
Practical Issues and Algorithms for Analyzing Terrorist Networks1

Tami Carpenter, George Karakostas, and David Shallcross
Telcordia Technologies

445 South Street
Morristown, NJ 07960

1 Copyright 2002, Telcordia Technologies, Inc. All rights reserved.

Keywords: social network analysis, centrality,
betweenness, path-finding algorithms.

INTRODUCTION

In social network analysis, graphs are used to
model relationships between actors or
participants in a social setting. Each node or
vertex in the graph represents a participant or
actor. Each link or edge represents a connection
or relationship between two participants. A
variety of graph algorithms have been developed
to analyze the structure of social networks and to
assess the roles or importance of the individual
players. Since the September 11 bombing of the
World Trade Center, social network analysis has
emerged as a potential vehicle for modeling and
analyzing the structure of terrorist networks [10,
15].

There are a variety of measures to assess the
“importance” or centrality of each actor in a
social network [16]. The most popular of these
centrality measures require the computation or
enumeration of shortest paths between all pairs
of nodes in the graph. Such computations can be
time consuming in large graphs. Moreover, they
may become problematic even in more
moderately-sized networks when changing data
or “what-if” scenario analysis warrant frequent
recomputation.

In this paper, we assume that terrorist network
models may be large, dynamic and characterized
by uncertainty. The latter two properties, in
particular, are true not only for terrorist
networks, but are true more generally of
“covert” networks, where there may be a
deliberate effort to hide illicit activity. Models
of covert networks may be large, not necessarily
because the networks themselves are large, but
because the networks are unknown to us, so the
set of actors we monitor is likely to be a superset
of those that are actually engaged in illicit
activity. The models are dynamic because both
covert networks and our knowledge of them

change over time. Likewise, specific attributes
associated with nodes or links in the network
model contain uncertainty. Although social
network analysis has been used to study covert
criminal networks in the past (see [5] for
example), these networks are not as large or as
dynamic as terrorist networks, nor are the stakes
surrounding them as high.

A previous paper in this session (see Behrens
and Stephenson) describes a framework (called
NetOperative) to support lawmakers in their
effort to identify and monitor terrorist networks.
This framework combines statistical techniques
with ideas from social network analysis and with
efficient computational algorithms to support
such analysis. In this paper we focus on
algorithms for computing measures of centrality.
We describe the current best theoretical running
times for computing various centrality measures;
we discuss the current state-of-the-art for
dynamically updating these measures in response
to network changes; and we describe some
practical decomposition ideas that can also
benefit from maintaining dynamically updated
data structures. In addition, we discuss some
alternative measures of centrality that may be
more robust in the face of uncertainty.

CENTRALITY MEASURES

To define centrality measures more precisely, we
need to establish some notation. The notation
that we employ is similar to that defined in
Brandes [3]. We let G=(V, E) denote a graph
with vertex set V and edge set E. In general,
edges may be either directed or undirected. We
let n represent the number of vertices in V, and
we let m represent the number of edges in E. An
edge Ee ∈ has an associated weight or length
denoted l(e). If the graph is “unweighted”, l(e) is
assumed to be equal to 1 for all Ee ∈ . Edges
may be represented as a pair of incident vertices,
so that (s,t) represents the edge between nodes

Vts ∈, . We let d(s, t) denote the shortest

possible distance between vertices s and t in G.
Finally, we let stσ denote the number of shortest

paths between s and t in G, and we let)(vstσ
denote the number of such paths that include
vertex Vv ∈ .

Now, we can define two well-known [16]
centrality measures that we use for illustrative
purposes in subsequent discussion. Additional
measures and variations are described in the text
by Wasserman and Faust [16] and references
therein.

∑
∈

=

Vt

tvd
vC

),(

1
)(Closeness centrality,

∑
∈≠≠

=
Vvts st

st v
vB

σ
σ)(

)(Betweenness centrality.

We note that computing closeness centrality
requires computing the length of a shortest path
between all pairs of nodes in G. This requires
solving the well-known all-pairs shortest-paths
(APSP) problem. The current best algorithms
for APSP on sparse graphs require)(nmO

operations in unweighted graphs and

)log(2 nnnmO + operations in weighted graphs

[9]. In dense graphs, these bounds

asymptotically become)(3nO in the worst case,

but recent (more complicated) algorithms yield
somewhat better worst-case bounds [18].
Computing betweenness requires enumerating
all of the shortest paths between each pair of
nodes, which is even more work. The fastest
algorithms for computing betweenness are
provided by Brandes [3] and require

)(nmO operations in unweighted graphs and

)log(2 nnnmO + operations in weighted graphs.

