
Journal of Computer and System Sciences 104 (2019) 297–322
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Classifying invariant structures of step traces

Ryszard Janicki a, Jetty Kleijn b, Maciej Koutny c,∗, Łukasz Mikulski d

a Department of Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, Canada
b LIACS, Leiden University, P.O. Box 9512, NL-2300 RA Leiden, The Netherlands
c School of Computing Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
d Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Chopina 12/18, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 June 2015
Received in revised form 4 April 2017
Accepted 4 May 2017
Available online 17 May 2017

Keywords:
Trace
Independence
Partial order
Interleaving
Trace of step sequences
Simultaneity
Sequentialisation
Serialisability
Invariant structure

In the study of behaviours of concurrent systems, traces are sets of behaviourally equivalent
action sequences. Traces can be represented by causal partial orders. Step traces, on the
other hand, are sets of behaviourally equivalent step sequences, each step being a set of
simultaneous actions. Step traces can be represented by relational structures comprising
non-simultaneity and weak causality. In this paper, we propose a classification of step
alphabets as well as the corresponding step traces and relational structures representing
them. We also explain how the original trace model fits into the overall framework.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mazurkiewicz traces [1,2] are a well-established, classical, and basic model for representing and structuring sequential
observations of concurrent behaviour; see, e.g., [3]. The fundamental assumption underlying trace theory is that independent
events (occurrences of actions) may be observed in any order. Sequences that differ only w.r.t. the ordering of independent
events are identified as belonging to the same concurrent run of the system under consideration. Thus a trace is an equiva-
lence class of sequences comprising all (sequential) observations of a single concurrent run. The dependencies between the
events of a trace are invariant among (common to) all elements of the trace. They define an acyclic dependence graph which
— through its transitive closure — determines the underlying causality structure of the trace as a (labelled) partial order [4].
In fact, this partial order can also be obtained as the intersection of the labelled total orders corresponding to the sequences
forming the trace. Moreover, the sequences belonging to the trace correspond exactly to the linearisations (saturations) of
this partial order. In [5], the necessary connection between causal structures (partial orders) and observations (total orders)
is provided by showing that each partial order is the intersection of all its linearisations (Szpilrajn’s property). Consequently,
each trace can also be viewed as a labelled partial order which is unique up to isomorphism, i.e., up to the names of the
underlying elements; see, e.g., [3,6]. Thus, to capture the essence of equivalence between different observations of the same

* Corresponding author.
E-mail addresses: janicki@mcmaster.ca (R. Janicki), h.c.m.kleijn@liacs.leidenuniv.nl (J. Kleijn), maciej.koutny@ncl.ac.uk (M. Koutny),

lukasz.mikulski@mat.umk.pl (Ł. Mikulski).
http://dx.doi.org/10.1016/j.jcss.2017.05.002
0022-0000/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcss.2017.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://creativecommons.org/licenses/by/4.0/
mailto:janicki@mcmaster.ca
mailto:h.c.m.kleijn@liacs.leidenuniv.nl
mailto:maciej.koutny@ncl.ac.uk
mailto:lukasz.mikulski@mat.umk.pl
http://dx.doi.org/10.1016/j.jcss.2017.05.002
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2017.05.002&domain=pdf

298 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
run of a concurrent system, Mazurkiewicz traces bring together two mathematical ideas, both based on a notion of indepen-
dence between events expressed as a binary independence relation ind over actions. On the one hand, there are equations
ab = ba generating the equivalence by expressing the commutativity of occurrences of certain actions as determined by the
independence relation. As a result, sequences wabu and wbau of action occurrences are considered equivalent whenever
〈a, b〉 ∈ ind, irrespective of what w and u are. On the other hand, there is a common acyclic dependence relation that un-
derlies equivalent observations and is defined by the ordering of the occurrences of dependent actions, and its transitive
closure interpreted as a causal partial order representing the trace to which wabu and wbau both belong. In a nutshell, the
main concepts of trace theory are as follows:

• a trace alphabet comprising a finite set of actions � and an independence relation ind on �;
• a set of equations ab = ba, where 〈a, b〉 ∈ ind, defining a relation ≡ of behavioural equivalence on action sequences, each

equivalence class of ≡ being a trace;
• an action-labelled total order representing in a unique way a finite action sequence;
• an action-labelled dependence graph (acyclic relation) derived from an action sequence which is common and unique to

each trace;
• an action-labelled causal partial order derived from the dependence graph representing in a unique way a trace; and
• the operation of transitive closure which allows one to derive causal partial orders from dependence graphs.

Being based on equating independence and lack of ordering as well as assuming that no actions can be simultaneous, the
model of Mazurkiewicz traces with the corresponding partial order interpretation of concurrency is not always sufficient.
In [7], a generalisation of the theory of traces is presented for the case that actions could occur and may be observed as
occurring simultaneously (a common assumption made, e.g., by concurrency models inspired by bio-chemical reactions as
in [8,9]; see also [10] for other examples). Thus observations consist of sequences of steps, i.e., sets of one or more actions
that occur simultaneously. To retain the philosophy underlying Mazurkiewicz traces, the extended set-up is based on a few
explicit and simple design choices.

Instead of the independence relation ind, step alphabets use two basic relations between pairs of actions: simultaneity sim
indicating actions that may occur together in a step, and sequentialisation seq indicating equivalent orders of executing two
different actions. The two relations are applied to identify step sequences as observations of the same concurrent run. The
equations they determine are of the form AB = B A and AB = A � B , where A and B are steps, and the resulting equivalence
classes of step sequences are called step traces.

Step sequences have been used to represent operational semantics of concurrent systems for long time [11,12] and they
are still popular [13]. The fundamental difference between models like [11–13] and the approach of this paper is that
we group step sequences that are considered equivalent into step traces. Each step trace uniquely defines some relational
structure, in the similar way as each trace uniquely defines a causal partial order.

The main aim of this paper is to investigate different classes of step traces obtained by restrictions on the simultaneity
and sequentialisation relations, and to identify the corresponding relational structures. The proposed hierarchy of families
of step traces includes new non-trivial classes of traces as well as the original Mazurkiewicz traces, comtraces [14,15], and
g-comtraces [16].

Modelling concurrency with relational structures stems from the results of [10,17] and [18]. The basic idea is that general
concurrent causal behaviour is represented by a pair of relations, instead of just one, as in the standard (causal partial order)
approach (see, e.g., [4]). Depending on the assumptions for the chosen model of concurrency details vary, but basically there
are two versions: one in which the two relations are interpreted as standard causality (dependence or precedence) and
weak causality (not later than), respectively (see, e.g., [10,14,17]) and an extended, general, version (suggested in [10,19] but
eventually defined in [20]) with the two relations1: mutual exclusion and weak causality. The first version has a relatively
well developed theory and substantial applications (see, e.g., [10,14,17,21–23]). The second one, however, is relatively new
and as such the starting point for this paper where we identify the invariant structures that characterise the subfamilies of
step traces.

The paper is organised as follows. In the next section, we present basic notions and definitions. In Sections 3 and 4, we
recall the main definitions and results concerning step alphabets, step traces, and relational structures. In Sections 5—9, we
present the main results of the paper, providing a characterisation of the relationships between the interesting subclasses
of step traces and the corresponding relational structures. Section 10 concludes the paper.

This paper is an extended and refined version of a paper presented at the LATA’15 conference [24]. We have also stream-
lined some notions and notations used there as well as in previous papers, e.g. [7,20]. Most of the proofs are included in
the appendix.

2. Preliminaries

Throughout the paper, we assume that:

1 Causality being a derived notion.

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 299
• � is an alphabet of actions taken to be a finite nonempty set; an event is a pair 〈a, i〉 such that a ∈ � and i ≥ 1; �(〈a, i〉) =
a is the default labelling of an event 〈a, i〉; and an event domain is any set of events � = {〈a, i〉 | a ∈ � ∧ 1 ≤ i ≤ ka},
where, for every a ∈ �, ka ≥ 0.

• S is the set of steps over � comprising all the nonempty subsets of �; SSEQ is the set of all finite sequences of steps
(step sequences �); and, if u = A1 . . . Ak is a step sequence, then occ(u) comprises all events 〈a, i〉 such that i does not
exceed the number of occurrences of a within u, and j = posu(〈a, i〉) is such that the i-th occurrence of a is in A j .

• The symmetric closure of a binary relation R is Rsym = R ∪ R−1; R is transitive if R ◦ R ⊆ R; R is a preorder relation
if it is irreflexive and R ∪ idX is transitive, where idX = {〈x, x〉 | x ∈ X}; R is an equivalence relation if it is symmetric,
transitive and reflexive; R is a partial order relation if it is irreflexive and transitive; and R is a total order relation if it
is a partial order relation such that we have Rsym = (X × X) \ idX .

• Given a binary relation R ⊆ X × X , R+ is the transitive closure of R; R∗ is the reflexive transitive closure of R; R � =
R∗ \ idX is the irreflexive transitive closure of R; R� = R∗ ∩ (R∗)−1 is the largest equivalence relation contained in R∗;
and R is acyclic if R+ is asymmetric.

• A labelled directed graph is triple 〈X, R, �〉 comprising a finite set of vertices X , an irreflexive binary relation R on X

comprising arcs, and a labelling X
�−→ �. It is a partial order / total order / preorder / acyclic graph if R is a partial

order / total order / preorder / acyclic relation. The graph is complete if R = (X × X) \ idX , and a clique is any nonempty
subset Y ⊆ X such that R|Y ×Y = (Y × Y) \ idY . We say that x, y ∈ X lie on a cycle if 〈x, y〉, 〈y, x〉 ∈ R+ .

We often identify a singleton step {a} with its only member, tacitly assuming that � ⊂ S. Moreover, we denote non-
singleton steps by listing their elements within parentheses.

3. Step traces

We start by recalling the basic definitions and results from [7]. A step alphabet is a triple θ = 〈�, sim, seq〉, where sim
(simultaneity) and seq (sequentialisation) are irreflexive relations over � such that sim and seq \ sim are symmetric. The
family of all step alphabets will be denoted by �. Simultaneity defines legal steps over the alphabet θ , Sθ = {A ⊆ � | A �=
∅ ∧ (A × A) \ id� ⊆ sim}, and the strings in SSEQθ = S

∗
θ are called step sequences over θ . Sequentialisation, on the other

hand, defines ways in which steps can be sequentialised and identifies pairs of actions which can be interleaved, leading to
the following equations over θ , where A, B ∈ Sθ :

AB = B A if A × B ⊆ seq ∩ seq−1 (interleaving)

AB = A ∪ B if A × B ⊆ sim ∩ seq (serialisability)

The above equations induce a relation ≈ on step sequences such that u ≈ v if there exist w, t ∈ SSEQ and A, B ∈ S satisfy-
ing: (i) u = w ABt and u = w B At and AB = B A; or (ii) u = w ABt and u = w(A ∪ B)t and AB = (A ∪ B). We then define a
relation ≡ on step sequences as the reflexive, symmetric, and transitive closure of ≈. The equivalence classes of ≡ contain-
ing step sequences in SSEQθ are step traces over θ , and their set is denoted by STRθ . The trace containing u ∈ SSEQθ will
be denoted by �u�. For a step trace τ = �u� ∈ STRθ , for some step sequence u over θ , we use occ(τ) = occ(u) to denote
the set of action occurrences in τ (note that this is well-defined, as all step sequences in τ have the same set of action
occurrences). Step traces involve only legal steps, i.e., if τ ∈ STRθ then τ ⊆ SSEQθ . See [7] for more details and for an
alternative, but equivalent, approach for defining step traces.

Example 3.1. Consider θ0 = 〈{a, b, c, d, e}, sim, seq〉, a step alphabet with simultaneity and sequentialisation relations given
below, where each undirected edge stands for two arrows in opposite directions:

sim = seq =

θ0 generates, e.g., the interleaving equations ae = ea and a(ce) = (ce)a, and serialisability equations (ac) = ac, (ac) = ca, and
(ce) = ec. However, (ce) = ce is not an equation generated by θ0. We also have:

�ace� = {ace, cae, cea, (ac)e} �abc� = {abc}
�acd� = {acd, cad, cda, (ac)d, c(ad)} �aeb� = {aeb, eab}
�(cde)� = {(cde)} �a(cd)� = {a(cd), (cd)a, (acd)}
�dec� = {dec, (de)c,d(ce)} �a(cde)� = {a(cde), (cde)a} . �

300 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
Fig. 1. Inclusion diagram of the eight types of step alphabets.

