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Abstract

Motivated by time-sharing systems with deadlines, such as 2-way synchronization of Digital
Twins, we introduce the study of a natural problem which can be abstracted as follows. We
are given m machines and n jobs, as well as a set of tolerance capacities uij ≥ 0 for every
job j and machine i. Can we assign the jobs so that, if job j ends up on machine i, the
total size of jobs that are processed on i is at most uij? We define two natural optimization
versions: (i) Maximize the total weight of jobs that can be assigned without violating the
tolerance capacities uij, and (ii) minimize the amount ρ ≥ 1 by which capacities have to be
scaled so that all jobs can be assigned. For problem (i), we provide a randomized algorithm
with expected approximation factor of (1 − 1/e − ε), even in the presence of a bound on
the number of machines to be used, bundles of required jobs, and required machines, and a
randomized algorithm with expected approximation factor of ((1−1/e)2−ε) in the presence
of machine copies, a bound on the number of machines to be used, and required machines,
for any constant ε > 0. For problem (ii), we show that it is n1/2−ε-inapproximable and
provide linear integrality gap lower bounds for two key relaxations.
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1. Introduction

Time-sharing of resources, such as CPU cycles or network bandwidth, by tasks with
timing constraints is a feature of scheduling multitasking systems since their inception in
the 1950s [26]. Real-time tasks have strict deadline constraints, and as a result they cannot
tolerate sharing a time-shared resource with more than a specific number of other tasks. In
this work we study the scheduling problem arising from the application of time-sharing.

⋆An extended abstract of this work was presented at ALGOSENSORS’22 under the title ‘Resource time-
sharing for IoT applications with deadlines’.
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In order to highlight the challenges created by time-sharing scheduling, we describe in
detail a recent example of this paradigm, i.e., its application to Digital Twins within the
framework of the Internet-of-Things (IoT). An ever increasing number of IoT applications
depend on real-time response times, i.e., the ability of delivering data to and from the appli-
cation, as well as processing data, with acceptable delays [29]. These delay requirements can
apply to almost all different components of an IoT architecture. For example, the need for
fast delivery of the ‘freshest’ available sensor data to cyber-physical systems has lead to the
recent concept of the Age-of-Information [30], i.e., the scheduling of data transmission so that
the largest latency between data generation at a source and its delivery to the application is
minimized. A different approach to the requirement for timely data delivery and processing,
is the imposition of delay constraints (as opposed to delay as objective in AoI), that can
guarantee the real-time nature of the system. An example of this latter approach is the
concept of Digital Twins (DT) [20, 25]. These are virtual replicas of physical systems (PS),
which capture a subset of the PS’s features, maintain a 2-way synchronization of DT and
PS states, and can store data relevant to the PS in order to perform computationally-heavy
tasks, such as prediction and data analytics.

The 2-way synchronization requires that a DT performs periodically its data transmission
and task processing, and is expected to finish both within a given period, thus assuring the
data ‘freshness’. With the proliferation of DTs, the time-sharing of critical resources, such as
wireless channels and CPUs, by many DTs simultaneously puts a strain on the satisfaction
of these timing requirements, and motivates the scheduling problem we introduce in this
work as follows: A DT j with a synchronization period Tj, needs rj CPU cycles in order
to complete its data processing task (for simplicity we assume the data transmission time
is negligible). DT j’s task is executed on a server i of CPU frequency fi together with the
tasks of K other DTs, which share the CPU equally and in a round-robin fashion with j.
Each job receives an equal share at each point in time whether it is active or not. In order
for j’s task to finish on time, the inequality Krj

fi
≤ Tj must hold (j gets every K-th cycle

of the CPU), which implies that K ≤ fiTj
rj

, i.e., DT j’s task can co-execute with at most

uij := ⌊fiTj
rj

⌋ (including itself) DTs on server i. An example is shown in Figure 1. When
DT 1 has the CPU i to itself (K = 1 in case (a)), or when it shares CPU cycles only with
DT 2 in a round-robin fashion (K = 2 in case (b)), DT 1’s job can be completed within its
synchronization period T1. But when three DTs share equally the CPU cycles (K = 3 in
case (c)), the DT 1 job cannot be completed in a single period T1, and, therefore, K = 3 is
infeasible. Hence, for this machine, ui1 = 2, i.e., DT 1 can tolerate time-sharing with one
other DT, but not two. A similar situation arises when several DTs share a wireless channel
with their PSs, using TDMA (Time Division Multiple Access) [17], or, in general, when jobs
with completion deadlines have to time-share a common resource. As in Figure 1, a job j
deadline results in an upper bound uij on the number of other jobs that j can tolerate on
resource i. Therefore, the natural question of how to schedule a set of tasks with deadlines on
a set of resources/machines, when round-robin time-sharing is applied, so that all deadlines
are respected, reduces to a scheduling problem of jobs on machines, when every job has an
upper bound uij on the number of jobs (including itself) a job j can tolerate on machine i.
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Figure 1: DT 1’s job executed without time-sharing (a), round-robin time-sharing with DT 2 (b), and
round-robin time-sharing with both DTs 2 and 3 (c). In case (c), DT 1’s job cannot be completed within
its synchronization period T1.

This problem can be abstracted in the following way: Given a set of n distinct balls, a set of
m distinct bins, and a set of nm nonnegative integer tolerance capacities uij, can the balls
be placed in the bins so that if the j-th ball is placed in bin i, at most uij balls in total are
placed in bin i?

The basic problem can be generalized as follows. We have a set of jobs and a set of
machines and job j has processing time pij on machine i. Assigning job j to machine i
implies an upper bound uij on the total load (instead of the number of jobs) that job j can
tolerate on machine i. Although this is a rather natural generalization of knapsack, we are
not aware of any previous work on it. Note that some tolerance capacities uij can be equal
to 0, i.e., job j cannot be assigned to machine i. Formally, the search problem we examine
in this paper is the following.

Machine-Sharing with Tolerance Capacities (MSTC)
Input: Set of n jobs J , set of m machines M, and for each (i, j) ∈ M×J , tolerance
capacity uij ∈ Z≥0 and processing time pij ∈ Z≥0.
Output: An assignment σ : J → M such that

∑
k∈σ−1(σ(j)) pσ(j)k ≤ uσ(j)j for all

j ∈ J , or NO if no such assignment exists.

For job j ∈ J , M(j) denotes the set of machines on which j can be assigned, i.e., M(j) =
{i ∈ M | uij > 0}. Similarly, for i ∈ M, J (i) = {j ∈ J | uij > 0}. With this notation in
place, MSTC can be equivalently formulated as finding a feasible solution to the following
quadratic program: ∑

i∈M(j)

xij ≥ 1 ∀j ∈ J (QP)

xij ·
∑
k∈J (i)

pikxik ≤ uij ∀j ∈ J ,∀i ∈ M(j) (1)
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xij ∈ {0, 1} ∀i ∈ M,∀j ∈ J (i) (2)

The decision version of MSTC can be easily seen to be NP-complete (e.g., via a reduction
from SAT). To the best of our knowledge, this is the first time that the problem has been
studied. Assignment problems with forbidden pairs of assignments have been studied in the
literature (e.g., [10]), but they are incomparable to MSTC.

Problem MSTC gives rise to two natural objective functions and the corresponding
optimization versions. In the maximization setting, every job j has a weight wj ≥ 0. One
asks for a maximum-weight set of jobs that can be assigned to machines without violating
any tolerance capacities. Two well-known optimization problems can be obtained as special
cases of our problem. In our terminology the Multiple Knapsack problem corresponds to the
case where every job has the same processing time pj on all the machines and the tolerance
capacities of capacities uij of jobs on machine i are equal to a job-independent value ui.
Multiple Knapsack is known to have a PTAS [3]. Our problem captures further as a special
case the Generalized Assignment Problem with machine-independent profits. The latter
problem results from Multiple Knapsack if we allow machine-dependent processing times pij
for each job j. The best known approximation ratio for the Generalized Assignment Problem
is (1− 1/e+ ε), for a small absolute constant ε > 0 [9].

The basic maximization formulation of MSTC can be augmented with various additional
constraints. An immediate additional constraint is to require that no more than k machines
can be used, but further natural constraints include resource augmentation (e.g., more UAVs
used as relays at a location to increase the number of available channels [21]), or bundles
of jobs that have to be executed on some machine, or combinations of the above. We
call this general family of problems the Maximum Machine-Sharing with Tolerance
Capacities (MMSTC), and we will denote by MMSTC(L1, L2, . . .) the MMSTC problem
with additional constraints labeled L1, L2, . . .. In this work we will address the following
additional constraints (their label is given in parenthesis):

k-Coverage (k-C): No more than k machines can be used. This is a typical coverage
constraint (see, for example, [4]).

Bundles of required jobs (RJ): Given a set C of l disjoint subsets of jobs C1, . . . , Cl,
each bundle Ci must be scheduled on a machine executing exclusively this bundle. For
example, in a time-sharing (i.e., multitasking) Operating System, there may be back-
ground processes that must be executed periodically, reserving a machine, regardless
of the existence of other tasks.

