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Abstract. It is well known that the selfish behavior of users in a network
can be regulated through the imposition of the so-called optimal taxes on
the network edges. Any traffic equilibrium reached by the selfish users
who are conscious of both the travel latencies and the taxes will minimize
the social cost, i.e., will minimize the total latency.
Optimal taxes incur desirable behavior from the society point of view
but they cause disutility to the network users since the users’ total cost
is in general increased [4]. Excessive disutility due to taxation may be
undesirable from the societal perspective as well. In this work we examine
the efficiency of taxation as a mechanism for achieving the desired goal
of minimizing the social cost. We show that for large classes of latency
functions the total disutility due to taxation that is caused to the users
and/or the system is bounded with respect to the social optimum. In
addition, we show that if the social cost takes into account both the
total latency and the total taxation in the network, the coordination
ratio for certain latency functions is better than the coordination ratio
when taxation is not used.

1 Introduction

In the selfish routing setting, we are given a directed network G = (V,E) and a set
of k classes of users (commodities), each with its own origin and destination, and
with a fixed total demand (traffic) rate per class di > 0, i = 1, . . . , k. Individual
users are thought as carrying each an infinitesimal amount of a commodity. We
are also given a nonnegative latency function lP describing the delay experienced
by users wishing to travel on the path P as a function of the total flow through
the edges of the path. In this work we assume that the additive model holds,
i.e., for every edge e there is a latency function le(fe) that describes the latency
on this edge due to the flow fe that crosses it. Then the latency for a path is
defined as lP (f) :=

∑
e∈P le(fe). Each user tries to selfishly route his flow so

that his path cost is minimized. A traffic equilibrium is an assignment of traffic
to paths so that no user can unilaterally switch her flow to a path of smaller
cost. Wardrop’s principle [16] for selfish routing postulates that
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at equilibrium, for each origin-destination pair, the travel costs on all
the routes actually used are equal, or less than the travel costs on all
nonused routes.

A widely used measure of the network performance is the social cost (or total
latency), defined as

∑
path P fP lP (f) =

∑
e∈E fele(fe) for a flow f that routes

fP units of traffic through path P . Although it must obey Wardrop’s principle
at equilibrium, the unregulated choice of paths by individual users may incur
a social cost which in general can be higher than the social optimum. In fact
the latency of an equilibrium can be arbitrarily larger than the social optimum
[14]. A classic way of dealing with this problem is the introduction of taxation
on the edges of the network, so that the users’ path cost has both a travel time
and a budgetary component. Without taxation, users experience only their own
traffic delay as their cost. With taxation users are also charged for the right to
use a path. This technique has been studied by the traffic community for a long
time (cf. [5] and the references therein), especially in the context of marginal
costs (see, for example, [2],[8],[15]). Each selfish user of class i using path P will
experience the following path cost:

path cost(P ) := latency(P ) + a(i) · taxation(P ).

The taxation(P ) is the sum of taxes along the edges of the path. The factor
a(i) > 0, denotes the sensitivity of user class i to the taxes. In the homogeneous
case all user classes have the same sensitivity to the taxation (i.e. a(i) = 1, for
all i), while in the heterogeneous case a(i) can take different positive values for
different classes. Through edge taxation, we would like to force all equilibria on
the network to induce flow that minimizes the social cost

∑
e∈E fele(fe). We refer

to a set of edge taxes that achieves this as optimal taxes. In the homogeneous
case, marginal costs have been shown (cf. [2],[8],[15]) to be optimal taxes. In
the heterogeneous case, the existence and calculation of such optimal taxes were
shown for the single source-destination pair case by Cole et a. [5], and were later
extended to the multicommodity setting in [9, 11].

Designing optimal taxes is a classic instance of mechanism design, a central
topic in game theory (see, e.g., [13]). A set of outcomes is fixed (here achieving
the social optimum) and users are paid or penalized, (here they pay taxes) in
order to achieve the desired outcome in equilibrium. One can actually see the
taxation cost in two different contexts. One is the context already discussed,
which is as monetary cost. The other is to see the tax for every edge as part of
the edge latency function itself. Then, instead of taxation, we can speak about
artificial delays introduced possibly at the entrance of each edge, in order to
minimize the total amount of time users actually spend on the edges themselves.
For example, this is the technique used at some highway exits, where traffic
lights have been installed in order to better control traffic. Whatever the context
though, taxation increases in general the user cost, as was shown in [4] for the
case of marginal cost taxes. The natural question that arises is whether taxes are
an efficient mechanism for achieving the desired result. Is the additional disutility
caused through taxation proportionate to the desired goal, i.e., a routing that



minimizes the total latency? In this paper we tackle this problem by comparing
the social cost of the traffic equilibria when taxation is used against (i) the social
optimum without taxation and (ii) the social optimum when taxation is taken
into account.

