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Abstract—Digital twins (DTs) are virtual implementations of
physical systems (PSs) and can represent the states of the PSs
in realtime. In order to update the DTs with changes in their
corresponding PSs, the PSs should regularly send their state
information data to the DTs. Each DT must be assigned to an
execution server (ES) that processes the forwarded data from
its corresponding PS. The output is then made available to
applications that are operating at an internet cloud server. In
this paper we consider the problem of DT placement such that
the maximum data request-response delay experienced by the
application over all PSs is minimized, subject to maximum data
age target constraints at the DTs and the application server.
The problem is first formulated as an integer quadratic program
(IQP) and then transformed into a semidefinite program (SDP).
The problem is NP-complete. Since exact polynomial solutions
are unavailable, several practical polynomial-time approximation
algorithms are introduced. The algorithms are designed to give
solutions with different trade-offs between the accommodation
of the application input timing latency and the achievement of
data age targets.

Index Terms—Digital twin, placement, data age target, mini-
mum delay.

I. INTRODUCTION

A digital twin (DT) is a software-based implementation
of a real physical system (PS) and can be used to represent
the PS and evolve with the later throughout its lifetime [1],
[2]. The usefulness of DTs has been demonstrated in many
scenarios, especially in IoT [3], [4] and industrial application
areas [5]. A common aspect of DTs is their need to regularly
update information according to the changes in their associated
PSs [6]. This is referred to as DT synchronization.

DTs are especially suitable for IoT applications since they
are tailored to accommodate the real-time flow and processing
of data. For example, [7] introduces a dynamic digital twin of
vehicles and road-side units (RSUs) to capture time-varying
resource demand information. In [8], a DT takes the dynamic
network topology of a vehicular network into account to
capture social features and map them into a virtual space. The
work in [9] uses the digital twin of a warehouse to obtain
real-time data and visual feedback on cargo information.

In the field of cloud computing, [10] proposes a DT-based
network architecture that replaces the traditional end-to-end
communication model with a cloud-to-end communication
version, where a communication end (e.g., a person or a

device) can be replaced by its digital representation. In [11],
[12], digital twins are integrated with a conventional edge
network to build a digital twin edge network, where the DTs
can exchange information collected from their PSs, process the
information by taking advantage of the computation resource
of the edge servers, and generate results needed to improve
performance of the PSs. In conventional edge computing
applications, synchronizing real-time data between users and
edge servers requires significant wireless resources. By map-
ping mobile devices to DTs in edge servers, the DTs can
assist in both latency reduction and reliability enhancement.
Reference [13] proposed a DT-based approach that optimizes
the performance of a mobile network based on its current state
and uses the DT to predict future states and behavior of the
network.

As a digital representation of its PS, a DT can interact with
applications on behalf of its PS. This helps decompose the
communications between real systems and the applications
into the synchronization process between the PSs and their
DTs and the information delivery process between the DTs and
the applications. Since the two processes can run in parallel,
this brings more flexibility to network resource allocations,
while maintaining low age of information at the applications.
In this scenario, the placement of a DT at a given execution
server (ES) affects both the synchronization delay between the
PS and the DT and the communication delay between the DT
and the application.

DTs typically offer functionality in addition to simple data
relaying, e.g., they may compress, process and optimize data
received from their PSs, before they make them available to
the application. They may also provide information of the PS
based on historical information associated with the PS, which
would not typically be provided by the PS itself [14] [15].
Therefore, the problem of DT placement should consider both
the computation resources needed for hosting the DTs and the
continuous data updates between the PSs and the DTs. This
makes the DT placement problem different from classic proxy
server placement problems, e.g., [16].

In this paper we consider the problem of DT placement
when there are multiple PSs communicating with applications
through their DTs. There are data age targets for both the
applications and the DTs, which capture the real-time nature
of the system and the need for DT synchronization. Each
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DT must be assigned to one of the available candidate ES
locations. When a DT is placed, the PS periodically updates
it so that its state accurately tracks that of its PS. The DT
placement problem is defined so that the maximum data
request response delay experienced by the application over all
PSs is minimized, subject to a maximum data age target at the
DT, i.e., the (given) data age target is an upper bound of the
Age-of-Information or “freshness” of the data available at the
DT [17]. The main contributions of this paper are summarized
as follows:
• A DT to Execution Server (ES) placement problem is

formulated to minimize the maximum application inter-
action delay when accessing multiple PSs, while ensuring
the timely delivery of PSs’ data to their DTs and then to
the application.

• The placement problem is an integer quadratic pro-
gram (IQP), whose fractional relaxation can be further
strengthened into a semidefinite program (SDP). The
problem is shown to be NP-complete. Since an exact
polynomial-time solution is not available, polynomial-
time approximation algorithms are introduced to obtain
DT placements, which may not be feasible for the orig-
inal problem. However, the algorithms are designed to
offer practical solutions that give different performance
tradeoffs between application server response times and
the satisfaction of PS data age targets.

• The fractional solution of the relaxed SDP is rounded
to obtain the final (integral) assignments of DTs to ESs.
Different rounding alternatives, i.e., Random Selection,
X-Congestion, Z-Congestion, Constraint Slack SDP, and
Constraint Slack QP, are proposed.