3.1. Classifying step alphabets

An immediate semantically meaningful classification of step alphabets is obtained by looking at the consequences of
assuming that some of the three relations sim \ seq, seq \ sim, and sim ∩ seq are empty. This leads to eight classes of step
alphabets, shown in Fig. 1, where sim�seq = (sim \ seq) ∪ (seq \ sim) denotes the symmetric difference of sim and seq, and
subscripts indicate the empty relationships. Thus, for example, �sim∩seq comprises all step alphabets with disjoint relations
sim and seq. One can observe that:

• � is the family of all step alphabets.
• �sim\seq comprises step alphabets such that the serialisability equations are rich enough to split any step in every

possible way.
• �seq\sim comprises step alphabets without true interleaving (the interleaving equations can be realised through seriali-

sation of steps). In the literature, alphabets in �seq\sim are called comtrace alphabets [10].
• �sim∩seq comprises step alphabets where the only manipulation of steps is through interleaving equations.
• �seq comprises step alphabets generating step traces consisting of a single step sequence.
• �sim comprises step alphabets which define only singleton steps. Alphabets in �sim correspond to trace alphabets after

dropping the empty relation sim and treating seq = seq−1 as the independence relation.
• �sim�seq comprises step alphabets with serialisability equations that are rich enough to split and reorder steps in every

possible way. Alphabets in �sim�seq can be seen as suitable trace alphabets for step sequence semantics of safe Petri
nets (see [25]).

• �sim∪seq comprises step alphabets generating traces consisting of a single sequence.

So, the alphabets in �sim∪seq and �seq are of little interest. The alphabets in � have been considered in [7]. Hence, we
will focus on a closer investigation of �sim , �sim�seq , �sim\seq , �seq\sim , and �sim∩seq . To the best of our knowledge, �sim\seq

and �sim∩seq lead to new subclasses of step traces, whereas the other three have to some extent already been identified in
the literature (as recalled above).

4. Relational structures for step traces

The order theoretic treatment of step traces is based on relational structures 〈�, �, �, �〉 comprising a finite domain �,
two binary relations � and � on �, and a domain labelling � �−→ �. Two domain elements, x and y, are equilabelled if
�(x) = �(y).

To represent observational and causal relationships in the behaviours of concurrent systems we use the order structures
OR from [7,20] which are an extension of ideas first proposed in [10,17,18]. Individual observations (step sequences) are
represented by saturated structures SR, and causal relationships are represented by invariant structures IR.

4.1. Order structures

Referring to the set-up of Mazurkiewicz traces, order structures correspond to (labelled) acyclic relations.

An order (relational) structure is a relational structure or = 〈�, �, �, �〉 that is separable, meaning that the mutex relation
� is symmetric, the weak causality relation � is irreflexive,2 and � ∩ ��= ∅ (which implies that � is also irreflexive);
and that is label-ordered, meaning that any two distinct equilabelled events are related by both � and �sym .

2 One could assume that � is reflexive obtaining an equivalent model (see [26]). In our view, assuming reflexivity or irreflexivity has its own advantages
and disadvantages in the technical treatment.

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 301
Intuitively, � is the set of events that have happened during some execution of a concurrent system with their labels
giving the names of the corresponding actions; x � y means that x occurred not simultaneously with y, and x � y that
x occurred not later than y, i.e., before or simultaneously with y. Hence if x � y and x � y, then x must have occurred
before y. We will therefore refer to the intersection � ∩ � as causality (or precedence), denoting it by ≺. Note that x � y � x
intuitively means that x and y were observed as simultaneous. Separability excludes situations where events forming a weak
causality cycle in �� , are also involved in the mutex relationship.

To improve clarity of explanations of definitions involving order structures, we will provide some of their properties
referring explicitly to the following three derived labelled directed graphs: 〈�, �, �〉, 〈�, �, �〉, and 〈�, ≺, �〉.

In terms of graph representation of an order structure, any two equilabelled events are connected by an arc in
both 〈�, �, �〉 and 〈�, ≺, �〉 but they do not lie on a cycle, and in 〈�, �, �〉 each set of equilabelled events is a
clique. Moreover, no two �–connected events lay on a �–cycle (see separability).

Label-orderedness in combination with separability implies label-linearity, i.e., for all actions, ≺ restricted to the elements
labelled by this action, is a total order relation (see [7]). Label-linearity is the only condition involving event labels that we
need on account of [7]. Although label-linearity is sufficient for the purposes of this paper, in general one can develop quite
involved characterisation of all ‘good’ labellings for the order structures corresponding to general step traces (see [27]).

An extension of the order structure or = 〈�, �, �, �〉 is any order structure 〈�, �′, �′, �〉 such that � ⊆ �′ and � ⊆ �′ .

4.2. Saturated structures

Referring to the set-up of Mazurkiewicz traces, saturated structures correspond to total orders, i.e., those acyclic
relations which cannot be extended without violating their acyclicity.

A saturated (relational) structure is a relational structure sr = 〈�, �, �, �〉 satisfying, for all x, y, z ∈ �:

x �= y ∧ x � z � y =⇒ x � y (S1)
x � y =⇒ x �sym y (S2)

x �= y ∧ x �� y ⇐⇒ x � y � x (S3)
x �= y ∧ �(x) = �(y) =⇒ x � y (S4)

It follows that every saturated structure is separable and label-ordered and hence an order structure. In fact, the saturated
structures are the only order structures which cannot be extended without violating separability. We denote by or2SR(or)
the set of all saturated extensions of or ∈ OR.

In terms of graph representation, any two events are either simultaneously connected in 〈�, ≺, �〉 and in one
direction in 〈�, �, �〉, or connected in both directions in 〈�, �, �〉.

4.3. Invariant structures

Referring to the set-up of Mazurkiewicz traces, invariant structures correspond to partial orders, i.e., those acyclic
relations which cannot be extended without reducing their set of total order extensions.

An invariant (relational) structure is a relational structure ir = 〈�, �, �, �〉 satisfying, for all x, y, z ∈ �:

x �� x (I1)
x �= y ∧ x � z � y =⇒ x � y (I2)

x � y =⇒ y � x �= y (I3)
x ≺ z � y ∨ x � z ≺ y =⇒ x � y (I4)

z � y ∧ z � x � z =⇒ x � y (I5)
z � z′ ∧ x � z � y ∧ x � z′ � y =⇒ x � y (I6)

x �= y ∧ �(x) = �(y) =⇒ x ≺sym y (I7)

By (I1), (I3), and (I5), every invariant structure is separable. Also, the labelling axiom (I7) guarantees that invariant struc-
tures are label-ordered. Hence invariant structures are order structures. Furthermore, invariant structures are the only order
structures which cannot be extended without reducing their set of saturated extensions (see [7]).

Proposition 4.1. SR ⊂ IR ⊂ OR.

302 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
Fig. 2. Closure rules for new mutex pairs 〈x, y〉 (denoted by light-gray edges) with 〈x, y〉 ∈ cross illustrated on the right. Solid edges denote the � relation
and dashed arcs the �∗ relation.

Proof. Follows from the general results proven in [7] together with

or =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉},
{〈x, y〉, 〈y, z〉}, {x �→ a, y �→ a, z �→ b}

〉
∈ OR \ IR

ir =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈y, z〉, 〈x, z〉}, {x �→ a, y �→ a, z �→ b}

〉
∈ IR \ SR . �

Invariant structures are exactly those order structures or for which or = ⋂
or2SR(or) (since we always have

or2SR(or) �=∅, the intersection is well-defined), where the intersection of relational structures with the same domain
and labelling is defined component-wise. In other words, invariant structures are exactly those order structures which
can be represented by their saturated extensions. This fundamental property is a counterpart of Szpilrajn’s Theorem [5]
which implies that partial order relations are exactly those acyclic relations which can be represented by their total order
extensions.

4.4. Order structure closure

Referring to the set-up of Mazurkiewicz traces, order structure closure corresponds to transitive closure of an
acyclic relation.

The order structure closure OR
or2ir−−→ IR is a mapping, for every structure or = 〈�, �, �, �〉 ∈ OR, defined by:

or2ir(or) = 〈�,�� ◦ � ◦ �� ∪ �� ◦crosssym◦ ��,��, �〉,
where cross = {〈x, y〉 | ∃z, w : z � w ∧ x �∗ z �∗ y ∧ x �∗ w �∗ y}. Order structure closure involves two components: the
closure of mutex relation � and the closure of the weak causality relation �. The latter is simply the irreflexive transitive
closure. The former is more involved and comprises two operations (see Fig. 2). In order to calculate all new mutex pairs,
one adds all the missing arcs between any two mutually exclusive equivalence classes of �� , and connects any two events
which are at the corners of a weak causality diamond with a mutex inside.

Order structure closure is the unique mapping OR
f−→ IR such that f(ir) = ir, for every ir ∈ IR, and or2SR(or) = or2SR ◦

f(or), for every or ∈ OR (see [7]). This corresponds to the fact that transitive closure is the unique mapping from acyclic
relations to partial orders which preserves the total order extensions.

In terms of graph representation of an invariant structure, 〈�, �, �〉 is a preorder, and 〈�, ≺, �〉 is a partial or-
der. Moreover, there are several mutex arcs in 〈�, �, �〉 implied by the definition of the order structure closure
illustrated in Fig. 2.

4.5. Step sequences and saturated structures

Referring to the set-up of Mazurkiewicz traces, step sequences and saturated order structures are related in a
similar way as action sequences and labelled total orders.

Let θ = 〈�, sim, seq〉 be a step alphabet. The set SRθ of saturated order structures corresponding to the step sequences
over θ comprises all saturated structures sr = 〈�, �, �, �〉 such that � is an event domain, � is the default labelling of
events, and, for all distinct 〈a, i〉, 〈a, j〉, 〈b, k〉 ∈ �:

〈a, i〉 ≺ 〈a, j〉 ⇐⇒ i < j and 〈a, i〉 �� 〈b,k〉 =⇒ 〈a,b〉 ∈ sim . (1)

There are two mappings that allow switching between SRθ and SSEQθ , the step sequences over θ . The first map-

ping, SRθ
sr2sseq−−−−→ SSEQθ , is defined, for every sr = 〈�, �, �, �〉 ∈ SRθ , by sr2sseq(sr) = �(�1) . . . �(�k), where �1 . . .�k is

the unique sequence such that � = �1 � · · · � �k , �= ⋃
i �= j �i × � j , and �= ⋃

i≤ j �i × � j \ id� . The second mapping,

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 303
SSEQθ
sseq2sr−−−−→ SRθ , is defined, for every u ∈ SSEQθ , by sseq2sr(u) = 〈occ(u), �, �, �〉, where, for all α, β ∈ occ(u) with

posu(α) = k and posu(β) = m we have:

k �= m =⇒ α � β and k ≤ m ∧ α �= β =⇒ α � β .

As demonstrated in [7], SRθ
sr2sseq−−−−→ SSEQθ

sseq2sr−−−−→ SRθ are inverse bijections.

4.6. Dependence structures

Referring to the set-up of Mazurkiewicz traces, dependence structures of step sequences correspond to depen-
dence graphs of action sequences.

Given a step alphabet θ = 〈�, sim, seq〉, the dependencies between the events underlying a step sequence u ∈ SSEQθ are
given by the mapping SSEQθ

sseq2orθ−−−−−→ OR defined, for every u ∈ SSEQθ , by sseq2orθ (u) = 〈occ(u), �, �, �〉, where for all
α, β ∈ occ(u) with posu(α) = k and posu(β) = m:

α � β if 〈�(α), �(β)〉 /∈ sim ∩ seq ∧ k < m
or 〈�(α), �(β)〉 /∈ sim ∩ seq−1 ∧ k > m

α � β if 〈�(α), �(β)〉 /∈ seq ∩ seq−1 ∧ k < m
or 〈�(α), �(β)〉 ∈ sim \ seq−1 ∧ k = m .

(2)

We refer to sseq2orθ (u) as the dependence structure of u (induced by θ). Crucially, if u ≡ w , then sseq2orθ (u) = sseq2orθ (w),
and so dependence structures can be lifted to the level of step traces through sseq2orθ (�u�) = sseq2orθ (u) (see [7]). Hence
there are two kinds of order structures capturing causal dependencies in the step sequences of SSEQθ and the traces in
STRθ , namely dependence structures and their closures, i.e., ORθ = sseq2orθ (SSEQθ) and IRθ = or2ir(ORθ).

In what follows, for every set �′ of step alphabets, OR�′ = ⋃
θ∈�′ ORθ and IR�′ = ⋃

θ∈�′ IRθ .

4.7. Step traces and invariant structures

Referring to the set-up of Mazurkiewicz traces, step traces and invariant structures are related in a similar way as
traces and causal partial orders.

Given a step alphabet θ , the step traces in STRθ can be identified with the invariant structures in IRθ , and a suitable
correspondence is established by the pair of inverse bijections STRθ

or2ir ◦ sseq2orθ−−−−−−−−−→ IRθ
sr2sseq ◦ or2SR−−−−−−−−−→ STRθ .

