
Fundamenta Informaticae 68 (2005) 1–28 1

IOS Press

Tabular Expressions and Their Relational Semantics

Ryszard Janicki� and Alan Wassyng�

Department of Computing and Software

McMaster University

Hamilton, Ontario, Canada L8S 4K1

janicki,wassyng@mcmaster.ca

Abstract. Tabular Expressions (Parnas et al. [20, 28, 32, 33]) are means to represent the complex
relations that are used to specify or document software systems. A formal model and a semantics for
tabular expressions are presented. The model covers most known types of tables used in software
engineering, and admits precise classification and definition of new types of tables. The practical
importance of the semantics of tabular expressions is also discussed.

1. Introduction

In the classical engineering fields, as well as in mathematics, formulae are seldom longer than a dozen
or so lines. In software engineering, the formulae are often much longer. For example, an invariant of
a concurrent algorithm can occupy more than one page, and the specification of a real system can be a
formula dozens or more pages long.

Standard mathematical notation works well for short formulae, but not for long ones. One way to
deal with long formulae is to use some form of module structure and hierarchical structuring (see [24]).
However hierarchical structuring and modularity alone are not sufficient (see [32, 33]). The problem is
that standard mathematical notation is, in principle, linear. This makes it hard to read when many cases
have to be considered, when functions have many irregular discontinuities, or when the domain and range
of functions are built from elements of different types. The multi-dimensional tabular notation makes it
easier to consider every case separately while writing or reading a requirements or design document. It

�Partially supported by NSERC of Canada Grant.
Address for correspondence: Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada L8S
4K1



2 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

turns out that using tables helps to make mathematics more practical for computing systems applications
[20].

The key assumptions behind the idea of tabular expressions are:

� the intended behaviour of programs is modelled by a (usually complex) relation, say �.

� the relation � may itself be complex but it can be built from a collection of relations ��, � � � ,
where � is a set of indices, and each �� can be specified rather easily. In most cases �� can be
defined by a simple linear formula that can be held in a few cells of a table. Some cells define the
domain of ��, the others �� itself.

� the tabular expression that describes � is a structured collection of cells containing definitions of
��’s. The structure of a tabular expression informs us as to how the relation � can be composed
from all the ��’s.

In principle, tabular expressions are a generalization of two dimensional tables which are well known
and have been around now for many years. Decision tables and state transition tables [14] date back to
early years in computer science. In the late 1970s David Lorge Parnas and others at the U.S. Naval
Research Laboratories used tabular representations to document requirements for the A-7E aircraft [4,
11, 12, 28, 35]. The ideas were quicly picked up by Grumman, the U.S. Air Force, Bell Laboratories and
many others [33, 36, 41]. Since then, a number of projects have used tables to document requirements
and software design. The best known example is probably the software for the Darlington Nuclear
Generating Station Shutdown System (Ontario, Canada) [3, 30, 31, 41]. At least two organizations,
Ontario Power Generation ([27, 39, 41]), and U.S. Naval Research Laboratories ([10]) have fashioned
their approach to software development around the use of tabular expressions. Other users include the
Software Quality Research Laboratory at McMaster University, [22, 23, 37, 38, 43], ORA Inc. [13], and
University of California at Irvine [9, 26].

More than any other person, David Lorge Parnas has championed the use of tabular expressions
in documenting software [20, 30, 31, 32, 33]. He also suggested the first semantic analysis of tabular
expressions [29].

The semantics discussed in this paper were first proposed in [15] and subsequently developed in
[16, 19, 21].

The model presented here covers most of (but not all) the known types of tables used in Software
Engineering (see [1, 40]).

The central concept in our approach is the so-called cell connection graph which characterizes the
information flow of a given table.

All examples of tables used in this paper are very simple in purpose. More realistic examples (such
as loop invariants, program specifications) the reader can find in [1, 33, 38] and others.

The next section contains some introductory examples and informally explains our approach. Section
3, the main section of this paper, describes a formal semantics of tabular expressions. A first rough
approximation of the table concept is given in Section 3.1. The crucial concept of the Cell Connection
Graph and more precise approximations of the table concept are discussed in Sections 3.2, 3.3, 3.4 and
3.5. The formal definition of a tabular expression on a syntactic level is given in Section 3.6, and its
semantics is discussed in Section 3.7. Section 4 contains some ideas on table classification, Section 5
describes why the development of semantics of tabular expressions is important, and final comments are
in Section 6.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 3

This paper is an extended and refined version of the results presented as two conference papers
[21] and [40], and a continuation of the results presented in [16, 19]. Reference [29] provided a major
motivation for this work.

We assume that the reader is familiar with such concepts as function, relation, Cartesian product, etc.
Standard mathematical notation is used throughout the paper.

2. Examples and Motivation

Let us consider the following definition of a function.

���� �� �

�����������
����������

� if � � � � � � ��

� if � � � � � � ��

�� if � � � � � � ��

��� if � � � � � � ��

�� � if � � � � � � ��

�� � if � � � � � � ��

This is a classical mathematical notation which sometimes allows us to relax the linearity principle.
Lamport [24] proposes similar relaxation rules for more complex cases. In a purely linear notation, the
definition of the function � is represented by

���� �� � if � � � � � � �� then �

else if � � � � � � �� then �

else if � � � � � � �� then ��

else if � � � � � � �� then � ��

else if � � � � � � �� then �� �

else if � � � � � � �� then �� �

which is less readable than the classical mathematical notation. However, arguably the most readable
definition is that represented in Figure 1, where the concept of a table is used. Note that in all our
examples, value/result cells have double border lines.

Consider now the function 	 defined as

	��� �� �

���
��
�� � if �� � � � � � �� � �� � � � � � ��

�� � if �� � � � � � � � �� � �� � � � � � � � ��

� � � if �� � � � � � �� � �� � � � � � ��

Again, this not very readable description becomes very clear and obvious when the concept of an (in-
verted) table is used (see Figure 2).

The table in Figure 3 defines the following relation 
 � ������, where �� � ���
�����
�,
��� � ���
�����
�����
�, ��, �� are the variables over ��, ��, ��, �� are variables over ���,



4 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

� � �� � � �� � � ��

� � � � �� ���

� � � � �� � �� �

Figure 1. The function � defined by a (normal) table.

�� � �� � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

Figure 2. The function � defined by an (inverted) table.

and

���� ���
���� ��� ��� 	


������
�����

�� � �� � �� � ���� � �� � �
�
�

� �� � ���� � ����
�

�
if �� � �

�� � �� � �� � �� � ���� � ����

� �� � ��

�
if �� � �

while the table in Figure 4 defines the function � � ��	
���
�������
��� ������ � ����������,
where ���������� = 
go sailing, go to the beach, play bridge, garden�.
The table from Figure 4 is called a decision table, and such tables have been used as specification tools
since the fifties [13, 14].

