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Abstract. A version of mereology (i.e. theory of parts and fusions) is presented. Some applications
to model software structures are discussed.

Preface. In summer 1999, late Zdzisław Pawlak suggested to the first author that Leśniewski’s ideas
[21, 31] might help in solving the problem of formally defining the concept of “part-of” for Parnas’ Tab-
ular Expressions [9, 14]. This is how the research presented in this paper began.

1. Introduction

A correct construction of complex entities from the more primitive ones is one of the basic problems
software engineering is facing at this moment. The need for precise rules for both composition and
decomposition had been recognized more than thirty years ago (see [22]), but widely accepted formal
techniques have not yet been found. Object-Oriented Programming [1] and in particular Software Com-
ponents [30] are two popular paradigms that emphasise “building a whole from parts”, and enjoy some
degree of successful applications.

What computer science and/or software engineering need are simple but powerful formal calculi for
manipulating parts. Lack of such caluculi seems to be a main reason why theoretical bases of Software
Components and even Object-Oriented Programming are still underdeveloped [1, 30].

Such calculi are also needed since the common sense notion of parthood in software and program-
ming is fuzzy and not common at all [3]. Even in types of engineering where common sense notions of
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parthood are well established, it was noticed that the complexity of objects and dissimilarities of expe-
rience require a more formal approach [26]. Mereology, especially when enriched with some Category
Theory [6] constructions is a possible means to provide a basis for such calculi.

Attempts to formalize the concept of “part of” go back to S. Leśniewski (1916-37, [21, 31]), who
invented the name “mereology”, i.e. theory of parts, and H. Leonard, N. Goodman (1940-50, [7, 19]).
Leśniewski’s systems were invented as an alternative to what is now called “standard set theory” (i.e.
based on Zermelo-Fraenkel axioms) [28], and translation of his ideas into the language of standard
set theory is not obvious and often problematic [27, 28, 31], so more practical applications are rare and
difficult. Leonard and Goodman Calculus, formulated within standard set theory, was invented to provide
a formal model for a universal1 concept of parthood [4, 7, 28]. Both models have been substantially
extended, however none of them has been substantially applied outside philosophy, cognitive science
and pure logic [4, 28, 31]. Only in the last decade have there been serious attempts to apply mereological
ideas to industrial engineering [26], knowledge engineering [3], approximate reasoning [24], software
engineering [11, 17, 18], databases [3], and other areas [3, 26].

Eventhough the ideas of Leśniewski and Leonard-Goodman appear to be similar (see [27, 28]), math-
ematical results about this relationship are hard to find, and a major one [8] has not been widely accepted
among Leśniewski’s disciples2 [31].

Apart from different mathematics, the major difference seems to be that in Leśniewski’s model it
is assumed that all topological peoperties like connectedness are implicit. In other words, when parts
are composed according to their characteristics, they “naturally” connect with each other to produce a
whole. The Leonard-Goodman model also allows such situations but does not enforce them [28]. Most
of the applications, including this paper, uses notation and terminology from Leonard-Goodman model,
eventhough their spirit might be more of Leśniewski. The only recent practical application of pure
Leśniewski’s ideas known to the authors is Rough Mereology ([24] and some following papers) in the
framework of Zdzisław Pawlak’s Rough Sets [23].

The initial motivation for this work was provided by an attempt to define a formal semantics for
Parnas tabular expressions [13]. Tabular expressions [9, 14, 15] are relational means to represent the
complex relations that are used to specify and document software systems. The technique is quite popular
in software industry [9]. When software engineers discuss a specification using tabular expressions,
statements like “this is a part of a bigger relation”, “this relation is composed of the following parts”,
etc., can be heard very often, but what it means formally is not clear. It appears the standard algebra of
relations lacks the formal concept of being a part of (see [10, 11, 12] for more details).

A concept of “part of” for relations was first proposed in [13] and its properties were first analysed
in [10]. In [11] a solution to the problems caused by the assumed uniqueness of mereological sum
was proposed, namely, an operational algebraic version of mereology was created. In [11], parts are
composed and decomposed using mereological constructors and destructors instead of mereological sum
and mereological product. In [12] the concept of equivalent parts was added to the formal model of
mereology. Surprisingly, this concept was neglected before in the context of mereological theories [7,
28, 31]. The core of the model of [12] was recently extended by some categorical constructions and used
to model the concept of parts in the Component-Based Software Development [18].

1Universality causes problems for applications, as in reality there are many structurally different kinds of part-whole relations,
and without making this distiction clear, we might get unreasonable conclusions (see [3]).
2The paper [8] is right in the case of elementary mereology of Leśniewski, however Leśniewski’s non-elementary mereology is
a much richer theory. Therefore, the paper [8] is often considered heresy for some of Leśniewski’s students [31].
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In this paper we will present the revised and corrected results of [10, 11, 12, 18] in the following
order: Basic Mereology (Chapter 2), a generalisation of mereological sum (Chapter 3), an Algebraic
Mereology (Chapter 4), a mereology for direct products, i.e. Tabular Expressions (Chapter 5) and a
mereology for Software Components (Chapter 6). Due to lack of space, the concept of equivalent parts
will not be discussed.

2. Basic Mereology

Basic Mereology was proposed in [12] and we believe it is well suited to modelling elementary parthood
in various parts of Software Engineering. To make the paper self-sufficient, we start with a survey on the
theory of partial orders (see for example [25]).

Let X is a set. A relation �⊆ X×X is called a partial order iff it is reflexive (x� x), anti-symmetric
(x� y∧y� x⇒ x = y), and transitive (x� y∧y� z⇒ x� z). If � is a partial order then the pair (X ,�)
is called a partially ordered set or poset. A relation ≺ defined as x≺ y⇐⇒ x� y∧x 	= y is called a strict
partial order. The element ⊥∈ X satisfying ∀x∈ X .⊥� x is called the bottom of X . The element ∈ X
satisfying ∀x ∈ X . x �  is called the top of X . An element a ∈ A is a minimal (maximal) element of A
iff ∀x ∈ A.¬(x≺ a) (∀x ∈ A.¬(a≺ x)). The set of all minimal (maximal) elements of A will be denoted
by min(A) (max(A)). The minimal elements of the set X \{⊥} are called atoms of the poset (X ,�), and
Atoms denotes the set of all atoms of X. Let A⊆ X . An element a∈ X is called an upper bound) (a lower
bound) of A iff ∀x ∈ A. x � a (∀x ∈ A. a � x). The sets of all upper bounds and lower bounds of A are
denoted by ub(A) and lb(A) respectively. An element a ∈ X is called the least upper bound (supremum)
of A, denoted sup(A), iff a ∈ ub(A) and ∀x ∈ ub(A). a � x, and it is called the greatest lower bound
(infimum) of A, denoted in f (A), iff a ∈ lb(A) and ∀x ∈ lb(A). x� a.