• Simulation results are provided that show Z-congestion
(and, to a lesser degree, Constraint Slack SDP) achieves
the best application interaction delay, while coming closer
to (given) data age targets than the other alternatives.

The rest of the paper is organized as follows. Section II
summarizes the recent work related to DT placement. Section
III defines the system model. The optimum DT placement
problem is formulated in Section IV, where the original IQP
is translated into an integer linear programming (ILP) and
further relaxed into an SDP. Section V presents our proposed
approximation algorithms. Simulation results are shown in
Section VI to demonstrate the performance of the proposed
algorithms. The paper is concluded in Section VII.

II. RELATED WORK

In this section we summarize some work related to DT
placement. A more complete list of related work can be found
in [18].

An algorithm is proposed in [19] for service entity place-
ment in Virtual Reality (VR) applications. The proposed
method aims at minimizing the costs of placing a service
entity on an edge server. Different from DT placement in this
work, the service entity placement in [19] does not contain
constraints on the data update rate by the corresponding PS.

Deep-learning-based algorithms are proposed in [20] for
digital twin placement and migration. Two types of DTs are

considered, device DTs and service DTs. The former is a full
replica of a physical device, and the latter is a lightweight
DT that extracts information directly related to a specific
application from multiple devices. The placement of these DTs
to the servers is optimized with the objective of minimizing
the average system delay.

The problem of DT placement for IoT devices in edge IoT
networks is studied in [21]. The objective is to minimize the
total communication latencies between the IoT devices and
their corresponding DTs. One assumption behind this formu-
lation is sufficient server capacity so that the data processing
time at the DTs can be neglected.

Different from the above work, our paper addresses the
DT placement issue by considering the age-of-information at
both the DTs and the application. We employ a time-sharing
resource allocation model for computational resources at the
servers, although this results in an integer quadratic problem
that is proven to be NP-complete. Our objective is to minimize
the maximum delay experienced by an application that is
accessing information from multiple DTs. There is prior work
such as [19], [22] where digital twins are optimized to serve
particular applications. However, to the best of our knowledge,
ours is the first paper that places a maximum data age target
constraint on the data provided by the DTs to the application.
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Fig. 1. Digital Twin Placement Model

III. SYSTEM MODEL

Figure 1 shows an application server (AS) that requires input
from multiple PSs that are connected to the same network.
Each PS has an associated DT that it regularly communicates
with so that the latter can interact with the application on
its behalf. Each DT is hosted at one of a set of execution
servers, ESs, which are also shown in the figure. A practical
example of this is where the PSs include sensors located
in a manufacturing plant and provide their inputs at regular
intervals so that the application can monitor the performance
of the system [14] [15].

The main objective of this paper is to determine the place-
ment of the DTs at the ESs so that the maximum commu-
nication delay experienced by the application is minimized,
and at the same time, the data delivered best adheres to a
desired data age target. When placed at an ES, a DT incurs
both communication and computational delays as its PS data



3

Fig. 2. DT Update and AS Request Timing

is periodically refreshed. Let M = {1, 2, ...,M} be a set of
M PSs and N = {1, 2, ...N} be a set of N ESs. Each PS has
an associated DT, i.e., DTm for PSm that must be placed at
one of the ESs, e.g., ESn for n ∈ N .

Figure 2 shows a timeline example of PSm, DTm (at ESn),
and the AS. Each PS periodically updates its DT with new data
as shown in the bottom two timelines. At t = 0, the first update
(shown by the purple dot) is transferred from PSm to DTm
(at ESn) in time ddatam,n and is received by the ES server at time
t1. At DTm, this update requires cm,n seconds of computation
from ESn before the update is completed. If k DTs have
been assigned to ESn then, as in the colocation constraints
in [19], the processing will be completed after a delay no
longer than k · cm,n seconds, at time t2 in the figure. This
updating procedure recurs periodically for each PS, i.e., for
PSm it repeats every Tm seconds. At t = Tm and t = 2Tm,
the second and third PSm updates (at the blue and green dots,
respectively) are shown in Figure 2.

The top timeline (AS) in Figure 2 shows the application
generating a request for input from DTm. This request arrives
at the DT ddownm,n seconds later, and the requested data are
returned to the AS after a further delay of dupm,n seconds. These
time durations are also shown by the arrows in Figure 1. A DT
always responds to application requests immediately with the
most recently updated version of the requested data. In Figure
2, the first application request arrives at the DT at t = t4, and
therefore, the DT passes the results based on processing the
first update to the application server since the second update
has not completed.

One of the data age requirements is that the PSm data
available at DTm must be synchronized every Tm seconds,
which implies that the time needed for m’s data to be
transmitted to and processed by DTm should not be more
than Tm seconds. That is,

ddatam,n + kn · cm,n ≤ Tm, (1)

where kn is the total number of DTs hosted by ESn.
The application may query multiple DTs in order to obtain

the information that it needs. It has its own data age target,

denoted by A∗, which is the desired maximum age target over
all the queried PSs, i.e., if the target is satisfied, then when data
arrives from all the queried DTs, the time since the data was
generated at all the PSs will be at most A∗ seconds. We also
assume that there are known upper bounds on data transfer
latencies between ESn and the application server and each
PS [23]. These bounds can be guaranteed, e.g., by resource
allocation via contractual terms with the network provider, and
by power control when the PS has a wireless connection to
the network [24] [25].

