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Abstract

The construction of pseudo-random generators (PRGs) has been based on strong assumptions like the
existence of one-way functions or exponential lower bounds for the circuit complexity of Boolean func-
tions. Given our current lack of satisfactory progress towards proving these assumptions, we study
the implications of constructing PRGs for weaker models of computation to the derandomization of
general classes like BPP. More specifically, we show how PRGs that fool monotone circuits could
lead to derandomization for general complexity classes, and how the Nisan-Wigderson construction
could use hardness results for monotone circuits to produce pseudo-random strings.
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1 Introduction

One of the central issues in computational complexity is the understanding of the the additional (if
any) power randomization can offer to solving problems efficiently. The investigation of the exact
relations between randomized computational classes like BPP and non-randomized ones (like P, NP,
EXP) has been the subject of intense research for the last two decades. One of the major steps
towards a better understanding of randomness in computation was the realization [15] that hardness
results can lead to the construction of good pseudo-random generators. This observation led to
the construction of pseudo-random generators based on the (assumed) intractability of the discrete
logarithm function [3] or the existence of one-way functions [18], [7]. The seminal paper by Nisan
and Wigderson [11] was the first to connect the existence of predicates with high circuit complexity
to the existence of good pseudo-random generators. The hardness assumption of [11] was still very
strong (although not as strong as previous assumptions, e.g., the existence of one-way functions):
the predicate used by the generator had to be extremely hard on average. A series of results based
on hardness amplification techniques like Yao’s XOR lemma [18] or error-correcting codes [16] can
be used in order to relax this requirement for an extremely hard function to constant hardness [9],
to mildly hard [5], to worst-case hard functions [2].

Unfortunately, this spectacular progress towards weaker hardness assumptions for generators of a
given power has not brought us close to resolving the still open issue of the power of randomness in
computation. This is due to the bleak current state-of-the-art in lower bounds for general circuits. We
are not even close to proving any of the hardness assumptions above, and if the past is an indication
of the future, we shouldn’t expect their proof any time soon. Motivated by these difficulties, we
ask whether looking for explicit hard functions in the general circuit model in order to construct
pseudo-random generators is really an overkill. Indeed, let’s assume that we can show the following
‘theorem’: if there is a (general) circuit of a certain size that can distinguish a truly random string
to a string produced by a generator that uses only a random seed with some probability, then
there is a construction in a restricted model of computation (e.g., a monotone circuit) of a certain
size that can distinguish the two strings with a somewhat smaller probability. The contrapositive
of the above ‘theorem’ would imply that if we can construct a generator that fools all restricted
constructions (e.g., monotone circuits) of a certain size, then this generator would fool all general
circuits of a certain size with a somewhat smaller probability. We apply this general framework
to the restricted model of monotone circuits (in fact circuits that compute slice functions). There
has been great progress in proving strong unconditional lower bounds for monotone circuits, for
example [14], [10], [13], [4]. Razborov’s approximation technique has even been extended to general
circuits with only a few NOT gates [1]. In Section 2 we formalize the intuition above as Theorem 1
and give its (almost trivial) proof. Then we study the Nisan-Wigderson construction as a generator
for monotone circuits. The hardness requirements of this generator are much stronger than just
worst-case hardness, and there are no strong enough hardness amplification techniques for monotone
circuits yet (indeed, it may be the case that no such techniques exist). Hence the generator still isn’t
unconditionally pseudo-random. Two facts though allow us to be optimistic about this approach:
The first is the tremendous success of proving lower bounds for monotone circuits. The second fact is
that the Nisan-Wigderson construction was built with fooling general circuits in mind. Once we set
a more modest goal (fooling monotone circuits only, for example), other constructions may do better
in terms of hardness requirements. We discuss these issues together with other possible directions in
what we consider to be the most important part of this work, Section 4.

2 Monotone circuit tests from general circuit tests
In what follows, C and Cjs are the classes of (general) circuits and monotone circuits respectively.

Definition 1 A function G : {0,1}¢ — {0,1}™ is an (s,¢) pseudo-random generator if no circuit of
size s can distinguish G from the uniform distribution U, with advantage greater than €. That is, for



every circuit C of size at most s,

’Pr [C(Un) = 1] — PI‘[C(G(Ud)) = 1]‘ <e

The circuit C' in the definition above can be thought as a test that the alleged PRG has to pass in

order to be pseudo-random.