The relation ≺̂ defined as: x≺̂y⇐⇒ x≺ y∧¬(∃z.x≺ z≺ y) is called the cover relation for �.

Now we will begin with mereological axioms, but to do so we need some definitions. Let (X ,�) be
a poset (with or without ⊥). The relation � is now interpreted as “part of”; a is a part of b iff a� b, and
a is a proper part of b iff a≺ b. Notice that “a is a part of b” is equivalent to saying that “b is a whole of
a”. The element ⊥ is interpreted as an empty part. The relations ◦, † and � on X \{⊥} defined as

x◦ y⇐⇒∃z ∈ X \{⊥}. z� x∧ z� y (overlap)

x † y⇐⇒¬(x◦ y) (disjoint)

x� y⇐⇒∃z ∈ X \{⊥}. x� z∧ y� z (underlap)

are called overlapping, disjointness and underlapping respectively. Two element x and y overlap iff they
have a common non-empty part, they are disjoint iff they do not have a common non-empty part, and
they underlap if they are both parts of another element (see [4, 28] for more properties).
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We will now introduce the set of axioms which helps us to define Basic Mereology:

x≺ y⇒ (∃z ∈ X . z≺ y∧ x † z)∨ x =⊥ (WSP)

∀x ∈ X \{⊥}. ∃y ∈ Atoms. y� x (ATM)

⊥ ∈ X (BOT)

x� y⇐⇒ x(≺̂)∗y (CCL)

∀x ∈ X . ∃y ∈ max(X). x� y (WUB)

where (≺̂)∗ is the reflexive and transitive closure of ≺̂, i.e. (≺̂)∗ =
S∞

i=0(≺̂)i.
The axiom WSP, called Weak Supplementation Principle, is a part of all known mereologies. Among

others, it guarantees that if an element has a proper non-empty part, it has more than one. It is widely
believed that any reasonable mereology must conform this axiom [28]. The Axiom ATM says that all
objects (except the empty part) are built from elementary elements called atoms. The axiom BOT simply
says that the empty part does exist, while CCL states that the part-of relation is the reflexive and transitive
closure of the cover relation for �. If X is finite then CCL is trivially satisfied. The final axiom WUB
(Weakly Upper Bounded) in principle means that the set max(X) is a roof that cover the whole set. This
axiom is crucial when the concept of equivalent parts is introduced. If  ∈ X then WUB is clearly
satisfied.

Definition 2.1. ([12])
A poset (X ,�) will be called a Basic Mereology if it satisfies BOT, WSP, CCL, WUB and ATM.

Basic Mereology will be the mereology that we are going to use in the rest of this paper.

Example 1. For every set A, let Â = {{a} | a ∈ A} be the set of all singletons generated by A, i.e. if
A = {a,b}, then Â = {{a},{b}}.

Let D1 = {a,b}, D2 = {1,2} be sets and let X = 2D1 ∪2D2 ∪2D1×D2 .
Define the relation � in X×X as follows:

A� B ⇐⇒ A⊆ B ∨ A⊆ πi(B), i = 1,2

where πi(B) is the projection of B on i-th coordinate, i.e. π1(B) = {x1 | (x1,x2) ∈ B}, π2(B) = {x2 |
(x1,x2) ∈ B}.

One can show by inspection that the pair (X ,�) is a Basic Mereology with Atoms =D̂1∪ D̂2, ⊥= /0
and = {(a,1),(a,2),(b,2), (b,2)}. This example is a special case of a more general model that will be
discussed in Section 5. A Hasse diagram of the relation � is presented in Figure 1. �

Notation. The relation from Figure 1 will often be used to illustrate various concepts, so to make the
formulas shorter the following notation will be used. We will omit all braces, parenthesis and commas,
and will write it as a subscript. For instance the element {(a,1),(a,2),(b,1),(b,2)} will be denoted by
xa1a2b1b2, {(a,1),(b,1),(b,2)} by xa1b1b2, {(b,1),(b,2)} by xb1b2, etc. We will also use  to denote
xa1a2b1b2. �
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/0

{a} {b} {1} {2}

{a,b} {1,2}
{(a,1)} {(a,2)} {(b,2)}

{(b,1)}

{(a,1),(a,2)}
{(a,1),(b,1)}

{(a,1),(b,2)}
{(a,2),(b,1)}

{(a,2),(b,2)}
{(b,1),(b,2)}

{(a,1),(a,2),(b,1),(b,2)}

{(a,1),(a,2),(b,1)}
{(a,1),(a,2),(b,2)}

{(a,1),(b,1),(b,2)}
{(a,2),(b,1),(b,2)}

Figure 1. A Hasse diagram of the relation � from Example 1.

3. Mereological Sum

The operations ⊕ and � defined by
z = x⊕ y ⇐⇒ (∀w ∈ X . w◦ z⇔ w◦ x∨w◦ y), (sum)
z = x� y ⇐⇒ (∀w ∈ X . w� z⇔ w� x∧w� y)∧ z 	=⊥ (product)

are called the mereological sum and mereological product respectively [4, 7, 28]. It is implicitly assumed
for both definitions that in order to exist, z must be unique. Both concepts can easily be extended from
two elements to any set in a standard way [4, 28]. The sum of elements of the set A (if exists) will be
denoted by

L

A, and the product of elements of the set A (if exists) will be denoted by
J

A. There is an
obvious relationship between mereological sum and least upper bound and between mereological product
and greatest lower bound, however those concepts are not identical. Let X = {/0,{a},{b},{c},{a,b,c}}.
The tuple (X ,⊆) is clearly a Basic Mereology, sup({{a},{b}}) = {a,b,c}, {a}⊕{b} does not exist.
On the other hand sup({{a},{b},{c}}) =

L{{a},{b},{c}} = {a,b,c}. The idea is that if � represents
“part-of” relation and the element {{a},{b},{c}} is built from all three parts {a}, {b} and {c}. Consider
the relation � from Figure 1. The least upper bound sup({xb2,x12}) does not exist while xb2⊕x12 = xb1b2

(see [12, 28] for more details).