Figure 5 contains a generalized decision table [1, 29]. It represents the function � � ���
�����
��
���
� defined as

����� ��� �

���
��
�� � �� if ���� � �� � ����� � ��

�� � �� if ���� � �� � ����� � ��

���� if ����� � ��

Although the tables from Figures 1 - 5 are of different types, they have some elements in common.
All global functions specified by these tables: � , 	, �, and � are built from simpler local functions.

The function � is a composition of local representations, ���� , � � �� �� �, � � �� �, where for example
���� � ���� ��� ���� ���� ���
�, and ������� �� � �� � for ��� �� � ���������.

Similarly 	 is a composition of 	��� , � � �� �� �, � � �� �, and for example ����	���� � 
��� �� � � �
� � � � � � ��, 	������ �� � �� �. The functions � and 	 are unions of their local representations, i.e.

� �
�

�����������������

���� and 	 �
�

�����������������

	��� �



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 5

�� � � �� � �

�� � �� � �� �� � ��

��� ���� � �� � �
�
� �� � ���� � ����

��� �� � ���� � ����
� �� � ��

Figure 3. The relation � defined by a (vector) table.

go sailing gtb gtb play bridge garden

Temperature � ����� ����� � � ��� � ����

Weather � �����	� ����
	� ��
�	� ����	 � ����
	 ����	 ����
	 ��
�	 ����
	

Windy � ������ ������ ���� ����� ����� � �����

� � ����� ����, gtb = go to the beach

Figure 4. The function � defined by a (decision) table (from [13]).

�� � �� �� � �� ����

���� � � �� � � �� ����

�� � �� � � �� � � �� � � ��

Figure 5. The function � defined by a (generalized decision) table.



6 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

The relation 
 is a composition of local representations 
���, � � �� �, � � �� �� �, and for instance

��� � ����� � !"���, where ����� � ���
�� ���� ��,  !"��� � ���
�, and

���� ���
����� 	
 �� � ���� � ����
��

The relation 
��� is a function 
��� � ����� �  !"���, with ����� � ����� and  !"��� � ���
�, and

���� ���
����� 	
 �� � 
������� ��� � �� � ���

The relations 
��� are functions, which is indicated by the symbol “=” after variable �� in the left header.
The symbol “�” after �� and �� indicates that
��� and 
��� are relations with �� and �� as their respective
output variables.

The function � is a composition of ���� , � � �� ���� �, � � �� �� �, and for instance ���� � 
������ �

go to the beach�, ����������� � go to the beach. The domain of ���� is 
������ rather than

������ �
����� ������ since we prefer to deal with total functions.

The function � is a composition of ���� , � � �� �� �, � � �� �. For instance ���� � ����� � ���
�,
where ����� � 
���� ��� � ���� � ��� and �������� ��� � �� � ��, while ���� � ���
� � ���
� �
���
� and �������� ��� � ����.

However the functions �, � and the relation 
 are not the unions of ����’s, ����’s and 
���’s. We have
here

� �

��
���

��
���

���� � and we will show that 
 �

��
���

��
���


���� � �

��
���

��
���

����� and � �

��
���

��
���

���� �

where � is an operator, a generalization of both the intersection and the well-known “join” from the
relational data-base theory [2]. The operator � is discussed in detail in Section 3.5.

Each of the tables from Figures 1 - 5 consists of two one dimensional headers (top row and left-hand
column), and one two dimensional grid. Both headers and grids consist of cells, each cell containing
an expression. The local representations of functions and the relation from Figures 1 - 5 are defined by
parts of tables we will call raw elements. The raw element is just a table restricted to one cell for each
header and one cell for the grid.

Every local representation ���� can be represented by the relation/function expression of the type

������ 	
 �� #������ 	
�� ����������

where � is the (vector) input variable, � is the (vector) output variable, #������ is the predicate expres-
sion built from the guard expressions held in guard cells, and ��������� is the expression defining a
function/relation and is built from the value expressions held in value cells. For example for 
��� we
have #������ � �� � �, ������� ��� equals to �� � ���� � ����

�, where � � ���� ���, for ���� we have
#������ � ���� � ��, ������� ��, where � � ���� ���, equals to � � �� � �� (see Figure 6).

For each table and each header or grid, either all cells contain guard expressions, or all contain value
expressions.

All the above observations will be used to build a homogeneous semantics of most possible types of
tables.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 7

� � �

� � � �� �

�������	
������


��

������� �� � �� � � �� � � � � 	
�� �� �

�� �

� � � � � � � �

�������	
������


��

	������ �� � �� � � � � � � � � � 	
�� �� �

�� � �

�� � �� � ��

�������	
������


��

���� ���
����� 	
 �� �� � � 	
�� �� � �� � ��

�� � �

	�� 	� � ���� � �	��
�

��������
�������

��

���� �������	� �� �� �� � � ���� 	� � ���� � �	��
�

go to the beach

����	�
 � �����	� ����
	� ��
�	� ����	

��������
�������

��

���������	�
� � �� ����	�
 � ����	

���� go to the beach

�� � ��

���� � � ��

�������	
������


��

�������� ��� � �� ���� � �� 	
�� �� � ��

Figure 6. The functions ����, ����, ����, ����, the relations ����, ���� and their appropriate raw elements, if-then
descriptions, and cell connection graphs.



8 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

3. Tabular Expressions and Their Semantics

The aim of this section is to provide a formal definition of Tabular Expressions and their semantics. This
is an improved and revised version of the model that was presented for the first time in [15] and was
subsequnetly developed in [16, 19].

We define a Tabular Expression (or Table) as a tuple:

" � �#� � �� � $� � $$$�%�� ����%�� 
� �� ��������

where:

� #� is a table predicate rule which indicates how predicates that define local representations are to
be built from the contents of table cells,

� �� is a table relation rule which indicates how relations/functions that are local representations are
to be built from the contents of table cells,

� $� is a table composition rules which states how the global relation/function is built from local
representations,

� $$
 is a cell connection graph which defines the information flow in the table,

� %�� ����%� are headers of the table,

� 
 is a grid of the table,

� � is a mapping that assigns particular expressions to table cells,

� �� is the set of inputs, and

� ��� is the set of outputs.

The relation �� which describes the semantics of " , has the property: �� � ������.

The subsections below will define and analyse all the notions introduced above.

