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Abstract—Thermal-aware workload distribution is a common
approach in the literature for power consumption optimization in
data centers. However, data centers also have other operational
costs such as the cost of equipment maintenance and replacement.
It has been shown that server reliability depends on frequency of
their temperature variations, arising from workload transitions
due to dynamic demands. In this work, we formulate a nonlin-
ear optimization problem that considers the cost of workload
transitions in addition to IT and cooling power consumption.
To approximate the solution, we first linearize the problem;
the result is a mixed integer linear programming problem. A
modified heuristic is then proposed to approximate the solution
of the linear problem. Finally, a Model Predictive Control (MPC)
approach is integrated with the proposed heuristics for automatic
workload reconfiguration when future demand is not known
exactly, but predictions are available. Numerical results show
that the proposed schemes are attractive in different settings.

Index Terms—switching cost, model predictive control,
thermal-aware workload distribution, data center

I. INTRODUCTION

Apart from considerable energy consumption of data cen-
ters, they also have other operational costs such as the cost
of equipment maintenance and replacement. However, when
the workload distribution is changed due to dynamic demands,
the cost of varying the workload on a server (which we will
call switching costs) has seen little attention in the thermal-
aware workload distribution literature. The varying workload
leads to temperature variations that can impact the reliability
of servers [1]. There are a few works that consider switching
costs in the workload distribution policy. Most of the literature
addresses thermal-aware workload distribution for a constant
demand (steady- state). In [2], switching costs are considered
but cooling power consumption is not considered. In [3], the
costs of input fluctuations are considered in the thermal-aware
workload distribution policy, where a transient thermal model
is used. In this work, we formulate a thermal-aware workload
distribution problem in discrete time that considers switching
costs in addition to IT and cooling power consumption.

The proposed problem is a generalized form of the problem
introduced in [4][5]. In [5] a general power optimization prob-
lem with nonlinear cooling power consumption and steady-
state thermal model is proposed. Our contributions can be
listed as follows:

• Generalization of the constant demand problem to a
discrete-time, time-varying problem which also considers
switching costs

• Generalization of the proposed approach in [5] for the re-
sulting mixed integer programming problem and demon-
strating its applicability for the proposed problem

• Integration of an MPC approach with demand predictions
for the proposed heuristic

• Evaluation of the proposed schemes that suggest the po-
tential for significant cost reductions, e.g. when compared
to separating the problem into independent instances at
each time step

II. SYSTEM MODEL

We consider a discrete time demand model in which there
are K time slots and the demand at time slot k is denoted
by Dk, the number of required servers at time slot k. The
system considered in this paper consists of n servers and one
or more cooling facilities, where the control of the cooling
facilities is performed through m parameters (setpoints, fan
speeds, etc.). The decision variables are the cooling parameters
and the server utilizations at time slot k, k = 1, ...,K, denoted
by the vectors v

(k)
m×1 and ρ

(k)
n×1, respectively. As a power

reduction scenario, two red-line temperatures are considered
corresponding to idle or fully-utilized servers, so the server
utilizations are 0 or 1. The servers are assumed to be identical.
The cost function is the summation of cooling and IT power
consumption along with the cost of workload migration and
switching the servers between idle or fully-utilized (or on and
off states in the case of server consolidation) in consecutive
time slots. Thus, the problem that we wish to solve is problem
(1), F (v(k)) is the cooling power consumption corresponding
to the cooling variable vector v

(k)
m×1 at time slot k, ρ

(k)
n×1

is the vector of workload distribution at time slot k, and
M(v(k), ρ(k)) is the function corresponding to the thermal
model. Within each time slot, a steady-state thermal model
is considered. The first constraint is a performance constraint
with the target demand Dk, and the second constraint limits
the inlet temperatures to be less than the corresponding red-
line temperatures, Tidle and Tbusy (according to [7], Tidle >
Tbusy). The cost of switching (and migration) per server for
the kth time slot is denoted by wk. The computing (IT) power



consumption of server i in the kth time slot is denoted by
P (ρ

(k)
i ). The vectors of lower bounds and upper bounds for

the cooling variables are VLB and VUB , respectively.

min

K∑
k=1

F (v(k)) +

K∑
k=1

wk

n∑
i=1

|ρ(k)i − ρ
(k−1)
i | +

K∑
k=1

n∑
i=1

P (ρ
(k)
i )

s.t.
n∑

i=1

ρ
(k)
i ≥ Dk ∀k = 1, ...,K

M(v(k), ρ(k)) ≤ Tidle1n×1 − (Tidle − Tbusy)ρ
(k) ∀k = 1, ...,K

v(k) ≥ VLB ∀k = 1, ...,K

v(k) ≤ VUB ∀k = 1, ...,K

ρ
(k)
i ∈ {0, 1} ∀i = 1, ..., n ∀k = 1, ...,K

(1)