Many mereologies assume that x� y implies the existance of x⊕ y [7, 28], which results in a very el-
egant model similar to semi-lattices or, when additional assumptions are made, to quasi boolean algebras
[8, 28]. However, for our purposes such assumption is too strong, most of the models we are interested
in do not have this property (including systems from [10, 11] and those discussed in Chapters 5 and
6). If different objects are allowed to have identical proper parts - and this is a usual case in Software
Engineering applications, then the sum x⊕ y often does not exist.
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The mereological sum
L

A, if it exists, can be interpreted as the most complex object built from the
set of parts A only. What if

L

A does not exist? Intuitively, a most complex object (or a set of equivalent
most complex objects) that can be built from the parts A might still exist. We will try to define such an
object formally. Attempts to define such a construction, which could be seen as a generalisation of a
mereological sum, were made in [10, 11, 12], however they are all, on one hand, too complex and on
the other hand, too restrictive. The construction presented below is a refinement of the ideas presented
in [12]. We intend to formally define an extension of mereological sum that will be called mereological
supremum and denoted by msup(A) for a given set A. If

L

A exists, we want msup(A) =
L

A. To explain
the other cases, let us consider some simple examples. Let X = {/0,{a},{b},{c},{a,b,c}}. The tuple
(X ,⊆) is clearly a Basic Mereology, sup({{a},{b}}) = {a,b,c}, {a}⊕{b} does not exist, and we do
not want msup({{a},{b}}) to exist, as none of the elements of X can intuitively be seen as entirely built
from {a} and {b}.

Consider a Basic Mereology from Figure 1 and two elements xab and x12. Neither xab⊕ x12 nor
sup({xab,x12}) exist but we want msup({xab,x12}) to exist and we want msup({xab,x12}) = xa1a2b1b2,
since xa1a2b1b2 is intuitively the biggest element that can be built from xab and x12 (for example by de-
composing xab and x12 into atoms xa, xb, x1, x2 and then composing xa1a2b1b2 again). We will now give a
formal definition of mereological supremum. Until the end of this chapter, we will assume that (X ,�) is
a basic mereology.

Let α : X → 2Atoms be a mapping defined as α(x) = {a | a ∈ Atoms∧a� x}.

The set α(x) is interpreted as the set of all atoms from which the element x is built. For each A⊆ X ,
we define standardly α(A) =

S

x∈A α(x).

Definition 3.1. Let A,C ⊆ X . A set C is a mereological cone (or just cone) over A if and only if the
following conditions are satisfied:

1. A⊆C ⊆ ub(A),

2. sup(C) ∈C,

3. x ∈ ub(A)∧ x� sup(C) ⇒ x ∈C,

4. α(A) = α(C). �

If
L

A exists, then A∪{LA} is a mereological cone over A. Consider a Basic Mereology from Figure
1, and let A1 = {xb,x1,x2}, A2 = {xb2,x12}, and A3 = {xa,xb,x1,x2}. There is only one cone over A1,
namely C1 = A1 ∪ {xb1b2} and only one cone over A2, namely C2 = A2 ∪ {xb1b2}. However there are
seven cones over A3, C1

3 = A3∪{xa1b2}, C2
3 = A3 ∪{xa2b1}, C3

3 = C1
3 ∪{xa1a2b2}, C4

3 = C1
3 ∪{xa1b1b2},

C5
3 = C2

3 ∪{xa1a2b1}, C6
3 = C2

3 ∪{xa2b1b2} and C7
3 = C3

3 ∪C4
3 ∪C5

3 ∪C6
3 ∪{xa1a2b1b2} = ub(A3). A mereo-

logical cone may not exist. Consider a Basic Mereology (X ,⊆), where X = {/0,{a},{b},{c},{a,b,c}}.
For the set A = {{a},{b}} no mereological cone exists. The only set that satisfies (1), (2) and (3) of
Definition 3.1 is C = {{a},{b},{a,b,c}}, but α(C) = {{a},{b},{c}} while α(A) = {{a},{b}} , so the
condition (4) of Definition 3.1 is not satisfied.
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Let MCones(A) denote the set of all merological cones over A. For instance for the sets A1, A2, A3

discussed above, we have MCones(A1) = {C1}, MCones(A2) = {C2} and MCones(A3) = {C1
3 , ...,C

7
3}.

Let MCA be a partially ordered set defined as MCA = (MCones(A),⊆). Each cone C can be interpreted
as a partially ordered set (C,�C), where �C is the mereological order � restricted to the subset C of X .

Definition 3.2. An element z∈X is called the mereological supremum of a set A⊆X , denoted msup(A),
if and only if

z = sup�C(DA),
where DA = sup⊆(min⊆(MCones(A))). �

If MCones(A) = /0 then msup(A) does not exist. For the sets A1 and A2 discussed previously, we
have trivially DA1 = C1 and DA2 = C2, and consequently msup(A1) = msup(A2) = xb1b2. The par-
tially ordered set MCA3 is fully described by the formulas: C1

3 ⊆ Ck
3 ⊆ C7

3, k = 3,4 and C2
3 ⊆ C j

3 ⊆C7
3,

j = 5,6. Hence min⊆(MCones(A3)) = {C1
3 ,C2

3} and DA3 = sup⊆({C1
3 ,C2

3}) = C7
3 = ub(A3). Therefore

msup(A3) = sup�C(DA3) = sup�C(ub(A3) = xa1a2b1b2 =.

Proposition 3.1. (1) MCA has a bottom ⊥MCA if and only if
L

A exists.
(2) If ⊥MCA exists then msup(A) = sup�(A) = sup�(⊥MCA) =

L

A. �

To illustrate the above Proposition, let us take again a Basic Mereology from Figure 1 and the set A4 =
{xb1,xb2,x12}. There are four cones over A4, C1

4 = A4∪{xb1b2}, C2
4 =C1

4∪{xa2b1b2}, C3
4 =C1

4∪{xa1b1b2},
C4

4 = C2
4 ∪C3

4 ∪{xa1a2b1b2}. The partially ordered set MCA4 is fully described by the formula: C1
4 ⊆Ck

4 ⊆
C4

4, k = 2,3, i.e. ⊥MCA4
= C1

4. In this case we also have: msup(A4) = sup�(A4) = sup�(⊥MCA4
) =

L

A4 = xb1b2.

Definition 3.3. A basic mereology (X ,�) is mereologically complete (or just complete) if for each
A ∈ X , msup(A) does exist. �

If a mereology is (mereologically) complete, then for each set of parts A a single most complex object
can be built from these parts. One can verify by inspection that the mereological system from Example
1 is complete. A Basic Mereology (X ,⊆), where X = { /0,{a},{b},{c},{a,b,c}} is not complete as for
instance msup({{a},{b}}) does not exist.