As shown in [7], one needs relational structures as complicated as the order structures in OR for the modelling of the de-
pendencies underlying step sequences and step traces. More precisely, for any order structure or with an injective labelling,
there is a step alphabet θ and a step sequence u ∈ SSEQθ such that or is isomorphic to sseq2orθ (u). Thus step traces can
generate all the causal patterns (i.e., an order structures without labels) of the dependence structures underpinning invariant
structures.3

4.8. About the rest of this paper

Our main aim is to investigate different classes of step alphabets and the corresponding order structures. In the rest of
this paper, we will discuss how the restriction to these subclasses of step alphabets leads to simplifications in the descrip-
tions of their corresponding order structures, order structure closure operation, and invariant structures. Such simplifications
can, in particular, lead to a more concise and efficient treatment of the algorithmic aspects involving step traces and their
order structures.

For example, sim ⊆ seq implies that each step can be split into sequences in every possible way, to be able to split a
step into at least one sequence it is enough to require acyclicity of the relation sim \ seq [25], and sim ∩ seq = ∅ means that
there are no serialisability equations at all.

In the subsequent sections, we will investigated five subclasses of step alphabets: �sim , �sim\seq , �sim∩seq , �seq\sim , and
�sim�seq . For each subclass, we first describe the effect of the restriction on the equations defined and the resulting equiv-
alence classes, i.e., step traces. Then we identify a distinguishing property of the order structures associated as dependence
structures with these step traces and propose an axiomatisation for the corresponding invariant structures. We moreover
simplify the order structure closure operation for each case. The main results in each section show that indeed the order

3 Note that, for each order (or invariant) structure 〈�, �, �, �〉 and each injective labelling �′ of �, it is the case that 〈�, �, �, �′〉 is also an order
(resp. invariant) structure.

304 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
structures and invariant structures associated with the subclass of step alphabets are included in the proposed classes of
structures (e.g., Theorem 5.6 in Section 5), and that the proposed classes of structures cannot be smaller (e.g., Theorem 5.8
in Section 5).

In order to streamline the presentation, we do not provide all the proofs in the paper proper. We do this only for two
subclasses of step alphabets, viz. �sim (as this class corresponds to the case of Mazurkiewicz trace alphabets), and �sim\seq

(as this class has not yet been investigated in the literature). For the remaining three classes of step alphabets, the structure
of the proofs is similar, and so they all have been moved to the appendix.

5. Relational structures for the alphabets in �sim

A step alphabet μ = 〈�, sim, seq〉 ∈ �sim has sim = ∅ and seq = seq−1, by the symmetry of sim \ seq. Hence the only
legal steps according to μ are singletons and so the step sequences in SSEQμ correspond one-to-one to the sequences in
�∗ , and the saturated structures in SRμ correspond one-to-one to the sequences in �∗ . Indeed, since sim = ∅, we have
from (1) that for every sr = 〈�, �, �, �〉 ∈ SRμ , it is the case that ��= id� , and so ≺ is a total order relation. Secondly,
there are no serialisability equations. Thus, one may consider μ as a trace alphabet 〈�, seq〉 with seq playing the role of
the standard independence relation ind.

Example 5.1. Recall the step alphabet θ0 of Example 3.1. We restrict � to {a, b, e}. Then the resulting step alphabet μ0 ∈ �sim

has the following simultaneity and sequentialising relations:

sim = seq =

with

�abe� = {abe} �aeb� = {aeb, eab}
�bae� = {bae,bea} �aee� = {aee, eae, eea} . �

Recall that OR�sim = ⋃
θ∈�sim

ORθ comprises the order structures that are as dependence structures associated with the
step sequences and step traces over the alphabets of �sim and reflect their causal dependencies. The corresponding family
of invariant structures is IR�sim = ⋃

θ∈�sim
IRθ , where IRθ = or2ir(ORθ).

The definition of the dependence structure of a step sequence u ∈ SSEQμ can be simplified by replacing (2), for all
α, β ∈ occ(u) with posu(α) = k and posu(β) = m, with:

α � β if k �= m
α � β if 〈�(α), �(β)〉 /∈ seq ∧ k < m .

(3)

Hence these order structures have the property that x �= y ⇐⇒ x � y. Let now ORsim consist of all order structures
or = 〈�, �, �, �〉 ∈ OR that satisfy this additional property; in other words �= (� × �) \ id� .

In terms of graph representation for ORsim , 〈�, �, �〉 = 〈�, ≺, �〉 are acyclic graphs, and 〈�, �, �〉 is complete.

Then we propose the following axiomatisation for their corresponding invariant structures.
A relational structure 〈�, �, �, �〉 belongs to IRsim if, for all x, y, z ∈ �:

x �� x (A1)
x � z � y =⇒ x � y (A2)

x �= y ⇐⇒ x � y (A3)
x �= y ∧ �(x) = �(y) =⇒ x �sym y (A4)

In terms of graph representation for IRsim , 〈�, �, �〉 = 〈�, ≺, �〉 are also partial orders, and they capture all the
relevant causal relationships.

We will now first establish that the relational structures defined by these axioms are indeed invariant structures. More-
over, all elements of IRsim are order structures belonging to ORsim . Next we introduce a simplified order structure closure
and, using this operation, we prove that IRsim consists exactly of the closures of the order structures in ORsim .

Lemma 5.2. IRsim ⊆ IR.

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 305
Proof. We first note that (I1) is simply (A1). To show (I2) we observe that:

x �= y ∧ x � z � y =⇒(A2) x � y .

To show (I3) we observe that:

x � y =⇒(A3) x �= y =⇒ x �= y ∧ y �= x =⇒(A3) x �= y ∧ y � x .

To show (I4) we observe that:

x = y ∧ (x ≺ z � y ∨ x � z ≺ y) =⇒ x ≺ z � x ∨ x � z ≺ x
=⇒(A2) x � x
=⇒(A1) false

and so we have:

x ≺ z � y ∨ x � z ≺ y =⇒ x �= y =⇒(A3) x � y .

To show (I5) we observe that:

z � y ∧ z � x � z =⇒(A2) z � z =⇒(A1) false .

To show (I6) we observe that:

x = y ∧ x � z � y =⇒ x � z � x =⇒(A2, A1) false

and so we have:

z � z′ ∧ x � z � y ∧ x � z′ � y =⇒ x �= y =⇒(A3) x � y .

We finally note that (I7) follows from (A3) and (A4). �
Lemma 5.3. IRsim ⊆ ORsim .

Proof. Follows from Lemma 5.2, IR ⊆ OR, and (A3). �
For closure we propose to consider a simplified order closure operation or2irsim transforming order structures from ORsim

into invariant structures in IRsim and corresponding to the transitive closure of an acyclic relation. This closure operation will
then be shown to be the restriction of the standard closure operation for order structures. More precisely, ORsim

or2irsim−−−−→ IRsim

is such that, for every or = 〈�, �, �, �〉 ∈ ORsim , we have or2irsim(or) = 〈�, �, �+, �〉.

Lemma 5.4. or2irsim(ORsim) ⊆ IRsim .

Proof. Let or = 〈�, �, �, �〉 ∈ ORsim and ir = or2irsim(or) = 〈�, �̂, ̂�, �〉.
To show (A1) suppose that x ̂� x which means x �+ x. Since � is irreflexive, there is y �= x satisfying x �∗ y �∗ x. Hence,

by the separability of or, x �� y, contradicting the definition of ORsim .
To show (A2) we observe that:

x �̂ z �̂ y =⇒ x �+ z �+ y =⇒ x �+ y =⇒ x �̂ y .

We then observe that (A3) follows from �= (� × �) \ id� . Finally, (A4) follows from the label-linearity of or, as shown
below:

x �= y ∧ �(x) = �(y) =⇒ x ≺sym y =⇒ x �̂sym y .

Hence ir ∈ IRsim . �
Proposition 5.5. or2irsim is a surjection with or2irsim = or2ir|ORsim .

Proof. We first show that or2irsim = or2ir|ORsim . Let or = 〈�, �, �, �〉 ∈ ORsim and ir = or2ir(or) = 〈�, �̂, ̂�, �〉. In this case ��= id� which follows directly from �= (� ×�) \ id� and the separability of or. As a result, we also have ��=�+ . Hence

or2ir(or) = 〈�,� ∪ crosssym,�+, �〉 ,

where cross = {〈x, y〉 | ∃z, w : z � w ∧ x �∗ z �∗ y ∧ x �∗ w �∗ y}. Moreover, cross is irreflexive (as �̂ is irreflexive) and
�= (� × �) \ id� . We therefore obtain or2ir(or) = 〈�, �, �+, �〉.

306 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
We then observe that or2irsim(ORsim) = IRsim follows from Lemmas 5.2, 5.3, and 5.4, or2irsim = or2ir|ORsim , and the fact
that or2ir is the identity on IR, as then we obtain or2irsim(ORsim) ⊆ IRsim and or2irsim(ORsim) ⊇ or2irsim(IRsim) = or2ir(IRsim) =
IRsim . �

Based on the above facts we can now present, as a main result, the full picture.

Theorem 5.6.

OR�sim ⊂ ORsim ⊂ OR
∪ ∪ ∪

IR�sim ⊂ IRsim ⊂ IR

Proof. Let us consider one by one all the inclusions:

• IR ⊂ OR follows from the general results proven in [7] and

or =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈y, z〉}, {x �→ a, y �→ b, z �→ c}
〉
∈ OR \ IR .

• IRsim ⊂ ORsim follows from or ∈ ORsim \ IRsim and Lemma 5.3.
• IR�sim ⊂ OR�sim follows from or ∈ OR�sim \ IR�sim and the general results proven in [7].
• ORsim ⊂ OR follows from the definition of ORsim and

or′ = 〈{x, y},∅, {〈x, y〉}, {x �→ a, y �→ b}〉 ∈ OR \ ORsim .

• IRsim ⊂ IR follows from or′ ∈ IR \ IRsim and Lemma 5.2.
• OR�sim ⊂ ORsim can be proven by taking μ ∈ �sim , u ∈ SSEQμ , and or = sseq2orμ(u). We know that or ∈ OR. Suppose

that α, β ∈ occ(u) and α �= β . Then, by sim = ∅, posu(α) �= posu(β). Hence, by (3), we have α �or β , and so or ∈ ORsim .
Moreover, we note that

or′′ =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉, 〈y, z〉, 〈z, y〉},

{〈x, y〉, 〈x, z〉}, {x �→ a, y �→ a, z �→ b}
〉
∈ ORsim \ OR�sim .

• IR�sim ⊂ IRsim follows from or′′ ∈ IRsim \ IR�sim , OR�sim ⊆ ORsim and Lemma 5.4.

Moreover, note that or ∈ ORsim \ IR and or′ ∈ IR \ ORsim which justifies that IR and ORsim are not related. Similarly, there is
no inclusion between IRsim and OR�sim since or ∈ OR�sim \ IRsim and or′′ ∈ IRsim \ OR�sim . �

As a consequence we prove our initial intuition correct by demonstrating that also the invariant structures in IRsim are
characterised by the additional property that mutex coincides with non-equality.

Proposition 5.7. For every relational structure ir = 〈�, �, �, �〉,

ir ∈ IRsim ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ � : x �= y ⇐⇒ x � y) .

Proof. (=⇒) Follows from Theorem 5.6 and (A3).
(⇐=) Note that (A3) is the additional property; (I1) and(A1) are the same axioms; and (A4) follows from (I7). To prove

(A2), assume that x � z � y. Then x �= z by (I1), and so x � z. Hence x � y, by (I4), and thus x �= y. Consequently, x � y by
(I2), and (A2) follows. �

Altogether we have identified ORsim and IRsim through a structural (not related to labels) property as the right classes
of order structures and invariant structures for the step traces over step alphabets in �sim . The next result shows that we
cannot optimise this any further. When the labelling is ignored, for every relational structure or ∈ ORsim there is a step trace
defined by a step alphabet in �sim with the order structure underlying or as its causal pattern.

Theorem 5.8. If or ∈ ORsim has an injective labelling, then there are μ ∈ �sim and u ∈ SSEQμ such that or is isomorphic to
sseq2orμ(u).

Proof. Let or = 〈�, �, �, �〉. Since the labelling � is injective, we may assume that � = � × {1}. Then, from the general
results proved in [7] it follows that there exists sr ∈ or2SR(os) which, directly by the definition of ORsim , satisfies �sr=
(� × �) \ id� . Hence u = sr2sseq(sr) is a sequence of singleton steps. Let μ = 〈�, ∅, seq〉, where:

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 307
seq =
{
〈a,b〉 ∈ � × �

∣∣∣∣ posu(〈a,1〉) < posu(〈b,1〉) ∧ 〈a,1〉 �� 〈b,1〉 ∨
posu(〈b,1〉) < posu(〈a,1〉) ∧ 〈b,1〉 �� 〈a,1〉

}
.

Clearly, μ ∈ �sim and u ∈ SSEQμ . It is easy to check that or = sseq2orμ(u). �
Corollary 5.9. If ir ∈ IRsim has an injective labelling, then there are μ ∈ �sim and u ∈ SSEQμ such that ir is isomorphic to or2irsim ◦
sseq2orμ(u).