Figure 2 shows the worst case for the age of the PSm
data delivered to the application when the data request from
the AS arrives just before the next PSm-to-DTm data update
cycle has completed, i.e., t4 < t5 and t5 − t4 ≈ 0. This
coincides with the time Tm + ddatam,n + kn · cm,n in the figure,
when the processing of data generated at time Tm (the blue
one) is almost (but not quite) ready at DTm. As a result,
the application receives the data generated at time t = 0 (the
purple one in the figure) Tm+ddatam,n +kn ·cm,n+dupm,n seconds
later. According to the discussion above, this worst-case time
cannot be larger than A∗ if the application data age target is
to be achieved, i.e.,

Tm + ddatam,n + kn · cm,n + dupm,n ≤ A∗. (2)

As in [23], we assume that network latencies are known or
can be estimated. Since the loading imposed on the network is
assumed to be small, we also assume that they are independent
of the DT placement, i.e., the aggregate loading of the PSs
communicating with the ESs is assumed to be far less than the
actual capacity of the underlying links connecting the ESs, as
in [19].

Note that for a given set of upper bounds in (1) and (2),
there may not exist a feasible placement of DTs to ESs, i.e.,
at least one of these constraints will be violated no matter
where the DTs are placed. We show below that detecting the
infeasibility of the given input (and, therefore, calculating an
optimal placement, if such a placement exists) is NP-complete
(see Theorem 4.1). Therefore, our proposed algorithms may
violate a number of the constraints.The algorithms, however,
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work towards incurring the smallest possible violation of (1)
and (2), and, therefore, they work even if the original input is
infeasible. Nevertheless, in order to study their performance,
we compare them only on feasible instances in Section VI,
since we do not want to combine their own potential ineffi-
ciencies with inefficiencies inherent in the input itself.

IV. PROBLEM FORMULATION

We define binary decision variables Xm,n ∈ {0, 1} for m =
1, 2, . . . ,M and n = 1, 2, . . . , N with Xm,n = 1 if DTm is
placed on ES n and Xm,n = 0 otherwise. Then conditions (1)
and (2) become

ddatam,n + cm,nXm,n

M∑
k=1

Xk,n ≤ Tm, (3)

and

Xm,n

(
Tm + ddatam,n + cm,n

M∑
k=1

Xk,n + dupm,n

)
≤ A∗, (4)

respectively.
By addressing the problem of placing the DTs of M PSs

on N ESs, our objective is that the maximum data request
response delay experienced by the application over all PSs is
minimized, while its data age requirement, and the refreshing
rate requirement of all DTs are satisfied. This is formulated
as the following Integer Quadratic Program (IQP):

minX,τ τ s.t. (IQP)∑N
n=1(ddownm,n + dupm,n)Xm,n ≤ τ, ∀m ∈M (5)

ddatam,n + cm,nXm,n

M∑
k=1

Xk,n ≤ Tm, ∀m ∈M, n ∈ N (6)

Xm,n(Tm + cm,n

M∑
k=1

Xk,n + ddatam,n + dupm,n) ≤ A∗,∀m,n

(7)∑N
n=1Xm,n = 1, ∀m ∈M (8)

Xm,n ∈ {0, 1}, ∀m ∈M, n ∈ N (9)
τ ≥ 0, (10)

where the LHS of constraint (5) is the delay experienced
by the application when requesting the PS m data, τ is the
maximum of such delays over all m, and we seek to minimize
τ . Constraint (8) ensures that a DT is assigned to one ES only,
for all M DTs.

Constraint (6) can be rewritten as

Xm,n

∑M
k=1Xk,n ≤

Tm−ddata
m,n

cm,n
, (11)

and constraint (7) as

Xm,n

M∑
k=1

Xk,n ≤
A∗ −Xm,n(Tm + ddatam,n + dupm,n)

cm,n
, (12)

for all m,n. Now, both constraint (11) and (12) share the same

LHS and can be merged into one constraint

Xm,n

M∑
k=1

Xk,n ≤ um,n (13)

where

um,n =

⌊
min

{
Tm − ddatam,n

cm,n
,
A∗ − (Tm + ddatam,n + dupm,n)

cm,n

}⌋
(14)

Hence, values for X satisfy (6), (7) iff these values satisfy
(13). The new formulation can be written as:

minX,τ τ s.t. (IQP’)∑N
n=1(ddownm,n + dupm,n)Xm,n ≤ τ, ∀m ∈M (15)

Xm,n

M∑
k=1

Xk,n ≤ um,n, ∀m ∈M, n ∈ N (16)∑N
n=1Xm,n = 1, ∀m ∈M (17)