Required machines (RM): Given a set of machines A ⊆ M, the machines in A must be
used. For example, if there is pricing differentiation between CPUs used in a server
farm, it may be imperative for jobs to use the cheaper CPUs in A before being forced
to use the rest, even if this would result in slower execution (i.e., larger pij’s).

Resource augmentation (A): Given integers l1, . . . , l|M|, the schedule can use at most li
copies of the i-th machine. Note that since there are n jobs, no more than n copies
are needed for each machine, i.e.,

∑|M|
i=1 li ≤ mn.
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For example, MMSTC(k-C,RJ) denotes the MMSTC problem where at most k machines
can be used, and there are bundles of required jobs (note that there is no resource augmen-
tation or required machines constraint). We denote by MMSTC() the basic maximization
problem where we seek to maximize the weight of the assigned jobs without any of the ad-
ditional constraints k-C,RJ,RM,A. Table 1 summarizes the constraint abbreviations used
throughout this paper.

Table 1: Constraint abbreviations used in the paper.

Abbreviation Constraint
k-C k-Coverage (use at most k machines)
RJ Bundles of required jobs
RM Required machines (must use these machines)
A Resource augmentation (can use multiple copies of machines)

The minimization problem derived from MSTC is a minimum-congestion version that
asks for the smallest scaling factor that one can multiply all tolerance capacities with, so
that there is a feasible assignment for all jobs.

Definition 1. For ρ ≥ 1, an assignment σ of the jobs in J ⊆ J is ρ-feasible if for all j ∈ J,∑
k∈σ−1(σ(j)) pσ(j)k ≤ ρ · uσ(j)j.

In the Scaled Machine-Sharing with Tolerance Capacities (SMSTC) problem
we seek a ρ-feasible assignment of J with minimum ρ. Similarly to MMSTC(), SMSTC
generalizes in its turn a classic problem. In particular, the special case of SMSTC where
the tolerance capacities uij are equal to a common value Ti, for all j ∈ J (i), is the famous
unrelated machine scheduling problem with deadlines for which Lenstra et al. gave a 2-
approximation [19]. Our problem is more general, as every job has its own upper bound on
the completion time of machine i, namely uij. It also turns out that our problem is much
harder to approximate. In the negative results we outline below for SMSTC, every job j
has pij = 1 for every i ∈ M(j).

MMSTC() can be efficiently reduced to the Separable Assignment Problem (SAP) of [11]
with an implicit set system that describes feasible packings of jobs. The algorithm of [11]
applies standard randomized rounding on the Configuration LP relaxation of Section 3.1
and yields an (1 − 1

e
− ε)-approximation for any constant ε > 0, but does not seem able

to handle the additional constraints mentioned above. In Section 3.2 we also design an
(1− 1

e
−ε)-approximation algorithm for MMSTC() (cf. Theorem 2), using the more sophis-

ticated dependent rounding technique of [27, 12] on the Configuration LP. We prove that
this approximation ratio is best possible unless NP ⊆ DTIME(nO(log logn)) (Theorem 6 in
Section 3.3). Unlike [11], dependent rounding allows us to extend the results of Section 3.2
to include additional constraints in Section 3.4. We note that the k-C constraints can still
be 1 − 1

e
− ε-approximated by the algorithms of [2, 5] that generalize [11] to matroidal

constraints, but they do not seem to be able to handle constraints RM,RJ,A (or their com-
binations); there is no obvious expression of these constraints in a matroid setting. Using
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the strong degree properties of dependent rounding, we obtain an approximation factor of
1− 1

e
− ε for MMSTC(k-C,RJ,RM) (Theorem 8). We also obtain an approximation factor

of (1− 1
e
)2 − ε for MMSTC(k-C,RM,A) (Theorem 9). Clearly, the approximation factors

of Theorems 8,9 apply also to the MMSTC problems with a subset of the corresponding
constraints. Since we use dependent rounding, the approximation factors in this work are
in expectation.

Unfortunately, SMSTC turns out to be much harder to approximate than MMSTC(),
even for the case pij = 1, for all i ∈ M, j ∈ J (i). Using a reduction from 3D-Matching,
we show that there is no polynomial-time (n1/2−ε)-approximation algorithm for SMSTC,
unless P = NP (cf. Theorem 12), where n = |J |. The bound holds even when every job j
has the same tolerance capacity uij = uj on every machine in M(j). In order to tackle the
problem algorithmically, we explore two key relaxations. First, we study the Configuration
LP, a powerful linear relaxation that was introduced in the context of the cutting stock
problem [7, 14] and has been used among other for bin packing [16, 23] and scheduling
problems with assignment restrictions (e.g., [1, 28, 15]). Applied to the MSTC problem, it
is strictly stronger than the natural LP that has assignment variables xij for job-machine
pairs (cf. Proposition 2). We prove that the Configuration LP has an integrality gap of Ω(n)
for congestion even when there are only two distinct tolerance capacity values, every job j
has the same tolerance capacity uj on every machine, and each job can be assigned to at
most two machines (cf. Theorem 10). The second relaxation we consider is the formulation
resulting from the quadratic program (QP) by relaxing the integrality constraints. Notably,
this is a non-convex program. Still we show that it has an integrality gap of at least m,
the number of machines. The lower bound holds again when every job has a machine-
independent tolerance capacity (cf. Theorem 11). Hence, rounding the fractional solution
of these two key formulations cannot give a non-trivial approximation factor.

The outline of the paper is as follows. In Section 2 we provide an equivalent reformula-
tion of the MSTC problem that provides a helpful abstraction. In Section 3 we study the
approximability of MMSTC giving both positive and negative results. In Section 4 we prove
integrality gap lower bounds and hardness of approximation for SMSTC. We conclude in
Section 5 with some open problems.

2. An equivalent formulation of MSTC

In this section we provide an equivalent formulation of the MSTC problem. We define
the Submachine Scheduling Problem (SSP) as follows. We are given sets M, J , of machines
and jobs respectively, and a set of allowed job-machine assignments that defines the sets
J (i), i ∈ M, and M(j), j ∈ J . For every i ∈ M, there is a finite set Si of mi submachines.
Submachine k ∈ Si has capacity ūik. Let us number the submachines so that ūi1 < ūi2 <
. . . < ūimi

. Job j ∈ J (i) has processing time pij on machine i and there is an h(j) ∈ [mi]
so that j can be assigned only to the set of allowed submachines M(i, j) := {1, . . . , h(j)}.
A submachine assignment of the set J ⊆ J is a mapping ψ : J → ∪i∈MSi such that (i)
for all j ∈ J , ψ(j) ∈ M(i, j) for some machine i, and (ii) for all i ∈ M , at most one
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Figure 2: (a) An MSTC instance with one machine and seven jobs and the equivalent instance with four
submachines. The edges denote the allowed assignments. The numbers on the edges denote the job tolerance
capacities u. (b) The equivalent SSP instance. The number next to a submachine denotes the submachine
capacity ū. In the SSP instance only one of the submachines can be chosen to process jobs.

of the sets ψ−1(k), k ∈ Si, is nonempty. In words, every job j in J is assigned to an
allowed submachine of a machine in M(j) and for every machine i ∈ M, at most one of
the submachines in Si can be “open”. The submachine assignment ψ is ρ-feasible, for ρ ≥ 1,
if
∑

j∈ψ−1(k) pij ≤ ρūik, ∀i ∈ M,∀k ∈ Si. We note that if we are only interested in 1-
feasible assignments, job j can effectively be assigned only to machines l(j) to h(j) where
l(j) = min{x ∈ [mi] | ūix ≥ pij}. We define a mapping ζ that maps an SSP instance I
to an MSTC instance ζ(I) with the same sets of machines, jobs and allowed job-machine
assignments, where the tolerance capacity of job j on machine i is equal to ūih(j).

Conversely, we define a mapping η that maps an MSTC instance I to an SSP instance
η(I). Recall that we are given as input a set M of machines, a set J of jobs and a set
{uij, pij ∈ Z≥0 | (i, j) ∈ M×J}. For i ∈ M, let d(i) denote |J (i)|. Sort the capacities uij,
j ∈ J (i), in non-decreasing order uij1 ≤ uij2 ≤ . . . ≤ uijd(i) . Let mi denote the number of
distinct values in the sequence uij1 , uij2 , . . . , uijd(i) . Denote these distinct values in increasing
order as ūi1 < ūi2 < . . . < ūimi

. We define for each machine i ∈ M, a set Si of mi

submachines where submachine k ∈ Si has capacity ūik. The set of jobs that are allowed to be
assigned to submachine k ∈ Si is defined as J (i, k) := {j ∈ J (i) | uij ≥ ūik}. If we denote by
M(i, j) the set of submachines of machine i to which job j can be assigned, it follows from the
definition of the J (i, k) sets that M(i, j) = [h(j)], where h(j) = max{k ∈ mi | ūik ≤ uij}.

