
Wireless and Service Allocation for Mobile
Computation Offloading with Task Deadlines

Hong Chen∗, Terence D. Todd∗, Dongmei Zhao∗ and George Karakostas†
∗Department of Electrical and Computer Engineering

†Department of Computing and Software
McMaster University

Hamilton, Ontario, CANADA
Email: {chenh151,todd,dzhao,karakos}@mcmaster.ca

Abstract—In mobile computation offloading (MCO), mobile
devices (MDs) can choose to either execute tasks locally or have
them executed on a remote edge server (ES). This paper addresses
the problem of assigning the wireless communication bandwidth
and the ES capacity used for the task execution, so that task
completion time constraints are satisfied. The objective is to
minimize the average power consumption of the mobile devices is
minimized, subject to a cost budget constraint for obtaining the
communication and computation resources. The paper includes
contributions for both soft and hard task completion deadline
constraints. The problems are first formulated as mixed integer
nonlinear programs (MINLPs). Approximate solutions are then
obtained by decomposing the problems into a collection of convex
subproblems that can be efficiently solved. Results are presented
that demonstrate the quality of the proposed solutions, which can
achieve near optimum performance over a wide range of system
parameters.

Index Terms—Edge computing, mobile computation offloading,
soft and hard task completion deadlines, cost budget constraints,
power efficiency.

I. INTRODUCTION

Mobile computation offloading (MCO) can be used to
improve mobile device (MD) performance by running compu-
tational tasks on a remote cloud server rather than executing
them locally [1]–[3]. Since the energy needed for task exe-
cution is incurred by the cloud server, a reduction in mobile
device energy consumption can often be obtained [4]–[10].
During MCO, wireless communications is used by the MD
to communicate with the cloud server. This interaction incurs
MD energy use that would not otherwise exist if the task were
executed at the MD. MCO also incurs added latency due to
the time needed for the MD to interact with the cloud server
[11], [12]. An edge server (ES) located close to the network
base stations (BSs) is typically used to reduce this delay by
providing high interconnection bandwidth between the BS and
the ES [13].

The question of whether a given task should be offloaded
has been studied extensively [14]–[23]. It is clear from this
work that in order to obtain good performance, the offloading
decisions should incorporate both the limited edge server
computational capacity [21]–[23] and the temporal evolution
of the system during the computation offload. This includes the
queueing behaviour experienced by offloaded tasks awaiting
execution at the ES [18]–[20]. Prior work has also considered

the question of how to configure system resources so that
MCO is best accommodated [14], [18]–[20], [24], [25]. These
are the issues that are considered in our paper and involve the
tradeoffs between wireless communication and edge server ca-
pacity assignment and how these affect the delay performance
experienced by the MDs.

The wireless and execution capacity assignment problem
in MCO can be informally stated as follows. A network
leaseholder (NL) purchases both wireless channel capacity
and edge server execution services, subject to a cost budget
constraint. The leased resources are then used to provide MCO
to a large set of mobile devices [26]. When an MD generates
a task for execution, there is an associated deadline, which
gives the time by which task execution should be completed
with a high degree of certainty [27]. The objective is to find a
joint wireless and ES resource assignment that minimizes the
mean MD power consumption subject to the budget constraint
and constraints on the task completion times. Note that this
problem is different than that of network slice creation [28]. In
this case, the NL simply purchases services from the network
owner (NO), who prices the cost of unit wireless channel and
computational resources. Due to the edge server placement,
we consider the case where the dominant latencies are that of
wireless access and edge server execution [13].

The paper is novel in that it includes formulations for
both soft and hard task completion deadlines. In the hard
deadline case, the completion time deadline given for every
task must always be satisfied, i.e., each task must be uploaded
and executed by the time that its associated deadline expires.
This is a very stringent requirement, which is accomplished
by including concurrent local execution (CLE) [29] into the
problem formulation. In CLE, local execution of the task
may be initiated while offloading is ongoing, so that the task
completion deadline is always met. In the soft deadline case,
task completion times are permitted to violate their given
deadlines, but the probability that this happens must be below
a given violation threshold [27], [30]. Soft deadlines use a
statistical deadline constraint and depending on the chosen
threshold, the deadline violation probability can be set as
permissively as desired. In the remainder of the paper, we
define multiple task classes, with class-specific deadlines and
constraint violation probabilities. Note that one can view the
hard deadline case as a special case of soft deadlines, where

2

the deadline violation factor is set to zero, meaning that no
task deadlines can be violated. However, the hard deadline
formulation requires CLE, which is not needed in the soft
deadline case. As a result, the solution methods in the soft
and hard deadline cases are different.

The inclusion of task deadline constraints significantly in-
creases the difficulty of the problem compared to that of prior
work with no completion time requirements or that uses a
mean delay criterion [31], [32]. In order to obtain solutions to
the problem, a queuing model is used to obtain the delay distri-
bution experienced by tasks that are offloaded to the ES [32],
[33]. This model is incorporated into the resulting optimization
problems, which are formulated as mixed integer nonlinear
programming problems (MINLPs) that are computationally
hard to solve exactly. Approximate solutions are obtained by
decomposing the non-convex non-linear formulation into a
collection of convex subproblems that can be solved efficiently,
and then picking the best of these solutions.

A variety of results are presented that characterize the
tradeoffs between task deadline violation, average MD power
consumption and the cost budget. Our results show the quality
of the proposed solutions, which can achieve close-to-optimum
performance for a wide range of system parameters. The
results also show that with CLE, the proposed solution not
only guarantees to respect all hard task completion deadlines,
but does so with only slightly higher MD power consumption
when compared to the soft task completion deadlines solution
with a small deadline violation probability. On the other hand,
we show that there is an apparent trade-off in the case of
soft task completion deadlines between the average power
consumption and the deadline violation probability. Namely,
the average MD power consumption of our solution is signif-
icantly reduced when a higher deadline violation probability
is tolerable.

The main contributions of the paper are summarized below.
• This paper addresses the problem of assigning computa-

tional and wireless channel resources for MCO, subject
to task execution completion time deadlines. The work
is the first that generates joint resource assignments for
both soft and hard task deadlines using very general
system modelling assumptions compared to prior work.
The soft deadline case aims to create assignments so
that the probability of task completion time deadline
violation does not exceed a given violation threshold. In
the hard deadline case, the paper is also unique in that
it creates resource assignments where task completion
time deadlines are always satisfied. This is done by
incorporating CLE into the problem formulations. For this
reason, this is the first paper that obtains system resource
assignments for MCO that ensure that task completion
time deadlines are always satisfied.

• Modeling both soft and hard job completion time targets
significantly increases the difficulty of the problem com-
pared to prior work with no completion time requirements
or that uses a mean delay criterion [30] [31]. In both
deadline cases, the paper addresses this by incorporating
an ES queueing system into the problem formulation
that models the delay distribution experienced by ar-

riving tasks. The assignment problem is addressed by
numerically inverting the estimated probability generating
function of task completion time and incorporating the
resulting probability density function (PDF) into the opti-
mizations. These resource assignments are obtained under
very general modeling assumptions, where the wireless
channels are modeled as arbitrary BS specific sets of
Markov processes and task execution times have a general
probability distribution.

• The problems are first formulated as MINLPs, with
integral decision variables for the number of wireless
channels reserved, and a continuous decision variable for
the portion of ES reserved. Even the relaxations of these
MINLPs are difficult to solve, since they are non-convex.
Hence, instead of following the common practice of solv-
ing the relaxation and rounding the fractional solution, we
break the original non-convex MINLPs into collections
of convex subproblems, that can be solved efficiently.
This is achieved by the discretization of the continuous
variable and the replacement of the discrete channel
variables by approximate functions of the continuous
blocking probabilities. Our solutions are approximate,
and their accuracy depends on both the discretization
granularity and the approximation functions used for
blocking probabilities. On the other hand, they are based
on very general assumptions, i.e., the existence of convex
upper bound approximations of the inversion of blocking
probabilities. The more restricted the system model is,
the better these approximations are.

The remainder of the paper is organized as follows. In
Section II the prior work most related to our paper is reviewed.
The system model and problem formulation is then described
in Section III. In Section III-A, the general design problem is
first considered assuming soft task completion time deadlines,
where the probability of deadline violation is bounded. Follow-
ing this, in Section III-B a formulation is described when task
completion times are subject to hard deadlines. The problem
formulations in both cases are non-convex and difficult to deal
with directly using conventional optimization approaches. In
Section IV, approximation solutions are proposed where the
original problems are decomposed into convex subproblems
that can be efficiently solved. Both the soft and hard deadline
cases are considered in Sections IV-A and IV-B. Section V
then introduces some common system assumptions used in the
remainder of the paper when solving the optimizations. Both
the soft and hard deadline cases are then treated in detail in
Sections V-A and V-B. In Section VI simulation results that
demonstrate the proposed designs are given. Both the single
class and multiple classes of tasks cases are considered in
Sections VI-A and VI-B. Finally, we present our conclusions
of the work in Section VII.