These bounds are asymptotically the same as
those for solving APSP in sparse graphs.
Empirical results presented in [3] for randomly-
generated, undirected, unweighted, sparse graphs
suggest that betweenness in a 6000 node graph
can be computed in roughly 15 minutes on a
SUN Ultra10 workstation. Solution times appear
to be slower for weighted graphs and will slow
considerably as n increases into the tens of
thousands of nodes.

PRACTICAL ATTACKS ON COMPUTING
CENTRALITY

As n gets very large, the time to compute the
centrality measures can become prohibitive.
Nonetheless, there are some practical methods
that can sometimes be exploited to make these
computations more tenable in large graphs.
Thus, in addition to seeking algorithms with
improved theoretical running times for the
underlying problems like APSP, we can try to
exploit other features characteristic of our
application. In particular, the sparsity of social
networks may be exploited in practical
approaches that involve approximation or
decomposition. Often these strategies are
employed in attacks on NP-hard optimization
problems, but they can be applied any time the
size of a problem makes it difficult to solve.

Given the amount of uncertainty that we expect
to encounter in models of terrorist networks,
approximation methods may be particularly
attractive for these applications. A recent paper
by Eppstein and Wang [8] exploits the “small
world” phenomenon that is said to characterize
social networks in order to develop an
approximation algorithm for closeness centrality.
An open question is: can we develop fast
approximation algorithms for betweenness or for
the more closely related graph centrality
measure [3], which is defined as:

),(max

1
)(

tvd
vg

Vt∈

= Graph centrality.

More common practical approaches involve
decomposition. Sparse networks may have
“small cuts” that yield places where we can
break the problem apart. (A cut in a graph is a
set of vertices or edges whose removal
disconnects the graph.) A basic decomposition
strategy would proceed as follows: identify a cut;
break the problem apart at the cut; solve the
smaller problems on each side of the cut; and
“sew” the solutions together to obtain a solution
on the entire graph. This strategy is often
employed in attacks on NP-hard optimization
problems. (See, for example, [4].) However,
even for computationally tractable problems, like
APSP, we might still use decomposition in a
heuristic fashion to effectively reduce n in the
running time.

The simplest example of decomposition at a
small cut arises in undirected graphs where we
consider breaking the problem apart at
articulation points. Articulation points are single
vertices whose removal disconnects the graph.
We say that two vertices are biconnected or lie in
the same biconnected component if there is no
articulation point whose removal disconnects
them. If a node v is an articulation point,
removing v breaks the graph into (at least) two
components, which we call S and T in Figure 1.

Any shortest path between nodes in { }vS ∪
must involve only nodes in { }vS ∪ . Likewise,

shortest paths between nodes in { }vT ∪
involve only nodes in { }vT ∪ . Thus, in Figure

1, shortest paths between nodes in { }vS ∪ use

only gray links and shortest paths between nodes

in { }vT ∪ use only black links. Paths between

two nodes, Ss ∈ and Tt ∈ , are constructed as
the concatenation of shortest paths between s and
v with shortest paths between v and t. Thus, we
can find all shortest paths by solving a smaller
problem on each “side” of v, effectively reducing
n in the running time.

S T

v

Figure 1: Decomposing at articulation point v.

An attractive aspect of decomposing at
articulation points is that articulation points and
the shores induced by their removal are
identified by a simple)(mO algorithm [1]. The

decomposition idea can be generalized to other
types of small cuts, like two-edge cuts, but more
general cuts are more time-consuming to identify
and also more difficult to reconstruct solutions
across. Even more general decomposition
strategies may also be available. The tree width
of a graph may be thought of as a measure of its
complexity, and graphs with small tree width can

be recursively decomposed by removing small
sets of nodes. Such an approach requires
sophisticated ideas from graph theory surveyed
in [2]. Empirical studies are needed to see
whether these more complicated ideas yield
practical savings.