Xm,n ∈ {0, 1}, ∀m ∈M, n ∈ N (18)
τ ≥ 0 (19)

For a specific τ , all variables Xm,n in (15) with coeffi-
cients ddownm,n + dupm,n > τ are forced to be 0 because of
(17). Therefore, we can perform a binary search in range
[0,maxm,n{ddownm,n +dupm,n}] for the minimum feasible τ . Every
value of τ , in effect, defines a bipartite graph G = (A,B,E)
with the nodes in A corresponding to DTs, the nodes in B
corresponding to ESs, and edges (m,n) ∈ E only when
ddownm,n + dupm,n ≤ τ . Therefore, for any value of τ , we can
simplify problem (IQP’) to the question of feasibility of
constraints (16)-(18) on a bipartite graph (where Xm,n := 0
whenever (m,n) /∈ E). We adopt this approach when we study
the τ value and the violation of feasibility of (16) in Section
VI. Problem (16)-(18) on a bipartite graph is an NP-complete
problem, as shown by the following theorem.

Theorem 4.1: Deciding the feasibility of (16)-(18) on a
bipartite graph is an NP-complete problem.

Proof: The problem is clearly in NP, since, given a {0, 1}-
assignment for variables Xm,n, checking the feasibility of
constraints (16), (17) can be done in polynomial time.

We reduce SATISFIABILITY (i.e., given a CNF formula,
asking whether there is a satisfying truth assignment for its
variables) to our problem. Given a CNF formula with n
variables and m clauses, we construct a bipartite graph as
follows: The left-side set of nodes A consists of n+m nodes,
i.e., one node for each variable or clause. On the right-side B
there are 2n nodes, i.e., a pair of nodes for every pair of literals
xi, x̄i corresponding to the i-th variable. For every clause l,
there is an edge between l ∈ A and the node of every literal
used by l in B. For example, for clause l = (x2 ∨ x̄5 ∨ x8)
there are edges (l, x2), (l, x̄5), (l, x8). For each such edge
(m,n) we set um,n :=∞. Also, for the i-th variable node in
A, we add edges (i, xi), (i, x̄i), with ui,xi

= ui,x̄i
:= 1. By

construction, if Xi,xi = 1, then Xl,xi = 0 for any clause l
that uses literal xi, due to (13) for m = i, n = xi, i.e., only
variables Xk,x̄i

will be allowed to take value 1, for clauses k
that use literal x̄i; the case Xi,x̄i

= 1 is symmetric.
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Now it is easy to see that the given CNF formula is
satisfiable iff there is a {0, 1}-assignment to variables X that
also satisfies (16)-(18). If the formula is satisfiable, then set
Xi,xi

= 1, Xi,x̄i
= 0 if xi = 0, or Xi,xi

= 0, Xi,x̄i
= 1 if

xi = 1. Also, each clause l must contain a literal xi or x̄i that
is set to 1, and so we can set Xl,xi

= 1 or Xl,x̄i
= 1, without

violating any of the constraints. We set all other variables
Xm,n := 0. It is easy to verify that this assignment satisfies all
constraints (16)-(18). Conversely, if there is a value assignment
to variables Xm,n that satisfies (16)-(18), then this assignment
forces Xi,xi

= 1, Xi,x̄i
= 0 or Xi,xi

= 0, Xi,x̄i
= 1 for each

i-th variable; we translate this assignment to xi = 0 or xi = 1,
respectively. The assignment of each clause node l to exactly
one node of its literal(s) in the bipartite graph, is consistent
with our truth assignment, and satisfies each clause.

As a result of Theorem 4.1, we do not expect that there is
a polynomial-time algorithm that exactly solves (IQP’).

We can linearize problem (IQP’) as follows. We use a binary
variable Znk,m ∈ {0, 1} to replace the product Xk,nXm,n and
add the following valid constraints:

Znk,m = Znm,k, ∀k,m ∈M, n ∈ N
Znm,m = Xm,n, ∀m ∈M, n ∈ N
Znk,m ≤ Xm,n, ∀k,m ∈M, n ∈ N

Xm,n +Xk,n − Znk,m ≤ 1, ∀k,m ∈M, n ∈ N

The new problem formulation is an integer linear programming
(ILP) given as follows:

min
X,Z,τ

τ s.t. (ILP)∑
n(ddownm,n + dupm,n)Xm,n ≤ τ, ∀m ∈M (20)∑
k Z

n
k,m ≤ um,n, ∀m ∈M, n ∈ N (21)∑

nXm,n = 1, ∀m ∈M (22)
Znk,m = Znm,k, ∀k,m ∈M, n ∈ N (23)

Znm,m = Xm,n, ∀m ∈M, n ∈ N (24)

Znk,m ≤ Xm,n, ∀k,m ∈M, n ∈ N (25)

Xm,n +Xk,n − Znk,m ≤ 1, ∀k,m ∈M, n ∈ N (26)

Xm,n, Z
n
k,m ∈ {0, 1}, ∀k,m ∈M, n ∈ N (27)

τ ≥ 0 (28)

With these added constraints, any integral feasible solution sets
Znk,m = Xk,nXm,n, ∀k,m, n. Note that for (24), Znm,m =
X2
m,n = Xm,n.

