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Abstract. We consider network congestion games in which a finite num-
ber of non-cooperative users select paths. The aim is to mitigate the
inefficiency caused by the selfish users by introducing taxes on the net-
work edges. A tax vector is strongly (weakly)-optimal if all (at least one
of) the equilibria in the resulting game minimize(s) the total latency.
The issue of designing optimal tax vectors for selfish routing games has
been studied extensively in the literature. We study for the first time
taxation for networks with atomic users which have unsplittable traffic
demands and are heterogeneous, i.e., have different sensitivities to taxes.
On the positive side, we show the existence of weakly-optimal taxes for
single-source network games. On the negative side, we show that the
cases of homogeneous and heterogeneous users differ sharply as far as
the existence of strongly-optimal taxes is concerned: there are parallel-
link games with linear latencies and heterogeneous users that do not
admit strongly-optimal taxes.

1 Introduction

We consider atomic network congestion games with unsplittable traffic
demands, where a finite number of non-cooperative users select each a
path from a specified source to a sink in an underlying network. The users
experience a load-dependent latency on their chosen paths. Being selfish,
they want to choose a minimum-latency path. The solution concept we
study is that of a pure Nash equilibrium, where no user has an incentive
to unilaterally switch to a different path. It is well-known that this type
of game always has at least one pure Nash equilibrium [13].
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The users induce a social cost to the system, which in this work we
define as the total latency. Selfish behavior leads typically to suboptimal
social cost at equilibrium. A long series of papers has studied the ineffi-
ciency of Nash equilibria for congestion games as quantified by the price
of anarchy. See the surveys [10, 8] for an introduction to the very rich
literature on the topic.

In order to offset the inefficiency of uncoordinated users, a common
approach is to introduce fixed taxes (or tolls) on the edges of the network.
The users will experience the taxes as part of their individual disutility,
in addition to their latency. The aim is to design an optimal tax vector
steering the selfish users to an equilibrium with desirable characteristics;
in our case the desired target is minimum total latency.

Related Work. In the non-atomic setting, where there is an infinite
number of users and each user controls an infinitesimal amount of traffic
demand, the problem of designing optimal tax vectors has been studied
extensively. A classic result going all the way back to Pigou [12] states
that marginal cost taxes induce the optimal traffic pattern for homoge-
neous users [2]. A significant volume of recent work on optimal taxes for
non-atomic congestion games considers the more intriguing and realis-
tic case of heterogeneous users, which may have different valuations of
time (latency) in terms of money (taxes). Yang and Huang [17] estab-
lished the existence of optimal taxes for non-atomic asymmetric network
congestion games1 with heterogeneous users. Subsequently, their result
was rediscovered by Fleischer, Jain, and Mahdian [5], and Karakostas
and Kolliopoulos [9]. Previously the the single-source special case had
been investigated by Cole, Dodis, and Roughgarden [4]. The existence of
optimal taxes for non-atomic congestion games with heterogeneous users
follows from Linear Programming duality, and thus an optimal tax vector
can be computed efficiently by solving a linear program.

For non-atomic games, under mild assumptions on the latency func-
tions the edge flow at equilibrium is unique. Hence the taxes of [2, 4, 5, 9,
17] induce the optimal solution as the unique edge flow of the equilibria of
the game with taxes. On the other hand, atomic congestion games, even
with splittable traffic, may admit many different Nash equilibria, possi-
bly with different edge flows. Therefore, when considering atomic games,
one has to distinguish between weakly-optimal tax vectors, for which at
least one Nash equilibrium of the game with taxes minimizes the total

1 A network congestion game is symmetric if all users share the same source and sink
and, in the case of atomic games, have the same traffic demand.



latency, and strongly-optimal tax vectors, for which all Nash equilibria of
the game with taxes minimize the total latency.