CENTRALITY IN DYNAMIC GRAPHS

In addition to being large and sparse, terrorist
networks, or at least our models of them, are
likely to be dynamic through time, with new
links being added and others being removed as
we gain information about the actors and their
communications. Thus, centrality measures may
have to be recomputed as the network evolves
through time. In addition to reducing the time
spent on the initial calculation, we would also
like to identify “cheap” algorithms for updating
centrality measures following a change in the
network. Such algorithms can also be of use in
“scenario analysis”, wherein we may want to
examine the effect of potential network changes.
For instance, within a tool like NetOperative, an
analyst could examine the sensitivity of the
centrality measures to “likely” network changes,
such as the addition of a believed link or the
removal of a key node.

Finding efficient algorithms to update the
solution of a graph problem following the
addition or deletion of links is an area of intense
research in the computer science community, as
described in a recent survey by Eppstein, Galil,
and Italiano [7]. Since the centrality measures
we consider involve the calculation of shortest
paths between all pairs of nodes, dynamic all
pairs shortest path algorithms may help us avoid
recalculating these paths from scratch. For
example, the algorithm by Demetrescu and
Italiano [6] supports updates (edge deletion,
insertion, and weight change) in

)log(35.2 nSnO time per update in directed

networks with weights that take at most S
different real values.

Dynamic algorithms for computing other graph
properties that may be helpful in carrying out the
centrality calculations more efficiently are also
described in the survey [7]. For example, the
minimum spanning tree for undirected graphs

can be maintained in time)log3/1(nnO per

update. 2-edge connectivity can be solved in

)2/1(nO time per update; 3-edge connectivity

can be solved in)3/2(nO time per update. For

k-vertex connectivity with 2 ≤ k ≤ 4 there are
algorithms with times ranging from

)2log2/1(nnO to))((nnO α per update. More

details can be found in [7].

If we use a decomposition-based approach, we
may, in fact, wish to maintain data structures that
allow us to update our knowledge of cuts and
shores of cuts without having to fully recompute
them. One of the best-studied of these problems
is for fully dynamic biconnectivity [11] in
undirected graphs. A fully dynamic
biconnectivity algorithm maintains and updates a
data structure that allows efficient queries about
the biconnected components of a dynamic graph.
The algorithm described by Henzinger [11]

performs updates in) log (nmO time and

answers queries about whether or not two nodes
are in the same biconnected component in
constant time. Further, it returns all of the nodes
in a biconnected component in time that is linear
in the size of the output. Such an algorithm
could be integrated within a larger framework for
monitoring dynamic social networks. Finally, as
mentioned above algorithms to support other
connectivity queries in dynamic graphs have also
been the subject of recent study [7]. (See, also
[13], which considers 2- and 3-edge connectivity
with link insertions.)

EXTENDING BETWEENNESS

The measures of centrality that we defined
previously (along with several other well-known
measures [16]) implicitly assume that
communication occurs along shortest paths (also
called geodesic paths) in the network. In
analyzing networks that model terrorist activity,
uncertainty in the data will be reflected in
inaccuracies in shortest path computations.
Thus, not only is the length of the shortest path
between a pair of nodes somewhat uncertain, but
the path itself may change dramatically with
relatively small changes in the data. This may be
especially problematic for measures like
betweenness, that depend on knowing the precise
identity of nodes in geodesic paths. The small
example in Figure 2 illustrates how the
betweenness centrality measure can be
vulnerable to even minor data changes.

0.6

0.6

0.6

0.6

1.1

1.1

1.1

w

1.1

Figure 2: Sample network where B(w) = 0.

With the given edge lengths, the definition of
betweenness yields B(w)=0, even though node w
appears to be relatively “central”. Notice that if
the actual length of all “big” edges is 1.3 instead
of 1.1, w becomes the central actor in this
network, and B(w)=4. Examples like this
motivate us to look for more robust variations of
the betweenness measure. For this reason, we
propose a variation on the betweenness centrality
measure, called ε-betweenness.

Before we give the formal definition of this new
measure and an algorithm to compute it, we give
a few more preliminary definitions. First, a
simple path between nodes s and t is a path
connecting s and t that visits no node more than
once. A simple path P from s to t will be called
an ε-shortest path if length(P)≤(1+ε)d(s,t). We

let εσ st denote the number of ε−shortest paths

between s and t in G, and we let)(vst
εσ denote

the number of such paths that include vertex
Vv ∈ . We define the ε-betweenness E(v,ε) as

follows:

∑
∈≠≠

=
Vtvs

)(
),(ε

ε

σ
σε

st

st v
vE ε-Betweenness centrality.

Notice that in the example given above, with
ε=0.1 (i.e. we count paths whose length doesn’t
exceed that of the shortest path by more than
10%), E(w,0.1)=2.