3.1. Raw Table Skeleton

Intuitively, a table is an organized collection of sets of cells, each cell contains an appropriate expression.
Such an organized collection of empty cells, without expressions, will be called a (raw or medium) table
skeleton. We assume that a cell is a primitive concept which does not need to be explained.

� A header % is an indexed set of cells, % � 
�� � � � ��, where � � 
�� �� ���� &�, for some &, is a
set of indices.

� A grid 
 indexed by headers %�� ����%�, with %� � 
��� � � � �
��, � � �� ���� � is an indexed set

of cells 
, where 
 � 
	� � � � ��, and � �
��
��� �

� (or � � �� � ��� � ��). The set � is the
index of 
.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 9

� � ���� � 
 � �� �� 
 	 � � �� ��

�� � ���� � 
 � �� ��

�� � ���� � 
 � �� �� 
�

���

��� ���

���

���

���

���

���

���

���

���

Figure 7. An example of a raw table skeleton � ��� � ���� ��� ��.

We are now able to define the first approximation of a table skeleton.

� A raw table skeleton is a tuple
" ��� � �%�� ����%�� 
�

where %�� ����%� are headers and G is the grid indexed by the headers %�� ����%�.

� The elements of the set
$��'�" � � 
%�� ����%�� 
� are called table components.

Figure 7 illustrates the above definitions.

3.2. Cell Connection Graph and Medium Table Skeleton

The first step in expressing the semantic difference between various types of tables is to define a Cell
Connection Graph, which characterizes information flow (“where do I start reading the table and where
do I get my result?”). Intuitively a Cell Connection Graph is a relation that could be interpreted as an
acyclic directed graph with the grid and all headers as the nodes, plus the decomposition of nodes into
two distinct classes called guard components and value components. The only additional requirement
for the relation is that each arc must either start from or end at the grid 
.

Let $��'�" � � 
%�� ����%�� 
�. A Cell Connection Graph is an asymmetric relation

���� $��'�" �� $��'�" �

satisfying: for all ��( � $��'�" �,

� ��� ( 
 ��� � 
 �( � 
� �� �� (�� (1)

plus a decomposition of $��'�" � into 
������" � and ) �
����" �.

The relation ����, reflexive and transitive closure1 of ���, is a partial order. A component � �
$��'�" � is maximal if � ���� ( implies ( � � for every ( � $��'�" �. Similarly � � $��'�" �
is minimal if ( ���� � implies ( � � for every ( � $��'�" �. A component � � $��'�" � is
neutral if it is neither minimal nor maximal.

1� 
��� � �� �� � �� � �� 
�� �� � �
��� ���� ��� � 
�� �� 
�� �� 
�� ��� 
�� �� 
�� ��.



10 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

The relation ��� represents information flow among table cells and, intuitively, if the component
� is built from the cells describing the domain of a relation/function specified, and the component (
is built from the cells that describe how to calculate the values of the relation/function specified, then
� ���� (, where ���� is the transitive closure2 of ���. This means that the components built from
the cell describing the domains are never maximal, while the components built from the cells containing
formulae for values are never minimal.

Thus the partition of $��'�" � into 
������" � and ) �
����" � must satisfy the following proper-
ties:

1. $��'�" � � 
������" � � ) �
����" ��

2. 
������" � � ) �
����" � � ��

3. � is maximal 
 � � ) �
����" ��

4. � is minimal 
 � � 
������" ��

5. �� � 
������" ���( � ) �
����" ��

� ���� (�

(2)

One can also easily show that only the grid 
 can be neutral, and there exists at most one neutral
component.

We may now define $$
, Cell Connection Graph, as a triple

$$
 � �
������" �� ) �
����" �� ����

where ��� satisfies (1) and 
������" �, ) �
����" � satisfy (2).

There are six different types of Cell Connection Graphs when not distinguishing among the headers.

Type 1. Each element is either maximal or minimal. There is only one maximal element.

Type 2a. There is only one maximal element and one neutral element. The neutral element belongs to

������" �.

Type 2b. There is only one maximal element and one neutral element. The neutral element belongs to
) �
����" �.

Type 3a. There is a neutral element and more than one maximal element. The neutral element belongs
to 
������" �.

Type 3b. There is a neutral element and more than one maximal element. The neutral element belongs
to ) �
����" �.

Type 4. Each element is either maximal or minimal. There is only one minimal element.

2� 
��� � �� �� 
�� �� � �
��� ���� ��� � 
�� �� 
�� �� 
�� ��� 
�� �� 
�� �).



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 11

The division into types 1, 2, 3 and 4 is based on the shape of the relation ���, the types a and b result
from different decompositions into 
������" � and ) �
����" �. Figure 8 illustrates all cases for � � �.
When the number of headers is smaller than 3, the cases 3a and 3b disappear.

It turns out that:

� type 1 corresponds to Normal Tables in [29],

� type 2a corresponds to Inverted, Decision and Generalized Decision Tables [13, 29],

� type 2b corresponds to Vector Tables in [29].

The types 3a, 3b and 4 have no known wide application yet. They seem to be useful when some degree
of non-determinism is allowed. The types 3a and 3b might also be useful as a representation of complex
vector tables. Reference [1] provides an excellent survey of most types of tables used in Software Engi-
neering practice.

By adding the Cell Connection Graph we obtain the next approximation of the table skeleton concept.

� By a medium table skeleton we mean a tuple

"	
� � �$$
�%�� ����%�� 
�

where �%�� ����%�� 
� is a raw table skeleton and$$
 is a cell connection graph for �%�� ����%�� 
�.

The type of Cell Connection Graph will usually be identified by a small icon resembling an appropriate
graph from Figure 8. The icon is placed in the left upper corner of the table. Figure 9 presents examples
of medium table skeletons. Note how the CCG shows where to start reading the table (%�, %� in the
normal table, %�, 
 in the inverted table), and where to find the results (
 in the normal, %� in the
inverted table).

3.3. Raw and Medium Table Elements

Let "	
� � �$$
�%�� ����%�� 
� be a medium table skeleton with index � , and let "��� � �%�� ����%�� 
�
be the raw table skeleton. Consider the element ����� � ���� �

�
�� � 	�� � %� � ����%� �
.

We shall say that ����� � ���� �
�
��
� 	�� is a raw element if and only if � � ���� ���� ���.

We will denote the raw element ����� � ���� �
�
�� � 	�� by " �����, since it can be interpreted as a kind

of projection (restriction) of "��� onto the index �. The set 
���� � ���� �
�
�� � 	�� will be denoted by

$��'��"
����.