II. RELATED WORK

A large amount of prior MCO work considers the problem
based on system state inputs sampled at task generation times,
i.e., the models assume that the system is static throughout the
offload period [14], [15], [17]–[25], [35]–[37]. Instead, [30]–

3

TABLE I: Related Work Summary

References
Joint channel and

computation resource
assignment

Soft task
deadlines

Hard task
deadlines

Resource
expense

Temporal
evolution

[17] [21] [22] [23] X
[24] [34] X

[26] X X
[31] [32] X X

[33] X X
[30] X X X

Our paper X X X X X

[33] considers that the wireless channels may change randomly
during the offload.

When considering task offloading completion time, a la-
tency minimization problem is investigated in [34], average
delay of task completion is considered in [31], [32], a user
satisfaction utility function is optimized in [37] based on the
desired and actual task completion time and energy consump-
tion. When tasks have hard delay constraints, the system may
become infeasible [17], [21]–[23], [33], [35] and tasks can
be dropped [33] when the required hard task completion time
cannot be satisfied.

Instead of considering a flow of tasks with random arrival
times, as in our paper, [30] makes offloading decisions for
tasks in the current time slot, where task offloading with
statistical quality of service (QoS) guarantees (i.e., tasks are
allowed to complete before a given deadline with a probability
above a given threshold) is considered.

Besides task completion time, reducing energy consumption
is another common objective in mobile computation offload-
ing. Examples of this include minimizing the total energy
consumption of all MDs [22], [35], minimizing the energy
consumption of the entire MCO system [21], or optimizing a
utility function that is a weighted sum of task completion time
and energy consumption [24], [25], [36].

Prior work has considered the optimization of communica-
tion and computation resources to improve MCO performance
[14], [18]–[20], [24], [25]. The work in [17], [21]–[23], [26]
focuses on the effect of radio resource allocations on offload-
ing decisions. More specifically, task uploading decisions are
jointly optimized with wireless channel assignments [17], [21],
[23], [26], channel transmission time scheduling [22], [26],
and MD transmission power allocations [17], [23], [26] for
the task uploading. Comparing to binary offloading decisions,
where an MD either offloads the entire task to the edge server
or executes the task locally, partial offloading provides more
flexibility in MCO [24], [37]–[41].

Table I summarizes the work described above that is most
related to our paper, and compares it to this paper on five key
properties:

Joint channel and computation resource assignment: The
column denotes work where channel and computation
resource assignments are jointly generated. Our work
differs from the rest in that we assign aggregate channel
resources from the network operator to each BS so that it
can support its associated mobile device population, i.e.,
we do not allocate channel and computation resources

of each BS and ES to individual MDs.
Soft task deadlines: The work selected in this column con-

siders some form of soft (i.e., statistical) task deadlines.
However, the models we use in this paper are quite differ-
ent with more general underlying assumptions. Since our
soft deadline model aims to set bounds on the probability
of task deadline violation, we model the complete delay
distribution experienced by executed tasks. This includes
the BS channel delay (which is modeled by BS specific
Markov processes) and the queueing delay experienced
at the ES, where execution times can have a general
distribution.

Hard task deadlines: Although there is other work selected
in this column, a significant difference exists compared
with our paper. Our work always satisfies all hard task
deadlines by incorporating the CLE mechanism into the
modeled system. The related work, instead, considers
the existence of hard deadlines as a problem constraint
that may result in problem infeasibility, which can never
happen in our case.

Resource expense: This column denotes work where the
resources provided to the MDs are charged by a third-
party (e.g., network operator). The work selected con-
siders computational resource expense but not on the
wireless BS side. A network profit maximization problem
is studied where an expense budget is not considered,
unlike the case in our work.

Temporal evolution: Temporal evolution means that the of-
fload periods may include stochastic changes to the
wireless channels and the ES, so that this information
must be modeled in the problem formulation, as in our
paper. The randomness modeled in the selected work has
different underlying assumptions compared to our paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a network that consists of
N BSs that are owned and operated by a NO. The set of BSs
is denoted by N = {1, 2, . . . , N} and indexed by n ∈ N .
The network also contains an ES. Tasks generated by an MD
can be offloaded through the wireless network and executed
on the ES.

The NO permits a NL to rent wireless communication and
ES computational capacity that the NL can use for mobile
computation offloading for its MDs. When this is done, for
each BS n, there are up to Kn available channels that can
be selected by the NL. The cost of renting a channel from

4

Edge Server (ES)

Fig. 1: System Model

BS n is set by the NO to αn. When a channel is included in
the agreement, the NO agrees to provision its network so that
sufficient resources are available to allow the traffic generated
on the channel to be carried to the ES with an acceptable
delay with a high degree of certainty. Since the ES is located
at the edge of the network, we focus on the dominant sources
of delay, i.e., wireless access at the BSs and task execution at
the ES [13].

In order to use the computing resources at the ES, the NL
must also lease CPU resources at the ES. The cost (based on
the number of CPU cycles per second) for leasing on the CPU
resource is denoted by β. The maximum available CPU speed
for rental is fC CPU cycles per second.

When an agreement is made between the NO and NL, xn is
defined as the number of channels from BS n that are included,
and y ∈ [0, 1] is defined as the fraction of maximum CPU
speed at the ES that is included, i.e., the CPU speed available
for the NL will be yfC. It is assumed that the NL has a
cost budget, denoted by Bmax. Accordingly, the total rent must
satisfy the following constraint:∑N

n=1 αnxn + βyfC ≤ Bmax. (1)

There are J classes of tasks generated by the MDs, which
may need to be offloaded to the ES. Let J = {1, 2, . . . , J}
be the set of task classes. The class j of a task is defined
by parameters sj , qj , and dj , where sj is the input data size
in bits, qj is the computation load in number of CPU cycles,
and dj is the deadline of the task in seconds. In what follows,
d̃j = bdj/τc is the task deadline rounded down to time slots
of the same duration τ as the wireless transmission time slots
(see below). The probability of a task generated by an MD
belonging to class j is denoted by PC

j ; we assume that this
probability is known, e.g., by observing the past history of
offloading requests.

Our objective is to create a NO/NL contract for MCO.
In MCO, tasks generated by an MD can be executed either
locally (at the MD itself) or offloaded through the network and
executed on the ES. We focus on two goals, each depending
on how hard the task deadline constraint is. Our first goal is to
accomplish this so that the mean mobile power consumption
is minimized subject to the cost budget constraint and such
that the probability that task execution deadline violation is
bounded, i.e., the deadline constraints can be violated, i.e.,
deadline constraints are soft. Our second goal is to create
a power-efficient, budget-respecting assignment that respects
all task deadlines, i.e., deadline constraints are hard; for that
purpose we will employ CLE [29].

We model the wireless channels between the MDs and the
BSs as discrete-time Markov processes. It is assumed that there
are In channel models for BS n, which are a function of
the radio propagation environment that the MDs experience
at that BS. In = {1, 2, . . . , In} is the set of all wireless
channel models in BS n. For each of the channel models,
the Markovian transition probabilities are defined in the usual
way, i.e., given the channel state in the current time slot, there
is a probability associated to its transition to another state in
the next time slot. The time slot duration is defined to be
τ seconds. A class j task, offloaded to BS n by the MD,
encounters channel model k with probability PG

n,j,k; as with
task generation probabilities PC

j above, we assume that this
probability is also known, e.g., by observing the past history
of offloading requests.

To obtain the design, the decision to offload the execution
of a task is made using a local execute on blocking (LEB)
mechanism as follows. When an MD in BS n generates a
class j task, the MD offloads the task if at least one of the
xn channels is available for immediate use. Otherwise, the
MD executes the task locally. When a channel is available,
the MD begins the offload by uploading the sj task bits
needed for execution on the ES. The LEB mechanism is
useful in that either local execution or remote offloading is
initiated immediately at task release time, which may be
advantageous when task deadlines are tight. It also provides a
simple mechanism for assessing when the current level of local
congestion is high, which would suggest that local execution
is beneficial.