6. Relational structures for the alphabets in �sim\seq

A step alphabet κ = 〈�, sim, seq〉 ∈ �sim\seq has sim\ seq = ∅ which is equivalent to sim ⊆ seq∩ seq−1, by the symmetry
of sim. As a consequence, if (a, b) ∈ seq \ (seq−1 ∩ sim), then (b, a) ∈ (seq \ (seq−1 ∩ sim))−1 ⊆ sim \ seq = ∅. Hence seq \
(seq−1 ∩ sim) = ∅ and seq = seq−1 is symmetric. And so, all steps over κ can be serialised in any order and combination
of substeps.

Example 6.1. Recall again the step alphabet θ0 of Example 3.1. We restrict � to {a, b, c}. The resulting step alphabet κ0 ∈
�sim\seq has the following simultaneity and sequentialising relations:

sim = seq =

with �abc� = {abc} and �(ac)b� = {(ac)b, acb, cab}. Let us also recall Example 5.1. Note that it is another example of �sim\seq

alphabet, where we have a mutex relationship between a and e not captured by partial order ≺ . �
The definition of the dependence structure of a step sequence u ∈ SSEQκ can be simplified by replacing (2), for all

α, β ∈ occ(u) with posu(α) = k and posu(β) = m, with:

α � β if 〈�(α), �(β)〉 /∈ sim
α � β if 〈�(α), �(β)〉 /∈ seq ∧ k < m .

(4)

Hence these order structures have the property that x �sym y =⇒ x � y. Let ORsim\seq consist of all or = 〈�, �, �, �〉 ∈ OR
that have this property.

In terms of graph representation for ORsim\seq , 〈�, �, �〉 = 〈�, ≺, �〉 are acyclic graphs, while the relationships
captured by 〈�, �, �〉 are more complicated than in the previous case.

For the corresponding invariant structures we thus propose the following axiomatisation.
A relational structure 〈�, �, �, �〉 belongs to IRsim\seq if, for all x, y, z ∈ �:

x � z � y =⇒ x � y (B1)
x �sym y =⇒ x � y (B2)

x � y =⇒ y � x �= y (B3)
x �= y ∧ �(x) = �(y) =⇒ x �sym y (B4)

In terms of graph representation for IRsim\seq , 〈�, �, �〉 = 〈�, ≺, �〉 are partial orders, and this time they do not
capture all the relevant causal relationships (see Example 5.1), while the implied mutex relationships captured by
〈�, �, �〉 are less involved than in the general case (as the closure operation is much simpler).

In what follows, we first establish that these relational structures are invariant structures and moreover order structures
belonging to ORsim\seq . Then, we introduce a simplified closure operation and prove, using this operation, that IRsim\seq

consists exactly of the closures of the order structures in ORsim\seq .

Lemma 6.2. IRsim\seq ⊆ IR.

Proof. To show (I1) we observe that:

x � x =⇒(B2) x � x =⇒(B3) x �= x =⇒ false .

To show (I2) we observe that:

308 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
x �= y ∧ x � z � y =⇒(B1) x � y .

We then note that (I3) is simply (B3), and to show (I4) we observe that:

x ≺ z � y ∨ x � z ≺ y =⇒(B1) x � y =⇒(B2) x � y .

To show (I5) we observe that:

z � y ∧ z � x � z =⇒(B1) z � z =⇒(B2, B3) false .

To show (I6) we observe that:

z � z′ ∧ x � z � y ∧ x � z′ � y =⇒(B1) x � y =⇒(B2) x � y .

We finally note that (I7) follows from (B2) and (B4). �
Lemma 6.3. IRsim\seq ⊆ ORsim\seq .

Proof. Follows from Lemma 6.2, IR ⊆ OR, and (B2). �
The simplified closure operation ORsim\seq

or2irsim\seq−−−−−−→ IRsim\seq is defined, for every or = 〈�, �, �, �〉 ∈ ORsim\seq , by:

or2irsim\seq(or) = 〈�,� ∪(�+)sym,�+, �〉 .

Lemma 6.4. or2irsim\seq(ORsim\seq) ⊆ IRsim\seq .

Proof. Let or = 〈�, �, �, �〉 ∈ ORsim\seq and ir = or2irsim\seq(or) = 〈�, �̂, ̂�, �〉. ir ∈ IRsim\seq . To show (B1) we observe that:

x �̂ z �̂ y =⇒ x �+ z �+ y =⇒ x �+ y =⇒ x �̂ y .

To show (B2) we observe that:

x �̂ y =⇒ x �+ y =⇒ x �̂ y .

To show (B3) we observe that:

x �̂ y =⇒ x � y ∨ x(�+)sym y =⇒ y � x ∨ y(�+)symx =⇒ y �̂ x .

Moreover, x�̂y =⇒ x �= y follows from the general results proved in [7]. Finally, (B4) follows from the label-linearity of or,
as shown below:

x �= y ∧ �(x) = �(y) =⇒ x ≺̂sym y =⇒ x �̂sym y .

Hence ir ∈ IRsim\seq . �
Proposition 6.5. or2irsim\seq is a surjection with or2irsim\seq = or2ir|ORsim\seq .

Proof. We first show that or2irsim\seq = or2ir|ORsim\seq . Let or = 〈�, �, �, �〉 ∈ ORsim\seq and ir = or2ir(or) = 〈�, �̂, ̂�, �〉. We
first observe that in such a case ��= id� which follows from x �sym y =⇒ x � y and the separability of or. As a result, we
also have ��=�+ . Hence

or2ir(or) = 〈�,� ∪ crosssym,�+, �〉 ,

where cross = {〈x, y〉 | ∃z, w : z � w ∧x �∗ z �∗ y ∧x �∗ w �∗ y}. We will now show that (� ∪ crosssym) = (� ∪ (�+)sym).
Suppose first that 〈x, y〉 ∈ cross which means that x �= y (which follows from the general theory), and there is z such that

x �∗ z �∗ y. Hence x �+ y showing that the (⊆) inclusion holds. To show the reverse inclusion, suppose that x �+ y. If x � y
then, by the definition of ORsim\seq , we have x � y. Otherwise, there is z such that x � z �∗ y. Then, again by the definition
of ORsim\seq , z � x. We therefore obtain that 〈x, y〉 ∈ cross, after taking w = x. Hence or2ir(or) = 〈�, � ∪ (�+)sym, �+, �〉.
We then observe that or2irsim\seq(ORsim\seq) = IRsim\seq follows from Lemmas 6.2, 6.3, and 6.4, or2irsim\seq = or2ir|ORsim\seq ,
and the fact that or2ir is the identity on IR, as then we obtain or2irsim\seq(ORsim\seq) ⊆ IRsim\seq and or2irsim\seq(ORsim\seq) ⊇
or2irsim\seq(IRsim\seq) = or2ir(IRsim\seq) = IRsim\seq . �

Now, we can present as a main result the full picture relating OR�sim\seq = ⋃
θ∈�sim\seq

ORθ , the order structures that
are as dependence structures associated with the step sequences and step traces over the alphabets of �sim\seq , and the
corresponding family of invariant structures IR�sim\seq = ⋃

θ∈�sim\seq
IRθ , where IRθ = or2ir(ORθ), with the newly introduced

order structures and invariant structures.

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 309
Theorem 6.6.

OR�sim\seq ⊂ ORsim\seq ⊂ OR
∪ ∪ ∪

IR�sim\seq ⊂ IRsim\seq ⊂ IR

Proof. Let us consider one by one all the inclusions:

• IR ⊂ OR was already justified in the proof of Theorem 5.6. Note, however, that we also have

or =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉}, {〈x, y〉, 〈y, z〉},

{x �→ a, y �→ b, z �→ c}
〉
∈ OR \ IR .

• IRsim\seq ⊂ ORsim\seq follows from or ∈ ORsim\seq \ IRsim\seq and Lemma 6.3.
• IR�sim\seq ⊂ OR�sim\seq follows from os ∈ OR�sim\seq \ IR�sim\seq and the general results proved in [7].
• ORsim\seq ⊂ OR follows from the definition of ORsim\seq and

or′ = 〈{x, y},∅, {〈x, y〉}, {x �→ a, y �→ b}〉 ∈ OR \ ORsim\seq .

• IRsim\seq ⊂ IR follows from or′ ∈ IR \ IRsim\seq and Lemma 6.2.
• OR�sim\seq ⊂ ORsim\seq can be shown by taking κ ∈ �sim\seq , u ∈ SSEQκ , and or = sseq2orκ (u). Since we know from

the general theory that or ∈ OR, we only need to show that �sym
or ⊆ �or . This, however, follows from (4). Hence or ∈

ORsim\seq . Moreover, we note that

or′′ =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈x, z〉}, {x �→ a, y �→ a, z �→ b}

〉
∈ ORsim\seq \ OR�sim\seq .

• IR�sim\seq ⊆ IRsim\seq follows from Lemma 6.4 or′′ ∈ IRsim\seq \ IR�sim\seq and OR�sim\seq ⊆ ORsim\seq .

Moreover, note that or ∈ ORsim\seq \ IR and or′ ∈ IR\ORsim\seq which justifies that IR and ORsim\seq are not related. Similarly,
or ∈ OR�sim\seq \ IRsim\seq and or′′ ∈ IRsim\seq \ OR�sim\seq , hence there is no inclusion between IRsim\seq and OR�sim\seq . �

As a consequence of the last result, we can now prove our intuition that led to the definition of ORsim\seq correct, by
demonstrating that also the invariant structures in IRsim\seq are characterised by the additional property that weak ordering
implies mutual exclusion.

Proposition 6.7. For every relational structure ir = 〈�, �, �, �〉,

ir ∈ IRsim\seq ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ � : x �sym y =⇒ x � y) .

Proof. (=⇒) Follows from Theorem 6.6 and (B2).
(⇐=) Note that (B2) is the additional property; (I3) and(B3) are the same axioms; and (B4) follows from (I7). To prove

(B1), assume that x � z � y. Then x � z by the additional property. Hence x � y by (I4). Thus x �= y by (I3), and (B2)
follows. �

Summarising, we have identified ORsim\seq and IRsim\seq through a structural property as suitable subclasses of OR and
IR for the relational structures associated with the step traces over step alphabets in �sim\seq . As the next theorem shows,
this result is optimal in the sense that for every relational structure in or ∈ ORsim\seq , there is a step trace defined by a step
alphabet in �sim\seq with the unlabelled order structure underlying or as its causal pattern.

Theorem 6.8. If a structure or ∈ ORsim\seq has an injective labelling, then there are κ ∈ �sim\seq and u ∈ SSEQκ such that or is
isomorphic to sseq2orκ (u).

Proof. Let or = 〈�, �, �, �〉. Since the labelling � is injective, we may assume that � = � × {1}. Then, from the general
results proved in [7] it follows that there exists sr ∈ or2SR(os). Let u = sseq2sr−1(sr), and κ = 〈�, sim, seq〉, where:

sim = {〈a,b〉 ∈ � × � | (posu(〈a,1〉) = posu(〈b,1〉) ∧ a �= b)∨
(posu(〈a,1〉) �= posu(〈b,1〉) ∧ 〈a,1〉 �� 〈b,1〉)}

seq = {〈a,b〉 ∈ � × � | (posu(〈a,1〉) = posu(〈b,1〉) ∧ a �= b)

∨(posu(〈a,1〉) < posu(〈b,1〉) ∧ 〈a,1〉 �� 〈b,1〉)
∨(pos (〈b,1〉) < pos (〈a,1〉) ∧ 〈b,1〉 �� 〈a,1〉)} .
u u

310 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
We then observe that sim is symmetric since � is symmetric, and seq \ sim is symmetric because sim and seq are symmet-
ric. Hence κ is a step alphabet. To show κ ∈ �sim\seq we need to show that sim ⊆ seq.

Let 〈a, b〉 ∈ sim. If posu(〈a, 1〉) = posu(〈b, 1〉) and a �= b then clearly we have 〈a, b〉 ∈ seq. Moreover, if posu(〈a, 1〉) �=
posu(〈b, 1〉) and 〈a, 1〉 �� 〈b, 1〉 then, by or ∈ ORsim\seq , posu(〈a, 1〉) �= posu(〈b, 1〉) and 〈a, 1〉 ��sym 〈b, 1〉. Hence 〈a, b〉 ∈ seq,
and so κ ∈ �sim\seq .

We then observe that u ∈ SSEQκ as posu(〈a, 1〉) = posu(〈b, 1〉) and a �= b together imply 〈a, b〉 ∈ sim, and it is easy to
check that or = sseq2orκ (u). �
Corollary 6.9. If ir ∈ IRsim\seq has an injective labelling, then there are μ ∈ �sim\seq and u ∈ SSEQμ such that ir is isomorphic to
or2irsim\seq ◦ sseq2orμ(u).