In Section 4 we show that in the homogeneous case the ratio of social cost at
equilibrium with taxation to the social optimum without taxation is not much
bigger than the worst case ratio without any taxation for many important fami-
lies of latency functions, like linear or low-degree polynomial ones. In particular
for strictly increasing linear latency functions we show that, if b is the vector of
optimal edge taxes (in this case, the marginal cost taxes),∑

e f∗e (le(f∗e ) + be)∑
e f̂ele(f̂e)

≤ 2

for any equilibrium flow f∗ and flow f̂ that achieves the social optimum. This
bound is tight, and is not far from the 4/3 upper bound on the coordination
ratio in the case without taxes, shown by Roughgarden and Tardos [14]. The
coordination ratio ρ was defined by Koutsoupias and Papadimitriou in [12] as
follows

ρ := sup
f∗

∑
e f∗e le(f∗e )∑
e f̂ele(f̂e)

for the worst case (in terms of social cost) equilibrium f∗, and f̂ as before.
Hence we show that with a small increase in network inefficiency, we achieve, at
equilibrium, a flow pattern that minimizes the total latency of the users. Note
that, in principle, the tax be on an edge e could be very big compared to the
latency part le() of the edge cost function. Hence it is rather surprising that
taxation does not drive the social cost further than a small constant factor away
from the social (without taxation) optimum.

This approach in bounding the inefficiency of taxation as a mechanism to
achieve minimum social cost is influenced by the notion of coordination mecha-
nisms. This concept was recently introduced by Christodoulou, Koutsoupias and
Nanavati [3]. Informally speaking a coordination mechanism is a cost function
experienced by the users, chosen from a family of possible cost functions called a
coordination model. The measure of the efficiency of a coordination mechanism
is the supremum over all possible demand sets of the ratio of the social cost of
the worst-case equilibrium to the social optimum achieved with the original cost
function. See [3] for the precise mathematical definitions. Note that in our work
the demands are fixed.

Proving that taxation incurs a small increase to the cost of an equilibrium
compared to the social optimum without taxation is a satisfying result. However
it is possible that once taxes are imposed by some central authority they are
considered to be part of the social cost. In other words taxation may incur
disutility to society as a whole. To address this issue, we compare the worst-case
cost with taxation of an equilibrium against the social optimum with taxation.
In other words we consider the coordination ration in the standard sense [12] of



the game with taxes. In Section 3 we show that, for certain families of strictly
increasing and continuous latency functions (like linear or polynomial ones),
the coordination ratio of the network actually decreases when optimal taxes are
introduced. In particular for the linear latency functions case, we show that∑

e f∗e (le(f∗e ) + be)∑
e f̄e(le(f̄e) + be)

≤ 5
4

for any equilibrium flow f∗ and social optimum f̄ when taxes b are used in
both cases. This is significantly better than the 4/3 bound of [14] for general
linear functions. The gap between 4/3 and 5/4 quantifies the beneficial effect of
taxation on the behavior of the selfish users, specifically the reduction in their
resistance to coordination. Our bound holds for heterogeneous users as well, and
its proof is based on the definition of the parameter β(L) for a family of functions
L by Correa, Schulz and Stier Moses [6].

The two results in combination show that imposing the optimal taxes on a
selfish routing game not only yields a game with better coordination ratio, but
also the added disutility to the users is bounded with respect to the original
system optimum. In addition we emphasize that our two approaches together
provide a stronger guarantee on the worst-case cost of an equilibrium with tax-
ation than each one of them taken separately. For a given tax vector b, let f̄ be
the social optimum with taxation and f̂ be the social optimum without taxa-
tion. There does not seem to be any a priori information about which of the two
quantities

5
4

∑
e

f̄e(le(f̄e) + be), 2
∑

e

f̂ele(f̂e)

is smaller.