Tasks arrive at BS n according to a stationary process with
average arrival rate λn tasks per second. According to the LEB
mechanism, a new task is blocked from BS channel access if
all the xn channels are busy with uploading other tasks. We
denote the task blocking probability at BS n by PBn(xn),
which is a function of xn. For the sake of notation simplicity,
we use PBn in the rest of the paper. Let pL be the power needed
in the MD to process tasks. When a class j task is blocked
from offloading and executed locally, the local execution time
is given as Lj = qj/f , where f is the MD’s execution speed in
number of CPU cycles per time slot1. Define L̄ as the average
local execution time of tasks. Since the task blocking is caused
by channel access, which is the same for all task classes, we

1Lj is normally measured in CPU cycles, but in order to apply CLE and
to simplify the system, we round it up to a multiple of τ .

5

have L̄ =
∑J
j=1 P

C
j Lj . The average energy consumption for

executing a task locally is given by pLL̄. Consider all the tasks
that are generated in BS n and blocked from offloading in one
second, then the mean energy for executing these tasks locally
is

EL
n(xn) = PBnλnp

LL̄, (2)

which is the average power consumption of the MDs.
The wireless upload transmission time tWn,j,k of a jth class

task in BS n when the wireless channel model is k, is
measured in time slots. The mean wireless upload transmission
time t̄Wn,j,k for jth class tasks in BS n according to channel
model k can be calculated, since Pr[tWn,j,k = l] can be com-
puted for all l from channel model k. Moreover, the mean
wireless transmission time t̄Wn for BS n is

t̄Wn =

J∑
j=1

In∑
k=1

PC
j P

G
n,j,k t̄

W
n,j,k. (3)

Under the stated assumptions, the aggregate mean task
arrival rate λ at the ES is given by

λ =
∑N
n=1 (1− PBn)λn. (4)

As is normally the case for stability in a single server queueing
system, the following constraint must always be satisfied,

λ < µC, (5)

where µC denotes the mean service rate at the ES, i.e, µC =
yfC/

∑J
j=1 P

C
j qj . As will become clear later, we can relax

this constraint to λ ≤ yfC/
∑J
j=1 P

C
j qj without affecting our

proposed solutions.
Let tCn,j,k be the delay (including both queueing and exe-

cution time) experienced by a jth class task from BS n at
the ES, under wireless channel model k. It takes continuous
values, and Pr[tCn,j,k ≤ t], for any t ≥ 0, is a function of λ
and µC. In what follows, t̃Cn,j,k is the discretization of tCn,j,k,
measured in time slots; its distribution is calculated by

Pr[t̃Cn,j,k = b] = Pr[tCn,j,k ≤ bτ]− Pr[tCn,j,k ≤ (b− 1)τ] (6)

for any number of time slots b ≥ 0. Table II lists the related
notation and their associated meanings.

A. Problem Formulation with Soft Deadlines

We consider the distribution of total delay for an offloaded
task, which is the sum of the data upload delay tWn,j,k and
the task execution at ES delay tCn,j,k, for BS n, task class
j, and channel model k. Note that both delays are random
variables. As mentioned earlier, the data transmission delay
from the BS to the ES is negligible. In addition, in this paper
we consider the case of a very small amount of data returned
once the execution is completed, and, therefore, we consider
only uploading delays between MD and BS.

We now give a formal definition of soft task deadlines.
Following common practice (e.g., [27]) in modelling soft
deadlines along the lines of QoS requirements, a jth class
task in BS n under wireless channel model k, must have a
total delay satisfying

Pr[tWn,j,k + tCn,j,k ≤ dj] ≥ 1− εj , (7)

TABLE II: Summary of Notation

Notation Definition Units

N Set of BSs, |N | = N

J Set of task classes, |J | = J

In Set of channel models of BS n, |In| = In

Kn Number of available channels in BS n

fC Maximum available ES capacity CPU cycles/sec

αn Unit price of wireless channels from BS n $ per channel

β Unit price of ES capacity $ per bps

xn Number of channels from BS n

y Fraction of maximum ES capacity

Bmax Cost budget $

sj Data size of a task in class j bits

qj Computation load of a task in class j CPU cycles

dj Deadline of a task in class j sec

d̃j Discretized deadline of a task in class j Time slots

PC
j Probability of a task belonging to class j

PG
n,j,k

Probability of a class j task in BS n with
channel model k

PBn Blocking probability in BS n

µC Mean service rate at the ES Tasks/sec

λn Average task arrival rate in BS n Tasks/sec

λ Aggregate average task arrival rate at ES Tasks/sec

τ Time slot sec

tWn,j,k
Wireless transmission time of a jth class
task in BS n with channel model k Time slots

t̄Wn,j,k
Mean wireless transmission time of a jth
class task in BS n with channel model k Time slots

t̄Wn
Mean task uploading transmission time in
BS n Time slots

tCn,j,k
Execution time at ES for class j tasks from
BS n with channel model k sec

t̃Cn,j,k Discretized value of tCn,j,k Time slots

tLj
Latest feasible starting time for local exe-
cution Time slots

εj
Tolerable probability a class j task exceeds
deadline

pL Local energy consumption per time slot Joules

pT Wireless transmission energy per time slot Joules

ET
n

Average MD power consumption for up-
loading tasks in BS n Watts

EC
n

Average MD power consumption for up-
loading and executing tasks in BS n Watts

where 0 < εj ≤ 1 is the (given) tolerated probability that the
completion time of a class j task exceeds its deadline.2 Note
that tWn,j,k takes discrete values (number of time slots), tCn,j,k
takes discrete values (number of CPU cycle periods), while dj
is continuous (in seconds), so (7) assumes that all quantities
are first converted to secs. Its LHS is a function of xn, y.

The joint probability distribution of total delay is

2The case εj = 0 corresponds to the case of hard deadlines, and will be
dealt with in the next section.

6

Pr[tWn,j,k + tCn,j,k ≤ dj] =

lmax∑
l=1

Pr[tWn,j,k = l] Pr[tCn,j,k ≤ dj − lτ], (8)

where lmax = b(dj−qj/yfC)/τc is the maximum value that l
can take, since qj/yfC is the execution time at the ES without
queueing.

The average power consumption of MDs in BS n to upload
tasks that are granted channels for offloading is

ET
n (xn) = (1− PBn)λnp

Tt̄Wn , (9)

where pT is the transmission energy per time slot used by
the MD for uploading the task bits. Therefore, the expected
average power consumption of the MDs for uploading and
executing tasks arriving at BS n is EL

n(xn) + ET
n (xn).

Our objective is to create an allocation that minimizes
EL
n(xn) + ET

n (xn) under the cost budget and deadline con-
straints (1) and (7). The problem can be formulated as follows:

min
x,y

N∑
n=1

[EL
n(xn) + ET

n (xn)] s.t. (10)

N∑
n=1

αnxn + βfCy ≤ Bmax (11)

Pr[tWn,j,k + tCn,j,k ≤ dj] ≥ 1− εj , ∀n, j, k (12)

(fC/

J∑
j=1

PC
j qj)y ≥ λ (13)

xn ∈ {0, 1, . . . ,Kn}, ∀n ∈ N (14)
0 ≤ y ≤ 1. (15)

Constraints (11) and (12) are constraints (1) and (7). Con-
straint (13) is the (relaxed) queue stability requirement for
ES; it is equivalent to (5), since equality leads to infinite
mean queueing delay, which is never optimal. The optimiza-
tion problem (10)-(15) is a MINLP problem. Constraint (14)
ensures that the number of channels assigned does not exceed
the maximum number available in each BS. Even the fractional
relaxation of MINLP problem (10)-(15) is non-convex, due
to its objective and constraints (12), and, as a result, it is
computationally inefficient to solve it exactly. Hence we are
going to propose approximate solutions for it.

B. Problem Formulation with Hard Deadlines

For the case of hard deadline constraints, i.e., when the task
deadline must be respected, we employ CLE [29]. In CLE,
local execution of the task may be initiated while offloading
is ongoing, so that the task deadline is always met, even if
offloading fails to finish in time due to the stochastic nature
of the wireless channels. Guaranteeing task completion before
its deadline may incur additional costs (due to potentially
simultaneous local and remote execution of the same task).

When CLE is employed, and in order to ensure that the
local execution of a task from class j finishes by its deadline,
the latest feasible starting time for local execution is

tLj = d̃j − Lj + 1. (16)

The expected wireless transmission power is still given
by (9). However, due to the overlap of offloading and local
execution because of CLE, there is an extra mean power
consumption due to a (potential) overlap with local execution.
This expected overlap power consumption is

EOn,j,k(xn, y) = (1− PBn)λn

·
d̃j∑
t=tLj

t−d
qj

yfCτ
e∑

l=1

Pr[tWn,j,k = l] Pr[t̃Cn,j,k = t− l] · pL(t− tLj + 1),

(17)

where t is the number of time slots needed to complete the
offloaded task, and (t− tLj + 1) is the offloading and local
execution overlap. Note that Pr[t̃Cn,j,k = t− l] is a function of
xn and y.