Let ����� $��'��"
����� $��'��"

���� be a relation defined as

�� ���� �� 	
 ���� �� � $��'�"
����� �� � ��

� �� � �� � �� ��� ���



12 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

%�

%�


 %�
�

�

� %�

%�


 %�
�

�

�

Type 1. Each element is either
maximal or minimal. There is
only one maximal element.

Type 2a. There is only one
maximal element and
a neutral element. The neutral
element belongs to 
������" �.

%�

%�


 %�
�

�

� %�

%�


 %�
�

�

�

Type 2b. There is only one
maximal element and a
neutral element. The neutral
element belongs to ) �
����" �.

Type 3a. There is a neutral
element and more than one
maximal element. The neutral
element belongs to 
������" �.

%�

%�


 %�
�

�

� %�

%�


 %�
�

�

�

Type 3b. There is a neutral
element and more than one
maximal element. The neutral
element belongs to ) �
����" �.

Type 4. Each element is either
maximal or minimal. There is
only one minimal element

Figure 8. Six different types of cell connection graphs (� � �). Double boxes indicate value cells, single boxes
indicate guard cells



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 13

��

��

��

�

��

��

��

�

���� � �������� ��� �� ���� � �������� ��� ��

�
���

�

�

�


���
��

��

��
�
���

�

�

�


���
��

��

�

�

����
��� � � ���� ���

� ������� � � ���

����
��� � � ���� ��

� ������� � � ����

Figure 9. Medium table skeletons.

Since ���� is isomorphic to ��� we will denote them by the same symbol ��� when we identify them,
and use the same icon to describe them. We also define
�������" ����, ) �
�����" ���� as appropriate
projections of 
������"���� and ) �
����" ���� onto ����� � ���� �

�
�� � 	��. Formally


�������"
���� � 
� � � � $��'��"

����

� �� � 
������" ����� � � ���

) �
�����"
���� � 
� � � � $��'��"

����

� �� � ) �
����" ����� � � ���

The triple
$$
� � �
������� ) �
����� �����

will be called the cell connection graph of "�����.

By a medium element of "	
� we mean a tuple

"	
��� � �$$
�� �
�
�� � ���� �

�
�� � 	��

where ����� � ���� �
�
��
� 	�� is a raw element. Again, a medium element can be interpreted as a projection of

"	
� onto �. Figure 10 illustrates a medium element.

3.4. Well Done Table Skeleton

Let � be a relation that is going to be specified by a tabular expression. Let ������ and ���	����
denote the domain and range of � respectively. Both ������ and ���	���� could be Cartesian
Products or subsets of Cartesian Products, i.e. in general ������ � *� � ��� � *�, for some &,
���	���� � +� � ���� +	, for some �.



14 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

The relation � can be composed of ��’s, � � � , where � is a finite set of indices, and the set
� � 
�� � � � �� will be called a representation of �.

The basic idea behind using tables to specify the relation � is that in practice we can frequently use
a medium element �� � "	
��� to specify ��, � � � . The entire relation � could be very complex, but
each �� is relatively simple. The relation � is equal to � � ,�'����, where ,�'���� is a relational
expression built from the elements of � and relational operators that are defined by the table type. The
table structure is supposed to make the understanding of ,�'���� natural and simple.

Let � be a (possible scalar or vector) variable over ������, � be a (possible vector) variable over
���	����, and let # ��� be a predicate defining the domain of ��, i.e.

� � ������� � ������ 	
 # ��� � �����

Let ,������ be a relational expression that defines (in a readable way) a superset ,� of the relation ��,
i.e.

�� � ,� where ����� � ,� 	
 ,�������

The relation �� is a restriction of ,� to �������, i.e. �� � ,���
	���, and is described completely
within that domain by the following predicate expression3

�� #���� 	
�� ,�������

We have to now fit the predicate expression �� #���� 	
�� ,������ into the medium element �� �
"	
���. Figure 10 shows how it can be done for the example of �� �� � � � �� � � 	
�� �� � �����

�
�.

The idea we will be using is the following:

� the expressions defining the relational expression ,������ are held in value cells () �
����" �).

� the expressions defining the predicate expression #���� are held in guard cells (
������" �.

However, the partition of cells into value and guard types is not sufficient. Let us consider the cell
connection graph from Figure 10. We said it corresponded to the expression �� ��������� 	
�� �� �
��� � �

�
�. But why �� � � � �� � �? Why not for example: �� � � � �� � �, or ���� � �� � �� � �

etc.?

There is no explicit information in the table that indicates conjunction, or any other operation. A
medium table skeleton does not provide any information on how the domain and values of the relation
(function) specified are determined. Such information must be added.

We have a similar situation for the expression ,������. For Types 2b, 3a, 3b and 4, ,������ must
somehow be composed of two or more components, each component being described by an expression
of one cell.

3The predicate �� ����� ���� ������� can equivalently be written as ����� 	 �������. We prefer the if-then
form because it is more readable, in particular when ����� itself contains the “	” operator (see Figure 12). But clearly
�� ����� ���� ������� � ����� 	�������.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 15

�� � � 	� � ��� � �
�
�

�� � �

��� ���

�����

Figure 10. An example of a (partially) interpreted medium element.

To say precisely how the medium element can be used to specify the predicate expression �� #����
	
�� ,������, not only do we need to divide cells into value and guard types, but we also need to
describe how #���� can be built from the expressions held in the guard cells and ,������ from the
expressions held in the value cells.

Let " � �$$
�%�� � � � �%�� 
� be a medium table skeleton. Assume that 
������" � � 
(�� � � � ,
(��, ) �
����" � � 
��� � � � � ���.

� A predicate expression #� �
�� ����
��, where 
�� ����
� are variables corresponding to the com-
ponents (�� ���� (� , is called a table predicate rule.

� A relation expression �� ���� �������, where ��� ������ are variables corresponding to the com-
ponents ��� ���� ��, is called a table relation rule.

The predicate #���� can now be derived from #� �
�� ����
�� by replacing each variable 
� by the
content of the cell that belongs to both the medium element �� and the component (�. Similarly, the
relation expression ,������ can now be derived from �� ���� ������� by replacing each variable �� by
the content of the cell that belongs to both the medium element �� and the component ��.

The predicate expression #� is built from table component names (variables) 
�� ����
�, where

������" � � 
(�� ���� (��, together with logical operators “�”, “�”, “�”, the replacement operator,
and some constant and relation symbols. The replacement operator is of the form ,�,����, where ,,
,� are expressions, � is a variable or constant, and ,�,���� represents a new expression derived from ,
by replacing every occurrence of � in , by ,�. The constants and relation symbols depend on the type
of input domain ������. The relation symbol “�” can always be used. If the elements of ������ are
ordered, the relation symbols “�”, “�” can be used4.