For atomic congestion games with splittable traffic and heterogeneous
players, Swamy [14] proved that weakly-optimal tax vectors exist and can
be computed efficiently by solving a convex program. As for atomic con-
gestion games with unsplittable traffic, the existence and efficient com-
putation of optimal taxes has been studied only in the restricted setting
of homogeneous users. Caragiannis, Kaklamanis, and Kanellopoulos [3]
considered atomic games with linear latency functions and homogeneous
users, and investigated how much taxes can improve the price of anarchy.
On the negative side, they established that if the users either do not share
the same source and sink or have different traffic demands, then strongly-
optimal taxes may not exist. In particular, Caragiannis et al. presented
a non-symmetric game for which any tax vector induces a Nash equilib-
rium of total latency at least 6/5 times the optimum, and a parallel-link
game with user-specific traffic demands for which any tax vector induces
an equilibrium of total latency at least 9/8 times the optimum. On the
positive side, they presented an efficient construction of strongly-optimal
taxes for parallel-link games with linear latencies and unit-demand users.
Subsequently, Fotakis and Spirakis [7] proved that weakly-optimal taxes
exist and can be computed efficiently for atomic symmetric network con-
gestion games, and that such taxes are strongly-optimal if the network is
series-parallel.

Contribution. Despite the considerable interest in optimal taxes for
non-atomic games with heterogeneous users and for atomic games with
homogeneous users, it is unknown whether weakly- or strongly-optimal
taxes exist for atomic network games with heterogeneous users. The case
of heterogeneous users is substantially different, and more complicated,
than that of homogeneous users, since the game with taxes is a congestion
game with player-specific additive constants [11].

In this work, we study for the first time the existence of optimal
taxes for atomic network games with heterogeneous users, and present two
complementary and essentially best-possible results. On the positive side,
we prove the existence of weakly-optimal taxes in single-source network
congestion games with heterogeneous users (cf. Section 3). To establish
this result, we follow the proof technique of [9], and show that any acyclic
traffic pattern is induced as a Nash equilibrium of the game with the taxes
calculated as in [9, Theorem 1]. Our result is significantly stronger that
any previously known positive result on weakly-optimal taxes for atomic
congestion games. In particular, our result generalizes previous results



of [3, 7] not only in the direction of considering heterogeneous users, but
also in the direction of considering non-symmetric games on single-source
multiple-sink networks.

On the negative side, we show that users’ heterogeneity precludes
the existence of strongly-optimal taxes even on the simplest topology of
parallel-link networks. More specifically, we present a parallel-link game
with linear latency functions and heterogeneous users for which any tax
vector induces an equilibrium with total latency at least 28/27 times the
optimum. Hence, we establish a dichotomy between the general case of
heterogeneous users and the special case of homogeneous ones, as far as
the existence of strongly-optimal taxes is concerned. To the best of our
knowledge, this is the first time in congestion games that a dichotomy is
established (i) between the cases of homogeneous and heterogeneous users
with respect to the existence of optimal taxes, and (ii) between the cases of
non-atomic and atomic users on parallel links with respect to the efficiency
of a price-of-anarchy-reducing mechanism. For the latter, we note that the
worst-case price of anarchy for atomic games on parallel links is the same
as the worst-case price for non-atomic congestion games (see e.g. [15, 6]),
and that the two classes of congestion games have similar behaviour with
respect to their worst-case price of anarchy under some common price-
of-anarchy-reducing mechanisms, such as Stackelberg strategies (see e.g.
the bounds in [14, 6] on the efficiency of Stackelberg strategy LLF for
non-atomic and atomic parallel-link games) and taxes for homogeneous
users.

2 Preliminaries

We consider a network congestion game G(l) defined on a directed graph
G = (V,E) with a nondecreasing latency function le : IR+ → IR+ on each
edge e ∈ E. A set N of users is given, each with an amount of traffic (flow)
to be routed from an origin node to a destination node of G. The users
are non-atomic if each has infinitesimal demand and atomic otherwise.
The game is single-source (resp. single-sink) if all users share the same
origin (resp. destination) node, and symmetric if all users share the same
origin-destination pair and have the same traffic demand.