In case the task offloading goes beyond the finish of the
local execution of a task, there is an extra power consumption
incurred, whose expected value is

EBn,j,k(xn, y) = (1− PBn)λn

·
+∞∑

t=d̃j+1

t−d
qj

yfCτ
e∑

l=1

Pr[tWn,j,k = l] Pr[t̃Cn,j,k = t− l]pLLj . (18)

Hence, the expected power consumption of MDs for offloaded
tasks in BS n in one second is

EC
n (xn, y) = ETn (xn)

+

J∑
j=1

In∑
k=1

PC
j P

G
n,j,k[EOn,j,k(xn, y) + EBn,j,k(xn, y)], (19)

and the expected power consumption of MDs for tasks arriving
at BS n in one second is EL

n(xn) + EC
n (xn, y).

As before, our objective is to minimize the total expected
power consumption of the MDs for uploading and executing
the tasks that are generated in one second, but now subject
to hard deadline constraints. The problem is formulated as
follows:

min
x,y

N∑
n=1

[EL
n(xn) + EC

n (xn, y)] s.t. (20)

N∑
n=1

αnxn + βfCy ≤ Bmax (21)

(fC/

J∑
j=1

PC
j qj)y ≥ λ (22)

xn ∈ {0, 1, . . . ,Kn}, ∀n ∈ N (23)
0 ≤ y ≤ 1. (24)

IV. GENERAL APPROXIMATE ALLOCATION SOLUTIONS

In this section, we propose approximate solutions for opti-
mization problems (10)-(15) and (20)-(24), by decomposing
them into convex optimization subproblems which can be
solved efficiently.

7

A. Approximate Solution for Soft Deadlines

In this subsection, we propose an approximate solution for
the optimization problem (10)-(15) by decomposing it into
several convex subproblems that can be solved efficiently,
solve them, and then keep the best solution. More specifically,
we discretize variable y ∈ [0, 1] by breaking [0, 1] into
Y equal segments, so that y takes values ya = a/Y , for
a = 0, 1, . . . , Y . With y fixed, we show that the relaxation of
(10)-(15) can be approximated by a convex optimization prob-
lem, which can be solved in polynomial time. The resulting
(fractional) xn’s are then rounded to integer values (and this is
another source of suboptimality for our solution method). After
solving the resulting Y +1 problems, we output the minimum
solution x∗, y∗. Obviously, the quality of the approximation
depends on the discretization parameter Y .

We consider the relaxed version of problem (10)-(15), i.e.,
constraint (14) has been replaced by xn ≥ 0,∀n. With y
fixed, we show that the non-convex problem (10)-(15) can be
transformed into an equivalent convex optimization problem
with the PBn’s as the decision variables.

Lemma 4.1: When y is fixed, constraints (12), (13) can be
replaced by constraint

N∑
n=1

(1− PBn)λn ≤ λ∗. (25)

Proof: Note that Pr[tWn,j,k + tCn,j,k ≤ dj] is a monotonically
decreasing function of the aggregate mean task arrival rate λ.
Hence, by binary search in the range [0, yfC/

∑J
j=1 P

C
j qj],

we can approximate within any desired accuracy the maximum
possible value of λ that satisfies constraints (12) for all n, j, k.
Let λ∗ be this maximum value (note that λ∗ < µC, so stability
is ensured). Using (4), the lemma follows. �

Next, we note that the blocking probability PBn is monoton-
ically decreasing in xn. Let Pmin

Bn be the blocking probability
when xn = Kn. Then we have the following

Lemma 4.2: When y is fixed, constraints (14) can be
replaced by the equivalent constraints

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (26)

Constraint (11) is the only remaining constraint with an
explicit dependence on the xn’s. Since PBn is a function of
xn, one could potentially use its inverse to replace xn with a
function of PBn. However, such an inversion function may not
exist explicitly (and even if it does, it may be non-convex). In
its stead, we can use a convex upper bound approximation F
of the inversion of blocking probability, so that

xn ≤ F (PBn), ∀n ∈ N . (27)

Hence, the new convex optimization problem that approxi-
mates the original one when y is fixed, is the following:

min
PB

N∑
n=1

[EL
n(PBn) + ET

n (PBn)] s.t. (28)

N∑
n=1

αnF (PBn) ≤ Bmax − βfCy (29)

N∑
n=1

(1− PBn)λn ≤ λ∗ (30)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (31)

After solving (28)-(31) and obtaining the PBn’s, we can
compute the largest integral x∗n which achieves a blocking
probability equal to or bigger than PBn, for all n ∈ N .

Algorithm 1 General Case Approximation for Soft Deadlines
(GCASD)

Require: λn, pT, pL, αn,Kn, β, f
C, Y, sj , dj , qj , P

C
j , P

G
n,j,k,

PDFs of tW, tC

1: cost∗ =∞
2: for all a = 0, . . . , Y do
3: y = a/Y
4: Obtain λ∗, the upper bound of λ, by binary search in

[0, µC]
5: [PB, cost] = [solution, objective] of (28)-(31)
6: xint = max integral x with blocking probabilities ≥ PB

7: if cost < cost∗ then
8: x∗ = xint; y

∗ = y; cost∗ = cost
9: end if

10: end for
11: return x∗, y∗

Algorithm GCASD (cf. Algorithm 1) codifies the solution
method described above.

Theorem 4.1: Algorithm GCASD runs in O(Y (L +

log µC

ε +N logKmax)) time, where O(L) is the running time
for solving convex program (28)-(31).
Proof: Line 4 of the algorithm applies binary search in [0, µC]
in order to get a λ∗ within ε of the optimal and takes time
O(log µC

ε). Line 5 solves the convex problem (28)-(31) in time
O(L), e.g., by interior point methods (cf. Ch. 11 of [42]). Line
6 takes time O(N logKmax), by applying binary search in
the range [0,Kmax] for each xn, n = 1, 2, . . . , N (recall that
Kmax is the largest Kn). Hence every iteration of the for-loop
of lines 2-10 runs in time O(L+ log µC

ε +N logKmax), and
there are O(Y) iterations (recall that Y is the granularity of
y). The theorem follows. �

B. Approximate Solution for Hard Deadlines

In this subsection, we use a similar approach in order to
solve (20)-(24). Here we decompose the original problem into
several subproblems by discretizing both variable y as before,
and λ. Then, for every possible (fixed) pair (y, λ), the non-
convex problem (20)-(24) can be transformed into a convex
optimization problem with PBn as its decision variables, which
can be solved in polynomial time. By calculating the pair
(y∗, λ∗) whose subproblem achieves minimum average power
consumption, integer values x∗n for the original optimization
problem are obtained from P ∗Bn.

In more detail, we discretize y ∈ [0, 1] by break-
ing [0, 1] into Y equal segments, and then we dis-
cretize λ ∈ [0, yfC/

∑J
j=1 P

C
j qj] by breaking interval

8

[0, yfC/
∑J
j=1 P

C
j qj] into Λ equal segments. At iteration

(m, i) of this discretization, y = y(m) and λ = λ(i) are fixed.
Then Pr[t̃Cn,j,k = t− l] can be calculated directly for any t and
l, and the original optimization problem (20)-(24) becomes

min
x

N∑
n=1

[EL
n(xn) + EC

n (xn)] s.t. (32)

N∑
n=1

αnxn ≤ Bmax − βfCy(m) (33)

N∑
n=1

(1− PBn)λn ≤ λ(i) (34)

xn ∈ {0, 1, . . . ,Kn}, ∀n ∈ N . (35)

This is still a non-convex non-linear integer program, which
cannot be solved efficiently. As in Section III, and by using
(26)-(27), it becomes

min
PB

N∑
n=1

[EL
n(PBn) + EC

n (PBn)] s.t. (36)

N∑
n=1

αnF (PBn) ≤ Bmax − βfCy(m) (37)

N∑
n=1

(1− PBn)λn ≤ λ(i) (38)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (39)

Problem (36)-(39) is a convex program and can be solved
efficiently. Hence, we can obtain the optimal blocking prob-
abilities P ∗Bn, corresponding to a pair (y(m), λ(i)). We can
compute the largest integral x∗n which achieves blocking
probabilities no smaller than P ∗Bn, for all n ∈ N , by using
binary search based on the fact that the PBn’s are decreasing
functions of the xn’s. After collecting the solutions for all
iterations (m, i), we output the minimum cost one x∗, y∗.