The relation expression �� is built from table component names ��� ������� (variables), where
) �
����" � � 
��� ���� ���, together with set operators “�”, “�”, etc., relation operators “�”, “�”,
“�”, etc., and the operator of “concatenation” “Æ”5.

The table predicate and relation rules are sufficient to understand how the predicate expressions
�� #���� 	
�� ,������ can be built from the contents of appropriate cells. We still do not know how

4The survey [1] indicates that “	”, “�”, “�” and “�������” suffice in most cases.
5For example for Figure 13 (top half) we have ��	� �� Æ ��� � ���� � �	� � �� � ���, ��	��� Æ �	� � ���� � �	��

�� �
�	� � 	� � ���� � �	��

��, where �	� � 	� � ���� � �	��
�� means that 	� is the (only) output variable in the expression

	� � ���� � �	��
�.



16 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

the relation � should be built from all ��’s that create a representation � of �. There is nothing in the
middle table skeleton to say how all those ��’s should be composed, which leads us to the following
concept.

� A relation expression $� of the form � � ,�'���� is called a table composition rule.

In general, ,�'���� is a relational expression built from the expressions defining ��’s, and various
relational operators. We shall discuss it in detail in the next section.

The final approximation of a table skeleton is the following.

� A well done table skeleton is a tuple

"�
�� � �#� � �� � $� � $$
�%�� ����%�� 
��

where �$$
�%�� ����%�� 
� is a medium table skeleton, #� is a table predicate rule, �� is a table
relation rule, and $� is a table composition rule.

In essence, a well done table skeleton defines the complete structure of a tabular expression except
filling out all the cells with proper expressions that define all ��’s. The definition is illustrated in Figu-
re 11.

3.5. Composing � from ��

Let # � * � + , - � * � � + �. If * � * � and + � + �, then # �-, # �-, # �- are defined in the
standard way (see [34]).

In many cases ��’s are heterogeneous relations [34] defined on the domains that can intuitively be
interpreted as subdomains of ������ but they are not subsets of ������. For example ������ �
.� �.� �.�, ������� � .� �.�, ������� � .� �.�, etc.

Let " be a set of indices, 
.� � � � "� be a family of sets (domains), / , 0 , 1, 2 be subsets of " ,
and let # , - be the following relations

# �
�
���

.� �
�
���

.�� - �
�
���

.� �
�
���

.��

�
��� .� denotes the direct product of .�, for all � � " . For example if / � 
�� �� �� then

�
��� .�

is equivalent to .� �.� �.�.

If / � 1, � �
�
���.�, then ��� �

�
��� .� is a restriction (projection) of � to / . For instance if

� � ���� ��� ��� � .� �.� �.�, / � 
�� ��, then ��� � ���� ���.

We now define the operations �, �, � as follows

# �- � 
��� �� � � �
�
�����.� � � �

�
����� .� � ����� � ���� � # � ����� ��� � � -���

# �- � 
��� �� � � �
�
�����.� � � �

�
����� .� � ����� � ���� � # � ����� ��� � � -���

# �- � 
��� �� � � �
�
�����.� � � �

�
����� .� � ����� � ���� � # � ����� ��� � �� -���



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 17

Normal Type 4

��

��

�

��

��

��

�

�	 ���� ��� � �� 	��

�	 ��� � �

��

Relation name :  
�	 � � �

��

���

��

���
 ����

�	 ��� � �

�	 ���� ��� � �� ���

Relation name :  
�	 � � �

��

���

��

���
 ����

Vector Generalized Decision

��

��

�

��

��

��

�

�	 ���� � ��

�	 ���� �� � �� Æ�

��

�	 ���� �� � �������

�	 ���� � ��

Relation name :  
�	 � � �

�
�

���

�
�

���  ����

Relation name :  
�	 � � �

�
�

���

�
�

���  ����

Figure 11. Four examples of well done table skeletons.

For example if ����# � � .� � .�, ���	��# � � .�, ����-� � .� � .�, ���	��-� � .�,
where all .�� ����.� are reals, and

# � 
����� ���� ��� � �� � �� � ���

- � 
����� ���� ��� � �� � �� � ���

then we have

# �- � 
����� ��� ���� ���� ���� � ����� ���� ��� � # � ����� ���� ��� � -��

# �- � 
����� ��� ���� ���� ���� � ����� ���� ��� � # � ����� ���� ��� � -��

# �- � 
����� ��� ���� ���� ���� � ����� ���� ��� � # � ����� ���� ��� �� -��

If / � 1 and 0 � 2 then �, �, � are just �, �, and �. The operator � can also be regarded as a
generalization of a natural join operator used in relational data bases [2].



18 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

We think that in general the problem of composing � from �� is an open research problem (see [19]
for more details). The definitions of operations �, �, � were application driven. The general problem
can be formulated as ”how to build the whole, i.e. �, from the parts, i.e. ��’s” in terms of algebra
of relations. This observation provided a major motivation for an attempt to formulate a mereology for
direct product and relations [17, 18].

Why is the composition of � from �� important? There are a number of practical considerations
that are affected by this.

� One of the major advantages of tabular expressions in documenting functions and relations is that
the table can be checked for “correctness”. For example, in Figure 1, the table can be checked to
ensure that the entire input domain is covered, and that the table components are disjoint. Since
#� �%��%�� � %� �%�, and $� � �� �


�
���


�
��� �����, we can see that to satisfy input domain

coverage we must have

��
���

����%�
� � � ���
�� and

��
���

����%�
� � � ���
�

and for disjointedness we must have ����%�
� � � ����%�

� � � �, ����%�
� � � ����%�

� � � �,
����%�

� � � ����%�
� � � �, and ����%�

� � � ����%�
� � � �.

The practical importance of this is clear. Tabular expressions are typically used to specify be-
haviour, and so complete input domain coverage ensures that we have specified responses to every
input combination, while disjointness ensures that the responses are unambiguously defined.

� We do not know of any practical systems that can be documented by a single (readable) table. We
thus need to be able to document systems by a collection of tables. In some cases we may want a
cell in the table to refer to another table. If we do not have a knowledge of the composability of
the individual tables we cannot hope to produce a mathematically consistent description.

� In a similar vein, it is sometimes important to be able to link different kinds of tables to describe
the total behaviour of a system. These links usually take the form of a cell in one table referring to
a cell in a different kind of table. We have also seen a cell in one table reference a row (or column)
in another table.