Lemma 1 If there is circuit C € C of size s such that
’Prye{o,l}"[c(y) = 1] - Prxe{o,l}d[C(G(l")) = 1]’ > €

then there is a monotone circuit Cay € Cas of size |Car| = O(s + nlog® n) such that

Pryctone [Castw) = 1] = ProcomalCun(Gle) = 1] > 30555

Proof: W.l.o.g. we will assume that
Prycronyn [Cy) = 1] = Prociorye[C(G(2) = 1] > &

Let y;, Gi(x) be the i** bit of y, G(x). Then

Pryeqo32[Cly) = 1] ~ Proconya[C@a) =1] =3 (Pry[z yi = K|Pr,[Cly) = 11>y = k]~
k=0 i 7

—Pr,[ 3 Gi2) = k|Pr.[c@ —1|ZG k]>
Therefore there is 0 < kg < n such that
Pr,[ > v = kaPr, [0() =1 Zyi ko]

(1)
—Prm[ZGi( ) = ko] Pr.[C(G —1|ZG _k0]>n—6|—1

Let Cy; be the following slice function of monotone circuit complexity O(s 4 nlog®n) (see [17]):

0, if Zz yi < ko
Cur(y) = L if S0 > ko
Then we have
PryE{O 1} [C]W = ] - Prme{o 1} [C]u )) = l] =
_ Pry[Zyz < ko] Pry[Cur(y) = 1 Zyz < ko] = Pr,[ 3" Gia) < ko Pr.[Cn(G(2)) = 1] ZG

+Pr, [Zyz>k0] J[Cu —1|Zyz>k0] Prm[ZGi( ) > ko| Pr.[Car(G( _1|ZG
+Pry[zyﬁk0] J[Cr —1|Zysz0] PrI[ZGZ—(t ) = ko | Pr. [Car (G( —1|ZG

From the definition of Cj; we know that

Pr, [Cu(y —1|Zyz<k0] = Pr,[Cn(G(2)) =13 Gilz) < ko) =0

Pr,[Cu(y) = 1] Zy >k = Pr.[Cu(G(z) =1 ZGi(x) > ko) =1

< ko]+
> ko]-i-

- ko]



hence

Pryc o130 [Car(y) = 1] = Pracionye [Cur(G() = 1] = Pry[Zyi > ko — Prx[ZGi(:c) > ko |+
P [ kP o) =1 = ] - e[ ¥ 6e) = kPGt = 1 >
Let
A = Pry[Zyi > ko) fPrgc[ZGi(x) > ko
B Pl = P e =1 =) -
- Prx[ZG,-( ) = ko|Pr, [Car (G( _1|ZG — ko
then the threshold function

Tko+1(y) _{ ]_7 if %yz > ]CE

If Al > 555

has the desired properties, and the lemma holds. So assume that |[A]| <

< s
know that B > +1’ therefore

Also, from (1) we

g
Prycqone[On(y) =1] = Prectoa[Cn(G@) =1] =4+ B> o=

The proof is the same in case

Proc(013¢[C(G(@)) = 1] = Prycionyn[Cly) = 1] > &

From the lemma above we get the following theorem:

Theorem 1 There is a constant v > 0 such that if

Prycons [On) = 1] = Procon [ow(G() =1]| < 5=

for all monotone circuits Cyy with size |Cyr| < vs +yn?logn for some s > 0, then
’Prye{o,l}"[C@) = 1] - Prme{0,1}d[C(G($)) = 1H <e

for all circuits C € C of size |C| < s.

Notice that nowhere in the above did we demand that G be a special kind of ciruit (e.g. monotone).
Also notice that we can strengthen Lemma 1 and Theorem 1 by replacing the monotone circuit Cpy
by a monotone slice function Cj;. Therefore in order to construct PRG’s for general circuits, it is
enough to construct PRG’s for monotone (slice) circuits.

3 The Nisan-Wigderson generator for monotone circuits

As an illustrative example, we demonstrate how one can use the Nisan-Wigderson PRG for monotone
circuits. We cannot stretch enough the fact that this PRG was constructed in order to fool general
Boolean circuits, and therefore it may very well not be the appropriate way to go. Nevertheless, at
this point this is one of the most successful constructions (in terms of derandomization power) and a



very good example for pointing out some of the different issues one may encounter during the design
of a PRG for monotone circuits. Again, we emphasize that in what follows we make assumptions
some of which may possibly be proven false, but we make them nevertheless, since they help us
in illustrating our ideas or they can be transformed to other assumptions which are not so easily
proven/disproved.

The main difficulty for applying the Nisan-Wigderson(NW) construction as is, is our inability
to use the standard conversion of a circuit that is a good distinguisher between a truly random
sequence and the output of the NW generator, to a circuit that approximates a hard function. This
standard conversion uses the XOR of the output of such a circuit with a random bit, to produce the
approximator, but in a monotone setting we cannot simulate the XOR. Therefore we need to modify
the hardness assumption used by the NW generator:

Assumption 1 There is a monotone predicate P : {0,1}' — {0,1} such that no monotone circuit
of size s can compute P or P correctly on more than a fraction %—i— m of the 2! inputs (n is the

number of (pseudo)-random bits we need).!