We can strengthen problem (ILP) by observing that when
Xm,n’s have integral values, the matrices Zn are positive semi-
definite (PSD) for all n, since Zn = XnXnT , where Xn is
the n-th column of matrix X = [Xm,n]. Therefore we can add
the following constraint into problem (ILP)

Zn ∈ PSD, ∀n ∈ N . (29)

If we relax (27) to Xm,n, Z
n
m,k ≥ 0, ∀k,m ∈ M, n ∈ N ,

(ILP) becomes

the following problem

min
X,Z,τ

τ s.t. (SDP-relaxed)

(20)− (26), (28), (29)
Xmn, Z

n
k,m ≥ 0, ∀k,m ∈M, n ∈ N . (30)

This relaxed problem will be referred to as the SDP-relaxed
problem. It is a convex SDP program and can be solved in
polynomial time by any SDP solver. Note that constraints
Xm,n ≤ 1 and Znm,k ≤ 1 are implied by (22), (25).

As noted in Section III, it may be the case that for a given
input, (SDP-relaxed) is infeasible. This implies that the integer
problem (IQP’), as well as the original problem (IQP) are
also infeasible. In the case when (IQP’) is infeasible, but
(SDP-relaxed) is feasible, our algorithms are not affected,
since they round the fractional solution of (SDP-relaxed).
If (SDP-relaxed) is infeasible, (21) is modified by “inflat-
ing” the upper bounds with λum,n, where λ > 1. Let
λmax = M/(min∀ m,n um,n). Setting λ = λmax allows the
modified (21) to be always satisfied. By running a binary
search on the interval [1, λmax], the smallest λ can be found
such that (SDP-relaxed) becomes feasible. Our algorithms will
work with the fractional solution corresponding to these new
(inflated) upper bounds. Therefore, for the rest of the paper,
we will assume that (SDP-relaxed) is feasible.

V. APPROXIMATION ALGORITHMS

The problem formulation of Section IV treats constraint (13)
as a hard constraint that would be satisfied if an optimal solu-
tion to (IQP’) was available. For practical systems this is not
possible since even finding a feasible (not necessarily optimal)
integral solution to problem (IQP’) is NP-complete (Theo-
rem 4.1). Therefore, in this section we introduce polynomial-
time approximation algorithms for solving the DT placement
problem. The algorithms we propose will return solutions
that are approximate in terms of the objective τ , and also
will violate the merged DT refresh and application data age
constraints (21).

In Section VI we include comparisons of the proposed
algorithms in cases where there is an integral optimum, i.e.,
the original problem instance is feasible for (5)-(10).

Rounding algorithm: We start by describing how to round
a fractional solution of the (SDP-relaxed) problem to an
integral assignment of DTs to ESs. This rounding subroutine
will be the main component of the algorithms we propose for
solving the problem or detect its infeasibility (Algorithms 2
& 3).

After obtaining the fractional solution X,Z of the
(SDP-relaxed) problem, Algorithm 1 is used to round it to
an integral one. In lines 2-6, all the integral Xm,n’s from the
solution to the (SDP-relaxed) problem are fixed, i.e., DT m is
assigned to ES n if Xm,n = 1, and it will never be assigned
so if Xm,n = 0. After the for-loop, set SM contains the DTs
that are still fractionally assigned to ESs.

While SM 6= ∅, the algorithm picks a DT m from SM
and a pair of ESs n1, n2 with 0 < Xm,n1

, Xm,n2
< 1 (line 8).

Different selection criteria give different rounding algorithms,
and will be described in detail below.
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We set Xm,n1
:= Xm,n1

+ Xm,n2
, Xm,n2

:= 0, resulting
in at least one more rounded variable of X (lines 9-13). Note
that this update may violate the constraints. Therefore, the al-
gorithm goes through a series of updates to make the problem
to be feasible again. This includes increasing Tm’s and A∗

to satisfy constraint (21) (lines 16-27) and adjusting the Znk,m
values based on the updated Xm,n’s to satisfy constraints (25)
and (26) (lines 29-36). Note that fixing constraints (26) (line
34) after constraints (25) (line 31) ensures that the latter will
still be satisfied.

Line 15 records the original um,n as u∗m,n and line 26
records the updated um,n. Let

∆u = max
m,n

um,n − u∗m,n
u∗m,n

(31)

be the maximum violation of um,n due to the rounding. The
algorithm outputs the rounded X , Z, and the ∆u.

As already mentioned, the choice of m,n1, n2 in Algo-
rithm 1 (line 8) gives rise to different rounding algorithms
described below.

• Random Selection: Pick uniformly at random a DT
m ∈ SM and two ESs n1, n2 ∈ N such that 0 <
Xm,n1

, Xm,n2
< 1.

• X-Congestion:
∑
mXm,n is used as a measure of the

congestion of ES n. Let n2 = arg maxn
∑M
m=1Xm,n,

i.e., n2 is the most congested ES, and m =
arg maxkXk,n2

. Set n1 = arg minnXm,n (we break ties
arbitrarily).