4. Algebraic Mereological Systems

How can we build complex object from the more primitive ones? Usually we assume to have a set of
elementary objects, or atoms and two sets of (partial) operations, constructors, that transform less com-
plex objects into more complex, and destructors, that transform more complex object into less complex.
There should be some relationship between the operators and both the part of and equivalence relations.
Formally, we are looking for some sort of an abstract algebra. This kind of mereology was first proposed
in [11], below we will present its recently revised and improved version. The following notation will be
used in this and following sections.

Let I be a set of indexes and let {Xi | i ∈ I} be a family of sets. By ∏i∈I Xi we denote a Direct
Product over I, i.e. the set of all total functions f : I →S

i∈I Xi such that ∀i ∈ I. f (i) ∈ Xi. For finite
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sets of indexes, Cartesian product notation is frequently used, and the functions belonging to∏i∈I Xi

are represented as vectors. For example if I = {2,5,9}, then ∏i∈I Xi = X2×X5×X9 and f : {2,5,9} →
X2∪X5∪X9 with f (2) = a2, f (5) = a5, f (9) = a9 is represented as a vector (a2,a5,a9)∈X2×X5×X9, i.e.
f = (a2,a5,a9). We will adopt this convention for an infinite set of indexes. If for each i ∈ I, f (i) = xi,
we will write f = Πi∈I(xi). We will use parenthesis “(,)”, to make a distiction between Πi∈I(xi) and
∏i∈I Xi, as Πi∈I(xi) ∈∏i∈I Xi. When Xi = X for all i ∈ I we will write Xk if I is finite and |X |= k, and XI

if I is not finite.
For every set of functions F , and every set A, let AF denote the smallest set containing A and closed

under F . Formally the set AF can be defined as follows. For every A⊆ X and every φ : XI → X , let
Aφ = {φ(Πi∈I(xi)) | ∀i ∈ I.xi ∈ A}.

The set AF is then the smallest set satisfying:
∀φ ∈ F . Aφ ⊆ AF ,
∀B⊆ AF .∀φ ∈ F . Bφ ⊆ AF .

We may now provide a formal definition of an algebraic mereological system.

Definition 4.1. By an algebraic mereological system we mean a tuple:
AMS = (X ,Atoms,⊥,Θ,Δ,α,�)

where:

• X is a set of elements,

• Atoms⊆ X is a set of elementary elements (or atoms),

• ⊥ ∈ X \Atoms is an empty element (empty part),

• Θ is the set of constructors, each θ ∈Θ is a partial function θ : XI → X , for some I,

• Δ is the set of destructors, each δ ∈ Δ is a partial function δ : X×Xk → X , for some k ≥ 1, or
δ : X → X ,

• α : X → 2Atoms is a total function interpreted as the elementary elements assignment function, or
as the universal destructor (it decomposes objects into elementary elements).

• �⊆ X×X is a “part of” relation,

that satisfies the following four properties AMS1, AMS2, AMS3 and AMS4. �

The first property we require is:

(AMS1) B = (X ,�) is a Basis Mereology, Atoms are atoms of B ,⊥ is the bottom of B , and α(x) = {a |
a ∈ Atoms∧a� x}

Before adding additional properties we need to discuss the role of constructors and destructors. We
need constructors with an infinite number of parameters to build infinite sets from their elements; and set
generalized union is an obvious example of such constructor, θ∪(Πi∈I(Ai)) =

S

i∈I Ai. Now we can for
example define {0,1,2, ...} =

S∞
i=0{i} = θ∪(0,1,2, ...). We do not see any need for destructors with an

infinite number of parameters, however the model can be easily extended to have them.
We will assume that each element is either elementary, or empty, or it can be constructed from the

elementary elements by using the constructors and destructors. It can be formally expressed as:
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(AMS2) AtomsΘ∪Δ = X

and this is the second condition AMS must satisfy.
The relation � is interpreted as a “part of”. What properties should it satisfy? Since operations from

Θ are used to construct more complex elements, one property � should satisfy is:

∀θ ∈ Θ. θ(Πi∈I(xi)) = y ⇒ ∀i ∈ I. xi � y,
or if |I|= k, ∀θ ∈ Θ. θ(x1, . . . ,xk) = y ⇒ (∀i = 1, . . . ,k. xi � y).

Similar reasoning can be applied to “destructors”, with one exception. If δ ∈ Δ and the arity of δ
is bigger than 1, i.e. δ : Xk → X , and k > 1, then the first argument of δ is treated differently then the
remaining k− 1. If δ(x,x1 . . . ,xk) = y, then we say that y was obtained from x with “help” of x1, . . . ,xk.
In other words we assume that:

∀δ ∈ Δ. δ(x,x1 . . . ,xk) = y ⇒ y� x.

The definition of destructors requires some additional explanation, as many kinds of them are pos-
sible to define. Intuitively the destructors are inverses of constructors, so one may think they should
be defined as partial functions δ : X → Xk or δ : X → 2X . This is indeed a valid approach and such
destructors could be called “uncontrolled” destructors. As an example consider the following case.
Let Y be a non-empty set, X = 2Y ∪ 2Y×Y , δ : X → X 2, dom(δ) = 2Y×Y ⊆ X , and for each A ⊆ Y ×Y ,
δ(A) = (π1(A),π2(A)), where πi, i = 1,2, is a projection on the i-th coordinate. The function α is inter-
preted as a this kind of destructor. However uncontrolled destructors cannot model “controlled” destruc-
tions, like for instance set substruction operation. The destructors like δ(A,B) = A \B are “controlled”
destructors, A is the set that is being “destructed”, and B is a “control” that governs this destruction.
Another example of a controlled destructor is δ(A,B) = A∩ B. In this case δ(A,B) = δ(B,A) but it
still fits in the definition. The control may be empty, and then we have a desctructor type δ : X → X .
For X = 2Y ∪2Y×Y , projections π1 and π2 are examples of such destructors. Each uncontrolled destructor
δ : X→ Xk can be simulated by k controlled destructors δi : X→ X and δi(x) = πi(δ(x)), so the definition
of AMS contains controlled destructors only.

We believe there is no need for destructors with infinite number of control arguments as their use is
different than the use of constructors. For constructors, everything begins with just a set Atoms, so if
X contains infinite elements we need constructors with infinite number of arguments to build them. For
destructors, the starting point is the set X \Atoms (as for each δ ∈ Δ, a ∈ Atoms, either δ(a,C) = a or
δ(a,C) = ⊥). Since there is not much restrictions on controllers, we believe there is always a way to
define destructors in such a manner that the number of control arguments is finite, and for each element
of X , its elementary components can be obtained by using destructors (as defined above) finite number
of times. For example if Atoms = {{i} | i = 0,1,2, ...}, then we need at least one constructor with
infinite number of arguments to contract for instance Y = {0,1,2, ...}. But if we have Y and X = 2Y ,
we can retrieve {i} ∈ Atoms from Y using a destructor δ(A,B) = A \B, by {i} = δ(Y,Z), where Z =
{0,1,2, ..., i−1, i+1, ...} ∈ X .