2 The model

Let G = (V,E) be a directed network (possibly with parallel edges but with no
self-loops), and a set of users, each with an infinitesimal amount of traffic (flow)
to be routed from an origin node to a destination node of G. Moreover, each user
α has a positive tax-sensitivity factor a(α) > 0. We will assume that the tax-
sensitivity factors for all users come from a finite set of possible positive values.
We can bunch together into a single user class all the users with the same origin-
destination pair and with the same tax-sensitivity factor; let k be the number
of different such classes. We denote by di,Pi, a(i) the total flow of class i, the
flow paths that can be used by class i, and the tax-sensitivity of class i, for all
i = 1, . . . , k respectively. We will also use the term ‘commodity i’ for class i. Set
P .= ∪i=1,...,kPi. Each edge e ∈ E is assigned a latency function le(fe) which
gives the latency experienced by any user that uses e due to congestion caused by
the total flow fe that passes through e. In other words, as in [5], we assume the
additive model in which for any path P ∈ P the latency is lP (f) =

∑
e∈P le(fe),

where fe =
∑

e3P fP and fP is the flow through path P . If every edge is assigned



a per-unit-of-flow tax βe ≥ 0, a selfish user in class i that uses a path P ∈ Pi

experiences total cost of ∑
e∈P

le(fe) + a(i)
∑
e∈P

βe

hence the name ‘tax-sensitivity’ for the a(i)’s: they quantify the importance each
user assigns to the taxation of a path.

Let f̂ be a flow that satisfies the users’ demands and minimizes the social
cost

∑
e∈E fele(fe) =

∑
i

∑
P∈Pi

fP lP (f), i.e., f̂ is a solution of the following
mathematical program:

min
∑
e∈E

fele(fe) s.t. (MP)∑
P∈Pi

fP = di ∀i

fe =
∑

P∈P:e∈P

fP ∀e ∈ E

fP ≥ 0 ∀P

Note that, although in certain cases (e.g. when the latency functions le are
convex) the flow f̂ can be computed efficiently, for more general latency functions
it may be extremely difficult to compute f̂ (see Section 4 in [5]). We will assume
that such an f̂ exists and that it induces finite latency on every edge.

A function g(x) is positive if g(x) > 0 when x > 0. We assume that the
functions le are strictly increasing, i.e., x > y ≥ 0 implies le(x) > le(y), and
that le(0) ≥ 0. This implies that le(fe) > 0 when fe > 0, i.e., the function le is
positive. Similar assumptions on monotonicity are made in [5].

Let
K := {f : 0 ≤ fP ,∀P ∧

∑
P∈Pi

fP = di,∀i}

be the set of all flows that satisfy the users’ demands.

Definition 1. A flow f is called feasible iff f ∈ K.

A traffic (or Wardrop) equilibrium is a feasible flow f∗ ∈ K such that

〈T (f∗), f − f∗〉 ≥ 0, ∀f ∈ K. (1)

where 〈·, ·〉 denotes the inner product, and TP (f) is the function that gives the
generalized cost of a user that uses path P when the network flow is f .

3 Improving the coordination ratio

By extending the results of [5] from the single source-sink to the multicommodity
setting in [11], we have shown that there is a set of per-unit taxes b which forces
the users to induce on the edges the same edge flow as f̂ . This result was also
independently obtained by Fleischer, Jain and Mahdian [9].



Theorem 1. (Theorem 1 in [11]) Consider the selfish routing game with the
latency function seen by the users in class i being

TP (f) :=
∑
e∈E

le(fe) + a(i)
∑
e∈P

be, ∀i, ∀P ∈ Pi.

If for every edge e ∈ E le is a strictly increasing function with le(0) ≥ 0, then
there is a vector of per-unit taxes b ∈ R|E|

+ such that, if f∗ is a traffic equilib-
rium for this game, f∗e = f̂e, ∀e ∈ E,. Therefore f∗ minimizes the social cost∑

e∈E fele(fe).