Each user α has a positive tax-sensitivity factor a(α) > 0. We will
assume that the tax-sensitivity factors for all users come from a finite set
of possible positive values. We call the users heterogeneous if there are at
least two distinct sensitivity values and homogeneous otherwise. Unless
we declare them explicitly to be heterogeneous, the users are assumed



to be homogeneous. We can bunch together into a single user class all
the users with the same origin-destination pair and with the same tax-
sensitivity factor; let k be the number of different such classes. We denote
by di,Pi, a(i) the total traffic demand of class i, the paths that can be
used by class i, and the tax-sensitivity of class i, for all i = 1, . . . , k
respectively. We will also use the term “commodity i” for class i. Thus
each user in class i selects a path in Pi and routes her traffic though it. We
set P .= ∪i=1,...,kPi the union of paths used by all classes. In the following,
we assume that the game is single-source and the users are atomic and
have unit demands, unless it is stated otherwise.

A configuration f is a tuple f = (f j)j∈N consisting of a path f j from
the corresponding origin node to the corresponding destination node for
each user j. Given a configuration f , we let fP denote the total traffic
routed through any path P ∈ P, and let fe =

∑
e3P fP denote the total

traffic routed through any edge e ∈ E. Given a configuration f , we refer
to the traffic vector (fe)e∈E as the (edge-)flow induced by f . We note that
different configurations may induce the same edge-flow. We say that a flow
f is feasible (with respect to an atomic network congestion game G(l)) if
there is a configuration f of G(l) which routes traffic fe through any edge
e. We slightly abuse the notation by letting the same symbol denote both
a configuration and the feasible flow induced by it. A configuration (or
the corresponding flow) f is acyclic if for any cycle C in the underlying
network G, there is an edge e ∈ C with fe = 0.

The latency function le : IR+ → IR+ assigned to each edge e gives
the latency experienced by any user on e due to the congestion caused
by the traffic routed through e. We assume that the functions le are
nondecreasing, and that le(fe) > 0 when fe > 0, i.e., the function le is
positive.

For any configuration f and path P ∈ P, the latency of P is lP (f) =∑
e∈P le(fe). The individual cost of a user j in a configuration f is cj(f) =∑
e∈fj le(fe), i.e., the latency on her path in f . A configuration f is a pure

Nash equilibrium of G(l) if no user can improve her individual cost by uni-
laterally deviating from f . Formally, for a tuple x = (x1, . . . , xn), let x−i =
(x1, . . . , xi−1, xi+1, . . . , xn) and (x−i, x

′
i) = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn).

Configuration f is a pure Nash equilibrium if cj(f) ≤ cj(f−j , P ) for any
user j in any class i and any path P ∈ Pi. A flow f satisfies the Wardrop
principle [16] if for each commodity i, the latency on all paths in Pi used
by f is no greater than the latency on any other path in Pi. An (atomic)
Wardrop equilibrium is a (feasible) flow f that satisfies the Wardrop prin-
ciple. We usually distinguish between atomic and non-atomic Wardrop



equilibria, depending on whether the users are atomic or not. We also
note that an atomic Wardrop equilibrium is also a pure Nash equilib-
rium, while the converse may not be true.

If every edge is assigned a tax (also called toll) βe ≥ 0, the resulting
game is denoted as G(l + β). Given a configuration f in G(l + β), the
individual cost of a user j included in a class i is: cj

β(f) =
∑

e∈fj le(fe) +
a(i)

∑
e∈fj βe.

Let f̂ be a configuration that minimizes the total latency
∑

e fele(fe)
over all configurations of G(l). Although in certain cases (e.g., when the
functions fele(fe) are convex) the flow f̂ can be computed efficiently, for
more general latency functions it may be intractable to compute f̂ . We
will assume that f̂ is given to us off-line and that it induces a finite latency
on every edge.

A tax vector β weakly induces a feasible flow f if f is a pure Nash
equilibrium of G(l+β). A tax vector β is called weakly-optimal if it weakly
induces a pure Nash equilibrium f whose total latency

∑
e∈E fele(fe) is

equal to the optimal total latency
∑

e f̂ele(f̂e). A tax vector β is called
strongly-optimal, if every pure Nash equilibrium it induces in G(l+β) has
total latency equal to the optimal total latency

∑
e f̂ele(f̂e).

