for running the DTs is di-
rectly related to the quality of the DTs, such as the promptness
and similarity, which further affects the operation reliability of
the applications. DT-enabled metaverse is achieved in [108],
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where multi-dimensional optimization, including communica-
tion and computation resources, offloading decisions, caching
policies, BS allocation, transmit power, etc., is performed in
order to achieve the low delay requirement of a metaverse.

DTs have also been used in vehicular networks to help
catch the highly dynamic and unpredictable nature of the
network topology and transmission conditions. DTs are used
in an aerial-assisted vehicular network in [109], where the
dynamically changing network topology poses high challenges
to efficient resource allocations. In this work, one DT is
maintained for the RSUs and another DT is for the vehicles.
The former is to track real-time states of the RSUs, including
their traffic load and available resources; and the latter is to
track the real-time topology of the vehicles and required traffic
load. The DTs are hosted in a UAV, which has a wide coverage
and can communicate with the vehicles and RSUs and update
the information at the DTs in real-time. The DTs are then
used to make intelligent offloading decisions regarding which
vehicle should offload its tasks to which RSU. A social-aware
vehicular edge caching network is studied in [99], where a
DT network is implemented at the RSUs and collects network
state information, including vehicle locations, driving status,
and data requirement. The information is then processed at the
RSUs in order to extract features needed to build the vehicular
social model. This helps design cache resource scheduling
schemes that satisfy requirements of the vehicular users and
reduce energy consumption of the RSUs. In [110], DT-enabled
software-defined vehicular network (SDVN) is studied for
improving the routing performance. Different routing schemes
are run at the DT-based virtual network, which keeps refining
the routing methods based on received routing-related reports
from the real vehicular network. The central controller of the
SDVN collects the status of individual vehicles and the roads
and builds a real-time DT of the physical network. In addition,
the controller maintains multiple future virtual SDVNs based
on different predicted states of the vehicles and roads and
adopts the optimum control scheme. Achieving the optimum
routing requires accurately predicting the road traffic and
network conditions, which requires collecting system state data
in very small time granularity and processing the data at very
high speed. The high computation load also consumes high
processing energy, which should be taken into consideration
when making the control decisions.

D. DT Combining with ML

Machine learning is one of the most powerful methods
to achieve the intelligence needed for DTs to learn, model,
and predict the behavior of the PSs. For example, based on
historical and real-time data collected from the production
lines and other manufacturing systems, supervised learning
is used to estimate work conditions of the equipment, opti-
mize equipment operations, predict possible faults, and locate
causes of faults [50], [101]. For healthcare, a convolutional
neural network (CNN) is used in [104] that takes input
data collected from healthcare devices worn by the users
and classifies health-related activities of users. In the DT of
network function platform studied in [111], a neural network

is trained for the DT to estimate and predict key performance
indicators of the service system and optimize CPU resource
sharing among virtual network functions.

DTs have also been combined with ML algorithms to
enhance network management performance in data analyt-
ics and improve decision-making efficiency. In [69], a DT-
empowered Industrial IoT architecture is considered, where
DTs capture the characteristics of industrial devices and the
dynamic changes of the network. Based on knowledge from
DTs, training efficiency of federated learning is improved
under resource constraints. With the aid of reinforcement
learning, DTs can help track the dynamic changes of high
dimensional states of mobile networks and make optimum
decisions for network resource allocations, user scheduling,
and other network operations [52], [89]. In [99], optimum
caching decisions for a vehicular social network are made
through a deep deterministic policy gradient (DDPG) learning
approach. With the assistance of the social-aware DT that
captures the dynamic and long-term changes of the network,
the caching decisions are optimized in the diverse vehicular
networking environments. In [112], a graph neural network
helps build scalable DTs by modelling the intertwined rela-
tionships among multiple network slices that share the same
physical infrastructure. Collaboration of DT and ML methods
has been applied in MEC systems for making better task
offloading decisions [56], [70], [89], [113], [114], [115].
With the support of DTs, complicated ML algorithms can
be run to keep tracking states of the devices and the system
and predict the future states. However, due to the limited
network resources, the state information at the DTs may be
inaccurate, delayed, or incomplete. This should be taken into
consideration in the DT-based ML algorithms.