It is easy to see that the two mappings are invertible and η = ζ−1. Given an instance I
of MSTC by a submachine assignment of the jobs we mean a submachine assignment for the
SSP instance η(I). The next proposition makes precise the notion that the two instances I
and η(I) are equivalent. See Figure 2 for an example.

Proposition 1. Given the input {uij, pij ∈ Z≥0 | (i, j) ∈ M×J}, and a set J ⊆ J , there
is a ρ-feasible assignment σ of the jobs in J iff there is ρ-feasible submachine assignment ψ
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of J.

Proof. Let σ be a ρ-feasible assignment. For machine i, let li be the job in σ−1(i) with
the smallest tolerance capacity. It follows that

∑
j∈σ−1(i) pij ≤ ρ · uili . Value uili is equal

to ūiki for some ki ∈ Si. Consider the submachine assignment ψ where for every i ∈ M,
submachine ki ∈ Si is open, and ψ−1(ki) = σ−1(i). It follows that ψ is a ρ-feasible submachine
assignment.

For the converse, if a ρ-feasible submachine assignment ψ is given, let ki be the subma-
chine of machine i that is open and ūiki its capacity. Define σ : J → M such that for every
i, σ−1(i) = ψ−1(ki). We have that

∑
j∈σ−1(i) pij =

∑
j∈ψ−1(ki)

pij ≤ ρ · ūiki . Moreover since
the set of jobs ψ−1(ki) is a subset of J (i, ki) we have that ūiki ≤ uij for each j ∈ ψ−1(ki).
Thus for each j ∈ σ−1(i),

∑
k∈σ−1(i) pik ≤ ρ · uij. Therefore σ is ρ-feasible.

In the rest of the paper we will choose each time the problem formulation (with or
without submachines) that is more convenient.

3. Approximation algorithms for MMSTC

We consider the MMSTC family of problems, i.e., given input {uij, pij ∈ Z≥0 | (i, j) ∈
M×J}, and weights wj for each job j ∈ J , find a maximum-weight S ⊆ J for which there
is a 1-feasible assignment that also respects a subset of constraints k-C,RJ,RM,A.

The basic problem MMSTC() is an instance of the general Separable Assignment Prob-
lem (SAP) defined in [11], and, therefore, the standard randomized rounding of the Config-
uration LP of Section 3.1, as analyzed in [11], implies a (1 − 1

e
)-approximation algorithm.

Unfortunately, this simple rounding does not seem able to handle the extra constraints de-
fined above. We will employ the powerful machinery of dependent rounding described in
Section 3.2, to approximate the more constrained versions of MMSTC in Section 3.4.

3.1. Linear relaxation with configurations
For machine i and submachine k ∈ Si, a subset C ⊆ J (i, k) is a configuration if∑
j∈C pij ≤ ūik. The set of these configurations is denoted C(i, k). The Configuration LP, de-

noted (CLP), has a variable xi,Ck
for each machine i, submachine k ∈ Si, and configuration

Ck ∈ C(i, k):

max
∑
j∈J

wj

(∑
i∈M

∑
k∈Si

∑
Ck : j∈Ck

xi,Ck

)
s.t. (CLP)∑

k∈Si

∑
Ck

xi,Ck
= 1 ∀i ∈ M (3)∑

i∈M

∑
k∈Si

∑
Ck:j∈Ck

xi,Ck
≤ 1 ∀j ∈ J (4)

xi,Ck
≥ 0 ∀i ∈ M,∀k ∈ Si,∀Ck ∈ C(i, k) (5)
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The set of constraints (3) ensures that each machine is assigned one configuration and
that one submachine is open. Constraints (4) ensure that each job is assigned at most once.
Clearly, an integer solution to (CLP) corresponds to a 1-feasible assignment for a maximum-
weight subset of J . For a configuration Ck, let w(Ck) :=

∑
j∈Ck

wj. The dual of (CLP) is
the following:

min
∑
i∈M

yi +
∑
j∈J

zj s.t. (D-CLP)

yi +
∑
j∈Ck

zj ≥ w(Ck) ∀i ∈ M,∀k ∈ Si,∀Ck ∈ C(i, k) (6)

z ≥ 0 (7)
y free (8)

Since there is an exponential number of configurations, (CLP) has an exponential number
of variables, and, therefore, it cannot be solved directly in polynomial time. Instead, its dual
(D-CLP) will be solved using an approximate separation oracle. In what follows, we will
use the notion of a β-approximate separation oracle [11], i.e., an algorithm that given values
y, z either returns a violated constraint or guarantees that values y/β, z satisfy constraints
(6)-(8). The running time of the separation oracle depends on the number of variables of
(D-CLP).
Lemma 1. There is a polynomial-time (1− ε)-approximate separation oracle for (D-CLP),
for any constant ε > 0.

Proof. Given a candidate solution (y, z) to (D-CLP), its separation oracle has to solve∑
i∈M |Si| instances of a Knapsack problem, one for each i ∈ M and k ∈ Si, defined as

follows. Let the set of items be J (i, k) and the knapsack capacity ūik. Every item j has a
size pij. We remove from J (i, k) all items j with pij > ūik. The objective of the Knapsack
problem will be to pack a subset of items of maximum value. We proceed to define the
values of the items.

Every item j ∈ J (i, k) has a (possibly negative) value vj = wj − zj. Let J ′ = {j ∈
J (i, k) | vj ≥ 0}. The addition of items with negative values can only decrease the objective
function of the Knapsack problem.

If J ′ = ∅, the maximum-value solution for our Knapsack consists of a single item, the one
with value equal to maxj∈J (i,k) vj. If J ′ ̸= ∅ only items in J ′ will be considered for inclusion
in the knapsack. We run the standard Knapsack FPTAS on input J ′. It is well-known that
by rounding all nonnegative vj ≥ 0 down to ⌊ nvj

εvmax
⌋, the Dynamic Programming algorithm

solving knapsack runs in polynomial time and will detect whether there is a feasible packing
with total value that exceeds (1−ε)Vmax, where Vmax = max{

∑
j∈Ck

(wj−zj) : Ck ∈ C(i, k)}.
If the value of the solution returned by the FPTAS is greater than yi, then we have detected
a violated constraint, otherwise we have (1 − ε)Vmax ≤ yi, i.e., the total value of any
configuration for this pair of i, k is no greater than yi/(1− ε).

When we can no longer detect any violated constraint for all i, k, then the values y/(1−
ε), z satisfy constraints (6)-(8). Therefore the separation oracle is a polynomial (1 − ε)-
approximate separation oracle, for any constant ε > 0.
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It is well-known (cf. Lemma 2.2 in [11]) that such a separation oracle implies a
polynomial-time (1 − δ)-approximate algorithm for solving (CLP), for any constant δ > 0
(without any constraint violations). In the produced (CLP) solution a polynomial number
of variables will be set to a nonzero value, in particular the variables that correspond to the
dual constraints checked by the separation oracle. This approximate (fractional) solution of
(CLP) will be rounded in the next section.

3.2. Dependent-rounding algorithm
Let x∗ be an (1− δ)-approximate (fractional) solution of (CLP), computed as described

in Section 3.1. The vector x∗ induces on each machine a probability distribution on the
submachines in Si. We will use dependent rounding to choose one configuration per machine
and ensure that a near-optimal fraction of jobs is scheduled.

Srinivasan [27] (see also [12]) has provided a technique to sample algorithmically from a
distribution with the following properties. Consider any sequence of t reals P = (p1, . . . , pt)
such that pi ∈ [0, 1] and

∑
i pi = l, for an integer l. Srinivasan [27] defines a distribution

D(t; P ) over vectors in {0, 1}t such that any vector (X1, . . . , Xt) sampled from D(t;P )
satisfies the following three properties.

(A1) (probability preservation) ∀i,Pr[Xi = 1] = pi.

(A2) (degree preservation) Pr[|{i : Xi = 1}| = l] = 1.

(A3) (negative correlation) For all S ⊆ [t] we have Pr[(
∧
i∈S(Xi = 0)] ≤

∏
i∈S Pr[Xi = 0]

and Pr[(
∧
i∈S(Xi = 1)] ≤

∏
i∈S Pr[Xi = 1].

The existence of the distribution is established algorithmically:

Theorem 1 ([27]). Given P = (p1, . . . , pt) there is a linear-time algorithm that generates a
sample from distribution D(t;P ).

Let Ci denote the disjoint union of the sets of configurations in
⊔
k∈Si

C(i, k) whose cor-
responding variable has a nonzero value in the solution x∗ of (CLP). Note that every
configuration in Ci belongs to a unique C(i, k). Denote by x∗|i the restriction of vector x∗ to
the entries corresponding to the configurations in Ci. To simplify notation, set ti = |Ci|. We
define a distribution D(ti; x

∗|i) that satisfies properties (A1), (A2), (A3) for each machine
i ∈ M. Observe that in our setting l = 1. The rounding algorithm is the following.