We also can compute this b in polynomial time when f̂ is given to us.
Correa et al. [6, 7] define the following quantity β for a continuous nonde-

creasing latency function l : R+ → R+ and every value u ≥ 0:

β(u, l) :=
1

ul(u)
max
x≥0

{x(l(u)− l(x))}, (2)

where by convention 0/0 = 0. In addition, they define β(u) := supu≥0 β(u, l)
and β(L) := supl∈L β(l), where L is a family of latency functions. Note that
β(l) ≥ β(u, l), ∀u, l, and β(L) ≥ β(l), ∀l ∈ L. Also 0 ≤ β(L) < 1.

Define the cost C(f) of flow f to be C(f) :=
∑

P fP TP (f), and assume the
additive model for l, i.e., lP (f) :=

∑
e∈P le(fe), where le is a function that gives

the latency for edge e when flow fe passes through it.

Theorem 2. Let f∗ be any traffic equilibrium for the game of Theorem 1, and
f̄ be a flow that minimizes C(f). Then, for latency functions le that belong to a
family L

C(f∗)
C(f̄)

≤ 1 + β(L).

Proof. First we note that C(f∗) = 〈T (f∗), f∗〉. Also, because of Theorem 1 we
have that f∗e = f̂e. Then, for any feasible flow f̄ ∈ K we have

〈T (f∗), f̄〉 =
∑

i

∑
P∈Pi

f̄P

(
lP (f∗) + a(i)

∑
e∈P

be

)
=
∑
e∈E

f̄ele(f∗e ) +
∑

i

∑
P∈Pi

f̄P a(i)
∑
e∈P

be

=
∑
e∈E

f̄ele(f̂e) +
∑

i

∑
P∈Pi

f̄P a(i)
∑
e∈P

be

(3)

where the second equality is due to the additive model.
We also have by definition that

β(f̂e, le) :=
1

f̂ele(f̂e)
max
x≥0

{x(le(f̂e)− le(x))},



from which we get for x := f̄e that

β(f̂e, le)f̂ele(f̂e) ≥ f̄ele(f̂e)− f̄ele(f̄e)

or, by the definition of β(L),

β(L)f̂ele(f̂e) ≥ f̄ele(f̂e)− f̄ele(f̄e). (4)

By the definition of f̂ we know that
∑

e∈E f̂ele(f̂e) ≤
∑

e∈E f̄ele(f̄e), therefore (4)
implies that

(1 + β(L)) ·
∑
e∈E

f̄ele(f̄e) ≥
∑
e∈E

f̄ele(f̂e),

and this, in turn, together with (3) implies that

〈T (f∗), f̄〉 ≤ (1 + β(L)) ·
∑
e∈E

f̄ele(f̄e) +
∑

i

∑
P∈Pi

f̄P a(i)
∑
e∈P

be

≤ (1 + β(L)) ·
∑

i

∑
P∈Pi

f̄P

(
lP (f̄) + a(i)

∑
e∈P

be

)
= (1 + β(L)) · C(f̄).

(5)

Since f∗ is an equilibrium, (1) implies that

〈T (f∗), f〉 ≥ 〈T (f∗), f∗〉, ∀f ∈ K,

which, together with (5) and for f := f̄ , implies that

(1 + β(L)) · C(f̄) ≥ C(f∗).

Correa et al. [6] give upper bounds of β(L) for some function families L. We
repeat here these bounds (Corollaries 4.3, 4.4 in [6]):

Corollary 1. [6] If the set L of continuous and nondecreasing latency functions
is contained in the set {l(·) : l(cx) ≥ cl(x) for c ∈ [0, 1]}, then β(L) ≤ 1/4.

Note that Corollary 1 holds for the family of nondecreasing linear functions,
hence the worst case bound of Theorem 2 for linear functions is 5/4 which is
better than the tight 4/3 bound [14] achieved without the use of the b’s from
Theorem 1.

Corollary 2. [6] If the set L of continuous and nondecreasing latency functions
is contained in the set {l(·) : l(cx) ≥ cnl(x) for c ∈ [0, 1]} for some positive
number n, then

β(L) ≤ n

(n + 1)1+1/n
.

Therefore for n = 2, 3 and 4 the upper bound becomes 1.385, 1.472 and 1.535
respectively, as opposed to 1.626, 1.896 and 2.151 respectively when b is not
used [6]. Also note that as n increases, the bound goes to 2.