We conclude this section showing that the step traces defined by step alphabets in �sim\seq are histories satisfying the
concurrency paradigm π2 of [10].

Proposition 6.10. Let τ be a step trace over a step alphabet κ ∈ �sim\seq . Let α, β ∈ occ(τ) be distinct action occurrences of τ . Then

(∃v ∈ τ : posv(α) = posv(β))

=⇒
(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β)).

Proof. Let ir = or2ir ◦ sseq2orκ (v). From posv(α) = posv(β) it follows directly that 〈�(α), �(β)〉 ∈ sim and there is sr ∈
or2SR(ir) such that α �sr β �sr α. Hence, α ��ir β . Moreover, by the simplified form of the sseq2orκ mapping and the order
structure closure, α ��ir β and β ��ir α. This, by the general results proved in [7], means that there are sr′, sr′′ ∈ or2SR(ir)
such that α ≺sr′ β and β ≺sr′′ α. Then the conclusion holds by taking u = sseq2or−1

κ (sr′) and w = sseq2or−1
κ (sr′′). �

7. Relational structures for the alphabets in �sim∩seq

A step alphabet ν ∈ �sim∩seq is the one satisfying sim ∩ seq = ∅, and so we have seq = seq−1. For the alphabets in
�sim∩seq steps can be only manipulated through the interleaving equations.

Example 7.1. Let us recall the step alphabet θ0 of Example 3.1 and restrict � to {b, c, d}. The resulting step alphabet ν0 ∈
�sim∩seq has the following simultaneity and sequentialising relations:

sim = seq =

with �b(cd)� = {b(cd)} and �bcd� = {bcd}.
One can also obtain another example of an alphabet from �sim∩seq by taking θ0 and restricting � to {a, b, e}. The

resulting step alphabet ν1 has the following simultaneity and sequentialising relations:

sim = seq =

with �aeb� = {aeb, eab} and �abe� = {abe}. �

The definition of the dependence structure of a step sequence u ∈ SSEQν can be simplified by replacing (2), for all
α, β ∈ occ(u) with posu(α) = k and posu(β) = m, with:

α � β if k �= m

α � β if 〈�(α), �(β)〉 /∈ seq ∧ k ≤ m ∧ α �= β .
(5)

The order structures ORsim∩seq are all those or = 〈�, �, �, �〉 ∈ OR for which x �= y =⇒ x � y ∨ x � y � x, and the
axiomatisation of the corresponding invariant structures becomes simpler.

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 311
In terms of graph representation for ORsim∩seq , any two events are either connected in 〈�, �, �〉, or connected in
both directions in 〈�, �, �〉.

A relational structure 〈�, �, �, �〉 belongs to IRsim∩seq if, for all x, y, z ∈ �:

x �� x (C1)
x �= y ∧ x � z � y =⇒ x � y (C2)

x �� y ∧ x �= y ⇐⇒ x � y � x (C3)
x �= y ∧ �(x) = �(y) =⇒ x ≺sym y (C4)

In terms of graph representation for IRsim∩seq , the part of the order structure closure responsible for mutex relation
is trivial.

The definitions of ORsim∩seq and IRsim∩seq are sound.

The simplified order structure closure ORsim∩seq
or2irsim∩seq−−−−−−→ IRsim∩seq is such that or2irsim∩seq(or) = 〈�, �, ��, �〉, for

every or = 〈�, �, �, �〉 ∈ ORsim∩seq .

Proposition 7.2. or2irsim∩seq is a surjection with or2irsim∩seq = or2ir|ORsim∩seq .

Theorem 7.3.

OR�sim∩seq ⊂ ORsim∩seq ⊂ OR
∪ ∪ ∪

IR�sim∩seq ⊂ IRsim∩seq ⊂ IR

The next result demonstrates the correctness of the reduction from the axioms (I1)–(I7) to (C1)–(C4) when an additional,
equivalent to sim ∩ seq = ∅ in the case of invariant structures over a given step alphabet, property is assumed.

Proposition 7.4. For every relational structure ir = 〈�, �, �, �〉,

ir ∈ IRsim∩seq ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ � : x �= y =⇒ x � y ∨ x � y � x) .

The step alphabets in �sim∩seq can generate all the causal patterns involving causal relationships captured by the struc-
tures in ORsim∩seq .

Theorem 7.5. If a structure or ∈ ORsim∩seq has an injective labelling, then there are ν ∈ �sim∩seq and u ∈ SSEQν such that or is
isomorphic to sseq2orν(u).

Corollary 7.6. If ir ∈ IRsim∩seq has an injective labelling, then there are μ ∈ �sim∩seq and u ∈ SSEQμ such that ir is isomorphic to
or2irsim∩seq ◦ sseq2orμ(u).

8. Relational structures for the alphabets in �seq\sim

A step alphabet σ = 〈�, sim, seq〉 ∈ �seq\sim is the one satisfying seq \ sim =∅ and therefore we have seq ∪ seq−1 ⊆ sim.
Alphabets in �seq\sim do not allow true interleaving, and swapping of steps can be achieved by splitting and joining steps.
In [10], such alphabets are referred to as comtrace alphabets.

Example 8.1. Let us recall the step alphabet θ0 of Example 3.1 and restrict � to {b, c, d, e}. The resulting step alphabet
σ0 ∈ �seq\sim has the following simultaneity and sequentialising relations:

sim = seq =

with

�(cde)� = {(cde)} �(ce)� = {(ce), ec}
�(de)� = {(de),de} �dec� = {dec, (de)c,d(ce)} .

312 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
One can also obtain another example of an alphabet from �seq\sim by taking θ0 and restricting � to {a, b, c, d}. The resulting
step alphabet σ1 has the following simultaneity and sequentialising relations:

sim = seq =

with �acd� = {acd, cad, cda, (ac)d, c(ad)}, �a(cd)� = {a(cd), (cd)a, (acd)}, and �abc� = {abc}. �

The definition of the dependence structure of a step sequence u ∈ SSEQσ can be simplified by replacing (2), for all
α, β ∈ occ(u) with posu(α) = k and posu(β) = m, with:

α � β if 〈�(α), �(β)〉 /∈ seq ∧ k < m
or 〈�(α), �(β)〉 /∈ seq−1 ∧ k > m

α � β if 〈�(α), �(β)〉 /∈ seq ∩ seq−1 ∧ k < m
or 〈�(α), �(β)〉 ∈ sim \ seq−1 ∧ k = m .

(6)

The order structures ORseq\sim needed to reflect causal dependencies in the step traces over the concurrent alphabets of
�seq\sim are all those order structures or = 〈�, �, �, �〉 ∈ OR for which x � y =⇒ x �sym y. The corresponding invariant
structures can then be provided with a simpler definition.

A relational structure 〈�, �, �, �〉 belongs to IRseq\sim if

x �� x (D1)
x �= y ∧ x � z � y =⇒ x � y (D2)

x � y =⇒ x �sym y ∧ y � x (D3)
x ≺ z � y ∨ x � z ≺ y =⇒ x � y (D4)

x �= y ∧ �(x) = �(y) =⇒ x � y (D5)

In terms of graph representation for both ORseq\sim and IRseq\sim , any two events are connected in 〈�, �, �〉 iff
they are connected in 〈�, ≺, �〉.

The definitions of ORseq\sim and IRseq\sim are sound.

The simplified order structure closure ORseq\sim
or2irseq\sim−−−−−−→ IRseq\sim is such that, for every or = 〈�, �, �, �〉 ∈ ORseq\sim:

or2irseq\sim(or) = 〈�,(�∗ ◦ ≺ ◦ �∗)sym,��, �〉 .

Proposition 8.2. or2irseq\sim is a surjection with or2irseq\sim = or2ir|ORseq\sim .

Theorem 8.3.

OR�seq\sim ⊂ ORseq\sim ⊂ OR
∪ ∪ ∪

IR�seq\sim ⊂ IRseq\sim ⊂ IR

The next result demonstrates the correctness of the reduction from the axioms (I1)–(I7) to (D1)–(D5) when an additional
property, equivalent to seq \ sim = ∅ in the case of invariant structures over a given step alphabet, is assumed.

Proposition 8.4. For every relational structure ir = 〈�, �, �, �〉,

ir ∈ IRseq\sim ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ � : x � y =⇒ x �sym y) .

Step traces over the step alphabets in �seq\sim can generate all the causal patterns involving causal relationships captured
by the structures in ORseq\sim .

Theorem 8.5. If a structure or ∈ ORseq\sim has an injective labelling, then there are σ ∈ �seq\sim and u ∈ SSEQσ such that or is
isomorphic to sseq2orσ (u).

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 313
Corollary 8.6. If ir ∈ IRseq\sim has an injective labelling, then there are μ ∈ �seq\sim and u ∈ SSEQμ such that ir is isomorphic to
or2irseq\sim ◦ sseq2orμ(u).

An example of a system model for which the step alphabets in �seq\sim and invariant structures IRseq\sim provide a
suitable semantical treatment are the elementary net systems with inhibitor arcs [14]. Note that every causal pattern can
be obtained as a closure of dependence structure for a computation in an elementary net system with inhibitor arcs.

Finally, as shown below, traces generated by the alphabets in �seq\sim are histories satisfying the concurrency
paradigm π3 of [10] by which actions that can be executed in any order can also be executed simultaneously (but not
necessarily vice versa).

Proposition 8.7. Let α and β be two action occurrences of a step trace τ generated by σ ∈ �seq\sim . Then

(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β))

=⇒
(∃v ∈ τ : posv(α) = posv(β)).

9. Relational structures for the alphabets in �sim�seq

A step alphabet ω = 〈�, sim, seq〉 ∈ �sim�seq satisfies sim�seq = ∅, and therefore we have sim = seq = seq−1. For the
alphabets in �sim�seq the interleaving equations are not really needed, and the serialisability equations are rich enough to
split and reorder steps in every possible way. As a result, all steps can be completely sequentialised.

Example 9.1. Let us recall the step alphabet θ0 of Example 3.1 and restrict � to {a, b, d}. The resulting step alphabet
ω0 ∈ �sim�seq has the following simultaneity and sequentialising relations:

sim = seq =

with �abd� = {abd} and �adb� = {adb, dab, (ad)b}. �

The definition of the dependence structure of a step sequence u ∈ SSEQω can be simplified by replacing (2), for all
α, β ∈ occ(u) with posu(α) = k and posu(β) = m, with:

α � β if 〈�(α), �(β)〉 /∈ sim
α � β if 〈�(α), �(β)〉 /∈ sim ∧ k < m .

(7)

The order structures ORsim�seq are all those or = 〈�, �, �, �〉 ∈ OR for which x � y ⇐⇒ x �sym y.

In terms of graph representation for ORsim�seq , any two events are connected in 〈�, �, �〉 iff they are connected
in the acyclic graphs 〈�, �, �〉 = 〈�, ≺, �〉.

The corresponding invariant structures can also be provided with a simpler definition. A relational structure 〈�, �, �, �〉
belongs to IRsim�seq if, for all x, y, z ∈ �:

x �� x (E1)
x � z � y =⇒ x � y (E2)

x � y ⇐⇒ x �sym y (E3)
x �= y ∧ �(x) = �(y) =⇒ x �sym y (E4)

In terms of graph representation for IRsim�seq , any two events are connected in 〈�, �, �〉 iff they are connected
in the partial orders 〈�, �, �〉 = 〈�, ≺, �〉 and, similarly as in IRsim , they fully capture all the relevant causal
relationships between events.

The definitions of ORsim�seq and IRsim�seq are sound.

The simplified order structure closure ORsim�seq
or2irsim�seq−−−−−−→ IRsim�seq is such that, for every or = 〈�, �, �, �〉 ∈ ORsim�seq:

or2irsim�seq(or) = 〈�,(�+)sym,�+, �〉 .

314 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
Proposition 9.2. or2irsim�seq is a surjection with or2irsim�seq = or2ir|ORsim�seq .

Theorem 9.3.

OR�sim�seq ⊂ ORsim�seq ⊂ OR
∪ ∪ ∪

IR�sim�seq ⊂ IRsim�seq ⊂ IR

The next result demonstrates the correctness of the reduction from the axioms (I1)–(I7) to (E1)–(E4) when an additional,
equivalent to sim�seq = ∅ in the case of invariant structures over a given step alphabet, property is assumed.

Proposition 9.4. For every relational structure ir = 〈�, �, �, �〉,

ir ∈ IRsim�seq ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ � : x � y ⇐⇒ x �sym y) .

The step alphabets in �sim�seq can generate all the causal patterns involving causal relationships captured by the struc-
tures in ORsim�seq .

Theorem 9.5. If a structure or ∈ ORsim�seq has an injective labelling, then there are ω ∈ �sim�seq and u ∈ SSEQω such that or is
isomorphic to sseq2orω(u).