Algorithm DepRound
For all i ∈ M, do independently:

1. Using the algorithm of Theorem 1, sample from D(ti;x
∗|i) to obtain vector

X(i) ∈ {0, 1}ti . By Property (A2), X(i) has a unique entry equal to 1.
2. Assign the configuration C that corresponds to the nonzero entry of X(i) to
machine i.

We show the following for MMSTC() (which can also be obtained by standard random-
ized rounding [11]):
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Theorem 2. Algorithm DepRound runs in polynomial time and outputs a 1-feasible as-
signment for a set of jobs S whose expected total weight is at least (1 − 1/e − ε) times the
optimum of the (CLP) relaxation, for any constant ε > 0.

Proof. Let C denote the disjoint union
⊔
i∈M Ci, i.e., every configuration in C corresponds to

a unique (i, k) pair. For j ∈ J , let zj be the random variable that takes value 1 if job j is
assigned by Algorithm DepRound and 0 otherwise. The analysis follows the one in [27] for
Maximum Coverage versions of Set Cover. We slightly abuse notation and index the entries
of the vectors X(i) by the corresponding configurations. Since every configuration C belongs
to a unique Ci we omit the superscript i as well.

Pr[zj = 1] =1− Pr[
∧

C∈C:C∋j

(XC = 0)]

≥1−
∏

C∈C:C∋j

Pr[XC = 0] (9)

=1−
∏

C∈C:C∋j

(1− x∗C) (10)

Inequality (9) follows from the negative correlation property (A3), and equality (10) from
property (A1). Define z∗j :=

∑
C∈C:C∋j x

∗
C . This is the fractional amount by which job j

is scheduled, and the objective value of the solution x∗ is equal to
∑

j∈J wjz
∗
j . Using the

Arithmetic Mean-Geometric Mean inequality and the fact that z∗j ≤ 1, it is easy to see that∏
C∈C:C∋j

(1− x∗C) ≤ (1− z∗j /s)
s

where s is the maximum number of configurations in the support of x∗ that a job belongs
to. By calculus, 1− (1− z∗j /s)

s ≥ (1− (1− 1/s)s) · z∗j > (1− 1/e) · z∗j .
Recall that there is a polynomial-time (1− δ)-approximate algorithm for solving (CLP),

for any constant δ > 0 (without any constraint violations). Therefore, the overall approx-
imation factor is (1 − δ)(1 − 1/e) = (1 − 1/e − ε) for δ := ε/(1 − 1/e), and the theorem
follows.

In Theorem 6 we show a matching hardness of approximation result for MMSTC().

3.3. Hardness of approximation for MMSTC()
We first establish APX-hardness for the case of unit processing times. In the Generalized

Assignment Problem (GAP) we are given as input a set B of m bins (knapsacks) and a set
S of n items. Each bin i ∈ B has a capacity c(i) and for each item j and bin i, we are given
a size s(i, j) and a profit p(i, j). The objective is to find a subset U ⊆ S, that has a feasible
packing in B and maximized the profit of the packing. Chekuri and Khanna [3] showed the
following negative result for GAP.

Theorem 3. [3] GAP is APX-hard even on instances of the following form for all positive
δ. (i) p(i, j) = 1 for all bins i and items j (ii) s(i, j) = 1 or s(i, j) = 1+ δ for all bins i and
items j (iii) c(i) = 3 for all bins i.
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Using Theorem 3 we prove APX-hardness for MMSTC() with unit processing times.

Theorem 4. MMSTC() is APX-hard even if (i) for all i ∈ M and j ∈ J , pij = 1, (ii) for
all j ∈ J , wj = 1, and (iii) for all i ∈ M and j ∈ J , uij ∈ {2, 3}.

Proof. Let I be a GAP instance with the properties defined in Theorem 3. We will show
that every such GAP instance can be reduced in an approximation-preserving manner to an
MMSTC() instance I ′.

There is a 1-1 correspondence between the bins in the GAP instance and the set of
machines M in the MMSTC() instance. There is a 1-1 correspondence between the set S
of items in I and the set of J of jobs in I ′. All jobs j ∈ J have weight wj = 1. For bin i let
J i1 = {j | s(i, j) = 1} and J i1+δ = {j | s(i, j) = 1 + δ}. All items can be assigned to all bins,
albeit with a different size, hence for every machine i, J (i) = J . We define pij = 1 for all
i ∈ M and j ∈ J . Every machine i ∈ M has exactly two submachines.

• Submachine 1 has capacity 2 and the set of jobs J (i, 1) that can be assigned to it is
J i1 ∪ J i1+δ.

• Submachine 2 has capacity 3 and the set of jobs J (i, 2) that can be assigned to it is
J i1.

We show that any feasible assignment σ of items to bins can be mapped to the same as-
signment σ of jobs to machines where the total profit is equal to the total weight. For bin i
there are two cases.
Case 1: σ−1(i)∩J i1+δ = ∅. Then σ−1(i) consists of at most 3 items from J i1. In the MMTSC()
solution we open submachine 2 and assign to it the jobs in σ−1(i).
Case 2: σ−1(i) ∩ J i1+δ ̸= ∅. Then σ−1(i) consists of at most 2 items from J i1 ∪ J i1+δ. In the
MMTSC solution we open submachine 1 and assign to it the jobs in σ−1(i).

Conversely, it is easy to see that any feasible solution to the MMSTC() instance I ′ can
be mapped to a feasible solution for I with the same objective function value. Therefore
any ρ-appproximate solution for I ′ yields a ρ-approximate solution for I.

To prove an (1−1/e)-hardness for general processing times we reduce from the Distibuted
Caching Problem without Bandwidth constraints (denoted CapDC) defined by Fleischer et
al. [11]. In the CapDC problem we are given a set U of m cache locations with capacity
Ai for each location i and a set H of n requests. There are k request types {t1, . . . , tk},
k ≤ n; each request type tl has a size atl , l ∈ [k]. Request j has a request type t(j). The
profit of providing request j from cache location i is fij. A set of requests Si is feasible for
cache location i if it satisfies the capacity constraint:

∑
t∈{t(j)|j∈Si} at ≤ Ai. The goal is to

find a feasible assignmemt of requests to cache locations to maximize the total profit. Call
(0, 1)-CapDC the special case of CapDC where for all i, j fij ∈ {0, 1}.

For convenience, let us define GraphCapDC as the special case of CapDC where for all
i, j, fij ∈ {0, 1} and a bipartite graph H determines the profit value. If edge ij ∈ E(H),
we say that that request j can be assigned to location i and we define profit fij = 1. Else,
if j cannot be assigned to location i, fij = 0. Rephrasing a result from [11] in the above
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terminology, Fleischer et al. showed that GraphCapDC is hard to approximate even when
every cache location can admit at most one request type:

Theorem 5. [11] There is a family F of instances of GraphCapDC with m cache locations
where the number of types and requests are both bounded by n = Θ(mc), c > 0 a constant,
that is not approximable within a factor better than 1− 1/e+ ε, for any fixed ε > 0, unless
NP ⊆ DTIME(nO(log logn)). The hardness result holds even for GraphCapDC instances where
(i) the capacity Ai of each cache location is equal to 1 (ii) the size of each request type is
equal to 1.

We are now ready to show the following.

Theorem 6. There is a family of instances of MMSTC() that is not approximable within a
factor better than 1−1/e+ε, for any ε > 0, unless NP ⊆ DTIME(nO(log logn)). The size of an
instance in the family is n = Θ(mc), c > 0 a constant, where m is the number of machines.
The hardness result holds even for MMSTC() instances where for all i ∈ M, j ∈ J (i), (i)
pij = pj and (ii) uij = uj, i.e., a job has the same processing time and tolerance capacity on
all machines it can be assigned to.

Proof. We produce an approximation-preserving reduction f from GraphCapDC to MM-
STC(). To an instance I of GraphCapDC we map the instance f(I) which is defined as
follows. There is a 1-1 correspondence between the set of cache locations U and the set M
of machines. Similarly, there is a 1-1 correspondence between the set H of n requests and
the set J of jobs. For every job j, wj = 1. We say that job j can be assigned to machine
i, equivalently j ∈ J (i), if request j can be assigned to cache location i. Since a request j
has a type tj, the corresponding job j inherits the type tj. We need to express in f(I) the
constraint that every machine can accept jobs of at most one type. We define the auxiliary
sequence of integers b1, . . . , bn where b1 = 1 and for i ∈ {2, . . . , n}, bi = nbi−1 + 1.