Algorithm 2 General Case Approximation for Hard Deadlines
(GCAHD)

Require: λn, pT, pL, αn,Kn, β, f
C, Y, sj , dj , qj ,Λ, P

C
j , P

G
n,j,k,

PDFs of tW, tC

1: cost∗ =∞, y = 0, λ = 0
2: while y ≤ 1 do
3: while λ ≤ yfC/

∑J
j=1 P

C
j qj do

4: [PB, cost] = [solution, objective] of (36)-(39)
5: xint = max integral x with blocking probabilities

≥ PB

6: if cost < cost∗ then
7: x∗ = xint; y

∗ = y; cost∗ = cost
8: end if

9: λ = λ+
yfC/

∑J
j=1 P

C
j qj

Λ
10: end while
11: y = y + 1

Y
12: end while
13: return x∗, y∗

Algorithm GCAHD (cf. Algorithm 2) codifies the solution
method described above.

Theorem 4.2: Algorithm GCAHD runs in O(Y Λ(L +
N logKmax)) time, where O(L) is the running time for
solving convex program (36)-(39).
Proof: Line 4 solves convex problem (36)-(39) in time O(L),
e.g., by interior point methods (cf. Ch. 11 of [42]). Line 5 takes
time O(N logKmax), by applying binary search in the range
[0,Kmax] for each xn, n = 1, 2, . . . , N (recall that Kmax is
the largest Kn). Therefore, an iteration of the inner while-loop
(lines 3-10) takes time O(L + N logKmax), for a total of Λ
iterations, while the outer while-loop (lines 2-12) runs for a
total of Y iterations (recall that Y and Λ are the granularity
of y and λ respectively). The theorem follows. �

V. TASK ARRIVAL AND OFFLOADING ASSUMPTIONS

In the remainder of this paper, we assume that tasks arrive
from the MDs at BS n according to a Poisson process with
mean arrival rate λn. The Poisson process assumption is
commonly made in this type of situation, since the number
of mobile devices in a given coverage area is typically quite
large, each contributing to a small fraction of the total load
[43]. In this case, we can invoke the insensitivity property
of the Erlang B formula, to compute the probability of
blocking at each BS [44]. Note that, typically, the Erlang
B result is derived using the M/M/N/N Markovian queue,
which assumes exponentially distributed channel upload (i.e.,
service) times [45]. Due to insensitivity, the result holds for
any service time distribution with the same mean. Therefore,
the blocking probability for a task arriving at BS n is

PBn =

(
λn
µW
n

)xn 1

xn!

[
xn∑
r=0

(
λn
µW
n

)r
1

r!

]−1

(40)

where µW
n denotes the mean service rate, which can be

calculated by µW
n = 1/t̄Wn . Function (40) is convex in xn

[46].
Note that due to the Poisson process task arrival assump-

tion, the channel state sampled by arriving tasks is given
by the steady-state equilibrium probability distribution of the
Markovian channel at that MD. This follows from the PASTA
rule [47].

We assume that the aggregate task arrival process at ES is
Poisson [48], and, therefore, arriving tasks sample the asymp-
totic equilibrium state distribution of ES. This approximation
is justified due to the mixing of arrivals at ES from BSs
operating independently. In this case, ES can be modeled
as an M/G/1 queue, whose waiting time is given by the
random variable wC. Given λ and knowledge of the data
upload distribution, the distribution of wC can be obtained
by numerical inversion of the probability generating function
of system waiting time for M/G/1 [43]. In this case, the
execution time of a task at the ES depends only on which
class it belongs to, i.e., tCn,j,k = tCj , for all n and k, and
tCj = wC + qj/yf

C. Thus, Pr[tWn,j,k + tCj ≤ dj] can be easily
obtained.

9

When applying algorithms GCASD (Algorithm 1) and GC-
AHD (Algorithm 2) in this case, the upper bound F used in
problem (28)-(31) and (36)-(39) becomes [49]:

xn ≤
λn
µW
n

(1− PBn) +
1

PBn
, ∀n. (41)

A. Approximation with Soft Deadlines

In this case, problem (28)-(31) becomes:

min
PB

N∑
n=1

[EL
n(PBn) + ET

n (PBn)] s.t. (42)

N∑
n=1

αn(
λn
µW
n

(1− PBn) +
1

PBn
) ≤ Bmax − βfCy (43)

N∑
n=1

(1− PBn)λn ≤ λ∗ (44)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (45)

Problem (42)-(45) is convex, and Algorithm 1 can be imple-
mented efficiently according to Theorem 4.1.

B. Approximation with Hard Deadlines

In this case, problem (36)-(39) becomes

min
PB

N∑
n=1

[EL
n(PBn) + EC

n (PBn)] s.t. (46)

N∑
n=1

αn(
λn
µW
n

(1− PBn) +
1

PBn
) ≤ Bmax − βfCy(m)

(47)
N∑
n=1

(1− PBn)λn ≤ λ(i) (48)

Pmin
Bn ≤ PBn ≤ 1, ∀n ∈ N . (49)

Problem (46)-(49) is convex, and Algorithm 2 can be imple-
mented efficiently according to Theorem 4.2.

VI. SIMULATION RESULTS

In this section, we present simulation results to demon-
strate the performance of our proposed algorithms GCASD
(Algorithm 1) and GCAHD (Algorithm 2). We adopt the
two-state Gilbert-Elliot channel model [50], i.e., the channel
states change by following a Markov chain with two states,
“Good” (G) and “Bad” (B). This model is commonly used
to characterize the effects of burst noise in wireless channels,
where the channel can abruptly transition between good and
bad conditions [51]. The Gilbert-Elliot channel is a difficult
one for computation offloading algorithms to deal with com-
pared to those where there is much more correlation in the
channel quality as the offloading progresses. Let Bg and Bb,
respectively, be the data transmission rate when the channel
is in the G and B states. We consider that all channels have
the same Bg and Bb values but differ in their state transition
probabilities that result in different propagation models. The
transition probabilities for propagation model k in BS n are

denoted as PGG
n,k , P

GB
n,k , P

BG
n,k , and PBB

n,k . In each time slot,
the channel state Markov chain transitions in accordance with
these probabilities. Denote πG

n,k and πB
n,k, respectively, as the

stationary probabilities of a channel in BS n for propagation
model k being in the G and B states. Two sets of simulations
are performed with set 1 for single class of tasks and set
2 for multiple classes of tasks. Default parameters used in
the simulations are summarized in Table III. The parameter
settings that we use were taken from the references [23],
[26] and [33]. These references summarize parameter settings
for various types of applications including those that are
inherently delay sensitive, such as gaming, face recognition
and healthcare use. We intentionally use a wide range of
parameter values based on the referenced ranges so that we
can make conclusions that apply in general settings.

TABLE III: Default Parameters

Parameter Value in set 1 Value in set 2

τ 1 s

pL 250 mW

pT 2.5 mW

λn 11, 13, 15 tasks/s

Kn 15, 15, 20

αn 1, 1, 1 $

β 0.3× 10−6 $ 0.25× 10−6 $

fC 75M cycles/s 200M cycles/s

f 1M cycles/s 2M cycles/s

Bmax 140 $ 90 $

Bg,Bb 2M, 0 bits per time slot 5M, 1M bits per time slot

sj 2M bits 5M, 10M, 15M bits

dj 4 s 6, 11, 16 s

qj 3M CPU cycles 10M, 20M, 30M CPU cycles

A. Simulation set 1: single class of tasks
In this subsection, we will assume that all the tasks gen-

erated at the MDs have the same data size s and same
computation load q, i.e., sj = s and qj = q for all j. When the
channel is in the G state, the transmission rate of the wireless
channel allows a task to be uploaded within one time slot;
while when the channel is in the B state, the data transmission
rate is zero. Since there is only one class of the tasks, subscript
j can be dropped from the notation.

Let tWn,k be the time needed for uploading a task in BS n
with channel model k. The probability that one task in BS n
with channel model k can be uploaded in l time slots is given
as follows

Pr[tWn,k = l] =

 πG
n,k, when l = 1

πB
n,kP

BB
n,k

l−2
PBG
n,k , when l ≥ 2

(50)

The mean wireless transmission time of a task in BS n
uploaded through a channel with propagation model k can
be calculated as follows

t̄Wn,k =

∞∑
l=1

lPr[tWn,k = l] = 1 +
PGB
n,k

PBG
n,k

2
+ PGB

n,k P
BG
n,k

. (51)

10

20 50 80 110 140

Cost budget ($)

10

12

14

16

18

20

22

24

26

28

30
A

v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

DESSD, ǫ=1%

GCASD, ǫ=1%

DESSD-based OPT, ǫ=1%

DESSD, ǫ=3%

GCASD, ǫ=3%

DESSD-based OPT, ǫ=3%

DESSD, ǫ=5%

GCASD, ǫ=5%

DESSD-based OPT, ǫ=5%

(a) Soft deadlines

20 50 80 110 140

Cost budget ($)

10

12

14

16

18

20

22

24

26

28

30

A
ve

ra
g
e
 p

o
w

e
r

co
n
su

m
p
tio

n
 (

W
)

DESHD

GCAHD

DESHD-based OPT

(b) Hard deadlines

Fig. 2: Average power consumption versus cost budget (Single class of tasks)

Based on this, the mean wireless transmission time of the
tasks in BS n is t̄Wn =

∑In
k=1 P

G
n,k t̄

W
n,k, where PG

n,k is the
probability that a task in BS n is uploaded through a channel
with propagation model k.