3.6. Tabular Expressions

We are now able to fully define the concept of a table expression that was introduced at the beginning of
Section 3.

� A tabular expression (or table) is a tuple

" � �#� � �� � $� � $$
�%�� ����%�� 
� �� �������

where �#� � �� � $� � $$
�%�� ����%�� 
� is a well done table skeleton, and � is a mapping which
assigns a predicate expression, or part of it, to each guard cell, and a relation expression, or part of
it, to each value cell. The predicate expressions have variables over ��, the relation expressions
have variables over �� ����, where �� is the set (usually heterogeneous product) of inputs,
and ��� is the set (usually heterogeneous product) of outputs.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 19

For every tabular expression " , we define the signature of " as:

3�	�� � �#� � �� � $� � $$
��

The signature describes all the global and structural information about the table. We may say that a tab-
ular expression is a triple: signature, raw skeleton (which describes the number of elements in headers
and indexing of the grid), and the mapping � (which describes the content of all cells).

Figures 12, 13 and 14 show examples of tabular expressions. The signatures enriched by information
about variables are presented in special two column tables. The above definitions describe, more or less,
the syntax of tables. In general � may assign a predicate expression, or part of one, to each guard cell,
and a relation expression, or part of one, to each value cell. We do not provide a complete denotational
semantics of � over the syntactic expressions in cells. It can be done, but in most cases it is rather obvi-
ous, and quite lengthy in the general case. Formally we need to introduce first an operator ��
��� which
simply returns the contents of cell � as an uninterpreted string of symbols (i.e. syntactic units), and then
define � in a standard denotational manner.

Let � be the index of " , let

# �� � #� �������
�� ����������
��

��� � �� ���������� �������������
(3)

where �� � (� �
�������" �, � � �� ���� �, and �� � �� � ) �
�����" �, � � �� ���� �.

Both #� and �� must satisfy the following consistency rule

� for every � � � , #�� is a syntactically correct predicate expression.

� for every � � � , ��� is a syntactically correct relation expression.

The relation composition expression $� is built from the relation/function names, and indices. The
operators �, �, �, �, �, � are special cases. The survey [1] shows that the patterns �� �� ���� , ����,
and �� �� ���� are sufficient in most cases.

3.7. Semantics of Tabular Expressions

Let " � �#� � �� � $� � $$
�%�� ����%�� 
� �� ������� be a tabular expression, with the index � ,
and let � � � . By an interpreted medium element we mean a tuple:

" �� � �#� � �� � $$
��4��
	���� ���

Figure 10 plus #� � %� �%�, �� � 
, represents an example of the interpreted medium element.

For every � � � , we define ��, ,�, as

� � �� 	
 #���� � �����

����� � ,� 	
 ,�������



20 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

���� �� �

����������
���������

	 if � � 	 � � � �	

� if � � 	 � � � �	

�� if � � 	 � � � �	

��� if � � 	 � � � �	

�� � if � � 	 � � � �	

�� � if � � 	 � � � �	

input variables �� � 
 �
���

output variables � 
 �
���

���
��

�	  � � �

�	 �

Function name � and � � ���� ��

�	
��
���

��
��� ����

%�

� � �� � � �� � � ��

%�

� � � � �� ��� 


� � � � �� � �� �

!��� �� �

�����
����
�� � if �� � 	 � � � 	� 	 �� � � � � � 	�

�� � if �	 
 � � � � � � 	�

	 �� 
 � � 	 � � � 	�

� � � if �� � 	 � � � 	� 	 �� � 	 � � � 	�

input variables �� � 
 �
���

output variables � 
 �
���

��� ��

�	  � ��

�	  �

Function name ! and � � !��� ��

�	
�
�
���

�
�
��� !���

�� � �� � � � � %�

%�

� � � � � � � � � � � � � � 


� � � � � � � � � � � � � �

Figure 12. Two examples of tabular expressions - normal (above) and inverted (below). They correspond to
Figures 1 and 2.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 21

���� �������� ��� ��� ��

������
�����

�� � �� � �� � ���� � �� � ���
� �� � ���� � 
��
�

�
if �� 
 	

�� � �� � �� � �� � ���� � 
��


� �� � ��

�
if �� � 	

input variables ��� �� 
 �
���

output variables ��� ��� �� 
 �
���

���
��

�	  �

�	  � Æ�

Relation name �

�	
��

���

��
�������

%� �� � � �� � � %�

�� � �� � �� �� � �� 


��� ���� � �� � �
�
� �� � ���� � ����

��� �� � ���� � ����
� �� � ��

The symbol ”�” after �� in  � indicates that the relations ���� , � � �� �, are functions. The symbol ”
” after �� and �� in � indicates that
���� and ���� , � � �� � are relations with �� and �� as respective output variables.

" 
 ��
���������������� ������ � #$��%���
�, where #$��%���
� � � go sailing, go to the beach, play bridge, garden�.

Temperature
 �&
�� $
���

input variables Weather
 ��'���� $�
'��� ������

Windy
 ���'
� ����
�

output variables �$��
� 
�go sailing, go to the beach,play bridge, garden�

��� ��

�	  � � �

�	  �

Function name " and �$��
� � "��
	�
���'�
�(
��&
��(�����

�	
�
�
���

�
�
��� "���

notation � � �
��� $��
, gtb = go to the beach

%�

go sailing gtb gtb play bridge garden

%�

Temperature � ����� ����� � � ��� � ����

Weather � �����	� ����
	� ��
�	� ����	 � ����
	 ����	 ����
	 ��
�	 ����
	

Windy � ������ ������ ���� ����� ����� � �����




Figure 13. Next two examples of tabular expressions - vector table (above) and decision table [14] (below). They
correspond to Figures 3 and 4.



22 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

&���� ��� �

���
��
�� � �� if ���� � �	 � �� � �� � �	

�� � �� if ���� � �	 � �� � �� � �	

���� if �� � �� � �	

input variables ��� �� 
 �
���

output variables � 
 �
���

��� ��

�	 �� �)��

�	  �

Function name & and � � &���� ���

�	
��
���

��
��� &���

�� � �� �� � �� ���� %�

%�

���� � � �� � � �� ���� 


�� � �� � � �� � � �� � � ��

������ ��� ��

����������
���������

�� � 	 � �� � 	 � ��
�
� � � ��

	 �� � �� � �� � 	 � ��
�
� � � 	�

	 �� � � � �� � 	 � �� � ���

	 �	 � � � � � �� � � � ��
�
� � � ��

	 ��� 
 � � 	 � �� � � � ��
�
� � � 	�

	 �� � � � �� � � � �� � ���

input variables � 
 �
���

output variables ��� �� 
 �
���

��� ��

�	 �

�	  � � �

Relation name �

�	
��
���

��
�������

%� 	� � � 	� � � %�

	�� � � � � � � � � � � � � 

	�� � � � � � � �� �� � � � �

	� � �
� � � � � ! �

Figure 14. Another two examples of tabular expressions - generalized decision (above) and type 4 (below). The
top one corresponds to Figure 5.