Let µi be the number of types that can be assigned to machine i, i.e., the number of
types for which there is at least one job of this type that can be assigned to machine i. Let
the corresponding i-compatible sequence of types be (tk1 , . . . , tkµi ) where k1 < . . . < kµi . We
emphasize that (k1, . . . , kµi) is a subsequence of (1, . . . , k). We define the cardinality of the
set Si of submachines of i to be µi. Let nl, l ∈ µi, be the number of jobs of type tkl that
can be assigned to machine i. We now specify to which submachines in Si each job in J (i)
can be assigned. The n1 jobs of type tk1 can be assigned only to submachine 1 ∈ Si. Each
has processing time q1 = bk1 . The capacity ūi1 of submachine 1 is defined to be nq1. The n2

jobs of type tk2 can be assigned to submachines 1 and 2. Each has processing time q2 = bk2 .
The capacity ūi2 of submachine 2 is defined to be nq2. In general, submachine l, l ∈ [µi],
l ≥ 2, has capacity ūil = nql where all jobs of type tkl have processing time ql = bkl and can
be assigned to submachines 1 through l. From the definition of the b-sequence, ql > ūij for
every j < l. Therefore in any 1-feasible assignment, a job can be assigned to submachine l
iff its type is tkl . From the definition of the instance f(I), a job of type tk has processing
time bk and tolerance capacity nbk on all machines in M(j). This establishes conditions (i)
and (ii) of the theorem.
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We define a mapping between solutions to I and solutions to f(I). In any feasible
solution of the GraphCapDC instance I, location i hosts requests of at most one type, say
tl, l ∈ [k]. In the instance f(I), let p be such that tl is the pth type in the i-compatible
sequence, i.e., tl = tkp . In the solution for f(I) we open submachine p and assign to it the
jobs corresponding to the requests assigned to location i. Conversely, consider any 1-feasible
solution for the MMSTC() instance f(I) and let p be the index of the open submachine
for machine i. By the discussion above, jobs of at most one type have been assigned to
submachine p, in particular jobs of the type tkp .

It is straightforward to verify that the solution mappings defined above translate the
total profit to the exact same total weight and vice versa. Therefore the reduction f is
approximation-preserving. The family F of hard GraphCapDC instances defined in The-
orem 5, gives rise to a family f(F ) of hard MMSTC() instances with m machines where
the number of jobs, and submachines are bounded by a polynomial in m, while the capac-
ities and processing times can be represented each by a number of bits bounded also by a
polynomial in m. By Theorem 5, if we can approximate MMSTC() on the family f(F ) in
polynomial time within a factor less than 1− 1/e+ ε, then NP ⊆ DTIME(nO(log logn)).

3.4. MMSTC with additional constraints
The techniques of the previous section can be used to derive good approximations for

the extension of MMSTC() with additional constraints. First, we will show that Theorem 2
extends to MMSTC(k-C,RJ,RM). Then, we will show that MMSTC(k-C,RM,A) is
((1− 1

e
)2−ε)-approximable for any constant ε > 0. Note that the introduction of constraints

A leads to a worsening of the approximation factor. Also, note that MMSTC with any subset
of the constraints introduced in these two problems can be polynomially solved within the
same approximation factor.

For both problems, we will use the extension of [27] to bipartite graphs done by [12]. More
specifically, the dependent rounding of Section 3.2 becomes the rounding procedure of [12]
on a bipartite graph G = (U, V,E), constructed as follows: Each distribution D(ti; x

∗|i)
gives rise to a star with machine i at its center, and the configurations of Ci in the support
of x∗ at the leaves. Side U contains the machines/centers of these stars, while the leaves of
each star centered at machine i correspond to the configurations in Ci, and are vertices on
side V . In order to model the additional constraints, the following changes will be made to
G. Please see Table 1 for the constraint abbreviations.

k-C: We add a “dummy" configuration vertex C∅ to V . The assignment of this “dummy”
configuration to a machine will imply that this machine cannot be used. Note that C∅
can be assigned to more than one machines.

RJ: Let CR = {C1, C2, . . . , Cl} be the set of bundles of required jobs. For each one of the l
disjoint subsets of jobs C1, . . . , Cl that have to be scheduled as a bundle, we create a
new vertex in V . The configurations in CR do not appear amongst the vertices of Ci
for any machine i.

RM,A: No changes to G are needed.
14



An edge (i, C) ∈ E represents the assignment of configuration C to machine i, and corre-
sponds to decision variable xi,C . Note that C can be C∅, in which case edge (i, C∅) indicates
leaving machine i unused. There is an edge (i, C) ∈ E iff x∗i,C ∈ (0, 1) in the fractional
solution x∗ we are rounding. Note that there are no edges for initially integral (0 or 1) x∗i,C ,
and edge (i, C) disappears when x∗i,C is rounded to 0 or 1 during the rounding process.

Problem MMSTC(k-C,RJ,RM). To simplify our exposition, we will assume that we
have guessed the exact number of machines k0 ≤ k used by the optimal solution (by ‘guessing’
we mean the exhaustive enumeration of k0 values, and the output of the maximum obtained
solution). Let M(Ch) be the set of machines that bundle Ch ∈ CR can be assigned to.
Formulation (CLP) can be extended as follows:

max
∑
j∈J

wj

∑
i∈M

∑
k∈Si

∑
Ck : j∈Ck

xi,Ck
+
∑
i∈M

∑
C∈CR:j∈C

xi,C

 s.t. (CLP+)

∑
k∈Si

∑
Ck

xi,Ck
+
∑
C∈CR

xi,C + xi,C∅ = 1 ∀i ∈ M (11)∑
i∈M

∑
k∈Si

∑
Ck:j∈Ck

xi,Ck
+
∑
i∈M

∑
C∈CR:j∈C

xi,C ≤ 1 ∀j ∈ J (12)

∑
i∈M

xi,C∅ = m− k0 (13)∑
i∈M(Ch)

xi,Ch
= 1 h = 1, 2, . . . , l (14)

f∑
i=1

xi,C∅ = 0 (15)

xi,C ≥ 0 ∀i, C (16)

where (13) implements the k0-C constraint and (11) has been modified accordingly, (14)
implements the RJ constraint for job bundles C1, C2, . . . , Cl, and (15) implements the RM
constraint for machines 1, 2, . . . , f (wlog we assume that the required machines are the first
f of them). Note that in order for (15) to imply that machines 1, . . . , f are used, we are not
allowing configurations with no jobs in Ci for i = 1, . . . , f .

The dual of (CLP+) is

min
∑
i∈M

yi +
∑
j∈J

zj + (m− k0)t+
l∑

h=1

uh s.t. (DCLP+)

yi +
∑
j∈Ck

zj ≥ w(Ck) ∀i ∈ M,∀k ∈ Si,∀Ck ∈ C(i, k) (17)

yi + uh +
∑
j∈Ch

zj ≥ w(Ch) ∀i ∈ M,∀Ch ∈ CR (18)

t+ yi + v ≥ 0 i = 1, . . . , f (19)
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t+ yi ≥ 0 i = f + 1, . . . ,m (20)
z ≥ 0 (21)
y, t, v, u free (22)

The separation oracle of (D-CLP) can be easily extended to solve the new dual LP, and,
therefore compute an (1− δ)-approximate solution x∗ to (CLP+).

Lemma 2. There is a polynomial-time (1−ε)-approximate separation oracle for (DCLP+),
for any constant ε > 0.

Proof. There are polynomially many constraints (18)-(20), hence they can be checked for
violation in polynomial time. For constraints (17), the proof is similar to Lemma 1, with
item values vj = wj − zj. The case yi ≥ 0 is treated exactly as in Lemma 1.

If yi < 0, then the empty configuration, i.e., picking no items, provides a violating
inequality, for i = f+1, . . . , n. For i = 1, 2, . . . , f , where configurations without any jobs are
not allowed, there are two cases: (i) If there is an item j with vj ≥ 0, then the configuration
with this single item provides the violating constraint. (ii) If vj < 0, ∀j ∈ J (i, k), then let
vmax = maxj vj. If yi < vmax then the configuration with only an item of value vmax provides
a violated constraint; if yi ≥ vmax then there is no configuration that can violate (17), and
we move to the next combination of i, k.

As already mentioned, the dependent rounding of Section 3.2 becomes the rounding
procedure of [12] on bipartite graph G = (U, V,E), that satisfies properties (A1), (A2),
(A3). We require a rounding of x∗ that achieves degree 1 for all vertices in U , degree
m−k0 for vertex C∅ in V , and degree 1 for the vertices CR in V . The dependent randomized
rounding of [12] satisfies these requirements with probability 1 (property (A2)). Theorem 4.4
of [24] expands the negative correlation property (A3) of [12] to all configuration indicator
variables of V , stating the following when adapted to our setting:

Theorem 7 ([24, Theorem 4.4]). The indicator random variables XC of configurations C
being picked or not are negatively correlated, and this holds for arbitrary degree bounds on
the vertices of V .

Hence, (9) carries through, and together with the known lower bound for the Maximum
Coverage problem [8], we have the following:

Theorem 8. MMSTC(k-C,RJ,RM) has a polynomial-time (1 − 1
e
− ε)-approximation al-

gorithm for any constant ε > 0, that satisfies constraints k-C,RJ,RM . This approximation
factor is best possible, unless P = NP.

Clearly, the bounds of Theorem 8 apply also to MMSTC with any subset of constraints
k-C,RJ,RM .