Corollary 9.6. If ir ∈ IRsim�seq has an injective labelling, then there are μ ∈ �sim�seq and u ∈ SSEQμ such that ir is isomorphic to
or2irsim�seq ◦ sseq2orμ(u).

Finally, as shown below, the step traces generated by the alphabets in �sim�seq are histories satisfying the true concur-
rency paradigm π8 of [10] and a system model for which this subclass provides a suitable semantical treatment are the
elementary net systems with step sequence semantics. Note that every causal pattern (without labels) can be obtained as
the closure of a dependence structure for a computation in an elementary net system with step sequence semantics.

Proposition 9.7. Let α and β be distinct action occurrences α and β of a step trace τ generated by ω ∈ �sim�seq . Then

(∃v ∈ τ : posv(α) = posv(β))

⇐⇒
(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β)).

10. Concluding remarks

It may come as a surprise that invariant structures IRsim�seq are in a one-to-one correspondence with partial orders,
similarly as for IRsim , even though the actual definition of the two classes of order structures is different. The reason why
these two structures differ is that the defining subclasses of alphabets, �sim and �sim�seq , are based on different models
of observations. The former only admits sequential observations whereas the latter admits true step sequences. That the
underlying causal structures are partial orders comes from the fact that in the case of �sim�seq simultaneity always implies
the possibility of sequentialisation.

In [7] we introduced and investigated how to extend the trace theory to the case of step sequences, and we established
that the general traces defined through step alphabets are indeed the most general in terms of their underlying order
structures. In this paper, we have continued our investigations and identified for the five natural subclasses of step traces
their corresponding – simplified – invariant order structures.

As observed in [7], there are invariant structures that cannot be generated by any step alphabet. One reason is that the
latter can only capture static dependencies between actions, whereas in the former different occurrences of the same pair
of actions may exhibit different causality dependencies. Another reason is that the order-theoretic properties of invariant
structure are orthogonal to the properties of their labellings. A characterisation of ‘good’ labellings for the order structures
corresponding to general step traces has been addressed in [27]. In our ongoing work we aim at similar characterisations
for each subclass of invariant structures considered in this paper.

We have considered an extension of Mazurkiewicz traces taking steps as the smallest units of observation, and to repre-
sent observational and causal relationships in the behaviours of concurrent systems we used the order structures from [28]
which are an extension of an idea first proposed in [10,17,18]. A direct predecessor of order structures were the stratified
order structures (i.e., those generated by �seq\sim), introduced independently in [17] and [29], and then applied, e.g., in [30,
31]. The approach presented here allows classifications fitting both established (e.g., comtraces [14] and ST-traces [32,33]),
and as yet uninvestigated trace models.

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 315
There are differences with other concurrency models that at first sight might seem related to step traces. First of all, there
exist other generalisations of traces. Semi-traces originally introduced as rewriting systems by [34] and later investigated
in, e.g., [35,36] are generated by semi-commutations. The rewriting rules that change the order of two adjacent action
occurrences can be one-directional, ab → ba, rather than bi-directional. This cannot be done in the model discussed in this
paper. Conversely, there are no partial order models which can deal with weak causality [10,14]. Approaches other than
steps, either do not support weak causality [13,32,37], or, as [21,33,38], can equivalently be modelled with the comtraces
of [14] (i.e., the model of �seq\sim). We are also not aware of a model that can express a mutex situation represented here
by the interleaving equation (AB = B A and A ∩ B = ∅) other than those following [16]. Other extensions of Mazurkiewicz
traces consider infinite sequences, leading to complex traces or infinite traces as in, e.g., [39,40]. Finally, it should be noted
that the extension of Mazurkiewicz traces discussed in this paper is a static one, in contrast to the context or history
dependent traces from, e.g., [41–43].

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions, especially the reviewer who encouraged
us to reconsider our the presentation and provide constructive criticism. This research was supported by EPSRC (grant
EP/K001698/1 Uncover), the Polish National Science Center (grant No. 2013/09/D/ST6/03928), and NSERC of Canada (grant
RGPIN6466-15).

Appendix I. Proofs for the alphabets in �sim∩seq

Lemma Appendix I.1. IRsim∩seq ⊆ IR.

Proof. We first note that:

x � y � x ∧ x � y =⇒(C3) x �� y ∧ x �= y ∧ x � y =⇒ false (*)

Hence, by (C1),

x � y ⇐⇒ x �= y ∧ ¬(x � y � x). (**)

To show (I1) we observe that:

x � x =⇒ x � x � x =⇒(C3) x �� x ∧ x �= x =⇒ false.

Then we note that (I2) is simply (C2). To show (I3) we observe that:

x � y =⇒(**) x �= y ∧ ¬(x � y � x)
=⇒ x �= y ∧ (y �= x ∧ ¬(y � x � y))

=⇒(**) x �= y ∧ y � x .

To show (I4) we observe that:

x �� y ∧ x ≺ z � y =⇒(**) (x = y ∨ x � y � x) ∧ x ≺ z � x
=⇒(C1) (x = y ∨ x � y � x) ∧

x � z � y ∧ x � z ∧ z �= x
=⇒ x � z � x ∧ x � z ∨

x � z � y � x ∧ x � z ∧ z �= x
=⇒(C2) x � z � x ∧ x � z ∨ x � z � x ∧ x � z
=⇒ x � z � x ∧ x � z
=⇒(C3) false .

Similarly, x �� y ∧ x � z ≺ y =⇒ false. Hence we have:

x ≺ z � y ∨ x � z ≺ y =⇒ x � y .

To show (I5) we first observe that:

z � y ∧ z � x � z ∧ x � y � x
=⇒(C1) z � y ∧ z � x � y � x � z ∧ z �= y
=⇒(C2) z � y ∧ z � y � z
=⇒(*) false

z � y ∧ z � x � z ∧ x = y
=⇒ z � y ∧ z � y � z
=⇒ false .
(*)

316 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
Hence we have:

z � y ∧ z � x � z =⇒ ¬(y � x � y) ∧ x �= y =⇒(**) x � y .

To show (I6) we observe that:

z � z′ ∧ x � z � y ∧ x � z′ � y ∧ x � y � x
=⇒(C1) z � z′ ∧ x � z � y ∧ x � z′ � y ∧ x � y � x ∧

z �= z′ ∧ z �= x ∧ y �= z
=⇒ z � z′ ∧ z � y � x � z′ � y � x � z ∧

z �= z′ ∧ z �= x ∧ y �= z
=⇒(C2) z � z′ ∧ z � x � z′ � y � z ∧ z �= z′
=⇒(C2) z � z′ ∧ z � z′ � z
=⇒(*) false

z � z′ ∧ x � z � y ∧ x � z′ � y ∧ x = y
=⇒(C1) z � z′ ∧ z � x � z′ � x � z ∧ z �= z′
=⇒(C2) z � z′ ∧ z � z′ � z
=⇒(*) false .

Hence we have:

z � z′ ∧ x � z � y ∧ x � z′ � y =⇒ ¬(y � x � y) ∧ x �= y =⇒(**) x � y .

We finally note that (I7) is simply (C4). �
Lemma Appendix I.2. IRsim∩seq ⊆ ORsim∩seq .

Proof. Follows from Lemma Appendix I.1, IR ⊆ OR, and (C3). �
Lemma Appendix I.3. or2irsim∩seq(ORsim∩seq) ⊆ IRsim∩seq .

Proof. Let or = 〈�, �, �, �〉 ∈ ORsim∩seq and ir = or2irsim∩seq(or) = 〈�, �̂, ̂�, �〉.
To show (C1) we observe that �̂ = �, and to show (C2), we observe that:

x �= y ∧ x �̂ z �̂ y =⇒ x �= y ∧ x �� z �� y =⇒ x �� y =⇒ x �̂ y .

To show (C3) we observe that:

�� = �∗ ∩ (�∗)−1 = (�� �id�) ∩ (�� �id�)−1 = (�� ∩(��)−1) � id�,

hence

�̂ = � = (� × �)\ ��= (� × �) \ (�� ∩ (��)−1 � id�),

and so

x ̂�� y ∧ x �= y ⇐⇒ x �̂ y �̂ x.

Finally, (C4) follows from the label-linearity of or, as shown below:

x �= y ∧ �(x) = �(y) =⇒ x ≺sym y =⇒ x ≺̂sym y .

Hence ir ∈ IRsim∩seq. �
Proof of Proposition 7.2. We show that or2irsim∩seq = or2ir|ORsim∩seq . Let or = 〈�, �, �, �〉 ∈ ORsim∩seq and ir = or2ir(or) =
〈�, �̂, ̂�, �〉. We first observe that in such a case we have �= (� ×�)\ �� , which follows from x �= y ⇒ x � y ∨ x � y � z
and the separability of or. By the general theory we know that

(�� ◦ � ◦ �� ∪ �� ◦crosssym◦ ��)∩ �� = ∅.

and since � ⊆ �� ◦ � ◦ �� we obtain or2ir(or) = 〈�, �, ��, �〉.
We observe that or2irsim∩seq(ORsim∩seq) = IRsim∩seq follows from Lemmas Appendix I.1, Appendix I.2, and Appendix I.3,

or2irsim∩seq = or2ir|ORsim∩seq , and the fact that or2ir is the identity on IR, as then we obtain or2irsim∩seq(ORsim∩seq) ⊆ IRsim∩seq

and or2irsim∩seq(ORsim∩seq) ⊇ or2irsim∩seq(IRsim∩seq) = or2ir(IRsim∩seq) = IRsim∩seq . �

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 317
Proof of Theorem 7.3. Let us consider one by one all the inclusions:

• IR ⊂ OR was already justified in the proof of Theorem 5.6. Note, however, that we also have

or =
〈 {x, y, z}, {〈y, z〉, 〈z, y〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈y, x〉, 〈y, z〉}, {x �→ a, y �→ b, z �→ c}

〉
∈ OR \ IR .

• IRsim∩seq ⊂ ORsim∩seq follows from or ∈ ORsim∩seq \ IRsim∩seq and Lemma Appendix I.2.
• IR�sim∩seq ⊂ OR�sim∩seq follows from os ∈ OR�sim∩seq \ IR�sim∩seq and the general results proven in [7].
• ORsim∩seq ⊂ OR follows from the definition of ORsim∩seq and

or′ = 〈{x, y},∅, {〈x, y〉}, {x �→ a, y �→ b}〉 ∈ OR \ ORsim∩seq .

• IRsim∩seq ⊂ IR follows from or′ ∈ IR \ IRsim∩seq and Lemma Appendix I.1.
• OR�sim∩seq ⊂ ORsim∩seq can be shown by taking ν ∈ �sim∩seq , u ∈ SSEQν , and or = sseq2orν(u) = 〈�, �, �, �〉. Since we

know that or ∈ OR, we only need to demonstrate that:

(� × �) \ id� ⊆ � ∪ (� ∩ �−1) .

The above holds since, by (5), posu(α) = posu(β) ∧ α �= β implies α � β � α, and posu(α) �= posu(β) implies α � β .
Hence or ∈ ORsim∩seq . Moreover, we note that

or′′ =
〈 {x, y, z},

{〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉, 〈y, z〉, 〈z, y〉},
{〈x, y〉, 〈x, z〉}, {x �→ a, y �→ a, z �→ b}

〉
∈ ORsim∩seq \ OR�sim∩seq .

• IR�sim∩seq ⊂ IRsim∩seq follows from Lemma Appendix I.3, or′′ ∈ IRsim∩seq \ IR�sim∩seq and OR�sim∩seq ⊆ ORsim∩seq .

Moreover, note that or ∈ ORsim∩seq \ IR and or′ ∈ IR\ORsim∩seq which justifies that IR and ORsim∩seq are not related. Similarly,
or ∈ OR�sim∩seq \ IRsim∩seq and or′′ ∈ IRsim∩seq \ OR�sim∩seq , hence there is no inclusion between IRsim∩seq and OR�sim∩seq . �
Proof of Proposition 7.4. (=⇒) Follows from Theorem 7.3 and (C3).

(⇐=) Note that (I2) and (C2) as well as (I7) and (C4) are the same axioms; and (C1) follows from (I3). To prove (C3),
assume that x � y � x. Then x �= y by (I1) and x �� y by separability (or directly by (I5) and (C1)). Conversely, assume that
x �� y and x �= y. Then by additional property x � y � x, which concludes the proof. �
Proof of Theorem 7.5. Let or = 〈�, �, �, �〉. Since the labelling � is injective, we may assume that � = � × {1}. Then,
from the general results proved in [7] it follows that there exists sr ∈ or2SR(os) which, by the definition of ORsim∩seq and
separability of OR satisfies (� × �) = id�� �sr �(�sr ∩ �−1

sr). Let ν = 〈�, sim, seq〉, where:

sim = {〈a,b〉 ∈ � × � | posu(〈a,1〉) = posu(〈b,1〉)}
seq = {〈a,b〉 ∈ � × � | (posu(〈a,1〉) < posu(〈b,1〉) ∧ 〈a,1〉 �� 〈b,1〉)

∨(posu(〈b,1〉) < posu(〈a,1〉) ∧ 〈b,1〉 �� 〈a,1〉)} .