Every interpreted medium element " �� describes now the relation �� � ,����, i.e.

����� � �� 	
 �� #���� 	
�� ,�������

We may now define the semantics of tabular expressions in a formal way:

� The relation �� describes the semantics of the interpreted medium skeleton " ��.

� The semantics of a tabular expression " is defined by:

�� � $� �����

Figures 12, 13 and 14 illustrate the above definitions.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 23

4. On Table Classification

Tabular expressions can be classified according to:

� the cell connection graph, $$
,

� the table composition rule, $� ,

� table predicate and relation rules, #� and �� ,

� the mapping � which assigns meaning to cells.

In most cases we do not provide a complete classification, rather some special cases are chosen and
named.

The table classification according to $$
 is presented in Figure 8. Type 1 tables are called normal,
and type 2a are called inverted. The relationship between normal and inverted tables is analyzed in detail
in [44].

The table is called plain if ������� � ������, for all � � � , and �� �


��* ��. The table is

called output-vector if �� �
�
�

�
����� . The table is called input-vector if �� �

�
�

�
� ���� . In

general,
�
�

�
����� ��

�
�

�
� ���� , even though occassionally such equality might be true. All tables

modeled in [15] are plain. The vector tables of [29] are of output-vector type, and most of (but not all)
decision tables [13, 14, 29] are of input-vector type.

The classification according to #� and �� has not yet been proposed. Since the most popular type
of #� (see [1]) is conjunction, followed by disjunction, equality, and replacement ,�,����, disjunctive
tables, conjunctive tables, equality tables, and �-replacement tables are natural candidates for special
table types.

Classification on the basis of � is a different type of classification from each of the above. It depends
on what the contents of cells are, and is not the subject of this paper. The division of tables into function,
relation and predicate types, as well as into proper and improper tables [29, 38, 44], is based mainly on
�, but also on �� , #� , and $� . Some popular types such as vector, decision, and generalized decision
require a special type of �, a special type of $� and a special type of #� and/or �� .

5. The Importance of Semantics of Tabular Expressions

There are some compelling reasons for developing semantics of tabular expressions.

� Software tools for creating, checking, transforming and presenting tabular expressions are a prac-
tical necessity. Building those tools without a semantic model of the tables is doomed to failure.

� One of the strongest motivations for using tabular expressions is that it enables us to use mathe-
matical precision in the documentation of software requirements and design in a way that is quite
intuitive to a broad base of readers/users. It is vital that everyone reading these documents has
the same unambiguous understanding of the functionality described by these tables. Even in the
early days of using tables, there was an attempt to tell readers how to interpret the tables, i.e. very
simple/crude semantics for the specific tables were provided. Now that tabular expressions are be-
coming more popular, are used to document larger and more diverse systems, and are used within
the context of various different mathematical models, it has become imperative that we find more
general and sophisticated ways of telling readers how to interpret tabular expressions.



24 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

� It is natural that users of these tables will find ways of extending and/or modifying them so that
they become more and more useful. In recent years we have made a concerted effort to make
tables easy and intuitive to read and understand. In some cases we have modified the structure to
take advantage of the visual advantages that tables provide. For example, we can take tables of the
form:

�� � 	
���

$���� $����

�� � Conditions

$���� � 3�5 $���� ����+� ����+�

$���� � 3�5 $���� �����+� �����+�
$���� ���� ���� � � Results

$���� ����� �����
��� ��� ���

$���� ����� �����

and introduce a visual enhancement to highlight the structure of predicates and results:

�� � 	
���

$���� $����

�� � Conditions

3�5 $���� ����+�
$����

3�5 $���� �����+� �����+�
$���� ���� � � Results

$���� ����� �����
��� ��� ���

$���� ����� �����

Without an understanding of the formal semantics of tables, it is likely that some of these modifi-
cations will be ill-formed, resulting eventually in ambiguous interpretations.

6. Final Comments

The paper provides a relational semantics for Tabular Expressions. The Tabular Expressions have proven
to be invaluable in documenting requirements and software designs, and very useful in testing and veri-
fication (see [40, 41]).

The model presented in the paper covers most but not all types of tables currently used in Software
Engineering. It also allows us to define precisely new table types. The specific forms of � are not the



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 25

subject of this paper, so we do not make any distinction between function and relation tables and between
proper and improper tables [29]. Of course, for an efficient use of tables some classification according
to � is necessary. In particular the distinction between functions and relations is important from the
application point of view, since the properties are different in many aspects. However it should be done
after the general semantics is precisely defined, so in this paper we do not address this problem. The
model also does not address default cases such as ”no change” semantics often used when defining state
transition semantics. The ”sparse matrix” representation of a function [1] is also not easily covered.

The approach presented here is complementary to that of [29]. The classification provided in [29]
was based on several years of practical experience of using tables for specifying real computing systems.
The classification provided in this paper follows from the topology of an abstract entity called ‘table’,
and per se, is application independent. In fact, some possibilities allowed by this approach might have
rather unique applications.

In principle, the approach presented in this paper is based on the following concepts

� the cell connection relation ���, which represents the information flow in tables,

� division of table components into 
������" � and ) �
����" �,

� #� , the table predicate rule,

� �� , the table relation rule,

� $� , the table composition rule.

So far, in our approach, no substantive assumptions about the forms of #� and �� are made. This
is an area for further development, since not all forms of #� and �� make practical sense. When real
examples are analyzed (see for instance [1, 33]), one may observe that in many cases the distribution of
input and output variables among headers is not arbitrary, but are arranged to serve a particular purpose.
This problem is also not addressed here. The cases � � � and � � � need special attention since they
will eventually be the most frequently used in practice. Finally, concurrency, non-determinism, arrays of
tabular expressions and the concept of time, are not addressed in this paper.

Semantics for tabular expressions are crucial to their use in practice and also to the development of
software tools for creating, editing and transformimg tables. The model presented in the paper is not the
only one that has been proposed. An algebra of arrays of relations has been used in [5, 6] to present an
alternative semantics for tabular expressions. A strictly compositional semantics was proposed in [22],
and an algebraic and recursive model was presented in [42].