Problem MMSTC(k-C,RM,A). Constraint A allows li ≥ 1 copies of each machine i. In
this case, constraint k-C can take two different meanings: (i) It demands that at most k
copies of machines can be used, or (ii) It demands that at most k machines can be used,
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i.e., if machine i is not used, then all of its copies are not used, and counts as 1 towards
the m − k machines that will not be used. It is easy to see that case (i) can be reduced
to problem MMSTC(k-C,RJ,RM) studied above, by simply treating each machine copy
as a separate machine. Note that in this case the constraints RJ can also be handled. In
this section we assume that constraint k-C has the second meaning, and the handling of
constraints RJ will be left as an open problem. The constraint abbreviations are in Table 1.

We will modify (CLP+), so that the configurations for each machine i are combinations
of li configurations, each in Ci. We also allow for some copies of i to not receive any
configuration. Let Pi be the set of such combined configurations for machine i. Then the
Configuration LP becomes

max
∑
j∈J

wj

(∑
i∈M

∑
C∈Pi:j∈C

xi,C

)
s.t. (CLPA)∑

C∈Pi

xi,C + xi,C∅ = 1 ∀i ∈ M (23)∑
i∈M

∑
C∈Pi:j∈C

xi,C ≤ 1 ∀j ∈ J (24)∑
i∈M

xi,C∅ = m− k0 (25)

f∑
i=1

xi,C∅ = 0 (26)

xi,C ≥ 0 ∀i, C (27)

and its dual is

min
∑
i∈M

yi +
∑
j∈J

zj + (m− k0)t s.t. (DCLPA)

yi +
∑
j∈C

zj ≥ w(C) ∀i ∈ M,∀C ∈ Pi (28)

t+ yi + v ≥ 0 i = 1, . . . , f (29)
t+ yi ≥ 0 i = f + 1, . . . ,m (30)
z ≥ 0 (31)
y, t, v free (32)

Lemma 3. There is a polynomial-time (1 − 1
e
− ε)-approximate separation oracle for

(DCLPA), for any constant ε > 0.

Proof. The separation oracle can easily check constraints (29), (30). Let us fix a machine
i ∈ M. We explain how the separation oracle can detect whether there is C ∈ Pi that
violates (28).
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We define an MMSTC() instance Ii for machine i as follows. To every job j ∈ J (i),
we assign a value vj := wj − zj ≤ wj , and a size pij. The set of machines for the instance
Ii is a set of li machines, each identical to machine i. The objective is to maximize the
total value of the jobs that can be feasibly assigned to these li identical machines. Let
J ′ = {j ∈ J (i) | vj ≥ 0}. The addition of items with negative values can only decrease the
objective function of the MMSTC() subproblem. If J ′ = ∅, the maximum-value solution for
Ii consists of a single item, the one with value v∗ = maxj∈J vj, and there is no configuration
in Pi violating (28) iff yi ≥ v∗. If J ′ ̸= ∅ the set of jobs for the instance Ii is J ′.

We distinguish two cases for machine i:

Machine i is not required, i.e., i ̸∈ {1, . . . , f}: In this case, instance Ii is an instance of the
MMSTC() problem.

Machine i is required, i.e., i ∈ {1, . . . , f}: In this case, instance Ii cannot be an instance of
the MMSTC() problem, since the solution returned for the MMSTC() subproblem
may consist of only empty configurations for all li copies, and their combination would
result in an empty configuration C ∈ Pi, which is unacceptable. Therefore, we will
demand that at least one machine copy (say, the first, since all copies of machine i
are identical) has a non-empty configuration, i.e., the first copy treated as a required
machine. Hence, in this case, instance Ii is an instance of the MMSTC(RM) problem.

In both cases, an approximate oracle can be implemented to run in polynomial-time by
running the MMSTC algorithm of Theorem 8 on instance Ii. It returns li configurations,
each belonging to Ci. Their combination forms a single configuration C ∈ Pi with value v∗.

The oracle concludes that constraints (28) are not violated iff yi ≥ v∗. According to
Theorem 8, the value v∗ returned by the algorithm is at least (1− 1

e
− ε) · vopt, where ε > 0

is any constant, and vopt is the optimal value for Ii. Iterating over all machines, we have a
(1− 1

e
− ε)-approximate separation oracle for (DCLPA).

Using the approximate separation oracle of Lemma 3 above, Lemma 2.2 in [11] implies
that a (fractional) (1− 1

e
−ε)-approximate solution to (CLPA) can be computed in polynomial

time. The application of the dependent rounding of [12] on this approximate fractional
solution produces an ((1− 1

e
)2−ε)-approximate integral solution whose properties are codified

in the following theorem.

Theorem 9. MMSTC(k-C,RM,A) has a polynomial-time ((1 − 1
e
)2 − ε)-approximation

algorithm for any constant ε > 0, that satisfies constraints k-C,RM,A.

As was mentioned above, the absence of augmentation constraints A corresponds to
the case of li = 1, ∀i. For each machine i ∈ M, define di to be the number of distinct
processing times, i.e., di = |{pij | j ∈ J (i)}|. In the special case where for every i, li and di
are constant, i.e., are not part of the input, we can avoid using an MMSTC-algorithm as
the separation oracle. Instead, for every machine i, we enumerate all possible combinations
of li submachines from Si. For each (li)-subset T of Si, assigning a maximum-weight set
of jobs to the submachines in T is an instance of the multiple knapsack problem with
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assignment restrictions where job j can be assigned only to the machines (knapsacks) in the
set M(i, j) ∩ T. It is easy to see that for a fixed number of knapsacks and a fixed number
of processing times this problem can be solved exactly in polynomial-time (see also Prop. 3
in [6]). Thus we obtain a (1− 1

e
)-approximation algorithm for MMSTC(k-C,RM,A):

Corollary 1. Problem MMSTC(k-C,RM,A) where for for all i ∈ M, li and di are fixed
has a polynomial-time (1− 1

e
)-approximation algorithm that satisfies constraints k-C,RM,A.

4. Minimizing Congestion

In this section we study the SMSTC problem. We provide lower bounds on integrality
gaps and a hardness of approximation result. In the instances we will consider, for every
job j and for all i ∈ M(j), pij = 1. The input is then specified simply as a set {uij ∈
Z≥0 | (i, j) ∈ M × J}, and we wish to find the minimum ρ ≥ 1 for which there is a ρ-
feasible assignment for the set J . In Section 4.1 we compare the Configuration LP against
a natural linear relaxation. We show integrality gap lower bounds for the Configuration LP
and the relaxation of the quadratic program (QP) in Section 4.2. In Section 4.3 we provide
a hardness of approximation result.

4.1. The natural formulation versus the Configuration LP
Let us define a natural linear relaxation for MSTC. We use the equivalent SSP problem

formulation. We define an LP of the scheduling/facility location variety with assignment
variables for pairs of jobs and submachines. Recall that ūik denotes the capacity of sub-
machine k ∈ Si. Variable yik denotes the extent by which we open submachine k ∈ Si and
variable xijk the extent to which job j is assigned to this submachine.

m∑
i=1

∑
k∈M(i,j)

xijk ≥ 1 j ∈ J (LP-natural)

∑
k∈Si

yik ≤ 1 i ∈ M∑
j∈J (i,k)

pijxijk ≤ uik · yik i ∈ M, k ∈ Si

yik ≥ 0 i ∈ M, k ∈ Si

xijk ≥ 0 i ∈ M, j ∈ J , k ∈ M(i, j)

It is easy to see that (LP-natural) is a valid relaxation. The YES-instances of MSTC are
exactly those for which (LP-natural) has a feasible solution in which all variables take values
in {0, 1}.

We denote the Configuration LP for the MSTC search problem as (CCLP). It results
from (CLP) by removing the objective function.∑

k∈Si

∑
Ck

xi,Ck
= 1 ∀i ∈ M (CCLP)
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∑
i∈M

∑
k∈Si

∑
Ck:j∈Ck

xi,Ck
≥ 1 ∀j ∈ J

xi,Ck
≥ 0 ∀i ∈ M,∀k ∈ Si,∀Ck ∈ C(i, k)

The upcoming proposition establishes that (CCLP) is stictly stronger than (LP-natural).

Proposition 2. For every instance I of MSTC for which (CCLP) is feasible, (LP-natural)
is feasible as well. There is an instance Υ for which (LP-natural) is feasible but (CCLP) is
infeasible.

Proof. The following claim is straightforward.

Claim 1. If (CCLP) is feasible for instance I, (LP-natural) is feasible for I as well.

We define the instance Υ. The set M has cardinality m ≥ 1. Every machine i ∈ [m] has
two submachines. We define Si = {iU , i1} where submachine iU has capacity U = m and
submachine i1 has capacity 1.

The number n of jobs is m(U−1)+1. All jobs have unit processing time on each machine.
Each machine i ∈ [m], has a cluster Ji = {jil | l ∈ [U − 1]} of U − 1 “private” jobs that
can only be assigned to i and in particular to both submachines of i. These private clusters
account for m(U − 1) jobs. The remaining single job out of the n, call it job 1, can be
assigned only to submachine i1, for all i ∈ [m]. Therefore the set of jobs is

J = {1} ∪
m⋃
i=1

Ji.