Clearly, ν ∈ �sim∩seq and u ∈ SSEQν . It is easy to check that or = sseq2orν(u). �
Appendix II. Proofs for the alphabets in �seq\sim

Lemma Appendix II.1. IRseq\sim ⊆ IR.

Proof. We first note that (I1), (I2) and (I4) are respectively (D1), (D2) and (D4). To show (I3) we observe that:

x � y =⇒(D3) x �sym y ∧ y � x =⇒(D1) x �= y ∧ y � x .

To show (I5) we observe that:

z � y ∧ z � x � z =⇒(D3) z � y ∧ z � x � z ∧ z �sym y ∧ y � z
=⇒ x � z ≺ y ∨ y ≺ z � x
=⇒(D4) x � y ∨ y � x
=⇒(D3) x � y .

To show (I6) we observe that:

318 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
z � z′ ∧ x � z � y ∧ x � z′ � y
=⇒(D3) z � z′ ∧ x � z � y ∧ x � z′ � y ∧ z′ �sym z ∧ z′ � z
=⇒(D1) (x � z ≺ z′ � y ∨ x � z′ ≺ z � y) ∧ x �= z ∧ y �= z
=⇒(D2, D4) x � z ≺ y ∨ x ≺ z � y
=⇒(D4) x � y .

We finally note that (I7) follows from (D3) and (D5). �
Lemma Appendix II.2. IRseq\sim ⊆ ORseq\sim .

Proof. Follows from Lemma Appendix II.1, IR ⊆ OR, and (D3). �
Lemma Appendix II.3. or2irseq\sim(ORseq\sim) ⊆ IRseq\sim .

Proof. Let or = 〈�, �, �, �〉 ∈ ORseq\sim and ir = or2irseq\sim(or) = 〈�, �̂, ̂�, �〉.
To show (D1), we observe that:

x �̂ x =⇒ x �� x =⇒ false .

To show (D2), we observe that:

x �= y ∧ x �̂ z �̂ y =⇒ x �= y ∧ x �� z �� y =⇒ x �� y =⇒ x �̂ y .

To show (D3) we observe that all we need is to prove that x�̂y =⇒ x�̂sym y, in the following way:

x �̂ y =⇒ x(�∗ ◦ ≺ ◦ �∗)sym y =⇒ x �= y ∧ x(�+)sym y
=⇒ x(��)sym y =⇒ x �̂sym y ,

where x �̂ y =⇒ x �= y follows from Lemma Appendix II.1 and (I3). Finally, (D5) follows from the label-linearity of or, as
shown below:

x �= y ∧ �(x) = �(y) =⇒ x ≺̂sym y =⇒ x �̂y .

Hence ir ∈ IRseq\sim . �
Proof of Proposition 8.2. We first show that or2irseq\sim = or2ir|ORseq\sim . Let or = 〈�, �, �, �〉 ∈ ORseq\sim and ir = or2ir(or) =
〈�, �̂, ̂�, �〉. We first observe that

�� ◦ � ◦ �� = �� ◦ ≺sym ◦ �� and cross = �∗ ◦ ≺ ◦ �∗

which follows from x � y =⇒ x �sym y. Hence

�̂ = �� ◦(�∗ ◦ ≺ ◦ �∗)sym◦ �� = (�∗ ◦ ≺ ◦ �∗)sym .

We then observe that or2irseq\sim(ORseq\sim) = IRseq\sim follows directly from Lemmas Appendix II.1, Appendix II.2,
and Appendix II.3, or2irseq\sim = or2ir|ORseq\sim , and the fact that or2ir is the identity on IR, as then we obtain
or2irseq\sim(ORseq\sim) ⊆ IRseq\sim and or2irseq\sim(ORseq\sim) ⊇ or2irseq\sim(IRseq\sim) = or2ir(IRseq\sim) = IRseq\sim . �
Proof of Theorem 8.3. Let us consider one by one all the inclusions:

• IR ⊂ OR was already justified in the proof of Theorem 5.6. Note, however, that we also have

or =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉}, {〈x, y〉, 〈y, z〉},

{x �→ a, y �→ b, z �→ c}
〉
∈ OR \ IR .

• IRseq\sim ⊂ ORseq\sim follows from or ∈ ORseq\sim \ IRseq\sim and Lemma Appendix II.2.
• IR�seq\sim ⊂ OR�seq\sim follows from os ∈ OR�seq\sim \ IR�seq\sim and the general results proven in [7].
• ORseq\sim ⊂ OR follows from the definition of ORseq\sim and

or′ = 〈{x, y}, {〈x, y〉},∅, {x �→ a, y �→ b}〉 ∈ OR \ ORseq\sim .

• IRseq\sim ⊂ IR follows from or′ ∈ IR \ IRseq\sim and Lemma Appendix II.1.

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 319
• OR�seq\sim ⊂ ORseq\sim can be proven by taking σ ∈ �seq\sim , u ∈ SSEQσ and or = sseq2orσ (u) = 〈�, �, �, �〉. Since
we know that or ∈ OR, we only need to show that � ⊆ �sym . This, however, follows from (6). Hence or ∈ ORseq\sim .
Moreover, we note that

or′′ =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈x, z〉}, {x �→ a, y �→ a, z �→ b}

〉
∈ ORseq\sim \ OR�seq\sim .

• IR�seq\sim ⊆ IRseq\sim follows from Lemma Appendix II.3, or′′ ∈ IRseq\sim \ IR�seq\sim and OR�seq\sim ⊆ ORseq\sim .

Moreover, note that or ∈ ORseq\sim \ IR and or′ ∈ IR\ORseq\sim which justifies that IR and ORseq\sim are not related. Similarly,
or ∈ OR�seq\sim \ IRseq\sim and or′′ ∈ IRseq\sim \ OR�seq\sim , hence there is no inclusion between IRseq\sim and OR�seq\sim . �
Proof of Proposition 8.4. (=⇒) Follows from Theorem 8.3 and (D3).

(⇐=) Note that (I1) and (D1) as well as (I2) and (D2), and (I4) and (D4) are the same axioms; and (D5) follows from (I7).
To prove (D3), assume that x � y. Then x �sym y by additional property, while y � x by (I3). �
Proof of Theorem 8.5. Let or = 〈�, �, �, �〉. Since the labelling � is injective, we may assume that � = � × {1}. Then, from
the general results proved in [7] it follows that there exists sr ∈ or2SR(os). Let u = sseq2sr−1(sr), and σ = 〈�, sim, seq〉,
where:

sim = {〈a,b〉 ∈ � × � | (posu(〈a,1〉) = posu(〈b,1〉) ∧ a �= b)∨
(posu(〈a,1〉) �= posu(〈b,1〉) ∧ 〈a,1〉 �� 〈b,1〉)}

seq = {〈a,b〉 ∈ � × � | (posu(〈a,1〉) = posu(〈b,1〉) ∧ a �= b ∧ 〈b,1〉 �� 〈a,1〉)
∨(posu(〈a,1〉) < posu(〈b,1〉) ∧ 〈a,1〉 �� 〈b,1〉)
∨(posu(〈b,1〉) < posu(〈a,1〉) ∧ 〈b,1〉 �� 〈a,1〉)} .

We then observe that sim is symmetric since � is symmetric, and seq \ sim is symmetric because it is empty (it follows
from seq ⊆ sim, as we show below). Hence σ is a step alphabet. To show σ ∈ �seq\sim we need to show that seq ⊆ sim.

Let 〈a, b〉 ∈ seq. If posu(〈a, 1〉) = posu(〈b, 1〉) then, clearly, 〈a, b〉 ∈ sim. If posu(〈a, 1〉) < posu(〈b, 1〉) and 〈a, 1〉 �� 〈b, 1〉 then,
by or ∈ ORseq\sim , we obtain 〈a, 1〉 �� 〈b, 1〉 or 〈a, 1〉 � 〈b, 1〉 ∧ 〈b, 1〉 � 〈a, 1〉.

Moreover, by posu(〈a, 1〉) < posu(〈b, 1〉), we obtain 〈b, 1〉 �� 〈a, 1〉 and so we have 〈a, 1〉 �� 〈b, 1〉. Hence 〈a, b〉 ∈ sim, and
so σ ∈ �seq\sim .

We then observe that u ∈ SSEQσ as posu(〈a, 1〉) = posu(〈b, 1〉) and a �= b together imply 〈a, b〉 ∈ sim, and it is easy to
check that or = sseq2orσ (u). �
Proof of Proposition 8.7. Let ir = or2ir ◦ sseq2orκ (u) = or2ir ◦ sseq2orκ (w). From posu(α) < posu(β) it follows that there
is sru ∈ or2SR(ir) such that α ≺sru β . Similarly, from posw(α) > posw(β) it follows that there is srw ∈ or2SR(ir) such that
β ≺srw α. Hence, α ��ir β ��ir α. Moreover, by ir ∈ ORseq\sim , α ��ir β . This, by the general results proved in [7], there is
srv ∈ or2SR(ir) such that α �srv β �srv α. Then the conclusion holds by taking v = sseq2or−1

σ (srv). �
Appendix III. Proofs for the alphabets in �sim�seq

Lemma Appendix III.1. IRsim�seq ⊆ IR.

Proof.
We first note that (I1) is simply (E1). To show (I2) we observe that

x �= y ∧ x � z � y =⇒(E2) x � y .

To show (I3) we observe that

x � y =⇒(E3) x �sym y =⇒(E3) y � x .

and we observe that if x � x then we obtain a contradiction as follows:

x � x =⇒(E3) x �sym x =⇒ x � x =⇒(E1) x �= x .

To show (I4) we observe that:

x ≺ z � y ∨ x � z ≺ y =⇒(E2) x � y =⇒(E3) x � y .

To show (I5) we observe that:

z � y ∧ z � x � z =⇒(E2) z � z =⇒(E1) false .

320 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
To show (I6) we observe that:

z � z′ ∧ x � z � y ∧ x � z′ � y =⇒(E2) x � y =⇒(E3) x � y .

We finally note that (I7) follows from (E3) and (E4). �
Lemma Appendix III.2. IRsim�seq ⊆ ORsim�seq .

Proof. Follows from Lemma Appendix III.1, IR ⊆ OR, and (E3). �
Lemma Appendix III.3. or2irsim�seq(ORsim�seq) ⊆ IRsim�seq .

Proof. Let or = 〈�, �, �, �〉 ∈ ORsim�seq and ir = or2irsim�seq(or) = 〈�, �̂, ̂�, �〉.
To show (E1) we observe that x ̂� x together with x �� x imply that there are y, z such that x �∗ y � z �∗ x. Hence, by

the definition of ORsim�seq , y � z, contradicting the separability of or.
To show (E2) we observe that:

x �̂ z �̂ y =⇒ x �+ z �+ y =⇒ x �+ y =⇒ x �̂ y .

To show (E3) we observe that:

x �̂sym y ⇐⇒ x(�+)sym y ⇐⇒ x �̂ y .

Finally, (E4) follows from the label-linearity of or, as shown below:

x �= y ∧ �(x) = �(y) =⇒ x ≺̂sym y =⇒ x �̂sym y .

Hence ir ∈ IRsim�seq . �
Proof of Proposition 9.2. We show that or2irsim�seq = or2ir|ORsim�seq . Let or = 〈�, �, �, �〉 ∈ ORsim�seq and ir = or2ir(or) =
〈�, �̂, ̂�, �〉. We first observe that in such a case we have ��= id� which follows from x �sym y ⇐⇒ x � y and the
separability of or. As a result, we also have ��=�+ . Hence

or2ir(or) = 〈�,� ∪ crosssym,�+, �〉 ,

where cross = {〈x, y〉 | ∃z, w : z � w ∧ x �∗ z �∗ y ∧ x �∗ w �∗ y}. We will now show that (� ∪ crosssym) = (�+)sym .
Suppose first that 〈x, y〉 ∈ cross which means that x �= y (which follows from the general theory), and there is z such

that x �∗ z �∗ y. Hence x �+ y showing that the (⊆) inclusion holds. To show the reverse inclusion, suppose that x �+ y.
If x � y then, by the definition of ORsim�seq , we have x � y. Otherwise, there is z such that x � z �∗ y. Then, again by the
definition of ORsim�seq , z � x. We therefore obtain that 〈x, y〉 ∈ cross, after taking w = x. Hence

or2ir(or) = 〈�,(�+)sym,�+, �〉 .