DT can predict the network behavior by running trained
models based on current and historical data collected from
the real network. This allows the network to proactively
adapt to dynamically changed network conditions. However,
processing the large volume of data to satisfy the require-
ments of real-time applications poses significant challenges
to network resource deployment and management. Some key
design requirements are presented in [116] in order to achieve
a scalable and reliable architecture to build the DT of a 6G
wireless system. Using distributed deep learning is one method
that allows multiple models to be trained at different places
with reduced computation load. However, such locally-trained
models should then be integrated, which consumes additional
communication and computation resources.

As one of the distributed learning methods, federated learn-
ing has been used to build DT-empowered communication
networks [52], [89]. In mobile wireless networks, synchroniz-
ing real-time data between mobile user devices and the DTs
that are usually located at edge servers requires a considerable
amount of wireless resources. Using federated learning allows
the DT of a mobile user to learn the user’s behavior through
its communications with other users. This helps reduce the
communication loads between end users and the edge servers,
which is especially helpful when such communication links
are in poor quality. As a distributed ML algorithm, feder-
ated learning has enabled distributed advanced analysis while
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considering privacy protection and data security. However,
designing scalable and efficient federated learning algorithms
is still a challenging research topic [117].

Training practical ML models requires a huge volume of
data. Often, there is a lack of data from real network due
to data encryption or protection of user privacy. Instead of
using data collected from real networks, generative adversarial
networks (GANs) [118] can be used to generate synthetic
data [100]. In addition, data can be generated using computer
simulation or testbeds. It has been shown that network models
trained using Graphical neural networks (GNNs) can be more
scalable. That is, models trained for small networks are
still valid for large networks or for networks with different
configurations or traffic distributions [119].

VIII. IMPLEMENTATION ISSUES AND OPEN RESEARCH
TOPICS

Despite the great potentials of DTs, there are many chal-
lenges associated with developing and incorporating DTs in
practical applications. In this section, we briefly discuss and
identify some networking-related open issues in DT research
and implementation.

Curse of dimensionality. By definition, a fully functional
DT should reflect the physical system in temporal, spatial,
and functional dimensions from small to large granularities.
This means that in the temporal dimension, a DT is expected
to reflect the features of its physical system from very small
to very large time scales, e.g., from microseconds to years;
in the spatial dimension, a DT should be built “from the
micro atomic level to the macro geometrical level” [66];
and in the functional dimensions, a DT should reflect all
features of the physical system. Thus, a fully functional DT
implementation involves representing the physical system with
an extremely large number of state types and collecting and
processing a prohibitively high volume of data. This curse of
dimensionality problem in DT implementation [120] may go
beyond the capability of any existing methods and computing
devices. In addition to using modern high speed CPUs and
more efficient big-data technologies, another way to break the
curse of dimensionality is to split the fully functional DT of
a given physical system into multiple DTs, each of which
reflects a subset of the features and states of the physical
system in certain temporal and spatial ranges. The stage-based
implementation described in Section VI is one approach to
solving this problem.

Real-time synchronization. Keeping tight synchronization
between the physical system and its DT is one of the
fundamental requirements of high-quality DTs. To achieve
this, it is important to minimize both the communication
and computation time. Data transmission delay can affect
the DT quality considerably if PS-DT communications or
communications among multiple DT components of a PS
should go through the Internet. Time-sensitive networking
(TSN) [121] and deterministic networking DetNet [122] are
protocols that help achieve bounded end-to-end transmission
delay. However, TSN is a layer-2 protocol that has limited
scalability, while providing ultra-low latency end-to-end using

DetNet requires the network infrastructure to support DetNet
services. In addition, complicated control and management
technologies are required in order to provide reliable ultra-
low end-to-end communication delay based on DetNet and
TSN [123]–[125]. However, reliably delivering ultra-low end-
to-end delay also depends on more efficient network architec-
ture that facilitates efficient network management for routing,
addressing, resource allocation, etc. In addition to commu-
nication delay, computation time in building and maintaining
DTs, including simulation, modeling, and data processing, can
also be significant. When the amount of network resource is
limited, reducing the computation time may be temporarily
achieved through the stage-based DT implementation.