This assumption differs from the usual hardness assumptions associated with the NW generator in
two major points: it is an assumption about the monotone complexity of a (monotone) predicate
P, and it is also an assumption on the monotone complexity of the non-monotone complement of
P. Also notice that the hardness assumption is stronger as far as the fraction of correct answers
is concerned: it is % + m instead of % + =. The need for these modifications will become
apparent when we try to prove that the NW construction is indeed a PRG. First we describe the
Nisan-Wigderson construction.

Initially, this construction produces a collection of sets with small intersections (called a design):

Lemma 2 [11] For every l,n € N there exists a family of sets Sy,...,S, C{1,...,d} such that

1. d=0(5)
2. S| =1, Vi

3. 18;NS;| <logn, Vi#j

Moreover, such a family can be computed by a deterministic TM in time poly(n,2?). In case | =
Clogn for some constant C > 0, there exists such a design with d = O(C?logn) that can be computed
by a deterministic TM in time poly(n).

The generator in [11] uses the fact that if we have a uniformly distributed string « of length d, we
can produce a family of substrings xg, with the above properties that will behave as independent
when they are used as inputs to a hard predicate. The NW construction will output the string

NW/[ (z) = P(zs,)P(zs,) - -- P(zs,).
Following the approach of [11] we show that under our Assumption 1 the NW construction is a PRG.

Theorem 2 Under Assumption 1 the NW construction is a (vs — O(n?logn),e) PRG for some
constant v > 0.

Proof: The proof of the theorem is virtually the same as in [11], but we repeat it here in order to
illustrate new directions and open problems that arise from the use of a weaker model (monotone
circuits).

We will assume that the NW construction is not a PRG with the required size-error parameters
and will arrive at a contradiction. Since we assume that the NW construction is not an (ys —

! As stated, this assumption refers to monotone functions that are unbiased over all inputs. In fact, we can relax it by
just requiring them to be unbiased over a particular distribution on all inputs that can be easily sampled. For example,
we may talk about Razborov’s CLIQUE function and the inputs to it are picked from only the ”good” and ”bad” inputs
of Razborov’s proof with equal probability.



O(n?logn),e) PRG (for some constant v > 0 to be picked later), there is a (possibly non-monotone)
circuit C' of size vs — O(n?logn) such that

‘Prye{(],l}" [C(y) = 1] - Prze{o,l}d [C’(NVVan(x)) = 1” > €

From Lemma 1 and after an appropriate choice of v above, we get that there is a monotone circuit
Cys of size s — O(n?logn) such that

IPrycto [On) = 1] = Pracgone [OuNWE @) =1]| > 5=
We assume that
(2) Pryc o,y [Oar(y) = 1] = Procqoya [ O (NWE, (0)) = 1] > ﬁ

If this is not the case, we complement Cp; and we work with this complemented monotone circuit
(which now is non-monotone). Later we will see that this will not affect our proof. Following closely
previous proofs related to the NW construction, we define the following hybrid distribution on {0, 1}":

Distribution D;: The first ¢ bits are the first ¢ bits of N VVan(m), where z is chosen uniformly
over d-bit strings, and the rest n — 4 bits r;41,7;42,...,7, are chosen uniformly and independently
at random.

Since Dg is U, and D, is NVVli(x), we have that there is an 7 such that

€

Pr[C (D) = 1] = Pr[Cu(Diz1) = 1] > 2n(n + 1)

or if we expand it

Pty [Cat(P(xs,) ... Plas, ) P(xs,)rit1---mn) = 1]—

g
~Pryp o [Cr(P(es,) .. Plas, )ririps...mm) = 1] >

2n(n+1)

(3)

At this point, the proof of the pseudorandomness properties of the NW construction when the
hardness of general circuits is used, utilizes a standard transformation of a distinguisher satisfying
inequality (3) to a predictor [18]. By renaming r; to b we get that

1 €
Prxybyri_'_l’___mn [CM(P(ISI) e P(xsi_l)erl ‘e rn) (&) b = P(.TSZ)] > 5 + m
Using standard averaging arguments, we can fix b,r;41,...,7, as well as the bits of x not in S; while

preserving this prediction probability. Unfortunately, if b is fixed to 1, this transformation doesn’t
work in our case if we had just assumed the hardness of P (and not P as well), because it results in
a non-monotone circuit approximating P (destroying our contradiction argument).

We rename 2 g, to 2z and we notice that the values of P calculated by the NW construction depend
only on |S; NS;| <logn,j # i bits of z. Therefore these values are monotone functions P; of z. So,
depending on the (fixed) value of b, we have that either

Pr.[C4(Pi(2)... Pis(2)) = P(2)] > % . 2n(ng+ .
Prz[ C'ym(Pi(2)...Pi_1(2) = P(z)] > % n m

for some monotone circuit C,. Notice that we will also arrive at this point in the case (2) doesn’t
hold.