We will now show how constructors and destructors relate to the relation “part of”. Let�̇ ⊆ X ×X
be the following relation:

x�̇y ⇐⇒ (∃θ ∈ Θ. ∃I. ∃Πi∈I(xi) ∈ XI. ∃i ∈ I. x = xi∧ y = θ(Πi∈I(xi)))
∨ (∃δ ∈ Δ.∃y1, . . . ,yk ∈ X . x = δ(y,y1, ...,yk))
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If all constructors have finite number of arguments, the relation�̇ can be defined as follows:

x�̇y ⇐⇒ (∃θ ∈ Θ.∃x1, ...,xk ∈ X .∃i ∈ {1, ...,k}.x = xi∧ y = θ(x1, ...,xk))
∨ (∃δ ∈ Δ.∃y1, . . . ,yk ∈ X . x = δ(y,y1, ...,yk)).

We can now formulate the third property AMS is required to satisfy, namely the relationship between
�̇ and �:

(AMS3) �= �̇∗ =
S∞

i=0 �̇i

The fourth and the last property of AMS describes the relationship between constructors, destructors
and atoms. In principle it says that no constructor can create nor destroy any atom, and no destructor can
create an atom. Formally it can be formulated as follows

(AMS4) ∀θ ∈Θ. α(θ(Πi∈I(xi))) =
S

i∈I α(xi), and
∀δ ∈ Δ. α(δ(x,x1, . . . ,xk))⊆ α(x).

Definition 4.2. An algebraic mereological system AMS = (X ,Atoms,⊥,Θ,Δ,α,�) is mereologically
complete if the basic mereology (X ,�) is complete. �

Example 2. Let, as in Example 1, D1 = {a,b}, D2 = {1,2}, X = 2D1∪2D2∪2D1×D2 ,⊥= /0 and Atoms =
D̂1∪ D̂2.

Define Θ as Θ = {∪̇,×̇}, where ∪̇ (a restricted union) and ×̇ (a restricted Cartesian Product) are
partial binary operations defined as follows

A ∪̇ B =

{
A∪B if A∪B∈ X

undefined otherwise
A ×̇ B =

{
A×B if A×B ∈ X

undefined otherwise

Let Δ = {π1,π2}, where πi, i = 1,2, is a projection of sets on the ith coordinate, formally defined as

π1(A) =

⎧⎪⎨⎪⎩
A if A⊆ D1

/0 if A⊆ D2

{x | (x,y) ∈ A} if A⊆ D1×D2

π2(A) =

⎧⎪⎨⎪⎩
A if A⊆ D2

/0 if A⊆ D1

{y | (x,y) ∈ A} if A⊆ D1×D2

and let α : X → 2Atoms be given by

α(A) =

{
Â if A⊆ D1∪D2

{{x} | (x,y) ∈ A}∪{{y} | (x,y) ∈ A} if A⊆ D1×D2.

Note that in this case we have X = Atoms{∪̇,×̇}. For instance: {(a,1),(b,2)}= {a}×̇{1} ∪̇ {b}×̇{2}.
Define the relation � in X×X in the same way as in Example 1, i.e.:

A� B ⇐⇒ A⊆ B ∨ A⊆ πi(B), i = 1,2.

One can show by inspection that the tuple AMS = (X ,Atoms,⊥,Θ,Δ,α,�) is a complete algebraic
mereological system. �
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x2 ≤ 0 x2 > 0

y1 = x1 + x2 x1− x2

y2| y2x1− x2 = y2
2 x1 + x2y2 = |y2|

y3| y3 + x1x2 = |y3|3 y3 = x1

Figure 2. The relation G defined by a vector table. The symbol “=” after y 1 indicates that the value of y1 is a
function of other variables, the symbol “|” after y 2 and y3 indicates that the relationship between yi, i = 2,3, is
relational and not functional.

5. Mereology of Direct Products

As we mentioned before an initial motivation for this work was provided by an attempt to define formal
semantics for tabular expressions [13, 15]. Tabular expressions (Parnas et al. [14, 9]) are means to
represent the complex relations that are used to specify and document software systems. The technique
is quite popular in the software industry (see [9]). To illustrate what tabular expressions are, we will
analyze one very simple example.

Consider the following relation G⊆ IN×OUT , where IN = Reals×Reals, OUT = Reals×Reals×
Reals, x1, x2 are the variables over IN, y1, y2, y3 are variables over OUT , and

(x1,x2)G(y1,y2,y3) ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y1 = x1 + x2 ∧ y2x1− x2 = y2

2

∧ y3 + x1x2 = |y3|3
}

if x2 ≤ 0

y1 = x1− x2 ∧ x1 + x2 + x2y2 = |y2|
∧ y3 = x1

}
if x2 > 0

The relation G is more readable when defined by a tabular expression in Figure 2. This kind of
tabular expression is called a vector table and its intuitive meaning is practically self-explanatory. It
reads that if x2 ≤ 0 then y1 = x1 + x2, y2 must satisfy y2x1− x2 = y2

2, y3 must satisfy y3 + x1x2 = |y3|3,
and similarly for x2 > 0.

The relation G is a composition of its “atomic” parts, i.e. G =©Gi, j, where Gi, j, i = 1,2, j =
1,2,3, are relations defined by expressions in single cells. For instance G1,3 ⊆ IN1,3×OUT1,3, where
IN1,3 = Reals× (−∞,0〉, OUT1,3 = Reals, and (x1,x2)G1,3y3 ⇐⇒ y3 + x1x2 = |y3|3. The relation G1,1

is a function G1,1 : IN1,1 → OUT1,1, with IN1,1 = IN1,3 and OUT1,1 = Reals, and (x1,x2)G1,1y1 ⇐⇒
y1 = G1,1(x1,x2) = x1 + x2. The relations Gi,1 are functions, which is indicated by the symbol “=” after
variable y1 in the left header. The symbol “|” after y2 and y3 indicates that Gi,2 and Gi,3 are relations with
y2 and y3 as respective range variables.

Of course every Gi, j is a part of G, every subset of G is a part of G, every relation defined by a
tabular expression derived from the tabular expression that defines G by removing any number of rows
and columns, is also a part of G. There are many types of tabular expressions, we gave a simple example
of only one of them. For all tabular expressions, the global relation/function is defined as a composition
of its parts, for each type of tabular expressions, an appropriate composition operation is different.
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One of the biggest advantages of tabular expressions is the ability to define a relation R that describes
the properties of the system specified, as an easy to understand composition3 of the relations Rα, α ∈ I,
where Rα is a part of R.