We observe that or2irsim�seq(ORsim�seq) = IRsim�seq follows from Lemmas Appendix III.1, Appendix III.2, and Appendix
III.3, or2irsim�seq = or2ir|ORsim�seq , and the fact that or2ir is the identity on IR, as then we obtain or2irsim�seq(ORsim�seq) ⊆
IRsim�seq and or2irsim�seq(ORsim�seq) ⊇ or2irsim�seq(IRsim�seq) = or2ir(IRsim�seq) = IRsim�seq . �
Proof of Theorem 9.3. Let us consider one by one all the inclusions:

• IR ⊂ OR was already justified in the proof of Theorem 5.6. Note, however, that we also have

or =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉},
{〈x, y〉, 〈y, z〉}, {x �→ a, y �→ b, z �→ c}

〉
∈ OR \ IR .

• IRsim�seq ⊂ ORsim�seq follows from or ∈ ORsim�seq \ IRsim�seq and Lemma Appendix III.2.
• IR�sim�seq ⊂ OR�sim�seq follows from os ∈ OR�sim�seq \ IR�sim�seq and the general results proved in [7].
• ORsim�seq ⊂ OR follows from the definition of ORsim�seq and

or′ = 〈{x, y},∅, {〈x, y〉}, {x �→ a, y �→ b}〉 ∈ OR \ ORsim\seq .

• IRsim�seq ⊂ IR follows from or′ ∈ IR \ IRsim�seq and Lemma Appendix III.1.
• OR�sim�seq ⊂ ORsim�seq can be proven by taking ω ∈ �sim�seq , u ∈ SSEQω , and or = sseq2orω(u). Since or ∈ OR, we only

need to show that �sym
or = �or . This, however, follows from (7). Moreover, we note that

R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322 321
or′′ =
〈 {x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},
{〈x, y〉, 〈x, z〉}, {x �→ a, y �→ a, z �→ b}

〉
∈ ORsim�seq \ OR�sim�seq .

• IR�sim�seq ⊆ IRsim�seq follows from Lemma Appendix III.3, or′′ ∈ IRsim�seq \ IR�sim�seq and OR�sim�seq ⊆ ORsim�seq .

Moreover, note that or ∈ ORsim�seq \ IR and or′ ∈ IR \ ORsim�seq which justifies that IR and ORsim�seq are not related.
Similarly, or ∈ OR�sim�seq \ IRsim�seq and or′′ ∈ IRsim�seq \ OR�sim�seq , hence there is no inclusion between IRsim�seq and
OR�sim�seq . �
Proof of Proposition 9.4. (=⇒) Follows from Theorem 9.3 and (E3).

(⇐=) Note that (E3) is the additional property; (I1) and (E1) are the same axioms; and (E4) follows from (I7). To prove
(E2) assume x � z � y. Then, by additional property x � z. Then x � y by (I5) and thus, x �= y by (I3). Hence x � y by (I2),
and (E2) follows. �
Proof of Theorem 9.5. Let or = 〈�, �, �, �〉. Since the labelling � is injective, we may assume that � = � × {1}. Then, from
the general results proved in [7] it follows that there exists sr ∈ or2SR(os). Let u = sseq2sr−1(sr), and ω = 〈�, sim, seq〉,
where:

seq = sim = {〈a,b〉 ∈ � × � | (posu(〈a,1〉) �= posu(〈b,1〉) ∧ 〈a,1〉 �� 〈b,1〉)} .

We then observe that sim is symmetric since � is symmetric. Hence ω is a step alphabet. Clearly, ω ∈ �sim�seq and
u ∈ SSEQω . It is easy to check that or = sseq2orκ (u). �
Proof of Proposition 9.7. Let ir = or2ir ◦ sseq2orω(v). By posv(α) = posv(β), we obtain 〈�(α), �(β)〉 ∈ sim and there is sr ∈
or2SR(ir) such that α �sr β �sr α. Hence, α ��ir β . Moreover, by the order structure closure, α ��ir β and β ��ir α. This, by
the general results proved in [7], means that there are sr′, sr′′ ∈ or2SR(ir) such that α ≺sr′ β and β ≺sr′′ α. Then the first
implication holds by taking u = sseq2or−1

ω (sr′) and w = sseq2or−1
ω (sr′′).

On the other hand, let ir = or2ir ◦ sseq2orω(u) = or2ir ◦ sseq2orω(w). Then there exist sru, srw ∈ or2SR(ir) such that
α ≺sru β and β ≺srw α, and so, by the order structure closure, α ��ir β . This, by the general results proved in [7], means that
there exists sr ∈ or2SR(ir) such that α �sr β �sr α. Hence the second implication holds by taking v = sseq2or−1

ω (sr), which
ends the proof. �
References

[1] A. Mazurkiewicz, Concurrent Program Schemes and Their Interpretations, DAIMI Rep. PB 78, Aarhus University, 1977.
[2] A.W. Mazurkiewicz, Basic notions of trace theory, in: Proceedings of REX Workshop, in: LNCS, vol. 354, 1988, pp. 285–363.
[3] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, 1995.
[4] V. Pratt, Modeling concurrency with partial orders, Int. J. Parallel Program. 15 (1) (1986) 33–71.
[5] E. Szpilrajn, Sur l’extension de l’ordre partiel, Fundam. Math. 16 (1930) 386–389.
[6] H.J. Hoogeboom, G. Rozenberg, Dependence graphs, in: The Book of Traces, Springer, 1995, pp. 43–67.
[7] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Step traces, Acta Inform. 53 (1) (2016) 35–65.
[8] A. Ehrenfeucht, G. Rozenberg, Reaction systems, Fundam. Inform. 75 (1–4) (2007) 263–280.
[9] G. Păun, Computing with membranes (P systems): a variant, Int. J. Found. Comput. Sci. 11 (1) (2000) 167–181.

[10] R. Janicki, M. Koutny, Structure of concurrency, Theor. Comput. Sci. 112 (1) (1993) 5–52.
[11] J. Grabowski, On partial languages, Fundam. Inform. 4 (2) (1983) 125–147.
[12] G. Rozenberg, R. Verraedt, Subset languages of Petri nets. Part I, Theor. Comput. Sci. 26 (1983) 301–326.
[13] P. Baldan, N. Busi, A. Corradini, G.M. Pinna, Domain and event structure semantics for Petri nets with read and inhibitor arcs, Theor. Comput. Sci. 323

(2004) 129–189.
[14] R. Janicki, M. Koutny, Semantics of inhibitor nets, Inf. Comput. 123 (1) (1995) 1–16.
[15] D.T.M. Le, On three alternative characterizations of combined traces, Fundam. Inform. 113 (3) (2011) 265–293.
[16] R. Janicki, D.T.M. Le, Modelling concurrency with comtraces and generalized comtraces, Inf. Comput. 209 (11) (2011) 1355–1389.
[17] H. Gaifman, V.R. Pratt, Partial order models of concurrency and the computation of functions, in: Proceedings of LICS’87, 1987, pp. 72–85.
[18] L. Lamport, The mutual exclusion problem: part I – a theory of interprocess communication, J. ACM 33 (2) (1986) 313–326.
[19] J. Kleijn, M. Koutny, Mutex causality in processes and traces of general elementary nets, Fundam. Inform. 122 (1–2) (2013) 119–146.
[20] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Characterising concurrent histories, Fundam. Inform. 139 (2015) 21–42.
[21] G. Juhás, R. Lorenz, S. Mauser, Complete process semantics of Petri nets, Fundam. Inform. 87 (3–4) (2008) 331–365.
[22] L. Paulevé, Goal-oriented reduction of automata networks, in: Proceedings of CMSB’16, 2016, pp. 252–272.
[23] B. Nagy, Number of words characterizing digital balls on the triangular tiling, in: Proceedings of DGCI’16, 2016, pp. 31–44.
[24] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Order structures for subclasses of generalised traces, in: Proceedings of LATA’15, 2015, pp. 689–700.
[25] Ł. Mikulski, Algebraic structure of combined traces, Log. Methods Comput. Sci. 9 (3) (2013) 1–26.
[26] Ł. Mikulski, A. Mokhov, M. Piatkowski, Reduction of order structures, in: Proceedings of ACSD’17, 2017, in press.
[27] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Relating step alphabets and invariant structures, Fundam. Inform., in press.
[28] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Causal structures for general concurrent behaviours, in: Proceedings of CS&P’13, 2013, pp. 193–205.
[29] R. Janicki, M. Koutny, Invariants and paradigms of concurrency theory, in: Proceedings of PARLE’91, 1991, pp. 59–74.
[30] G. Juhás, R. Lorenz, S. Mauser, Causal semantics of algebraic Petri nets distinguishing concurrency and synchronicity, Fundam. Inform. 86 (3) (2008)

255–298.
[31] G. Juhás, R. Lorenz, C. Neumair, Synthesis of controlled behavior with modules of signal nets, in: Proceedings of Petri Nets’04, in: LNCS, vol. 3099,

2004, pp. 238–257.

http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4D617A3737s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4D617A3838s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib446965526F7A3935s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib5072613836s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib537A703330s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib486F6F67526F7A3935s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4B4B4D31362D4149s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib456872526F7A3036s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib5061753030s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A616E4B6F7539332D544353s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4772613833s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib526F7A5665723833s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib424243503034s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib424243503034s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A616E4B6F7539352D4943s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4461693131s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A616E4C653131s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4761695072613837s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4C616D3836s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4B6C654B6F7531332D4649s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4B4B4D31352D4649s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4C4D30382D4649332D34s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib5061753136s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4E61673136s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4B4B4D31352D4C415441s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4D696B3133s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4D694D6F3137s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4B4B4D31332D435350s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A616E4B6F7539312D5041524C45s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4C4D30382D464933s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4C4D30382D464933s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4C4D30342D504Es1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4A4C4D30342D504Es1

322 R. Janicki et al. / Journal of Computer and System Sciences 104 (2019) 297–322
[32] W. Vogler, A generalization of trace theory, RAIRO Inform. Theor. Appl. 25 (2) (1991) 147–156.
[33] W. Vogler, Partial order semantics and read arcs, Theor. Comput. Sci. 286 (1) (2002) 33–63.
[34] M. Clerbout, Commutations partielles et familles de langages, Ph.D. thesis, University of Lille, 1984.
[35] D.V. Hung, E. Knuth, Semi-commutations and Petri nets, Theor. Comput. Sci. 64 (1989) 67–81.
[36] K. Reinhardt, On the synchronization of semi-traces, in: Proceedings of FCT’95, in: LNCS, vol. 965, 1995, pp. 393–403.
[37] M. Shields, Adequate path expressions, in: Proceedings of SCC’79, in: LNCS, vol. 70, 1979, pp. 249–265.
[38] N. Busi, G.M. Pinna, Process semantics for place/transition nets with inhibitor and read arcs, Fundam. Inform. 40 (2–3) (1999) 165–197.
[39] V. Diekert, P. Gastin, A. Petit, Recognizable complex trace languages, in: Proceedings of MFCS’91, in: LNCS, vol. 520, 1991, pp. 131–140.
[40] P. Gastin, Infinite traces, in: Proceedings of SSCP’90, in: LNCS, vol. 469, 1990, pp. 277–308.
[41] I. Biermann, B. Rozoy, Reliable generalized and context dependent commutation relations, in: Proceedings of TAPSOFT’97, in: LNCS, vol. 1214, 1997,

pp. 165–176.
[42] P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan, A trace semantics for Petri nets, Inf. Comput. 117 (1) (1995) 98–114.
[43] D. Kuske, R. Morin, Pomsets for local trace languages – recognizability, logic & Petri nets, in: Proceedings of CONCUR’00, in: LNCS, vol. 1877, 2000,

pp. 426–441.

http://refhub.elsevier.com/S0022-0000(17)30060-0/bib566F673931s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib566F673032s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib436C653834s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib48756E4B6E753839s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib5265693935s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib5368693739s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib42757350696E3939s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4447503931s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4761733930s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib426965526F7A3937s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib426965526F7A3937s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib484B543935s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4B75734D6F723030s1
http://refhub.elsevier.com/S0022-0000(17)30060-0/bib4B75734D6F723030s1

	Classifying invariant structures of step traces
	1 Introduction
	2 Preliminaries
	3 Step traces
	3.1 Classifying step alphabets

	4 Relational structures for step traces
	4.1 Order structures
	4.2 Saturated structures
	4.3 Invariant structures
	4.4 Order structure closure
	4.5 Step sequences and saturated structures
	4.6 Dependence structures
	4.7 Step traces and invariant structures
	4.8 About the rest of this paper

	5 Relational structures for the alphabets in Θsim
	6 Relational structures for the alphabets in Θsim\seq
	7 Relational structures for the alphabets in Θsim⋂seq
	8 Relational structures for the alphabets in Θseq\sim
	9 Relational structures for the alphabets in Θsim△seq
	10 Concluding remarks
	Acknowledgments
	Appendix I Proofs for the alphabets in Θsim⋂seq
	Appendix II Proofs for the alphabets in Θseq\sim
	Appendix III Proofs for the alphabets in Θsim△seq
	References