The model we use for IT power consumption is P (ρ
(k)
i ) =

c + dρ
(k)
i , where c and d are constants, but we assume that

there is server consolidation, so that idle servers are turned off
and P (ρ

(k)
i ) = 0 when ρ

(k)
i = 0. Server consolidation requires

an extra step of linearizing the IT power consumption.
We first linearize problem (1) and then generalize the heuris-

tic proposed in [5] to approximate the solution of the linear
problem. Linearizing the switching cost is straightforward and
leads to introducing the new variables sk,i. When the server
utilizations are 0 or 1, linearizing the IT power consumption
is also straightforward. In this case P (ρ

(k)
i ) = (c+d)ρ

(k)
i . So,

the integer linear programming problem is:

min

K∑
k=1

m∑
j=1

v
(k)
j +

K∑
k=1

wk

n∑
i=1

sk,i + (c+ d)

K∑
k=1

n∑
i=1

ρ
(k)
i

s.t.
n∑

i=1

ρ
(k)
i ≥ Dk

−
m∑

j=1

Al,jvk,j+
n∑

i=1

Bl,iρ
(k)
i + aρ

(k)
l ≤ b− El ∀l =1, ..., n

sk,i − ρ
(k)
i + ρ

(k−1)
i ≥ 0 ∀i =1, ..., n

sk,i + ρ
(k)
i − ρ

(k−1)
i ≥ 0 ∀i =1, ..., n

v
(k)
j ≥ V

(j)
LB ∀j =1, ...,m

v
(k)
j ≤ V

(j)
UB ∀j =1, ...,m

ρ
(k)
i ∈ {0, 1} ∀i =1, ..., n

(2)
where all constraints are ∀k = 1, ...,K, a = Tidle−Tbusy > 0,
b = Tidle, An×m, Bn×n and En×1 are the cooling matrix, the
heat-recirculation matrix and the constant part, respectively. In
addition, Ai,j , Bi,j ≥ 0 (nonnegative entries).

However, with the relaxation of server utilizations that
is needed for the approximation algorithm, more work is
needed to linearize the IT power consumption in problem (1).
According to the IT power consumption model, in the case of
consolidation there is a jump in P (ρ

(k)
i ) when ρ

(k)
i = 0. We

approximate P (ρ
(k)
i ) with a piecewise linear function. For a

small value ϵ, if ρ
(k)
i ≤ ϵ, then the IT power consumption is

approximated as P (ρ
(k)
i ) = P (ϵ)

ϵ ρ
(k)
i , and if ρ

(k)
i > ϵ, then

P (ρ
(k)
i ) = cρ

(k)
i + d. More details are provided in [6]. This

problem is called relaxation of problem (2) in the next sections.

III. APPROXIMATION ALGORITHM

Our aim is to approximate the solution of problem (2)
and use it for the original problem (1). We generalize the
H2 heuristic in [5] to approximate the solution of problem
(2). Let us denote the solution for the relaxation of problem
(2) by (v∗(k), ρ∗(k)),∀k = 1, ...,K. For our problem, the
proposed heuristic, called DCVS (Dominant Cooling Variable
with Switching cost), is similarly based on gradual rounding
of the fractional server utilizations. However, instead of one
problem, K problems are approximated. The values of ρ̂(k) are
computed consecutively, as the greatest correlation between
demands will typically be between consecutive time slots. The
problem for time slot k is problem (3), where B′ = B+In×n

(I is the identity matrix), there are R dominant cooling vari-
ables (the variables with the largest corresponding coefficient
for at least one row of A), Sr is the set of servers with corre-
sponding dominant cooling variable r, zl is the corresponding
coefficient of the cooling variable r (in the lth row of A) for
the server l ∈ Sr, and D∗

k = ⌊
∑n

i=1 ρ
∗(k)
i ⌋ (⌊⌋ is the floor

function). The cost function for (3) is an approximation of the
component of the cost function of problem (2) that is affected
by the value of ρ̂(k).

Similarly to H2, DCVS is greedy and includes three phases.
The first (main) phase is modified to approximate the solution
of problem (1) in terms of server utilizations. The algorithm
is presented in [6]. The other two phases can also be found in
[5].