3 Existence of Weakly-Optimal Taxes

In this section we consider networks with a single-source s and heteroge-
neous users. Each user class i consists of a single user who wishes to route
di units of traffic through a single s − ti path. We show that if di = 1
(or more generally, if di are arbitrary and the optimal configuration is
acyclic), there exists a vector of weakly-optimal taxes. In particular, we
establish the existence of a tax vector that weakly induces any acyclic
flow f̂ as an atomic Wardrop equilibrium. Since single-source network
congestion games with unit-demand users admit an acyclic optimal flow
f̂ , this implies the existence of weakly optimal taxes for such games.

The proof follows closely [9], where the existence of weakly-optimal
taxes is shown for the non-atomic case, and here we give just a sketch
with the new elements added for our case.

Lemma 1. Let f̂ be an acyclic feasible flow for demands di, and let f∗, β∗

be the non-atomic optimal flow and the non-atomic optimal taxes respec-
tively, as computed in [9]. Then

∑
P∈Pi

f∗P = di, ∀i and f∗e = f̂e, ∀e ∈ E.

Proof:



Since f∗ is an optimal non-atomic flow, it satisfies the following set of
constraints: ∑

P∈Pi

fP = di ∀i ∈ {1, . . . , k} (1)

fe =
∑

P∈P:e∈P

fP ∀e ∈ E (2)

fe ≤ f̂e ∀e ∈ E (3)
fP ≥ 0 ∀P ∈ P (4)

Consider the network which consists only of the edges e of G with f̂e > 0.
Augment this network by adding a super-sink t and an edge (ti, t) from
each of the old sinks to t. Call Gf̂ the resulting network. Extend f∗ to an
s-t flow in Gf̂ by setting f∗(ti,t) = di. Let (S, T ) be any cut that separates

s from t in Gf̂ . Since f̂ is acyclic, it must be that
∑

e∈δ(S) f̂e =
∑k

i=1 di.

Because of (1), it must be that
∑

e∈δ(S) f∗e ≥
∑k

i=1 di =
∑

e∈δ(S) f̂e. By

the capacity constraints (3), we conclude that
∑

e∈δ(S) f∗e =
∑

e∈δ(S) f̂e,

and in particular, that f∗e = f̂e for all edges e that cross the cut. The
only edges of G on which f∗ might send positive flow are the edges of Gf̂ .
Any such edge e belongs to at least one s-t cut in Gf̂ . By applying the

previous argument to such a cut, it follows that f∗e = f̂e, ∀e ∈ E. 2

Note that the proof above does not rely on f̂ being a cost-minimizer.
It only uses the fact that f̂ is acyclic. Since di = 1,∀i, and f̂ is atomic,
taxes β∗ force any atomic flow f̄ to obey f̄e = f̂e,∀e ∈ E. We have thus
shown the following theorem, which is the main result of this section.

Theorem 1. Let all atomic heterogeneous users share the same source,
and let f̂ be any acyclic feasible flow. If for every edge e ∈ E, le() is
a nondecreasing positive function, then there is a tax vector β ∈ R|E|

+

such that, there is an atomic Wardrop traffic equilibrium f̄ for the game
G(l+β), where f̄e = f̂e, ∀e ∈ E. Given f̂ , β can be computed in polynomial
time.

If the latency functions are strictly increasing, the uniqueness results
from [1] yield that f̂ is the only Wardrop atomic equilibrium induced by
the tax vector of the theorem.

Single-source network congestion games with unit-demand users and
nondecreasing latency functions admit an acyclic optimal flow f̂ . More-
over, if for all e ∈ E, xle(x) are convex, such an optimal flow can be



computed in polynomial time by a min-cost flow computation. Therefore,
we obtain the following corollary of Theorem 1:

Corollary 1. Let G(l) be an atomic network congestion with nondecreas-
ing latency functions and heterogeneous users, where all users share the
same source and have the same traffic demand. Then G(l) admits a weakly-
optimal tax vector β. Furthermore, if for all edges e, xle(x) is convex, β
can be computed in polynomial time.