• Z-Congestion:
∑
k,m Z

n
k,m is used as a measure of the

congestion of ES n. Let n2 = arg maxn
∑
k,m Z

n
k,m.

Then m,n1 are picked as in X-Congestion.
• Constraint Slack SDP: Let m,n2 = arg minm,n{um,n},

i.e., (m,n2) is the DT-ES pair for which the slack
of constraint (21) is minimum. Note that if any of
these constraints is tight, the minimum slack is 0. Set
n1 = arg maxn um,n, i.e., n1 is the ES that has the
maximum slack among all the constraints (21) for m. The
intuition behind this selection of m, n1, and n2 is that
the algorithm is trying to take away assignment “weight”
from tight (or near tight) constraints, and assign it to
constraints with lots of slack.

• Constraint Slack QP: Same as Constraint Slack SDP,
only now we consider the slack of constraints (13).

Note that every iteration of the main loop of Algorithm 1 (lines
7-37) rounds at least one of the O(MN) variables, and each
iteration takes O(MN) time for an overall running time of
O(M2N2).

Approximation algorithms: We use Algorithm 1 as a
subroutine to develop algorithms that work towards restrict-
ing deviation from fractional u or τ (Algorithms 2 and 3,
respectively).

Algorithm 1 Rounding Algorithm
Input: Fractional solution X,Z ≥ 0 of (SDP-relaxed)

1: SM :=M
2: for all m ∈ SM do
3: if Xm,n ∈ {0, 1} for some n then
4: SM := SM \ {m}
5: end if
6: end for
7: while SM 6= ∅ do
8: Select(m,n1, n2) {edge-pair selection algorithm}
9: Xm,n1

:= Xm,n1
+Xm,n2

10: Xm,n2 := 0
11: if Xm,n1 = 1 then
12: SM := SM \ {m}
13: end if
14: for all m ∈M, n ∈ N do
15: u∗m,n := um,n
16: if constraint (21) is violated then
17: uA :=

A∗−(Tm+ddata
m,n +dup

m,n)

cm,n

18: uT :=
Tm−ddata

m,n

cm,n

19: if uT < LHS < uA then
20: Increase T until uT = LHS
21: else if uA < LHS < uT then
22: Increase A∗ until uA = LHS
23: else if uT , uA < LHS then
24: Increase T and A∗ until uA = uT = LHS
25: end if
26: um,n = min{uA, uT }
27: end if.
28: end for
29: for all k,m ∈M, n ∈ N do
30: if constraint (25) is violated then
31: Znk,m, Z

n
m,k := Xm,n

32: end if
33: if constraint (26) is violated then
34: Znk,m, Z

n
m,k := Xm,n +Xk,n − 1

35: end if
36: end for
37: end while
38: Output: X, Z, and ∆u

Algorithm 2 Finding solution with sub-εu violation
Input: Dsorted = {τ̂1, τ̂2, . . . , τ̂M,N}, εu

1: τ̂f = min in Dsorted s.t. (SDP-relaxed) is feasible (binary
search in Dsorted)

2: τ̂s = min in {τ̂f , τ̂f+1, . . . , τ̂M,N} s.t. {Binary search}
• Xf , Zf = solution of (SDP-relaxed) problem with
τ = τ̂s

• X,Z,∆u = Algorithm 1(Xf , Zf )
• ∆u ≤ εu

3: if no τ̂s then
4: return INFEASIBLE
5: else
6: return X
7: end if
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Algorithm 3 Finding solution with sub-ετ violation
Input: Dsorted = {τ̂1, τ̂2, . . . , τ̂M,N}, ετ

1: τSPopt = fractional optimum of (SDP-relaxed)
2: Find max s such that τ̂s ≤ τSPopt (1 + ετ )
3: Xf , Zf = solution of (SDP-relaxed) problem with τ = τ̂s
4: X,Z,∆u = Algorithm 1(Xf , Zf )
5: if no τ̂s then
6: return INFEASIBLE
7: else
8: return X
9: end if

Let τQPopt be the optimum τ of (IQP’). We observe that
τQPopt ∈ {dupm,n+ddownm,n : m ∈M, n ∈ N}. Each of these MN

possible values for τQPopt corresponds to a restriction of the
set of possible assignments of DTs to ESs. More specifically,
define Dsorted = {τ̂1, τ̂2, . . . , τ̂M,N} to be the sorted list of
values {dupm,n + ddownm,n : m ∈ M, n ∈ N} in ascending
order (note that if there are repetitions of values for different
m,n combinations, then |Dsorted| < MN , but for clarity
of the presentation we will assume that all these values are
distinct). By fixing τ := τ̂s ∈ Dsorted, (SDP-relaxed) becomes
a feasibility problem as follows: In order to satisfy (20),
Xm,n = 0 for all m and n with dupm,n + ddownm,n > τ̂s must
be true. Therefore, the following constraints are added:

Xm,n = 0,∀m,n : dupm,n + ddownm,n ∈ {τ̂s+1, . . . , τ̂m,n, } (32)

and are considered together with constraints (21)-(27) and
(29). The relaxation of this feasibility problem is the new
(SDP-relaxed) problem, and a (fractional) feasible solution can
be obtained in polynomial time. If the problem is infeasible,
then we proceed with a different (smaller) value of τ . Recall
that we have assumed that the original (SDP-relaxed) is
feasible, so there is at least one value of τ for which we will
obtain a fractional feasible solution.