IV. MPC APPROACH

We now consider the scenario where demand predictions are
available. In problem (2), it may not be efficient or sufficiently
precise to solve the problem for the whole time interval of
size K. This is both due to the size of the problem and the
fact that distant demand predictions may not be sufficiently
accurate. One possibility to address these issues is using an
MPC approach.

Algorithm 1 Calculation of ρ̂(s), v̂(s) using MPC approach
with window size W

1: update the (predicted) demand values
2: solve problem (2) for k = s, ..., s+W − 1 and call the solution

(v′(k), ρ′(k)),∀k = s, ..., s+W − 1
3: ρ̂(s) = ρ′(s), v̂(s) = v′(s)

4: return ρ̂(s) and v̂(s)

We use the MPC scheme which is described in Algorithm
1. Each time, a problem of size W is solved and the solution
for the first time slot is kept and used as the initial workload
distribution for the next round.

V. EVALUATION

The system we use for evaluation comes from an exper-
imental data center at McMaster University that is modeled
in [8]. The data center has 25 servers located in 5 racks and
two cooling facilities. Additional details are provided in [5].
According to [5], the matrices A, B and E in problem (2)



min

R∑
r=1

max
l∈Sr

[
∑n

i=1 B
′
l,iρ

(k)
i − (

∑m
j=1 Al,jv

∗(k)
j + b− El)]

+

zl
+ wk

n∑
i=1

|ρ(k)i − ρ̂i
(k−1)|+ wk+1

n∑
i=1

|ρ∗(k+1)
i − ρ

(k)
i |

s.t.
n∑

i=1

ρ
(k)
i = D∗

k

ρ
(k)
i ∈ {0, 1} ∀i = 1, ..., n

(3)

TABLE I: Performance of the Algorithms for Different Values
of w

OPTi Sep SR DCVS
w wrc wrc wrc wrc
1 1.02 1.10 1.05 1.05
4 1.02 1.10 1.04 1.07
16 1.02 1.08 1.05 1.06
64 1.02 1.13 1.04 1.05

512 1.01 1.24 1.04 1.04
2048 1.01 1.87 1.16 1.02
8192 1.00 2.63 1.16 1.02

are known. We perform a (small) random perturbation of the
matrices, each time that the algorithms are run.

We use simple rounding (SR) as the baseline algorithm. In
simple rounding for each time slot k, the D∗

k largest values in
ρ∗(k) are rounded to one. We also solve the single time slot
problem for each of the K time slots (without switching cost)
using the intlinprog function in MATLAB and calculate the
cost of the solution for the multiple time slot problem (with
switching cost). This scheme is called Sep in the results. We
present the average and the worst case ratios (avg and wrc
columns in the results), where the solution is compared with
the solution for the relaxation of problem (2).

The first results correspond to sensitivity to w. The number
of intervals K is equal to 3. The pair of demands (D1, D3)
covers all possible combinations, where the values for the
demand are chosen from D = {1, 2, ...., 24}. For each com-
bination, D2 is randomly chosen from D. The results are re-
ported in Table I, with an extra column OPTi corresponding to
solving the problem using the intlinprog function in MATLAB.
Although OPTi has the best performance, in [5] and [6] we
showed that the running time does not scale well for larger
problem sizes. The results show that the performance of DCVS
is more resilient to changes in w and for larger values of w,
SR has poor performance with respect to the worst case ratio.
The results also show the performance of the Sep scheme is
not as good as the others, specially for larger values of w.

The second results correspond to the integrated MPC ap-
proach. The number of time slots is K = 50 and the size of the
planning window W is varied between 1 and 10. To calculate
the solution over K = 50 time slots, the MPC approach uses
a total of K +W − 1 demand values. So with W = 10, the
length of the required demand sequence is 50 + 10− 1 = 59.
We consider six scenarios for generation of demand sequences.
There are three cases for the range of demand values, where
the range for the next demand Dk+1 is randomly chosen
from {1, ..., 24}, {max(Dk − 5, 1), ...,min(24, Dk + 5)},

{max(Dk − 2, 1), ...,min(Dk + 2, 24)}, respectively, and p
is the probability of changing the demand for the next time
slot. We assume that we have a noisy version of demands
coming from demand predictions. The value of noise for the
time slot s + k − 1, k = 2, ...W, is randomly chosen from
the interval [−η× k, η× k], where η is the basic noise value.
More details are provided in [6]. We consider three cases of
η = 0, η = 1, η = 3, where η = 0 corresponds to the actual
values without noise.