Theorem 1 states that computing the weakly-optimal tax vector β
for an acyclic optimal flow f̂ is not substantially harder than computing
f̂ : if f̂ can be computed in polynomial time, β can also be computed
in polynomial time. An interesting question is whether computing the
tax vector β of Theorem 1 is substantially easier than computing the
corresponding acyclic optimal flow f̂ . The following theorem practically
excludes this possibility. In particular, we show that given the weakly-
optimal tax vector β of Theorem 1, we can decide in polynomial time
whether the optimal total latency is bounded from above by a given
number. So the problem of computing the weakly-optimal tax vector β
is at least as difficult as the problem of determining the optimal total
latency.

Theorem 2. For atomic games with user-specific demands, if the opti-
mal flow f̂ is not given, it is NP -hard to compute the taxes whose exis-
tence is established by Theorem 1. This holds even for parallel-link games
with homogeneous users.

Proof: By a Turing reduction from Partition. 2

Unfortunately, it is known that the taxes of Theorem 1 are not in
general strongly-optimal. Note that for homogeneous users, our taxes are
cost-balancing in the sense of Fotakis and Spirakis [7]. They give an ex-
ample of a symmetric network congestion game, with homogeneous users,
where the cost-balancing taxes induce an a pure Nash equilibrium of total
latency 1.13 times the optimum. In the Appendix we give another such
example where the cost-balancing taxes induce a pure Nash equilibrium
of total latency (1.2− ε) times the optimum.

4 Inexistence of Strongly-Optimal Taxes

We proceed to show that that atomic congestion games with heteroge-
neous users may not admit strongly-optimal taxes. This holds even in



the simplest special case of parallel-link games with linear latencies and
unit-demand users.

Theorem 3. There exists a parallel-link game with linear latencies and
heterogeneous unit-demand users, for which any tax vector induces an
equilibrium with total latency at least 28/27 times the optimal total la-
tency.

Proof: We consider a game G(l) on 3 parallel links with latency functions
l1(x) = 7, l2(x) = 2x, and l3(x) = x + 1. There are 6 unit-demand users,
2 users with tax-sensitivity 1 and 4 users with tax-sensitivity 1/2. The
unique optimal flow assigns a single user to link 1, 2 users to link 2, and
3 users to link 3, and achieves a total latency of 27. Any other feasible
flow has total latency at least 28. In the following, we show that any
weakly-optimal tax vector β induces an equilibrium of total latency at
least 28, and thus this game does not admit strongly-optimal taxes. The
proof proceeds by considering different cases depending on the 5 optimal
allocations of heterogeneous users.

Case I: We consider an optimal flow that assigns a user with tax-
sensitivity 1 to link 1, the other user with tax-sensitivity 1 and a
user with tax-sensitivity 1/2 to link 2, and 3 users with tax-sensitivity
1/2 to link 3 (for convenience, we denote such a configuration as
〈(1), (1, 1/2), (1/2, 1/2, 1/2)〉 ). Let β = (β1, β2, β3) be any (weakly-
optimal) tax vector that induces the particular configuration as an equi-
librium of G(l + β). No user has an incentive to deviate from its assigned
link; writing down the corresponding inequalities, we obtain that β must
satisfy the following:

1 + β1 ≤ β2 ≤ 3 + β1 (5)
β2 − 1 ≤ β3 ≤ 4 + β2 (6)
2 + β1 ≤ β3 ≤ 6 + β1 (7)

If β is strongly-optimal, configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2)〉 is
not an equilibrium of G(l + β). Therefore at least one user in that config-
uration has an incentive to deviate. We obtain that β must also satisfy



at least one of the following inequalities:

β2 < 1 + β1 (8)
β3 < 3 + β1 (9)

6 + β1 < β2 (10)
β3 < β2 (11)

8 + β1 < β3 (12)
6 + β2 < β3 (13)

We observe that (8) contradicts (5), (10) contradicts (5), (12) contradicts
(7), and (13) contradicts (6). Hence, if β is strongly optimal, either β3 <
3 + β1 or β3 < β2 (intuitively, β3 must be “small”).