With a single class of tasks, the ES server becomes an
M/D/1 queueing system, tCn,j,k = tC for all n, j and k,
and the distribution of delay is given by [52]

Pr[tC ≤ t̂] =

(
1− λ

µC

) bt̂µCc∑
z=0

[λ(z
µC − t̂)]

z

z!
e
−λ(z

µC
−t̂) (52)

where µC = yfC/q.
For comparison, we also run a discrete event simulation

(DES) of the system using the xn’s and y solutions obtained
from the proposed algorithms to validate our model assump-
tions, and these solutions are denoted as DESSD and DESHD,
respectively, for the soft deadline (SD) and hard deadline (HD)
cases. In addition, we simulate a DES-based OPT scheme for
each proposed algorithm as follows. For GCASD, we first
obtain all the possible combinations of xn’s under constraint
(14); for a given combination of xn’s, we can obtain the
solution of y based on (11) and (15), and then check if
constraint (13) is satisfied based on the current set of xn’s
and y. If not, we go to the next set of xn’s and repeat this
procedure. If it is satisfied, we use this set of xn’s and y to run
the DES for the system, and then check if (12) is satisfied. If
not, we proceed to the next combination of xn’s and repeat the
above procedure. If the constraints are satisfied, we save the
obtained average power. After going through all the possible
combinations of xn’s, we obtain the minimum average power
and the corresponding xn’s and y. For GCAHD, we first obtain
all the possible combinations of xn’s under constraint (23); for
a given combination of xn’s, we can obtain the solution of y
based on (21) and (24), and then check if constraint (22) is

satisfied based on the current set of xn’s and y. If not, we go to
the next set of xn’s and repeat this procedure. If it is satisfied,
we use this set of xn’s and y to run the DES for the system.
Then, we save the obtained mean power consumption. After
going through all the possible combinations of xn’s, we obtain
the minimum average power and the corresponding xn’s and
y.

In the simulation, we consider a cellular network consisting
of 3 BSs. There are two propagation models at each BS with
transition probabilities PGG

n,1 = 0.9, PGG
n,2 = 0.7, PBB

n,1 = 0.1,
and PBB

n,2 = 0.3 for n = 1, 2, 3. The probabilities of the differ-
ent channel models in BS 1 are PG

1,1 = 0.8 and PG
1,2 = 0.2; and

those in BSs 2 and 3 are PG
2,1 = 0.5, PG

2,2 = 0.5, PG
3,1 = 0.2,

and PG
3,2 = 0.8.

Figs. 2(a) and 2(b) show the average power consumption of
MDs versus Bmax for the SD and HD cases, respectively. In
Fig. 2(a), when the tolerable violation of latency ε is 1%,
the average power consumption of MDs is a constant for
all the solutions. This is because all the tasks are executed
locally regardless of the cost budget, since the tight delay
constraints cannot be satisfied if a task is offloaded. When
ε is 3% or 5%, some tasks are allowed to be offloaded, and
the average power consumption of the MDs decreases with
Bmax for all the solutions. This happens since, when the
cost budget is small, the optimization is constrained by the
cost budget, which limits the number of offloaded tasks; and
with the increase of Bmax, more channel and ES resource is
available, leading to more MDs offloading their tasks. When
Bmax is large, the budget constraint is loose, and the task
offloading completion is mainly affected by the changing
wireless transmission conditions. Fig. 2(a) also shows that the
average MD power consumption decreases with ε for all the
solutions, since larger ε makes it easier to meet the latency

11

10 12 14 16 18 20

Mean arrival rate (number of tasks/s)

5

10

15

20

25

30

35

40

45
A

v
e

ra
g
e

 p
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

 (
W

)

DESSD, ǫ=1%

GCASD, ǫ=1%

DESSD-based OPT, ǫ=1%

DESSD, ǫ=3%

GCASD, ǫ=3%

DESSD-based OPT, ǫ=3%

DESSD, ǫ=5%

GCASD, ǫ=5%

DESSD-based OPT, ǫ=5%

(a) Soft deadlines

10 12 14 16 18 20

Mean arrival rate (number of tasks/s)

5

10

15

20

25

30

35

40

45

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

DESHD

GCAHD

DESHD-based OPT

(b) Hard deadlines

Fig. 3: Average power consumption versus mean arrival rate (Single class of tasks)

constraint through offloading, which results in more offloaded
tasks and saves power in the MDs.

By comparing the average MD power consumption for
ε = 3% and ε = 5% in Fig. 2(a), it is seen that the
gap is small when the cost budget is small. The gap then
increases as the cost budget increases, and finally becomes
constant when the cost budget is sufficiently large. When
the cost budget is low, the number of channels is small,
which forces most tasks to be executed locally, regardless of
the value of ε. As the cost budget increases, more channels
are available, and the offloading decisions are determined by
both ε and the available channel resources. When the cost
budget is sufficiently high, the offloading decisions are mainly
determined by the value of ε. The figure also shows that
the average MD power consumption using GCASD is almost
the same as using DESSD, which validates the model and
approximations used in designing GCASD. The performance
of GCASD is also close to DESSD-based OPT, which further
shows good performance of the former.

By comparing Figs. 2(b) and 2(a), it can be seen that the
average MD power consumption for the HD case is slightly
higher than that for the SD case with ε = 3% and much
lower than that for the SD case with ε = 1%. For the
SD case, when ε = 1%, the tight (soft) delay constraint
forces all the tasks to be executed locally, which results in
the highest average power consumption of the MDs; and the
power consumption decreases as ε increases and more tasks
are allowed to be offloaded. Without having to use CLE, the
SD solutions result in lower average MD power consumption
than the corresponding HD solutions. However, this is at a
price that up to ε of the tasks do not meet their completion
deadlines. On the other hand, using CLE in the GCAHD only
incur slightly higher power consumption of the MDs compared

to GCASD when ε = 3% For the HD case, the total average
power consumption of the MDs decreases with Bmax when
Bmax is small and becomes a constant when Bmax becomes
larger for all schemes, which is the same as that of the SD
case with ε = 3% and 5%.

Figs. 3(a) and 3(b) show the average power consumption
versus λn (same for all BSs) for the SD and HD cases,
respectively. The figures show that the power consumption
increases linearly with λn for all schemes, since both the
local execution power and the uploading transmission power
are proportional to the mean task arrival rate. The average
MD power consumption using GCAHD is close to that using
GCASD with ε = 3% but much lower than that using GCASD
with ε = 1%. This demonstrates that the use of CLE in
GCAHD is minimized, while always ensuring the HD of the
tasks. Fig. 3(a) shows that the performance of GCASD is very
close to DESSD and DESSD-based OPT; and Fig. 3(b) shows
that the performance of GCAHD is very close to DESHD and
DESHD-based OPT. These observations are consistent with
the ones from Figs. 2(a) and 2(b). This further demonstrates
the good performance of GCASD and GCAHD and validates
the model and approximations used in designing the proposed
algorithms.

Figs. 4(a) and 4(b) show the average power consumption
of the MDs versus fC, which is the ES capacity, for the SD
and HD cases, respectively. For the SD case with ε = 1%,
all tasks are executed locally; and when ε = 3% and 5%,
offloading is possible for some tasks, and the number of
tasks that can be offloaded increases with the ES capacity,
resulting in lower power consumption of the MDs. As the ES
capacity is sufficiently high, the average power consumption
of MDs becomes a constant, since the offloading decisions
are determined by the cost budget which limits the number

12

10 20 30 40 50 60 70 80

Available ES capacity (M CPU cycles/s)

5

10

15

20

25

30
A

v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

DESSD, ǫ=1%

GCASD, ǫ=1%

DESSD-based OPT, ǫ=1%

DESSD, ǫ=3%

GCASD, ǫ=3%

DESSD-based OPT, ǫ=3%

DESSD, ǫ=5%

GCASD, ǫ=5%

DESSD-based OPT, ǫ=5%

(a) Soft deadlines

10 20 30 40 50 60 70 80

Available ES capacity (M CPU cycles/s)

5

10

15

20

25

30

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

DESHD

GCAHD

DESHD-based OPT

(b) Hard deadlines

Fig. 4: Average power consumption versus available ES capacity (Single class of tasks)

of wireless channels for uploading tasks. Note that the slight
increase in average power consumption when fC is between
60 and 80 is caused by the discretization errors of variable y in
algorithms 1 and 2. Increasing the Y values in the algorithms
helps reduce the discretization errors but significantly increase
the amount of time for running the simulations. Comparing
the average power consumption of the HD and the SD cases
shown in Figs. 4(a) and 4(b), we have consistent observations
as in previous figures.