Claim 2. (LP-natural) is feasible for instance Υ.

Proof of claim. For all i, open submachines iU and i1 to the extent of (U − 1)/U and
1/U respectively. For every i ∈ [m] and for every job d = jil ∈ Ji, set xi,d,iU = 1. Therefore
each private job of machine i is completely serviced. For every i ∈ [m], set xi,1,i1 = 1/U.
Because U = m, job 1 is also completely serviced.

Claim 3. (CCLP) is infeasible for instance Υ.

Proof of claim. In any solution of (CCLP), any private job from Ji has to be assigned
to machine i to the extent of 1. This can happen either via configurations of size at most
U on submachine iU (type 1 configuration) or configurations of size at most 1 (type 2 con-
figuration) on submachine i1. The type 2 configurations are partitioned into configurations
of type 2a (that do not contain job 1) and configurations of type 2b (that contain job 1).
Notice that job 1 can only appear in type 2b configurations. Consider a solution of (CCLP).
By feasibility the total number of configurations assigned to all submachines of any machine
i ∈ [m] cannot exceed 1. Let M1 be the set of machines that are assigned a non-zero fraction
of a type 2b configuration. M1 should be non-empty but then for all i ∈M1, we obtain that
at least U − 2 private jobs in in Ji are not scheduled to the extent of 1.

From Claims 1,2 and 3, the proof is complete.

20



4.2. Integrality gaps for SMSTC
Let P be a valid mathematical programming relaxation for computing an assignment for

the jobs in J . For f ≥ 1, we say that P has an integrality gap of at least f for congestion if
there is an instance I = {uij | (i, j) ∈ M×J} for which P is feasible, but P has no integer
feasible solution for any instance Iρ = {ρ · uij | (i, j) ∈ M×J} with ρ < f.

We start by defining an instance Ξ. In this instance each job will have the same capacity
on each machine it can be assigned to. The set of machines consists of three blocks of
machines, blocks A, B and C. Each machine has two submachines, one with large and one
with small capacity. Accordingly we refer to the big and the small submachine of a given
machine. All machines within the same block X have the same large and small capacities
at their two submachines. These capacity values are denoted UX and uX respectively.

• Block A consists of a single machine with UA = 2k and uA = 2, where k ≥ 2 is a
positive integer of our choice. We refer to this single machine as machine A.

• Block B consists of 2 machines, B1 and B2. The submachine capacities are UB = 2k
and uB = 2.

• Block C consists of 2 machines, C1 and C2. The submachine capacities are UC = 2k
and uC = 2.

All jobs have processing time 1. They are partitioned into two sets, those that can only be
assigned to small submachines and those that can be assigned to big and small submachines.
By slightly abusing terminology we refer to the corresponding sets as small and large jobs
respectively. In what follows when we say that a job may be assigned to the big submachine
of machine x it is implied that it can also be assigned to the small submachine of x.

The set of large jobs consists of the disjoint union of two sets F and G. Set F contains
2k jobs divided into 2 groups F1, F2 each containing k jobs. G consists of k jobs.

• The jobs of F can be assigned to the big submachine of machine A. The jobs of Fi,
can be assigned to the big submachine of machine Bi, i = 1, 2.

• The jobs of G can be assigned to the big submachines of machines C1, C2.

The set of small jobs consists of the disjoint union of two sets P and Q.

• P contains 2 jobs p1, p2 that can be scheduled on the small submachine of machine A.
Moreover pi can be assigned on the small submachine of machine Ci, i ∈ {1, 2}.

• Set Q contains 1 job, call it q. Job q can be scheduled on the small submachine of
machines B1, B2.

See Figure 3 for a depiction of the instance Ξ.

Lemma 4. Linear program (CCLP) has a feasible half-integral solution x for the instance
Ξ.
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Figure 3: Assignment possibilities for Instance Ξ. The five machines in the instance are A, B1, B2, C1, C2.

Proof. There is a feasible half-integral solution x̄ where to every submachine a configuration
of x-value 1/2 is assigned and each submachine is “open” to the extent of a 1/2. The jobs
in F ∪ G ∪ P ∪ Q can be assigned exactly to two machines each and in x̄ they are split
equally among these two machines. It is easy to see that these split jobs (of “width” 1/2
and “height” 1) can be packed into configurations of x-value 1/2 and height that does not
exceed the capacity of the corresponding submachine.

The reader is reminded that based on the transformation in Section 2 if a job j can be
assigned only to a small submachine of machine X ∈ {A,B,C} the tolerance capacity of j
on machine X is uX . If j can be assigned to the large and the small submachine of machine
X, the tolerance capacity of j on machine X is UX .

Lemma 5. Any integer solution for the instance Ξ that leaves no job unassigned has a
congestion of at least k/4.

Proof. There are two possible cases for a feasible solution.
Case 1. There is an i ∈ {1, 2} such that at least half of the jobs in Fi are not scheduled

on Bi. I.e., there is an i ∈ {1, 2} such that the big submachine of Bi contains less than half of
the jobs in Fi. Therefore at least k/2 jobs from Fi are scheduled on machine A. If some job pj
from P is present on A, then pj experiences a congestion of at least (k/2)/(uA) = k/4. If no
job from P is present on A, each machine of block C hosts exactly one job from P . For every
i ∈ {1, 2} at least half of the jobs in G must end up on a machine Ci∗ , for some i∗ ∈ {1, 2}.
The corresponding small job pi∗ experiences a congestion of at least (k/2)/uC = k/4.
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Case 2. For every i ∈ {1, 2}, less than half of the jobs in Fi are not scheduled on Bi. I.e.,
for every i ∈ {1, 2} the big submachine of Bi contains at least half of the jobs of Fi. There
is an i∗ ∈ {1, 2} such that the job q is assigned to Bi∗ . Then this small job experiences a
congestion of at least (k/2)/(uB) = k/4.

The total number n of jobs in the instance Ξ is equal to 3(k + 1). We have proved the
following theorem.

Theorem 10. The integrality gap of the Configuration LP (CCLP) for congestion on an
instance with n jobs is at least (n − 3)/12. This holds even when (i) there are only two
distinct capacity values and (ii) every job j has unit processing time, can be assigned to at
most two machines and has the same tolerance capacity on every machine in M(j).

Define the relaxation (QP-F) of (QP) where the integrality constraints (2) are replaced
by

xij ≥ 0 ∀i ∈ M,∀j ∈ J (i).

The instance Ξ we used in Theorem 10 is infeasible for (QP-F). We use the instance Υ

defined in the proof of Proposition 2, which we know in turn to be infeasible for (CCLP).
In any feasible integer solution, there is a machine i∗ ∈ [m] that processes job 1. In order
to service the jobs in Ji∗ a congestion of U has to be incurred.

There is a feasible fractional solution x̄ to (QP-F). For every i ∈ [m] and for every job
d = jil ∈ Ji, set x̄i,d = 1. For every i ∈ [m], set x̄i1 = 1/U. Because U = m, job 1 is
completely serviced. It is easy to see that all capacity constraints are met.

As pointed out by an anonymous reviewer the space of integer solutions of (QP) is
unaffected if the quadratic constraints (1) are replaced by the following linear constraints:∑

k∈J (i)

pikxik ≤ uij +M(1− xij) ∀j ∈ J ,∀i ∈ M(j) (33)

for a big enough M , such as M ≥
∑

j∈J (i) pij. Define (LQP-F) to be the linear relaxation
resulting from (QP-F) by replacing the quadratic constraints (1) by (33). The minimum
value of M for which this is a valid relaxation is the difference of the two capacity values,
i.e., M = U − 1. It is easy to see that x̄ is feasible for (LQP-F) as well for any M ≥ U − 1.

Theorem 11. The integrality gap of (QP-F) and (LQP-F) for congestion is at least m,
where m is the number of machines in the instance. This holds even when (i) there are
only two distinct capacity values and (ii) every job j has unit processing time and the same
tolerance capacity on every machine in M(j).
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4.3. Hardness of approximation for SMSTC
It is well-known that the following problem is NP-complete [13].

Bounded 3D-Matching
Input: Set of triples M ⊆ A×B ×C, where A, B, and C are pairwise disjoint sets
having the same number q of elements. Every element of A ∪ B ∪ C occurs in at
most 3 triples.
Question: Does M contain a matching, i.e., a subset M ′ ⊆ M such that |M ′| = q
and no two elements of M ′ agree in any coordinate?

Recall Definition 1. An instance of SMSTC which has an f -feasible assignment is called an
f -feasible instance.

Bj

m2
i

m1
i

F 3
i

OF3
i

OF2
i

OF1
i

F 2
i

F 1
i

Ck
m3
i

(a)

x1i x2i x3i

OF1
i OF3

iOF2
i

(b)

Figure 4: Depiction of the job assignment possibilities for the instance ϕ(I). (a) Example of a group
Mi = {m1

i ,m
2
i ,m

3
i } of size 3 and the jobs that can be assigned to the triple-machines in Mi. Machine m2

i

corresponds to the triple (ai, bj , ck). (b) Allowed assignments for the three placeholder jobs xp
i , p ∈ {1, 2, 3}

to the overfolow machines OF1
i , OF2

i , OF3
i .