Moreover, if β is strongly-optimal, configuration 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉
is not an equilibrium of G(l + β). Working as before, we obtain that β
must satisfy at least one of the following inequalities:

3 + β1 < β2 (14)
β3 < β2 − 2 (15)

4 + β1 < β3 (16)
2 + β2 < β3 (17)

We observe that (14) contradicts (5) and (15) contradicts (6). Hence, if
β is strongly optimal, either β3 > 4 + β1 or β3 > 2 + β2 (intuitively, β3

must be “large”).
If β3 < 3+β1, neither β3 > 4+β1 nor β3 > 2+β2 is possible (note that

3+β1 > β3 > 2+β2, which contradicts (5) ). On the other hand, if β3 < β2,
neither β3 > 2 + β2 nor β3 > 4 + β1 is possible (note that β2 > β3 >
4 + β1, which contradicts (5) ). Therefore, any tax vector that induces
optimal configuration 〈(1), (1, 1/2), (1/2, 1/2, 1/2)〉 as an equilibrium of
G(l + β) also induces either configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2))〉
or configuration 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉 (both of total latency 28)
as an equilibrium.
Case II: We consider optimal configuration 〈(1), (1/2, 1/2), (1, 1/2, 1/2)〉.
Working as in Case I, we obtain that any tax vector β = (β1, β2, β3) that
induces this configuration as an equilibrium of G(l + β) must satisfy the
following inequalities:

1 + β1 ≤ β2 ≤ 5 + β1 (18)
β2 − 2 ≤ β3 ≤ 2 + β2 (19)
2 + β1 ≤ β3 ≤ 3 + β1 (20)



In fact, the right-hand side of (18) follows from β2 − 2 ≤ β3 ≤ 3 + β1.
Considering configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2)〉 and working

as in Case I, we obtain that if β is strongly-optimal, either β3 < 3 + β1

or β3 < β2. Considering configuration 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉, we
obtain that if β is strongly-optimal, either β2 > 3 + β1 (note that (14)
does not contradict (18), or β3 > 4 + β1, or β3 > 2 + β2.

Working as in Case I, we show that if β is optimal, it must satisfy
both β2 > 3 + β1 and β3 < β2 (since β2 > 3 + β1, β3 < 3 + β1 implies
β3 < β2, so β3 must be smaller than β2 in any case), in addition to (18),
(19), (20).

Moreover, if β is strongly-optimal, configuration 〈(1, 1), (1/2), (1/2, 1/2, 1/2)〉
is not an equilibrium of G(l+β). Working as before, we obtain that in ad-
dition to the inequalities above, β must satisfy at least one of the following
inequalities:

β2 < 3 + β1 (21)
β3 < 2 + β1 (22)

10 + β1 < β2 (23)
6 + β3 < β2 (24)
6 + β1 < β3 (25)

β2 < β3 (26)

We observe that (21) contradicts β2 > 3 + β1, (22) contradicts (20), (23)
contradicts (18), (25) contradicts (20), and (26) contradicts β3 < β2.
Furthermore, (18) and (19) imply that β2 ≤ 5 + β1 ≤ 3 + β3, which
contradicts (24).

Hence, any tax vector that induces optimal configura-
tion 〈(1), (1/2, 1/2), (1, 1/2, 1/2)〉 as an equilibrium also in-
duces either configuration 〈(1, 1), (1/2, 1/2), (1/2, 1/2))〉, or
configuration 〈( ), (1, 1), (1/2, 1/2, 1/2, 1/2)〉, or configuration
〈(1, 1), (1/2), (1/2, 1/2, 1/2)〉 (all of total latency 28) as an equilib-
rium.
Case III: We consider optimal configuration 〈(1/2), (1, 1), (1/2, 1/2, 1/2)〉.
Working as in Case I, we obtain that any tax vector β = (β1, β2, β3) that
induces this configuration as an equilibrium of G(l + β) must satisfy the
following inequalities:

2 + β1 ≤ β2 ≤ 3 + β1 (27)
β2 − 1 ≤ β3 ≤ 4 + β2 (28)
4 + β1 ≤ β3 ≤ 6 + β1 (29)



Therefore, any tax vector that induces configuration 〈(1/2), (1, 1), (1/2, 1/2, 1/2)〉
as an equilibrium of G(l + β) satisfies (5), (6), and (7), and by Case I, is
not strongly-optimal.
Cases IV and V: There are no tax vectors that induce either opti-
mal configuration 〈(1/2), (1, 1/2), (1, 1/2, 1/2)〉 or optimal configuration
〈(1/2), (1/2, 1/2), (1, 1, 1/2)〉 as an equilibrium of G(l + β). In particular,
applying the inequalities for possible deviations between link 1 and link
3, we obtain that any tax vector β that induces any of the configurations
above as an equilibrium must satisfy 4 + β1 ≤ β3 ≤ 3 + β1.

Thus we have considered all possible optimal allocations of hetero-
geneous users and all possible weakly-optimal tax vectors β, and have
shown that any of them induces a configuration of total latency at least
28 as an equilibrium of G(l + β). 2

Remark 1. For the atomic game with homogeneous users correspond-
ing to the parallel-link game in the proof of Theorem 3, the tax vector
(0, 3 − δ, 3 − δ), for some sufficiently small δ > 0, is a strongly-optimal
tax vector (a slightly different strongly-optimal tax vector is given by [3,
Theorem 1]). For the corresponding non-atomic game with heterogeneous
users, the tax vector (0, 3, 3) is a strongly-optimal one.

5 Open problems

It is known that for homogeneous users with unit-demands on multicom-
modity networks there exist no strongly-optimal taxes [3]. Series-parallel
networks is the largest class for which such taxes have been shown so far
to exist [7]. In this work, we established that when the users are hetero-
geneous, there are no strongly-optimal taxes even on the very specialized
topology of parallel links. The challenging open problem stated in [3]
remains for future work: determine the largest class of network conges-
tion games for which strongly-optimal taxes exist. The candidate class is
that of symmetric network games [3], i.e., when users are homogeneous,
have identical demands, and share the same source and destination on a
general-topology network.

Acknowledgement. G. Karakostas and S. Kolliopoulos thank Ioannis Cara-
giannis for introducing them to the problem and for valuable discussions.
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Appendix

We give a further example that shows that the weakly-optimal taxes es-
tablished in Section 3 are not in general strongly-optimal, even for home-
geneous users. In particular, our example shows that the cost-balancing



taxes induce a pure Nash equilibrium of total latency (1.2− ε) times the
optimum.

We define a network game G(l) on the 3-layered network shown in
Figure 5. The edges at the first and third layer have latency function
l(x) = px, and the four edges in the middle layer have latency function
l(x) = qx, for p > q > 0. There are four paths leading from s to t, and
we define the number of players to be 4 as well. It is easy to see that the
optimal solution f̂ sends one unit of flow along each of the four paths
for a total cost of 4(2p + q + 2p) = 16p + 4q. There are two other pure
equilibria: f1 sends two units of flow along each of the paths (s, a, c, t) and
(s, b, d, t); f2 sends two units of flow along each of the paths (s, a, d, t) and
(s, b, c, t). Both have total cost equal to 4(4p + 2q) = 16p + 8q. The price
of anarchy tends to 6/5 from below as q approaches p. We observe that
the zero vector is a weakly-optimal tax vector, therefore it induces an
equilibrium of total latency ρ times the optimum, for any ρ < 6/5.

l(x) = px
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Fig. 1. Ther 3-layered network used to show the inefficiency of cost-balancing taxes.

On this specific instance, it is easy to find strongly-optimal taxes.
Simply set the tax on (a, d) and (b, d) equal to p − q; on the rest of the
edges set it to zero.