Each P; can be computed by a DNF of size O(nlogn), and there are at most n such functions.
If we plug in C}; the monotone circuits for each Pj, then we get a monotone circuit C, of size at
most s — O(n?logn) + O(n?logn) = s (for an appropriate choice of the constant in the first big-O),
and such that either

1 €
Pr.[cl,(z) = P L
r[Ch(2) = P2)] > 5 + on(n + 1)
or
— 1 €
Pr.|C; =P -t —
[Ch(2) =P > 5 + 5o
In either case, this contradicts Assumption 1. O

4 Discussion and open problems

In this section we explore some new directions and open problems suggested by the use of hard
monotone functions for the construction of PRGs for general circuits.

4.1 Hardness assumptions

e The first (obvious) open question is whether there is indeed a monotone predicate P with
the hardness properties of Assumption 1. It seems plausible that if a monotone function is
very hard to approximate, then its non-monotone complement is even harder to approximate
with monotone circuits. Razborov’s approximation technique has been extended to general
circuits with a limited number of NOT gates [1] quite naturally. Hence it is conceivable that
techniques which would prove hardness of approximation for monotone circuits can be extended
to prove hardness of approximation for circuits with, say, only one NOT gate before their output.
Assumption 1 can be reformulated as follows:

Assumption 2 There is a predicate P : {0,1} — {0,1} such that no monotone circuit or
circuit with exactly one NOT gate right before its output of size s can compute P correctly on
more than a fraction % + m of the 2t inputs (n is the number of (pseudo)-random bits we

need).

e The monotonicity of P was necessary so that the circuit we get after plugging in the DNF for
each P; is still monotone. But we can modify Assumption 1 as follows:

Assumption 3 There is a (general) predicate P : {0,1} — {0,1} such that no monotone
circuit of size s can compute P or P correctly on more than a fraction % + m of the 2!
inputs, using as advice the output of oracles for P that have | — logn input bits fized (n is the

number of (pseudo)-random bits we need).

Assumption 3 is a version of strong non-self-reducibility that trades the generalization of the
circuit family for which we need strong lower bounds (monotone with advice instead of just
monotone) for the generalization of the hard predicate used in the NW construction.

How hard is it to design PRGs for monotone circuits? Impagliazzo, Shaltiel and Wigderson [8]
showed that derandomizing BPP using a pseudo-random generator implies that EXP ¢ P/poly. Im-
pagliazzo and Kabanets [6] also show that derandomization of RP or BPP would imply superpoly-
nomial lower bounds for Boolean or arithmetic circuits. Since the assumptions used above imply
the construction of pseudo-random generators, their proof would immediately imply strong circuit
lower bounds. Therefore proving any of our assumptions (provided any of them is true) is as difficult
as proving such lower bounds. Notice though that our assumptions are about a weaker model than
general boolean circuits, and in this model the development of (worst case) lower bounds has been
very successful so far.



4.2 Hardness amplification for monotone predicates

Unfortunately the XOR function is not monotone, therefore Yao’s XOR lemma cannot be applied
directly in order to amplify the hardness of a function in a way useful for Theorem 2. Nevertheless,
there are already some (weak) hardness amplification results for monotone functions. The recent work
by O’Donnell [12] is in fact an amplification that applies to monotone circuits and their complements,
in just the way we need it for Assumption 1. Instead of the XOR of several copies of a function, [12]
uses two monotone functions: first it uses the REC — M AJ — 3; function (I is the depth of a ternary
tree of majority-of-3’s) of several copies of P to go from an (1—1/poly(n))-hard predicate P for general
polynomial-size circuits to a new (1/2+ o(1))-hard predicate for polynomial circuits, and then it uses
the Tribes function of Ben-Or and Linial, to transform the new predicate to a new (1/2+1/n~1/2%¢).
hard predicate for polynomial circuits. The definitions of the REC' — M AJ — 3; and Tribes functions
can be found in [12]. An important property of these functions is that REC — M AJ —3;(P,...,P) =
REC — MAJ —3/(P,...,P) and Tribes(P,...,P) = Tribes(P,..., P), therefore the construction
can use a mild version of Assumption 1 to produce a harder version of this same assumption. The
starting point of this amplification is Impagliazzo’s hard-core set theorem [5], which holds with
respect to any model of computation closed under majority (therefore it also holds for our model of
computation with respect to which we assume hardness of some predicate, namely monotone circuits).
But O’Donnell’s construction analysis seems to be an overkill for our case, since we only need hardness
against monotone circuits of some size. Nevertheless, this amplification method probably doesn’t
achieve the power of Yao’s XOR lemma. The existence of powerful amplification techniques for
monotone predicates remains an interesting open problem.
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