In Algorithm 2, first binary search is used in order to
discover the smaller τ̂f ∈ Dsorted that maintains the feasibility
of the (SDP-relaxed) problem. This is done after solving at
most O(log(MN)) SDPs. Note that τQPopt ≥ τ̂f , since the first
is the integral optimum and the second the fractional one. Then
binary search is used in set {τ̂f , τ̂f+1, . . . , τ̂M,N}, in order to
find the smallest τ̂s for which ∆u ≤ εu when the rounding
of Algorithm 1 is applied, where εu is the desired constraint
violation tolerance. If no such solution is found, the algorithm
reports failure (for the given tolerance).

In Algorithm 2 we were aiming to find a solution with sub-
εu constraint violation. Similarly, an ετ bound can be applied
to the objective τ as follows: Let

∆τ(x) =
x− τSPopt
τSPopt

, (33)

where τSPopt is the (fractional) optimum of the (SDP-relaxed).
After calculating τSPopt , the algorithm chooses the largest τ̂s
from the set Dsorted with ∆τ(τ̂s) ≤ ετ . The (SDP-relaxed)
problem for τ = τ̂s is solved, and the fractional solution is
rounded using Algorithm 1. If no such τ̂s exists, the algorithm
terminates with infeasibility.
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Fig. 3. Performance of Algorithm 2, εu = 10%.

VI. SIMULATION RESULTS

In this section we evaluate the performance of our proposed
algorithms with via computer simulation. The algorithms are
implemented using the five selection methods described in
Section V. Since the solutions involve different relaxations
of the constraints, the performance comparisons include the
resulting constraint violation. Three sets of computer simula-
tions were done to examine the performance of the algorithms
from different perspectives. Mosek optimization toolbox [26]
was used in Matlab for solving the optimization problems.
In the presented figures, each point represents an average of
50 simulation runs. Since constraint (16) consists of M ×N
separate constraints, at each simulation run, the maximum
violation of that set is used in the averaging.

In the experiments we will assume that the ESs are grouped
in three groups: one that is nearest to the PSs and furthest from
the AS (group 1), one that is in medium range from the PSs
and AS (group 2). and one that is nearest to the AS and furthest
from the PSs (group 3). The delays are defined accordingly:
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Fig. 4. Performance of Algorithm 2, εu = 5%.

• The PS-ES delays ddata will be uniformly distributed
in ranges [5ms, 10ms], [12.5ms, 17.5ms], [20ms, 25ms]
for the three groups, respectively.

• The AS-ES delays ddown will be uniformly distributed in
ranges [0.7ms, 1.1ms], [0.4ms, 0.8ms], [0.1ms, 0.5ms]
for the three groups, respectively.

• The ES-AS delays dup will be uniformly distributed in
ranges [16ms, 20ms], [10ms, 14ms], [4ms, 8ms] for the
three groups, respectively.

These delay ranges are chosen by considering the fact that the
5G network backbone is capable of supporting bit rates rang-
ing from 5G bits/s up to 10G bits/s at stable and uncongested
network conditions [27] and some link processing overhead.

A. Simulation set 1

For the first set of simulations, we assigned 2 ESs to group
1, 4 ESs to group 2, and 2 ESs to group 3. The size of the
data sent by a PS to its DT in every data update cycle is
25MB [22], the data size sent from a DT to the application
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Fig. 5. Performance of Algorithm 3, ∆u versus ετ , M = 40.

server is 20MB [22], and the size of the request data from the
application server to the DTs is 1MB [22]. In addition, Tm
is uniformly distributed between 60ms and 80ms for each PS,
and A∗ is 200ms.

First, Algorithm 2 was run by varying the number of PSs.
The results are plotted in figures 3a and 3b for εu = 10%
and figures 4a and 4b for εu = 5%. Figure 3a shows that all
the methods can keep the ∆u value below εu for a certain
range of M values. However, compared to Constraint Slack
QP and X-Congestion, Z-Congestion, Constraint Slack SDP,
and Random Selection maintain ∆u < εu for larger M values.
The same trend is also seen in Figure 4a, although as εu
becomes smaller, the range of M values for which ∆u < εu is
smaller for all methods, except for Z-congestion and Random
Selection, which keep ∆ < εu for the entire range of M in
the simulations.

Figures 3b and 4b show ∆τ ′ values as the number of
PSs change, where ∆τ ′ is the relative difference between the
resulted τ value after running Algorithm 2 and the optimum
integer solution. More specifically, ∆τ ′ is defined as

∆τ ′ =
τ̂ − τopt
τopt

, (34)

where τ̂ is the objective value achieved by Algorithm 2,
and τopt is obtained by solving (SDP-relaxed) in Section IV.
Both figures 3b and 4b show that when M is too large for
the algorithm to keep ∆u < εu, the corresponding ∆τ ′ is
also large. However, the Z-Congestion and Constraint Slack
SDP achieve much smaller ∆τ ′ than the other methods. A
comparison between Figures 3b and 4b shows that a larger εu
value helps reduce ∆τ ′, as expected.