Optimum resource deployment and management. A DT
should keep tracking accurate real-time status of the PS and
constantly update the features of the system. Implementing
and maintaining DTs requires the support of network re-
sources, including communication, computing, and caching.
For complicated or large-scale PSs, how much each type of the
network resources is needed, where to deploy the resources,
and how to allocate the resources to build and maintain the
DTs with desired quality requires joint heterogeneous resource
management, which is a very challenging issue for large size
networks [126]. In addition, different applications may require
different features to be extracted from the system states and
have different promptness and similarity requirements. This
will result in the optimization of multiple objectives, some of
which are likely contradictory. Given the limited amount of
network resources, how to coordinate the application require-
ments in the network resource allocations is a complicated
issue.

Standardization. In the last decade, DT technology has
been used in a variety of applications and the use cases are
growing rapidly. However, due to the lack of a standardized
prototype of DTs, every application is using a definition of the
DT specific to its domain. A standardized protocol is impera-
tively needed for proper usage of DT technology. The Interna-
tional Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) have been developing DT-
related standards. The ISO 23247 series provide the general
guidelines for building DTs in manufacturing environments. In
October 2021, the organization published ISO 23247-1 [127],
which is the first part of the ISO 23247 series and provides
the terms and definitions related to DTs in manufacturing.
Later parts of the series are expected to provide the reference
models and framework views from different perspectives. In
particular, the ISO 23247-4 is expected to provide guidelines
for information exchange and protocols from a networking
perspective, which would facilitate the information exchange
of DTs built for different components and subsystems in the
same system or even DTs of different systems. In addition,
the ISO/IEC JTC 1/SC 41 [128] is for standardization for
developing IoT and DT-related applications.

Addressing. Addressing is another important issue, espe-
cially in a network of DTs [24], [129]. First of all, the DT
of a given PS should have a unique identity in a network.
This means that given the identity of the PS, its DT should be
located in the network; and given the identity of a DT in the
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network, the identity of its PS should be located. Second, as
a virtual representative of its PS, a DT should be addressable
directly when it is working with third-party applications on
behalf of its PS. That is, communications between the DT of
a given PS and a third-party application should not go through
the PS. This can be difficult unless the information about the
identity mapping between the PS and the DT is available at
the third-party application before the communication starts.
As a transitional step, a third-party application can always
communicate with the PS first, which then directs the appli-
cation to its DT. Alternatively, trusted DT mapping servers
may be built to help applications locate the DTs of given
PSs. The identity mapping information can also be cached by
intermediate network devices. However, the communication
re-direction and outdated caching information can result in a
considerable initial delay in DT-involved communications and
cause security issues.

Security. The use of DTs poses significant security issues.
With a DT as the replica of the physical system, keeping the
system safe requires not only protecting the PS, but also the
DT and the connection between them. With DTs being used
to interact with third party applications on behalf of the PS,
the DTs are more exposed to the outside environment than
the PS, and therefore, their security is even more crucial. Any
security breach to the DTs results in security breach to the
PSs. However, discovering security breach to a DT can be
delayed due to the fact that the DT and the PS are physically
apart. In addition, DTs can influence or control over their PSs,
and keeping DTs from infiltrators and hackers is important to
ensure the PS to work normally.

Specialization. In a large system consisting of multiple
subsystems, each subsystem can use its own DTs. These DTs
can all be specialized or customized for different applications
of their corresponding subsystems. In this type of imple-
mentation, the central management unit needs to deal with
multiple types of DTs with different structures and has to
convert their outputs to a unified type of data to facilitate the
communication among different DTs. Alternatively, a unified
DT structure can be used in all subsystems to make the inter-
DT communications easier. However, this may not achieve the
same quality of DTs as in the specialized case, since the DTs
are crafted for general usage for all subsystems.

IX. SUMMARY

This paper has presented a comprehensive review on the
networking-related research and technological development in
DT implementation. In particular, the existing definitions of
DT with key features and characteristics have been summa-
rized. After that, desired properties of DT implementation
have been discussed, highlighting the relationship between
the quality of DTs and the networking support. Moreover, a
stage-based DT implementation framework has been presented
to demonstrate how DTs can be practically implemented for
large scale and complicated systems. Finally, the existing
research on networking-related DT implementation have been
thoroughly reviewed and the technical challenges and open
research issues have been elaborated.
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