B. Simulation set 2: multiple classes of tasks

In this subsection, tasks have multiple classes. The two-
state Gilbert-Elliot channels are considered. Let Bg and Bb,
respectively, be the data transmission rates when a channel
is in the G and B states. Given the channel state transision
probabilities, the distribution of wireless transmission time
tWn,j,k for uploading a class j task in BS n through a channel
with propagation model k can be calculated from [29].

At the ES, the system of serving the uploaded tasks becomes
an M/G/1 queueing system. Let B be a random variable
representing the execution time of the tasks. We have Pr[B =
qj
yfC] = PC

j , then the probability density function of B can be
written as

fB(b̃) =

J∑
j=1

Pr

[
B =

qj
yfC

]
δ

(
b̃− qj

yfC

)

=

J∑
j=1

PC
j δ

(
b̃− qj

yfC

)
, (53)

and the Laplace-Stieltjes transform of fB(b̃) is given by

g(s) =

J∑
j=1

PC
j e
−

qj

yfC
s
. (54)

The Laplace-Stieltjes transform of the probability density
function of queuing time wC is given by the Pollaczek-
Khinchine transform [43] as

W ∗(s) =
(1− λb̄)s

s− λ(1− g(s))
, (55)

where b̄ is the mean of B. The distribution of wC can be
obtained by numerical inversion of (55).

In the simulation, we consider a cellular network consisting
of 3 BSs, 3 task classes, and 2 channel propagation models.
The channel state transition probabilities are PGG

n,1 = 0.9,
PBB
n,1 = 0.1, PGG

n,2 = 0.6, and PBB
n,1 = 0.4 for n = 1, 2, 3. The

probabilities of accessing channels with different propagation
models in BS 1 are PG

1,1 = 0.8 and PG
1,2 = 0.2; those in BSs 2

and 3 are PG
2,1 = 0.5, PG

2,2 = 0.5, PG
3,1 = 0.2, and PG

3,2 = 0.8.
The probabilities of a task belonging to different classes are
PC

1 = 0.6, PC
2 = 0.3, and PC

3 = 0.1.
Figs. 5(a) and 5(b) show the average power consumption of

MDs versus Bmax for the SD and HD cases, respectively. In
Fig. 5(a), when ε is 0.5%, all the tasks are executed locally
regardless of the cost budget, since offloading cannot satisfy
the tight delay constraints. When ε is 1% or 6%, the average
power consumption of MDs decreases with Bmax and then
becomes a constant. By comparing the power consumption
of the MD in the SD and HD cases, we can see that the
average power consumption of MDs for the HD case is slightly
higher than that for the SD case with ε = 1% and much
lower than that for the SD case with ε = 0.5%. Figs. 6(a) and
6(b) show the total average power consumption of the MDs
versus fC. All the results show that our GCASD and GCAHD
solutions achieve the average power consumption performance
that is very close to DES-based OPT, and the observations in
the multi-class simulations are consistent with the single-class
simulations.

13

30 70 110 150 190

Cost budget ($)

50

55

60

65

70

75
A

v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

DESSD-MC, ǫ=0.5%

GCASD-MC, ǫ=0.5%

DESSD-based OPT-MC, ǫ=0.5%

DESSD-MC, ǫ=1%

GCASD-MC, ǫ=1%

DESSD-based OPT-MC, ǫ=1%

DESSD-MC, ǫ=6%

GCASD-MC, ǫ=6%

DESSD-based OPT-MC, ǫ=6%

(a) Soft deadlines

30 70 110 150 190

Cost budget ($)

50

55

60

65

70

75

A
ve

ra
g
e
 p

o
w

e
r

co
n
su

m
p
tio

n
 (

W
)

DESHD-MC

GCAHD-MC

DESHD-based OPT-MC

(b) Hard deadlines

Fig. 5: Average power consumption versus cost budget (Multiple classes of tasks)

VII. CONCLUSIONS

This paper has studied joint wireless network and task
service allocation for mobile computation offloading. The
objective is to minimize the total average power consumption
of MDs for completing the arriving tasks, while satisfying
the delay constraints of tasks and the cost budget of the
network customer. The formulations presented included both
soft and hard task completion time deadlines. The designs
were formulated as MINLPs and approximate solutions were
obtained by decomposing the formulations into convex sub-
problems. Simulation results were presented that characterize
the performance of the system and show various tradeoffs
between task deadline violation, average mobile device power
consumption and the cost budget. Results were presented
that demonstrate the quality of the proposed solutions, which
can achieve close-to-optimum performance over a wide range
of system parameters. The optimum allocation was obtained
by doing exhaustive search-based discrete event simulations
for assigning the wireless channels from each BSs and ES
capacity.

REFERENCES

[1] T. H. Noor, S. Zeadally, A. Alfazi, and Q. Z. Sheng, “Mobile cloud com-
puting: Challenges and future research directions,” Journal of Network
and Computer Applications, vol. 115, pp. 70–85, 2018.

[2] Y. Kwon, H. Yi, D. Kwon, S. Yang, Y. Cho, and Y. Paek, “Precise
execution offloading for applications with dynamic behavior in mobile
cloud computing,” Pervasive and Mobile Computing, vol. 27, pp. 58–74,
2016.

[3] H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing-a
green computing resource,” in 2013 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE, 2013, pp. 4451–4456.

[4] Z. Gu, R. Takahashi, and Y. Fukazawa, “Real-time resources allocation
framework for multi-task offloading in mobile cloud computing,” in 2019
International Conference on Computer, Information and Telecommuni-
cation Systems (CITS). IEEE, 2019, pp. 1–5.

[5] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633–2645, 2017.

[6] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proceedings of the 1st ACM Workshop on Mobile
Cloud Computing Services: Social Networks and Beyond, June 2010,
p. 6.

[7] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proceedings
of the Sixth Conference on Computer Systems, ser. EuroSys ’11.
New York, NY, USA: ACM, 2011, pp. 301–314. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966473

[8] Y. Shi, S. Chen, and X. Xu, “MAGA: A mobility-aware computation
offloading decision for distributed mobile cloud computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 164–174, Feb 2018.

[9] S. Zhou, Y. Sun, Z. Jiang, and Z. Niu, “Exploiting moving intelligence:
Delay-optimized computation offloading in vehicular fog networks,”
IEEE Communications Magazine, vol. 57, no. 5, pp. 49–55, May 2019.

[10] D. Mazza, D. Tarchi, and G. E. Corazza, “A unified urban mobile cloud
computing offloading mechanism for smart cities,” IEEE Communica-
tions Magazine, vol. 55, no. 3, pp. 30–37, March 2017.

[11] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and C. Assi,
“Dynamic task offloading and scheduling for low-latency IoT services
in multi-access edge computing,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 3, pp. 668–682, 2019.

[12] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, “Efficient de-
pendent task offloading for multiple applications in MEC-cloud system,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[13] Huawei Inc., “5G network architecture - a high-level perspective,”
https://www.huawei.com/en/technology-insights/industry-insights/
outlook/mobile-broadband/insights-reports/5g-network-architecture,
2016.

[14] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Transactions on Vehicular Technology,
vol. 64, no. 10, pp. 4738–4755, October 2015.

[15] B. Dab, N. Aitsaadi, and R. Langar, “Joint optimization of offloading
and resource allocation scheme for mobile edge computing,” in 2019
IEEE Wireless Communications and Networking Conference (WCNC),
2019, pp. 1–7.

[16] M. Sheng, Y. Wang, X. Wang, and J. Li, “Energy-efficient multiuser
partial computation offloading with collaboration of terminals, radio ac-

http://doi.acm.org/10.1145/1966445.1966473
https://www.huawei.com/en/technology-insights/industry-insights/outlook/mobile-broadband/insights-reports/5g-network-architecture
https://www.huawei.com/en/technology-insights/industry-insights/outlook/mobile-broadband/insights-reports/5g-network-architecture

14

30 60 90 120 150 180

Available ES capacity (M CPU cycles/s)

40

45

50

55

60

65

70

75
A

v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

W
)

DESSD-MC, ǫ=0.5%

GCASD-MC, ǫ=0.5%

DESSD-based OPT-MC, ǫ=0.5%

DESSD-MC, ǫ=1%

GCASD-MC, ǫ=1%

DESSD-based OPT-MC, ǫ=1%

DESSD-MC, ǫ=6%

GCASD-MC, ǫ=6%

DESSD-based OPT-MC, ǫ=6%

(a) Soft deadlines

30 60 90 120 150 180

Available ES capacity (M CPU cycles/s)

40

45

50

55

60

65

70

75

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u

m
p
ti
o
n
 (

W
)

DESHD-MC

GCAHD-MC

DESHD-based OPT-MC

(b) Hard deadlines

Fig. 6: Average power consumption versus available ES capacity (Multiple classes of tasks)

cess network, and edge server,” IEEE Transactions on Communications,
vol. 68, no. 3, pp. 1524–1537, 2020.