Given an instance I of Bounded 3D-Matching we construct an instance ϕ(I) of
SMSTC. For every triple in M we have in ϕ(I) a dedicated triple-machine. For every
i ∈ [q], group together all machines that correspond to triples whose first coordinate is
ai ∈ A in a group Mi. For every such group, add |Mi| overflow machines OFpi , p ∈ [|Mi|].
Without loss of generality we may assume that |Mi| > 1. The reader is invited to bear in
mind from now on that |Mi| ∈ {2, 3}. The total number of machines in the instance ϕ(I) is
|M |+

∑q
i=1 |Mi| ≤ 12q.

For i ∈ [q], we create |Mi| blocks of “dummy” jobs F p
i , p ∈ [|Mi|]. Every block contains

f jobs where f > 1 is an integer we will define later. The jobs of block F p
i can be scheduled
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only on machine mp
i ∈Mi and on the overflow machine OFpi . The tolerance capacity of every

dummy job is f on both machines it can be assigned to. Observe that if a block of dummies
ends up on a machine, any additional jobs assigned to the machine will incur congestion
larger than 1.

For every bj ∈ B we create a set Bj of f ′ jobs brj , r ∈ [f ′], each of which can only
be scheduled on the triple-machines that correspond to triples in which bj is the second
component. The quantity f ′ is an integer larger than f and will be defined later. For every
ck ∈ C we create a set Ck of f ′ jobs crk, r ∈ [f ′], each of which can only be scheduled on the
triple-machines that correspond to triples in which ck is the third component. The tolerance
capacity of these jobs is 2f ′. See Figure 4a.

Finally, there is a set of “placeholder” jobs whose mission will be to block some of the
overflow machines. In particular, for every i ∈ [q], there are di placeholder jobs with di = 1
if |Mi| = 2 and di = 3 if |Mi| = 3. The set of placeholder jobs is denoted as {xpi }p∈[di]. The
assignment possibilities are defined as follows. Case 1: di = 1. The single placeholder job
x1i can be assigned to the overflow machines OFpi , p ∈ {1, 2}, with a tolerance capacity of
1. Case 2: di = 3. Every placeholder job can be assigned to exactly two of the overflow
machines OFpi , p ∈ [3], in the way shown in Figure 4b. The tolerance capacity of each
placeholder job is 2.

Remark 1. In a solution to ϕ(I) with congestion 1 the following hold for every i ∈ [q].
If Case 1 holds for di, at least one overflow machine must be reserved exclusively for the
placeholder job x1i . Therefore at most one dummy block can be assigned to an overflow ma-
chine.
If Case 2 holds for di, the placeholder jobs must be assigned on at least two overflow ma-
chines. No more than a single dummy job may be assigned to an overflow machine that
carries a placeholder.

Lemma 6. If I is a "YES"-instance of Bounded 3D-Matching, then ϕ(I) is a 1-feasible
instance of SMSTC.

Proof. For all i ∈ [q] perform the following. Let τ = (ai, bj, ck) be the triple in the matching
that contains element ai. For all r ∈ [f ′] assign the jobs brj and crk to the machinemp

i ∈Mi that
corresponds to the triple τ. The dummy jobs of block F p

i are assigned to the overflow machine
OFpi . The remaining dummy jobs F p′

i , p
′ ̸= p, are assigned each to their corresponding

machine in Mi. There are |Mi| − 1 available overflow machines and we can schedule the di
placeholders on them.

Define ρ so that the following relations are satisfied

2 · ρ < f and ρ · f < f ′/3. (34)

Lemma 7. If I is a "NO"-instance of Bounded 3D-Matching, then ϕ(I) is not a ρ-
feasible instance of SMSTC.
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Proof. Assume to the contrary that there is a ρ-feasible assignment σ. Fix a j ∈ [q]. Consider
the jobs brj , r ∈ [f ′]. By the structure of the instance I there are at most 3 triple-machines to
which these f ′ jobs can be assigned. Therefore in σ there is a machine that carries at least
f ′/3 jobs from Bj. By (34) a triple machine that carries even one dummy job can tolerate
a total of at most ρ · f < f ′/3 jobs. Therefore among the triple-machines that can accept
the jobs of Bj at least one must have no dummy assigned. The above holds for all j, and in
each triple-machine m only jobs from the same set Bm(j) can be assigned. Hence there must
be at least q machines in M that are empty from dummy so that each receives a job from a
distinct Bj, j ∈ [q].

Claim 4. In a ρ-feasible assignment σ, for every i ∈ [q], exactly one triple-machine in group
Mi is empty from dummy.

Proof of Claim. We have shown that at least q machines in M must be empty from
dummy. We will show that for each i at most one machine in Mi can be empty from
dummy. This will establish the claim. We distinguish two cases.

Case 1: di = 1. Assume that in σ both machines m1
i ,m

2
i in Mi are empty from dummy.

Then the two overflow machines OF1
i ,OF2

i take each one block of dummy jobs. The place-
holder job xii must live on the same machine with f other jobs. By (34) this incurs a
congestion larger than ρ, a contradiction.

Case 2: di = 3. Assume that in σ at least two among the three machines in Mi are
empty from dummy. Then at least two overflow machines OFpi ,OFp

′

i take each one block of
dummy jobs. At least one of the three placeholder jobs x1i , x2i , x3i must live in σ on the same
machine with f other jobs. By (34) this incurs a congestion larger than ρ, a contradiction.
The proof of the claim is complete.

By Claim 4, exactly one machine from each of the q groups Mi must be empty from
dummy. Let M ′ be the set of these machines. Each machine in M ′ gets at least one member
from a distinct Bj. M

′ induces a 2D perfect matching of A×B.
Similarly, a triple machine that carries a dummy job can tolerate at most ρ · f < f ′/3

jobs from Ck, for any k ∈ [q]. Since σ is ρ-feasible, for every k ∈ [q] at least one job from Ck
is assigned to a machine that is empty of dummy, i.e., to a machine of M ′. Clearly, no two
jobs from different Ck, Ck′ sets, with k ̸= k′, can appear on the same triple-machine. The q
machines of M ′ that are empty from dummy induce a feasible 3D-Matching of A× B × C.
We have reached a contradiction.

As long as f ′ is larger than a suitable constant, setting ρ =
√
f ′

4
and f = ⌈

√
f ′/2⌉ + 1

satisfies (34).

We conclude that unless P = NP there is no polynomial-time algorithm that on input
ϕ(I) can output a solution with congestion at most

√
f ′/4 times the optimum. Given that

the number n of jobs in ϕ(I) is equal to 2f ′q+ f · |M |+
∑q

i=1 di and that q ≤ |M | ≤ 9q, we
have that n = Θ(f ′q). To keep the reduction polynomial-time it must be that f ′ = O(qc)
for some constant c > 0. In other words, f ′ = n1−ε for an arbitrary constant ε > 0 of our
choice. The following theorem has been proved.
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Theorem 12. For any constant ε > 0, there is no polynomial-time (n1/2−ε)-approximation
algorithm for SMSTC, unless P = NP. This holds even when (i) there are only four distinct
capacity values and (ii) every job j has unit processing time, can be assigned to at most three
machines and has the same tolerance capacity on each machine in M(j).

5. Conclusions

Several open problems arise from our work. Closing the n1/2-gap between Theorems 12
and 10 or coming up with a n1−ε-approximation algorithm for some constant 0 < ε < 1

2

is the obvious open question for SMSTC. Another open problem is the improvement of
the (1− 1

e
)2 − ε factor for MMSTC(k-C,RM,A) (Theorem 9). An approximation factor of

1− 1
e
−ε may be possible, and it can be achieved if there is an (1+ε)-approximate separation

oracle for (DCLPA), e.g., if there is a PTAS for MMSTC() (or, even better, MMSTC(RM))
for the special case where all machines are identical. Improving the factor of Theorem 6 or
Theorem 9 in the case of identical machines is another open problem. In fact, achieving
better approximation factors for other restricted versions of our problems (e.g., having only
O(log n) different tolerance capacity values, or when the number of machines is constant) is
an interesting research direction. An intermediate goal can be the extension of the (1− 1

e
)2−ε

approximation factor to include constraints RJ , i.e., to MMSTC(k-C,RJ,RM,A), which
would cover the combination of all our constraints.

Dealing with additional constraints to those that were considered here is another pos-
sible direction. An immediate extension is the introduction of a budget constraint. Given
assignment costs cij for all jobs j on machines i, and a budget B, the total cost of scheduled
jobs cannot exceed the budget B. This can be handled by the extension of the Chernoff
bounds in [22] as used in [18] and [5]. The work of [2, 5] may be useful in order to include
additional matroidal constraints to our problems, or to deal with more general objectives,
e.g., when the weights w of the jobs depend also on the machine they are scheduled on.
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