Since the calculation of ε-betweenness involves
approximate shortest paths, it is more
complicated and time-consuming than the
calculation of betweenness. Furthermore, when

we consider paths that may be longer than the
shortest path, we must take care to exclude paths
containing loops. Paths containing loops seem to
be unlikely communication paths and are thus
explicitly excluded. In this algorithm, we assure
that the paths computed are simple by enforcing
that ε d(s,t)<2l(e) for all edges e and all pairs

ts ≠ . In particular, if l is the length of the
shortest edge and D is the maximum shortest
path distance between a pair of nodes in G, then






<

D

l
2ε .

Now, we give a straightforward algorithm to
compute ε-betweenness. Let

}),(:{)(EtuVut ∈∈=Γ be the nodes that are

directly connected to t, and let Γ∈w (t). We
calculate the number of ε-shortest paths from s to
t that go through the edge (w,t). Notice that any
path P from s to w with length(P)≤(1+δ)d(s,w),

where
),(

)),(),((),()1(

wsd

twlwsdtsd +−+
=

ε
δ ,

can be extended with edge (w,t) to a path from s
to t, whose length is at most (1+ε)d(s,t).
Moreover, 0≥δ implies that only the w’s that
satisfy),(),(),()1(wsdtwltsd +≥+ ε can

produce such paths. It is obvious that, if we

calculate iδ for all neighbors iw of t that satisfy

the last condition, εσ st can be computed as

follows:

∑=
i

swst
i

i

δε σσ .

Assuming that we have already calculated the
shortest path lengths (by, say, the method in [9]),

εσ st can be computed recursively, searching

from t in a breadth-first fashion. In order to

calculate)(vst
εσ , we store all intermediate

results i

isw
δσ . Then it is easy to retrieve the

number of paths that pass through v.

The running time of this algorithm can be
prohibitively high when the network is not
acyclic. However, it is conceivable that the
condition),(),(),()1(wsdtwltsd +≥+ ε
together with the rapid convergence of δ’s to 0
may keep the space and time requirements of the
algorithm manageable. This is certainly a point
for further investigation.

An algorithm for ε-betweenness can also be
implemented based on a variant of a k-shortest
paths algorithm, for computing the k shortest
acyclic paths between a pair of nodes. Given a
graph with weights on the edges, a pair of
vertices s and t, and an integer k, such an
algorithm computes the shortest s-t path, the
second shortest s-t path, up to the kth shortest s-t
path. Several algorithms, including those by
Katoh, Ibaraki, and Mine [12] and Yen [17],
compute these paths in order, so that we don’t
have to decide on k in advance, but rather can
proceed until we generate a path of length
greater than (1+ε)d(s,t). At this point we have
generated all of the ε-shortest s-t paths, and we

can easily determine both εσ st and)(vst
εσ for all

vertices v. The time to do this in undirected
graphs using the algorithm in [12] is

)),()1((mncO st +εσ , where c(n,m) is the time to

compute a shortest-path tree from a single vertex
in a graph with n vertices and m edges. This
algorithm works for arbitrary nonnegative ε.

Underlying the definition of ε-betweenness is the
assumption that our betweenness measure will be
more stable in the presence of uncertain data if
we base it on a larger set of “good” paths. As
such, we could also construct a betweenness
variant based upon the k-shortest simple paths.
However, we prefer the ε-betweenness measure
because it is more sensitive to the relative quality
of the paths for each pair of nodes.

These more robust measures are predicated on
the assumption that communication still occurs
along geodesic paths in the network, but we
don’t necessarily know those paths because of
uncertainty in the data. Stephenson and Zelen
[14] introduced another measure of centrality,
called information centrality, that weighs all
paths between a pair of nodes. Their thinking is
that all paths carry information. Moreover,
circuitous paths may be preferred when actors
wish to hide their communications. This
measure also has the robustness of considering
multiple paths and may be very well-suited to
analyzing terrorist networks where deliberate
efforts are made to obfuscate communication.

FUTURE DIRECTIONS

We have described both theoretical and practical
avenues of research for computing centrality in
covert networks. Perhaps the most compelling

theoretical questions are whether running times
for dynamic APSP can be improved for sparse
networks and whether such algorithms can be
extended to computing betweenness. Given the
amount of uncertainty that we expect in models
of terrorist networks, finding fast approximation
algorithms for betweenness and other centrality
measures is also of interest. From a practical
standpoint, it is of interest to see which types of
small cuts we find in real networks, whether
social networks have small tree width, whether
decomposition to exploit these features speeds
centrality computation, and whether more robust
measures of centrality are needed.