The problem is that the standard algebra of relations lacks the formal concept of being a part of. The
concept of subset is not enough, for instance if A ⊆ B and D = B×C, then A is not a subset of D, but
according to standard intuition it is a part of D.

A semantics for Tabular Expressions was defined in terms of Heterogenous Relations [13, 15]. In
this paper, for simplicity we will only discuss Direct Products, as Heterogenous Relations can be seen as
a subclass of Direct Products.

Let T be a universal set of indexes and let D = {Dt | t ∈ T} be an appropriate set of domains. We
assume also that the set T is finite. From the viewpoint of applications in Software Engineering this is
not a restriction at all ([13]).

For every I ⊆ T , let DI = ∏i∈I Di. Even though each I in this section is finite, using the functional
representation of elements of ∏i∈I Di is more convenient for our reasoning.

For every function f : X →Y , and every Z ⊆ X , the symbol f |Z will denote the restriction of f to Z,
and for every function f , dom( f ) denotes the domain of f .

We will also assume that Di ∩D j = /0 if i 	= j. This assumption allows us to identify every element
of a ∈Di with the function fa : {i}→Di where fa(i) = a, which makes the notation more consistent and
less ambiguous. This is a powerful assumption since most of the results of this section either false or
undefined if Di∩D j 	= /0 for some i 	= j, which means we lose some theoretical generality.

We do not lose however much of practical generality here, for in practical applications each Di has
a different interpretation anyway (for instance: input current, output current; Amperes in both cases but
different meaning).

For every DI , I ⊆ T , let XI =
S

J⊆I 2DJ . We shall write X instead of XT (i.e. we put X = XT ). Also
let Atoms =

S

i∈T D̂i. Clearly Atoms⊆ X . Note also that for every A ∈ X and for every f ,g ∈ A we have
dom( f ) = dom(g).

For every A∈ X \{ /0}, let τ(A)⊆ T , the index set of A, be defined as follows: I = τ(A) ⇐⇒ A⊆DI .
In other words, f ∈ A⇒ dom( f ) = τ(A). We assume that τ(/0) = /0. For instance if A ⊆ D2×D5×D7

then τ(A) = {2,5,7}. Note that τ(A) is only correctly defined if Di∩D j = /0 for i 	= j.
For every A ∈ X and every K ⊆ T , let A|K = { f |K∩τ(A) | f ∈ A} if K ∩ τ(A) 	= /0, and A|K = /0 if

K∩ τ(A) = /0. Clearly A|K ⊆ DK∩τ(A). We will write A|i instead of A|{i} for all i ∈ T .

Define the relation � in X×X as follows:

∀A,B ∈ X . A� B ⇐⇒ τ(A)⊆ τ(B)∧A⊆ B|τ(A).

Theorem 5.1. The pair (X ,�) is a complete basic mereology with =∏i∈T Di. �

For I = {1,2}, D1 = {a,b}, D2 = {1,2} we have a case analysed in Example 1.

We will now start to define an algebraic mereological system for direct products.

3The word “composition” here means “the act of putting together” (Oxford English Dictionary, 1990), not “the” mathematical
composition of relations. In this sense “∪” is a composition.
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For every I ⊆ T , let πI : X → XI , be mapping defined by: πI(A) = A|I . Every such mapping is called
a projection. We shall write πi(A) rather than π{i}(A) if i ∈ T . Since T is finite, every I ⊆ T can be
presented as I = {i1, ..., ik}, and we also have πI(A) = πi1(πi2(...(πik (A))...)).

Let ˙S and ×̇ be the following operations. For every family of sets {Aα | α ∈ I}, we define

˙[
α∈I

Aα =

{
S

α∈I Aα ∀α,β ∈ I . τ(Aα) = τ(Aβ)
undefined otherwise.

For every A,B ∈ X , we define

A ×̇ B =

{
A×B τ(A)∩ τ(B) = /0
undefined otherwise.

Define the set of constructors Θ as, Θ = { ˙S,×̇}, and the set of destructors Δ as, Δ = {\}∪{πi | i∈ T}.
Also define α : X → 2Atoms as : for every A ∈ X α(A) =

S

i∈τ(A) Â|i. For example, α({(a,1),(b,2)}) =
{{a},{b}}∪{{1},{2}} = {{a},{b},{1},{2}}.

Theorem 5.2. The tuple AMS = (X ,Atoms,⊥,Θ,Δ,α,�), where X , Atoms, ⊥, Θ, Δ, α and � are
defined as above, is a complete algebraic mereological system. �

For I = {1,2}, D1 = {a,b}, D2 = {1,2} we have a case analysed in Example 2.

The fundamental principle behind a success of a specification technique based on Tabular Expres-
sions ([13, 14]) specification technique is that most of relations may be described as R =©i∈IRi, where
© is an operation, or composition of operations, each Ri is easy to specify. A variety of operations was
introduced and discussed (see [13]). In this paper we will discuss only two operations denoted by � and
⊗. We shall show that the operator � corresponds to mereological supremum from Section 3, and that �
could be defined in terms of more intuitive ⊗, where ⊗ corresponds to the well known join operator of
Codd’s relational data-base model [5].

Let A,B ∈ XT and let K = τ(A)∪ τ(B), J = τ(A)∩ τ(B). We define the operations “�”, and “⊗” as
follows.
A�B = { f | dom( f ) = K ∧ (( f |τ(A) ∈ A∧ f |τ(B)\τ(A) ∈ B|τ(B)\τ(A)) ∨

(( f |τ(B) ∈ B∧ f |τ(A)\τ(B) ∈ A|τ(A)\τ(B)))},
A⊗B = { f | dom( f ) = K∧ ( f |τ(A) ∈ A∧ f |τ(B) ∈ B)}.

Let A⊆ D|{1,3,5}, B⊆ D|{1,2,4}. Then
A�B = {(x1,x2,x3,x4,x5) | ((x1,x3,x5) ∈ A∧ (x2,x4) ∈ B|{2,4})∨ ((x1,x2,x4) ∈ B∧ (x3,x5) ∈ A|{3,5})},
A⊗B = {(x1,x2,x3,x4,x5) | (x1,x3,x5) ∈ A∧ (x1,x2,x4) ∈ B}.