4 Comparison to the original latencies

In general, the values of b in Theorem 1 can be very big. It may even be the case
that the part of the cost C(f) due to the initial latencies

∑
e fele(fe) is negligible

compared to the part due to b, which is
∑

i

∑
P a(i)fP

∑
e∈P be. Therefore the

improvement of the coordination ratio may come at a prohibitive increase to the
overall cost. One would like to bound b so that the new overall cost is bounded
by a function of the original optimal total latency

∑
e f̂ele(f̂e).

Unfortunately, we do not know how to bound b for the general l(·) of Theo-
rem 1. But we can use already known results in the case of homogeneous users,
i.e., a(i) = 1, ∀i, to bound the ratio of the worst equilibrium cost when b is used
to the original optimal total cost.

It is well known ([2],[8],[15]; see also [4], especially Proposition 3.1) that, for
homogeneous networks with differentiable latency functions le, one can use the
marginal costs3 f̂el

′
e(f̂e) as be in Theorem 1 to achieve the following classical

result:

Theorem 3. If functions le are differentiable, then f̂ is an equilibrium for the
selfish routing game with

TP (f) :=
∑
e∈P

(le(fe) + f̂el
′
e(f̂e)).

Moreover, if we assume that le are strictly increasing (as in Theorem 1), then
any equilibrium f∗ incurs the same edge flow as f̂ , i.e., f∗e = f̂e, ∀e (Theorem
6.2 in [1]). Let COPT :=

∑
e∈E f̂ele(f̂e).

Theorem 4. If le(fe) = aefe + βe with ae > 0, be ≥ 0 for all e ∈ E, and f∗ is
an equilibrium for the selfish routing game with taxes be := aef̂e, then

C(f∗)
COPT

≤ 2.

More generally, if the le’s are polynomials of degree d with positive coefficients,
then

C(f∗)
COPT

≤ d + 1.

Proof. For the case of linear latency functions, note that these functions are
differentiable, therefore Theorem 3 implies that f̂ is an equilibrium. Since they
are strictly increasing as well, we know that f∗e = f̂e, ∀e, for any equilibrium
f∗. Hence

C(f∗) :=
∑
P

f∗P TP (f∗) =
∑

e

f∗e (aef
∗
e + βe + aef̂e)

=
∑

e

f̂e(2aef̂e + βe)

≤ 2 · COPT

3 l′e(·) is the derivative of le(·).



The same argument shows the upper bound for the case of degree d polynomials.

Note that the bound above is tight in the case of polynomials with all the
coefficients, except for the one of the highest degree factor, being 0.

Theorem 5. If the le functions are strictly increasing and continuously differ-
entiable with a convex derivative, and f∗ is an equilibrium for the selfish routing
game with taxes be := aef̂e, then

1. If le(·) ∈ {l(·) : l(cx) ≥ cl(x) for c ∈ [0, 1]}, then

C(f∗)
COPT

≤ 3,

2. If le(·) ∈ {l(·) : l(cx) ≥ cnl(x) for c ∈ [0, 1]}, then

C(f∗)
COPT

≤ 2n + 1.

Proof. Theorem 3 implies that f̂ is an equilibrium. Since the le’s are strictly
increasing as well, we know that f∗e = f̂e, ∀e, for any equilibrium f∗. Observe
that the edges e for which f̂e = 0 do not contribute to C(f∗) therefore we ingore
them in the ensuing calculations. It is known that if the l′e functions are convex
and continuous in (γ, δ), then

l′e(x) ≤ 1
2h

∫ x+h

x−h

l′e(t)dt (6)

for γ ≤ x− h < x < x + h ≤ δ (fact 125, p. 98 of [10]). For x := fe/2, h := fe/2,
inequality (6) becomes

fel
′
e(

fe

2
) ≤

∫ fe

0

l′e(t)dt. (7)

Under the assumptions of Part 1 of the theorem, (7) gives

fel
′
e(fe) ≤ 2le(fe)

which, for fe := f̂e, implies together with an argument similar to the proof of
Theorem 4 that

C(f∗)∑
e f̂ele(f̂e)

≤ 3

for any equilibrium flow f∗.
Under the assumptions of Part 2 of the theorem, (7) implies that

fel
′
e(fe) ≤ 2nle(fe)

which, in turn, implies that in this case

C(f∗)∑
e f̂ele(f̂e)

≤ 2n + 1

for any equilibrium flow f∗.
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