Reference List

[1] Aho, J. Hopcroft, and J. Ullman. Data
Structures and Algorithms. Addison-
Wesley, Reading, MA, 1983.

[2] D. Bienstock and M. Langston. Algorithmic
implications of the graph minor theorem. In
Network Models, Chapter 8, M. Ball, T.
Magnanti, C. Monma, and G. Nemhauser,
eds., Elsevier Science, Amsterdam, 1995.

[3] U. Brandes. A faster algorithm for
betweenness centrality. To appear in
Journal of Mathematical Sociology.

[4] G. Cornuejols, D. Naddef, and W.
Pulleyblank. The travelling salesman
problem in graphs with 3-edge cutsets, J.
ACM, 32, pp. 383-410, 1985.

[5] R. Davis. Social network analysis: An aid in
conspiracy investigations. FBI Law
Enforcement Bulletin, 50(12), pp. 11-19,
1981

[6] C. Demetrescu and G. Italiano. Fully
dynamic all pairs shortest paths with real
edge weights. Proceedings of the 42nd IEEE
Symposium on Foundations of Computer
Science, pp. 260-267, Las Vegas, 2001.

[7] D. Eppstein, Z. Galil, and G. Italiano.
Dynamic graph algorithms. In Algorithms
and Theoretical Computing Handbook,
Chapter 8, M. J. Atallah, ed., CRC Press,
1999.

[8] D. Eppstein and J. Wang. Fast
approximation of centrality. Proceedings of
the 12th ACM Symposium on Discrete
Algorithms, pp. 228-229, Washington, 2001.

[9] M. Fredman and R. Tarjan. Fibonacci heaps
and their uses in improved network
optimization algorithms. J. ACM, 34, 596-
615.

[10] J. Garreau. Disconnect the dots: maybe we
can’t cut off terror’s head but we can take

out its nodes. Washington Post Online,
September 16, 2001.

[11] M. Henzinger. Improved data structures for
fully dynamic biconnectivity. SIAM Journal
on Computing, 29, pp. 1761-1815, 2000.

[12] N. Katoh, T. Ibaraki, and H. Mine. An
efficient algorithm for K shortest simple
paths. Networks 12(4), pp. 411-427, 1982.

[13] H. La Poutre. Maintenance of 2- and 3-
edge-connected components of graphs II.
SIAM Journal on Computing, 29, pp. 1521-
1549, 2000.

[14] K. Stephenson and M. Zelen. Rethinking
centrality: Methods and examples. Social
Networks, 11, pp. 1-37, 1989.

[15] T. Stewart. Six degrees of Mohammad Atta.
Business 2.0, December, 2001.

[16] S. Wasserman and K. Faust. Social Network
Analysis: Methods and Applications.
Cambridge University Press, 1994.

[17] J. Y. Yen. Finding the K shortest loopless
paths in a network. Management Science 17,
pp. 712-76, 1971.

[18] U. Zwick. All pairs shortest paths using
bridging sets and rectangular matrix
multiplication. Online technical report.

Biography
Tami Carpenter received her Ph.D. in Operations
Research from Princeton University in 1992.
Upon completion, she joined Bellcore (now
Telcordia Technologies) and is director of the
Network Optimization and Algorithms Research
Group. She conducts research in communication
network optimization.

George Karakostas received his Diploma in
Computer Engineering and Informatics from the
University of Patras in 1995. He got his Ph.D. in
Computer Science from Princeton University in
2000. In 2000, he joined Telcordia Technologies.
His research interests include the design and
analysis of approximation algorithms,
computational complexity, and practical
applications of theory.

David Shallcross received his Ph.D. in
Operations Research from Cornell University in
1989. After postdoctoral positions at Yale
University and at IBM, he joined Bellcore (now
Telcordia Technologies) in 1992. His work has
been in combinatorial and network optimization.

	INTRODUCTION
	CENTRALITY MEASURES
	PRACTICAL ATTACKS ON COMPUTING CENTRALITY
	CENTRALITY IN DYNAMIC GRAPHS
	EXTENDING BETWEENNESS
	FUTURE DIRECTIONS
	Reference List
	Biography