[17] H. Chen, D. Zhao, Q. Chen, and R. Chai, “Joint computation offloading
and radio resource allocations in small-cell wireless cellular networks,”
IEEE Transactions on Green Communications and Networking, vol. 4,
no. 3, pp. 745–758, 2020.

[18] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, April 2018.

[19] X. Yang, X. Yu, H. Huang, and H. Zhu, “Energy efficiency based joint
computation offloading and resource allocation in multi-access MEC
systems,” IEEE Access, vol. 7, pp. 117 054–117 062, 2019.

[20] J. Zhang, W. Xia, F. Yan, and L. Shen, “Joint computation offloading and
resource allocation optimization in heterogeneous networks with mobile
edge computing,” IEEE Access, vol. 6, pp. 19 324–19 337, 2018.

[21] X. Chen, Z. Liu, Y. Chen, and Z. Li, “Mobile edge computing based task
offloading and resource allocation in 5G ultra-dense networks,” IEEE
Access, vol. 7, pp. 184 172–184 182, 2019.

[22] S. Mu, Z. Zhong, and D. Zhao, “Energy-efficient and delay-fair mobile
computation offloading,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 12, pp. 15 746–15 759, 2020.

[23] M. Masoudi and C. Cavdar, “Device vs edge computing for mobile ser-
vices: Delay-aware decision making to minimize power consumption,”
IEEE Transactions on Mobile Computing, vol. 20, no. 12, pp. 3324–
3337, 2021.

[24] X. Chen, Y. Cai, Q. Shi, M. Zhao, B. Champagne, and L. Hanzo,
“Efficient resource allocation for relay-assisted computation offloading
in mobile-edge computing,” IEEE Internet of Things Journal, vol. 7,
no. 3, pp. 2452–2468, 2020.

[25] S. Nath, Y. Li, J. Wu, and P. Fan, “Multi-user multi-channel computation
offloading and resource allocation for mobile edge computing,” in ICC
2020 - 2020 IEEE International Conference on Communications (ICC),
2020, pp. 1–6.

[26] C. Yi, S. Huang, and J. Cai, “Joint resource allocation for device-to-
device communication assisted fog computing,” IEEE Transactions on
Mobile Computing, vol. 20, no. 3, pp. 1076–1091, 2021.

[27] H. Park, Y. Jin, J. Yoon, and Y. Yi, “On the economic effects of
user-oriented delayed wi-fi offloading,” IEEE Transactions on Wireless
Communications, vol. 15, no. 4, p. 26842697, 2016.

[28] L. Cominardi, T. Deiss, M. Filippou, V. Sciancalepore, F. Giust, and
D. Sabella, “MEC support for network slicing: Status and limitations
from a standardization viewpoint,” IEEE Communications Standards
Magazine, vol. 4, no. 2, pp. 22–30, 2020.

[29] A. Hekmati, P. Teymoori, T. D. Todd, D. Zhao, and G. Karakostas,
“Optimal mobile computation offloading with hard deadline constraints,”
IEEE Transactions on Mobile Computing, vol. 19, no. 9, pp. 2160–2173,
2020.

[30] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “QoS driven
task offloading with statistical guarantee in mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 1, pp. 278–290,
2022.

[31] Y. Deng, Z. Chen, and X. Chen, “Resource allocation for multi-user
mobile-edge computing systems with delay constraints,” in GLOBECOM
2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[32] C. W. Zaw, N. H. Tran, Z. Han, and C. S. Hong, “Radio and computing
resource allocation in co-located edge computing: A generalized nash
equilibrium model,” IEEE Transactions on Mobile Computing, pp. 1–1,
2021.

[33] S. Yue, J. Ren, N. Qiao, Y. Zhang, H. Jiang, Y. Zhang, and Y. Yang,
“TODG: Distributed task offloading with delay guarantees for edge
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 7, pp. 1650–1665, 2022.

[34] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 17, no. 8, pp. 5506–5519, 2018.

[35] Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading
for multicore-based mobile devices,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 46–54.

[36] M.-H. Chen, B. Liang, and M. Dong, “Multi-user multi-task offloading
and resource allocation in mobile cloud systems,” IEEE Transactions on
Wireless Communications, vol. 17, no. 10, pp. 6790–6805, 2018.

[37] P. A. Apostolopoulos, G. Fragkos, E. E. Tsiropoulou, and S. Papavas-
siliou, “Data offloading in UAV-assisted multi-access edge computing
systems under resource uncertainty,” IEEE Transactions on Mobile
Computing, vol. 22, no. 1, pp. 175–190, 2023.

[38] J. Peng, H. Qiu, J. Cai, W. Xu, and J. Wang, “D2D-assisted multi-user
cooperative partial offloading, transmission scheduling and computation
allocating for MEC,” IEEE Transactions on Wireless Communications,
vol. 20, no. 8, pp. 4858–4873, 2021.

[39] W. Feng, J. Tang, N. Zhao, X. Zhang, X. Wang, K.-K. Wong, and
J. A. Chambers, “Hybrid beamforming design and resource allocation
for UAV-aided wireless-powered mobile edge computing networks with
NOMA,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 11, pp. 3271–3286, 2021.

[40] X. Cao, F. Wang, J. Xu, R. Zhang, and S. Cui, “Joint computation and
communication cooperation for energy-efficient mobile edge comput-

15

ing,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4188–4200,
2019.

[41] S. Mu, Z. Zhong, D. Zhao, and M. Ni, “Joint job partitioning and col-
laborative computation offloading for internet of things,” IEEE Internet
of Things Journal, vol. 6, no. 1, pp. 1046–1059, 2019.

[42] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2014.

[43] A. Y. Khintchine, “Mathematical theory of a stationary queue,” Matem-
aticheskii Sbornik, vol. 39, no. 4, pp. 73–84, 1932.

[44] D. Y. Burman, “Insensitivity in queueing systems,” Advances in Applied
Probability, vol. 13, no. 4, pp. 846–859, 1981.

[45] D. J. Daley and L. D. Servi, “Idle and busy periods in stable M/M/k
queues,” Journal of Applied Probability, vol. 35, no. 4, pp. 950–962,
1998.

[46] E. J. Messerli, “B.S.T.J. brief: Proof of a convexity property of the
erlang B formula,” The Bell System Technical Journal, vol. 51, no. 4,
pp. 951–953, 1972.

[47] R. W. Wolff, “Poisson arrivals see time averages,” Operations Research,
vol. 30, no. 2, pp. 223–414, 1982.

[48] D. N. Shanbhag and D. G. Tambouratzis, “Erlang’s formula and some
results on the departure process for a loss system,” Journal of Applied
Probability, vol. 10, no. 1, pp. 233–240, 1973.

[49] S. A. Berezner, A. E. Krzesinski, and P. G. Taylor, “On the inverse of
erlang’s function,” Journal of Applied Probability, vol. 35, no. 1, pp.
246–252, 1998.

[50] E. N. Gilbert, “Capacity of a burst-noise channel,” The Bell System
Technical Journal, vol. 39, no. 5, pp. 1253–1265, 1960.

[51] T. Blazek and C. F. Mecklenbräuker, “Measurement-based burst-error
performance modeling for cooperative intelligent transport systems,”
IEEE Transactions on Intelligent Transportation Systems, no. 99, pp.
1–10, 2018.

[52] G. J. Franx, “A simple solution for the M/D/1 waiting time distribution,”
Operations Research Letters, vol. 29, no. 5, pp. 221–229, 2001.

	Introduction
	Related Work
	System Model and Problem Formulation
	Problem Formulation with Soft Deadlines
	Problem Formulation with Hard Deadlines

	General Approximate Allocation Solutions
	Approximate Solution for Soft Deadlines
	Approximate Solution for Hard Deadlines

	Task Arrival and Offloading Assumptions
	Approximation with Soft Deadlines
	Approximation with Hard Deadlines

	Simulation Results
	Simulation set 1: single class of tasks
	Simulation set 2: multiple classes of tasks

	Conclusions
	References