The results for w = 1000 are shown in Table II. The results
for η = 0, show that for smaller window sizes (in particular
W = 1), the performance is poor for all scenarios, with good
performance achieved when W = 4. In general, the long term
and short term solutions may be different. It can be inferred
that as long as the window size is not too short, the MPC
approach is beneficial as is shown for the case of W = 3 or
W = 4.

TABLE II: Performance of the Integrated MPC Approach with
DCVS

Case 1 with p = 0.2
η=0 η=1 η=3

W avg wrc avg wrc avg wrc
1 1.27 1.60 1.27 1.60 1.27 1.60
3 1.00 1.02 1.01 1.02 1.02 1.07
4 1.00 1.01 1.01 1.02 1.03 1.07
5 1.00 1.01 1.01 1.03 1.04 1.11
10 1.00 1.01 1.01 1.03 1.04 1.11

Case 1 with p = 0.8
1 1.10 1.19 1.10 1.19 1.10 1.19
3 1.04 1.07 1.05 1.09 1.08 1.14
4 1.02 1.04 1.04 1.06 1.06 1.09
5 1.02 1.03 1.03 1.06 1.05 1.08
10 1.02 1.03 1.03 1.04 1.05 1.08

Case 2 with p = 0.2
1 1.51 2.45 1.51 2.45 1.51 2.45
3 1.01 1.02 1.01 1.02 1.02 1.05
4 1.00 1.01 1.01 1.02 1.02 1.11
5 1.00 1.01 1.01 1.03 1.03 1.12
10 1.00 1.01 1.01 1.04 1.04 1.26

Case 2 with p = 0.8
1 1.25 1.69 1.25 1.69 1.25 1.69
3 1.02 1.04 1.03 1.06 1.05 1.09
4 1.02 1.03 1.03 1.04 1.04 1.07
5 1.02 1.04 1.03 1.05 1.04 1.08
10 1.02 1.04 1.03 1.05 1.04 1.07

Case 3 with p = 0.2
1 1.41 1.98 1.41 1.98 1.41 1.98
3 1.00 1.01 1.01 1.02 1.01 1.04
4 1.00 1.01 1.01 1.03 1.02 1.07
5 1.00 1.01 1.01 1.02 1.02 1.08
10 1.00 1.01 1.01 1.02 1.03 1.12

Case 3 with p = 0.8
1 1.31 1.52 1.31 1.52 1.31 1.52
3 1.00 1.02 1.03 1.06 1.04 1.08
4 1.01 1.03 1.03 1.06 1.04 1.08
5 1.01 1.03 1.02 1.05 1.04 1.09
10 1.01 1.03 1.03 1.05 1.04 1.06



REFERENCES

[1] N. EI-Sayed, I. A. Stefanovici, G. Amvrosiadis, and A. A. Hwang,
“Temperature Management in Data Centers: Why Some (Might) Like
It Hot,” SIGMETRICS ’12: Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, pp. 163-174, Jun. 2012.

[2] Z. Xiong, M. Zhao, Z. Yuan, J. Xu, and L. Cai, “Energy-saving
Optimization of Application Server Clusters Based on Mixed Integer
Linear Programming,” in Journal of Parallel and Distributed Computing,
vol. 171, pp. 111-129, Jan. 2023.

[3] A. D. Carnerero, D. R. Ramirez, T. Alamo and D. Limon, ”Probabilisti-
cally Certified Management of Data Centers Using Predictive Control,”
in IEEE Transactions on Automation Science and Engineering, vol. 19,
no. 4, pp. 2849-2861, Oct. 2022.

[4] S. Mirhoseininejad, G. Badawy, and D. G. Down, “A Data-driven, Multi-
set Point Model Predictive Thermal Control System for Data Centers,”
in Journal of Networks and Systems Management, vol. 29, no. 7, 2021.

[5] S. Rostami, D. G. Down, and G. Karakostas, “Linearized Data Center
Workload and Cooling Management,” arXiv:2304.04731 [eess.SY].

[6]
[7] S. MirhoseiniNejad, G. Badawy, and D. G. Down, “EAWA: Energy-

aware Workload Assignment in Data Centers,” 2018 International
Conference on High Performance Computing & Simulation (HPCS),
Orleans, France, 2018, pp. 260–267.

[8] R. Gupta, S. Asgari, H. Moazamigoodarzi, D. G. Down, and I. K. Puri,
“Energy, Exergy and Computing Efficiency Based Data Center Workload
and Cooling Management,” in Applied Energy, vol. 299, 117050, Oct.
2021.


	Introduction
	System Model
	Approximation Algorithm
	MPC Approach
	Evaluation
	References