Next, Algorithm 3 was run with different ετ values and
for each selection method. The corresponding maximum con-
straint violation ∆u is given in Figure 5 as a percentage
over its original u bound. In general, when ετ increases, the
algorithm allows a larger ∆τ value, which helps reduce the ∆u
value. This tradeoff between ∆u and ∆τ is well reflected in
the Z-Congestion, the Constraint Slack SDP, and the Random
Selection, but not obviously reflected in the X-Congestion
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Fig. 6. Constraint violation of algorithms over a non-uniform distribution of
u.

and Constraint Slack QP. As can be observed from Figure 5,
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Fig. 7. Performance of Constraint Slack SDP and Z-Congestion, ετ = 5%
and M = 30.

Z-Congestion and Constraint Slack SDP achieve consistently
smaller ∆u values than Random Selection, Constraint Slack
QP and X-Congestion for the entire range of ετ values.

Based on the above results, Constraint Slack SDP and Z-
Congestion offer better overall performance than the other
selection methods. This is not surprising, since these two
methods use the constraints of (SDP-relaxed) as a guide for
rounding its own fractional solution, while Constraint Slack
QP and X-Congestion round the (SDP-relaxed) fractional
solution using the constraints of (IQP’) as their rounding
criterion.

B. Simulation set 2

To further investigate the performance of the rounding meth-
ods, we ran another set of simulations. The network topology
remains the same as in Section VI-A. Instead of specifying the
values of Tm’s, A∗, the um,n values are randomly generated
from the distribution of Figure 6a, which emulates a normal-
like distribution. The results of running Algorithm 2 and 3
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on the generated instances are plotted in Figures 6b and
6c. Again, Z-Congestion gives consistently lower ∆u values,
when compared to the other rounding methods.

C. Simulation set 3

The previous simulation results indicate that Z-Congestion
and Constraint Slack SDP are superior to the others. Therefore,
in the last set of simulations, we compare the performance of
Z-Congestion and Constraint Slack SDP on the same network
model as before but with different number of ESs at each set.
More specifically, let s1, s2, and s3 be the number of ESs in
groups 1, 2, and 3, respectively. We consider different network
topologies represented by the following (s1, s2, s3) value
combinations: (2, 2, 4), (4, 2, 2), (2, 4, 2), (2, 0, 6), (6, 0, 2),
(4, 0, 4), (0, 0, 8), (0, 8, 0), and (8, 0, 0). These combinations
are indexed from 1 to 9, respectively. Based on these network
topologies, the performance results after running Algorithm 3
are given in figures 7 and 8 for M = 30 and 40, respectively.

Instead of plotting ∆u, we plotted ∆A∗ and ∆T , which are
defined similarly to ∆u. More specifically, ∆A∗ is calculated
by comparing the A∗ value after running the algorithm with
the original A∗ value, and ∆T is calculated by first comparing
the Tm value after running the algorithm with the original Tm
value for each m and taking the worst violation.

As shown in all the figures, Z-Congestion consistently
exhibits lower constraint violation than Constraint Slack SDP
because Z-congestion achieves a better load-balancing among
the ESs. This happens because the constraint slacks used by
Constraint Slack SDP depend on the server characteristics
and parameters, while Z-Congestion ignores them and takes
into account solely the load of DTs on the ESs. We observe
that if the DT assignment decisions rely on both server
characteristics and server load, as done by Constraint Slack
SDP, the heuristic can be misled into decisions that leave the
ESs unbalanced. Clearly, if all ESs share the same amount of
resources and characteristics, the two heuristics would have
the same performance; however, this is not the case in general,
and is not the case in our simulations.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the problem of DT place-
ment so that application data request timing latency targets
are best accommodated. The objective is to minimize the
data request response time at the application server subject
to both the data age from the physical system to the applica-
tion server, and the data update period between the physical
systems and the DT execution servers. The problem was first
formulated as an integer quadratic program (IQP), which was
then transformed into a semidefinite program (SDP). Given the
NP-completeness of the optimization problem, exact solutions
are unavailable for practical systems. Practical polynomial-
time approximation algorithms were introduced for solving the
placement problem that provide different trade-offs between
the accommodation of the application input timing latency
and the achievement of data age targets. Through several
simulations, it is shown that the Z-Congestion algorithm
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Fig. 8. Performance of Constraint Slack SDP and Z-Congestion, ετ = 5%
and M = 40.

outperforms the rest in obtaining minimum constraint violation
and timing latency.

In this work, we have implicitly assumed that the physical
systems are immobile and their communication delay with
their digital twins remains constant. As a potential future work,
the optimal digital twin placement problem can be investigated
for mobile physical systems and time-varying wireless trans-
mission channels. In this case, the digital twins may have to be
migrated between execution servers in order to accommodate
the age of information targets of the applications.
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