Let I be some index set, and let A = {Ai | Ai ∈ X ∧ i ∈ I},
K =

S

i∈I τ(Ai), J =
T

i∈I τ(Ai).
Let CompiA be the set of all the (set theory) components4 of K that are NOT contained in τ(Ai).
For example if I = {1,2}, τ(A1) \ τ(A2) 	= /0 and τ(A2) \ τ(A1) 	= /0 then there are three compo-

nents of K generated by τ(A1) and τ(A2), namely τ(A1)∩ τ(A2), τ(A1) \ τ(A2), and τ(A2) \ τ(A1), so
Comp1{A1,A2}= {τ(A2)\ τ(A1)}, and Comp2{A1,A2}= {τ(A1)\ τ(A2)}.
4Let X be a set, Xi ⊆ X for all i ∈ I. Define X 0

i = Xi and X1
i = X \Xi. A nonempty set A =

T

i∈I Xki
i , where ki = 0,1, is called a

(set theory) component of X generated by the sets Xi, i ∈ I. The components are disjoint and cover the entire set X (see [25]).
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We define the operations “
U

i∈I” as:
]

i∈I

Ai = { f | dom( f ) = K ∧ ∃i ∈ I. ( f |τ(A) ∈ A ∧ ∀C ∈ CompiA . f |C ∈
[

i	=i

A j|C)}.

It turns out the operation � can be defined in terms of the operation ⊗.

Lemma 5.1. ([10])
A�B = (A⊗B|τ(B)\τ(A))∪ (B⊗A|τ(A)\τ(B)).

It also turns out that � provides an operational definition of mereological supremum for the mereol-
ogy of direct products.

Theorem 5.3.
U

i∈I Ai = msup({Ai | i ∈ I}) �

It may happen that A� (B�C) 	= (A�B)�C. Consider the mereological system from Examples 1
and 2, and A = xa, B = x1 and C = xb2. We have A� (B�C) = xa � (x1� xb2) = xa � xb1b2 = xa1a2b1b2,
while (A�B)�C = (xa�(x1)�xb2 = xa1�xb2 = xa1b2. This should not be surprising as we do not assume
that the same parts always create the same wholes.

6. MereoCat and Software Components

This section provides a more refined version of Basic Mereology by using a combination of both Mere-
ology and Category Theory to create a more expressive framework for component software. We assume
that the reader is familiar with the basic concepts of elementary Category Theory [6]. Instead of axiom-
atizing the connectedness properties like in [4, 29], we use morphisms to describe the connection and
colimit in Category Theory to describe the mereological construction and the part-of relations are built
on top of these. The resulting framework is called MereoCat, which stands for Mereo-Category.

6.1. Categorical Connector Framework and Architectural Views

We start with a description of categorical connector framework. To do this we adopt CommUnity, the ar-
chitectural design framework invented by Fiadeiro et al. in [6, 20] because of its flexibility and generality,
which does not restrict us to any specific architecture description language, its ability to model differ-
ent aspects of parallel design, and especially its categorical power. To keep this paper as self-sufficient
as possible we will give a brief overview of CommUnity’s three architectural elements: components,
configurations and connectors.

Components [30], are the model entities that perform computation and are able to synchronize with
their environments and exchange information through channels. Hence, components are given in terms
of their channels and actions in a form of “designs”. For example, the component design print below
consists of input channel i, output channel po and private channel rd. Actions of print are given in
CommUnity as a special form of “guarded commands”, except satisfying the guards only means the
actions can be executed but does not force the action to be executed right away. In print, if rd=false then
action print is allowed to be executed and change rd to true. Action prod of print does the “opposite” of
action print and also assign input i to output po. The convert component does the task of of a conversion
module which converts an MSWord document to a PS document.
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design print design convert

in i:ps out o:ps

out po:ps prv w:MSWord

prv rd:bool do to ps[o]: true, false→ o:=ps(w)

do print[rd]: ¬rd→ po:=i ‖ rd:= true

[] prod[rd]: rd→ rd:= false

Configurations are diagrams in a category of designs where objects are designs and morphisms are
superposition, also called design morphisms. A design morphism σ : P1→ P2 identifies that P2 can be
obtained from P1 by “augmenting” additional behaviors to P1 while still preserving properties of P1 in
P2.

¿From a meaningful configuration (e.g. an output channel is not connected to other output channels)
[20], a new design can be constructed using the colimit construction. For example, we want to build a
new useful design from the previous designs print and convert, using the configuration in the diagram
below where cable, convert, print are objects and each arrow represents a morphism between them.

The explicit names are not given to the action and channel of cable used for interconnection, but
• symbols are used instead [6, 20]. The reason is that the interconnection does not reply to the global
naming but precisely to associations (name binding). For example, we need to explicitly specify that o,
to ps are bound to i and prod respectively.

cable
o←•→i

to ps→•←prod

convert print
o← i

to ps→ prod
user





�

�
��

�
�
�
�
�
�
�“inclusion”

�
�

�
�

�
�

��

design user

out o,po:ps

prv rd:bool, w: MSWord

do print[rd]: ¬rd→ po:=o ‖rd:= true

[] to ps[o,rd]: rd→ o:=ps(w)‖ rd:= false

Using the colimit construction, the new resulting object user and two arrows from convert and print to
user is introduced into the diagram. Here the colimit, as the amalgamated sum (“module sum”), will
return the minimal single design representing the whole configuration. The design objects and design
morphisms constitute the category C-DSGN.

Connectors are model entities independent from components whose purpose is to coordinate inter-
actions between components as in the spirit of [2]. Connectors are given in CommUnity in terms of a
“glue” design and collection of “role” designs. Since the formal concept of connectors is quite lengthy,
readers are referred to [20].

Now we will discuss architectural views. In the real world, Component Based Software Development
for complex systems is more than just composing a system from pre-existing components together using
connectors. When a system becomes larger and larger, it helps to understand the architectural structure
of the system better by analyzing different architectural views, which are the different abstractions of
the same software system. The first kind of view is by partitioning a system vertically into subsystems,
which aggregate modules implementing related function functionalities. The second kind of view is by
looking at the horizontal sections that may have different scope within the system. Layers may belongs
to a single subsystem, a part of subsystem or across different subsystems [16].

The categorical framework discussed previously is designed to support composition of subsystems
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from component designs. However, it is not quite obvious how the framework supports the layer and
subsystem views of software architecture. Their approach mathematically treats all the designs as cate-
gorical objects and strongly emphasizes the properties preserved by morphisms, but also “flattens” down
the whole architectural structure. Our goal is to complement the framework by bringing depth to the
architectural structure using the part-of relation. We will start by constructing a suitable part-of relation
for software components.

6.2. Construction of Part-of Relation and Naı̈ve MereoCat

One of the controversies which is usually discussed within mereology is the transitivity of “part-of”
relation. This can be expressed in terms of the software component concept as follows. Suppose a
component x was used to build a subsystem y and y is again used to build a software system s. Is x is
a part of s? Since by the encapsulation rule x is hidden from s by y. This confusion comes from the
ambiguity in the meaning of “part”, because natural language uses the same word “part” for different
kinds of part/whole relationships. However, from a more abstract point of view, transitivity does hold
[4]. If x is defective, s will not work anymore, since x does contribute the service to s indirectly.

Hence, due to encapsulation, there should exist (at least) two different kinds of parts. The first kind
is when a whole can directly access the service provided by a part, and the second kind is when a part
indirectly contributes the service to the whole by being hidden in another part. We will now characterize
the direct part-of relation denoted by ≺d, which describe the part-of relation between a whole and its
direct parts, as follows:

Definition 6.1. Assume that a design S, which can be software system or subsystem, is constructed using
colimit construction from a pair (C,C-DSGN) where: (1) C is a set of designs which includes the glue,
component and subsystem designs; and (2) C-DSGN is the design category with respect to C. Then we
define ≺d on C as:

∀P ∈C. P≺d S �

Definition 6.1 describes a view of parts and wholes at a single level of composition where encapsulation
is preserved in a sense such that the designs in C will appear to be “atomic” with respect to the system
(or subsystem). In the previous example, we can now say convert ≺d user and print ≺d user, but not
cable≺d user, since cable is precisely used for “name-bindings” but is not really a part which constitutes
subsystem user.

To have a “multi-level” part-of relation we get the reflexive transitive closure of ≺d:

Definition 6.2. � df= (≺d)∗ =
S∞

i=0(≺d)i �

Next, let us consider the poset (X ,�), where X is the component domain which contains all the
designs (components, subsystems, glue and software systems) and the empty design ⊥. Let Atoms be
the set of all component designs. We have to show that (X ,�) is actually a Basic Mereology. Hence, �
is a correct “part of” relation for CBS.

Proposition 6.1. If (X ,�) satisfies WUB then (X ,�) is a Basic Mereology. �
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Definition 6.2 presents the proper definition of the parthood relation in Component-based Software.
Besides, the preceding part-of relation construction also shows how closely part-whole relations and en-
capsulation concept are related. To say some part x is encapsulated, we need the information of what
whole hides it, which is equivalent to say what whole x is a part of. Therefore, without being able to
formalize the part-of relations, it is difficult to formalize the visibility in Component-based Software.

We are ready to give a formal definition the MereoCat System

Definition 6.3. A MereoCat System is a tuple MC = (X ,Atoms,⊥,Θ,�,C-DSGN) where X , Atoms,
⊥, �, C-DSGN as defined previously and

• (X ,�) is a Basic Mereology,

• Θ is the set of constructors, each θ ∈ Θ is a partial function θ : XI → X , for some I,

• The semantic of each θ is the colimit construction which constitutes designs from meaningful
categorical diagrams of elements in XI with respect to C-DSGN. �

The MereoCat System is just the Basic Mereology (X ,�) conjuncted with the design morphisms in
C-DSGN. Connectedness properties are the results of the graph-based semantics of Category Theory,
but more than that the connections here embed the abstraction of complex interaction or communication
protocols between designs. It can be proven that the MereoCat system is an Algebraic Mereological
System with the empty set of destructors and with the set of constructors defined in categorical style. It
can also be proven that MereoCat has all the expressive power of Ground Mereotopology [4, 29].

We took advantage of the semantic of design morphisms to describe the part-of relationship in De-
finitions 6.1, 6.2 and 6.3, since according to [6, 20], a design morphism σ : P1 → P2 identifies a way
in which P1 is “augmented” to become P2 through the interconnection of one or more components (the
superposition of additional behavior). Hence, the design of the categorical approach implicitly assumes
some of the part-whole relationship in mind, except they have not made it as formal and clear as we do in
this paper. However, we still call this MereoCat System “Naı̈ve MereoCat” since it still requires axioms
for connectedness and some formal concept of consistency.

6.3. An Example
Using the previous components convert and print, we can design a User-Printer application where, a
user application send a PS document to a “printing server” component printer to print the document.
All the communication is done through a bounded buffer buffer, which prevents user from sending a
new document when there is no space and prevents printer from reading a new message when no new
message has been sent. The designs of buffer and printer are given as follows:

design buffer design printer

in ci:ps in i:ps

out co:ps prv busy:bool

prv rd: bool; q:queue do rec: ¬busy→ busy:=true

do put: ¬full(q)→ q:= enqueue (i,q) [] end print:busy→ busy:=false

[]prv next: ¬empty(q) ∧¬ rd

→ o:=head(q) ‖ q:= tail(q) ‖ rd:=true

[] get: rd→ rd:= false
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We can specify the configuration of the situation in two different ways.
The first method is to specify the architectural configuration as in the diagram in the following figure.

Notice that instead of drawing the categorical diagram as in previous section, we use the “syntactic
sugar” of name-binding to associate the correspondent methods and channels of designs. According to
the name-binding method of [20], we bind print component with the input of buffer.

The second method, using MereoCat, is to specify the part-of relation as a way to “modularize” the
configuration as in the following figure.

We connect the resulting subsystem user = θ(convert,print) to buffer where θ denotes the constructor
that constructs user from two components convert andprint. The semantics of θ is the colimit construc-
tion (amalgamated sum) as previously discussed in Section 6.1. As a result, we have a more hierarchical
view of the whole User-Printer system.

Obviously, we can recursively apply this method to different parts of the system when the system
grows larger and larger. Notice that buffer (the “glue” design) and its associations (name-bindings)
constitute a connector according to the connector definition in [20].

For other examples of MereoCat applications, readers are referred to [18].

7. Final Comments

A version of mereology tuned towards applications to Software Engineering has been presented. The
concept of mereological sum has been generalised, and an algebraic operational mereological system
has also been analysed. Two applications have been discussed. The first one is to analyse parthood for
direct products, that can be used to model parthood for Tabular Expressions. The second one involves
elements of category theory and shows how parthood can be modelled for Software Components. There
are many problems that we have not yet dealt with. How can equivalent parts of [12] be incorporated into
the algebraic model presented in Chapter 4? How to model abstraction/refinement relationship between
various mereological models? It appears that adding some categorical constructions to our mereology
makes it more useful, but the research in this direction has just begun. The task of specifying part-whole
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relation is more natural than one might think. According to [32], 58% of artificial objects and 42.7%
of biological objects are parts. This shows how important the part-whole relation is as an abstraction
underlying the organisation of human knowledge.
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