A real strength of tabular expressions is their sequence independent view of behaviour. This enables
us to deliver true black-box descriptions of behaviour. This strength is also a weakness. We have yet
to find a way to use tabular expressions to document algorithms, simply because in an algorithm, the
sequence of operations is supremely important [40].

Recently, tabular expressions have been succesfully used in requirements analysis, especially in con-
junction with a scenario-based approach [7, 8, 23, 41], to specify and verify safety critical software
[25, 41], and to deal with refinement problems [37].



26 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

There are some topics still that need further research in term of semantics for tabular expressions.
For example, semantics that cope with arrays; semantics that deal with concurrency (see [43]) and for
dealing with time are still in the early stages, if they exist at all.

Acknowledgments

Dave Parnas provided the main inspiration for this paper.

References

[1] R. Abraham, Evaluating Generalized Tabular Expressions in Software Documentation, M. Eng. Thesis, Dept.
of Electrical and Computer Engineering, McMaster University 1997, also CRL Report 346, McMaster Uni-
versity, Hamilton, Ontario, Canada, 1997.

[2] A. V. Aho, J. D. Ullman, Foundations of Computer Science, Computer Science Press 1992.

[3] G. H. Archinoff, R. J. Hohendorf, A. Wassyng, B. Quigley, M. R. Borsch, Verification of the Shutdown
System Software at the Darlington Nuclear Generating Station, International Conference on Control and
Instrumentation in Nuclear Installations, Glasgow, U.K., 1990, No. 4.3.

[4] P. C. Clements, Function Specification for the A-7E Function Driver Module, NRL Memorandum Report
4658, U.S. Naval Research Lab., 1981.

[5] J. Desharnais, R. Khédri, A. Mili, Towards a Uniform Relational Semantics for Tabular Expressions, Proc.
of RELMICS 98, Warsaw 1998.

[6] J. Desharnais, R. Khédri, A. Mili, Interpretation of Tabular Expressions Using Arrays of Relations, In E.
Orłowska, A. Szałas (eds.) Studies in Fuzziness and Soft Computing, Springer 2001, pp. 3-14.

[7] J. Desharnais, R. Khédri, A. Mili, Representation, Validation and Intergration of Scenarios Using Tabular
Expressions, Formal Methods in System Design, to appear.

[8] J. Desharnais, R. Khédri, A. Mili, Computing the Demonic Meet of Relations Represented by Predicate
Expressions Tables, Technical Report CAS-04-03-RK, McMaster University, Hamilton, Ontario, Canada,
2004.

[9] M. P. E. Heimdahl, N. G. Leveson, Completeness and Consistency Analysis of State-Based Requirements,
17th International Conference on Software Engineering (ICSE’95), IEEE Computer Society, Seattle, WA,
1995, 3-14.

[10] C. Heitmeyer, A. Bull, C. Gasarch, B. Labaw, ����: A Toolset for Specifying and Analyzing Requirements,
Proc. 9th Annual Conf. on Computer Assurance (COMPASS’95), Gaithersburg, MD, 1995.

[11] K. L. Heninger, Specifying Software Requirements for Complex Systems: New Techniques and their Appli-
cations, IEEE Transactions on Software Engineering, 6, 1, (1980), 2-13.

[12] K. L. Heninger, J. Kallander, D. L. Parnas, J. E. Shore, Software Requirements for the A-7E Aircraft, NRL
Memorandum Report 3876, U.S. Naval Research Lab., 1978.

[13] D. N. Hoover, Z. Chen, Tablewise, a Decision Table Tool, Proc. 9th Annual Conf. on Computer Assurance
(COMPASS’95), Gaithersburg, MD, 1995.

[14] R. B. Hurlay, Decision Tables in Software Engineering, Van Nostrand Reinhold Company, New York 1983.

[15] R. Janicki, Towards a Formal Semantics of Parnas Tables, 17th International Conference on Software Engi-
neering (ICSE’95), IEEE Computer Society, Seattle, WA, 1995, 231-240.



R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics 27

[16] R. Janicki, On Formal Semantics of Tabular Expressions, CRL Report 355, McMaster University, Hamilton,
Ontario 1997.

[17] R. Janicki, Remarks on Mereology of Direct Products and Relations, in J. Desharnais, M. Frappier, W.
MacCaull (eds.), Relational Methods in Computer Science, Methodos Publ. 2002,pp.65-84.

[18] R. Janicki, On a Mereological System for Relational Software Specifications, Proc. of MFCS’2002 (Mathe-
matical Foundations of Computer Science), Lecture Notes in Comp. Science 2420, Springer 2002, pp. 375-
386.

[19] R. Janicki, R. Khédri, On Formal Semantics of Tabular Expressions, Science of Computer Programming,
39(2001), 189-214.

[20] R. Janicki, D. L. Parnas, J. Zucker, Tabular Representations in Relational Documents, in C. Brink, W. Kahl,
G. Schmidt (eds.): Relational Methods in Computer Science, Springer-Verlag 1997.

[21] R. Janicki, A. Wassyng, On Tabular Expressions, Proc. of. CASCON’2003 (13th IBM Centre for Advanced
Studies Conference), Toronto, Canada 2003, pp. 38-52.

[22] W. Kahl, Compositional Syntax and Semantics of Tables, SQRL Report No. 15, McMaster University, Hamil-
ton, Ontario, Canada, 2003, to appear in Formal Methods in System Design

[23] R. Khédri, Requirements Scenarios Formalization Technique: 
 Versions Towards One Good Version, in W.
Kahl, D. L. Parnas, G. Schmidt (eds.), Relational Methods in Software, Elsevier 2001, 19-37.

[24] L. Lamport, How to Write a Long Formula, SRC Research Report 119, DEC System Research Centre, Palo
Alto, CA, 1993.

[25] M. Lawford, J. McDougall, P. Froebel, G. Moum, Practical Application of Functional and Relational Methods
for the Specification and Verification of Safety Critical Software, Proc. of AMAST’2000, Lecture Notes in
Computer Science 1816, Springer 2000, pp. 73-88.

[26] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, J. D. Reese, Requirements Specifications for Process-Control
Systems, IEEE Transaction on Software Engineering, 20, 9, 1994.

[27] J. McDougall, E. Jankowski, Procedure for the Specification of Software Requirements for Safety Critical
Systems, Report CE-1001-PROC, Computer Centre of Excellence, 1995.

[28] D. L. Parnas, A Generalized Control Structure and Its Formal Definition, Communications of the ACM, 26, 8
(1983), 572-581.

[29] D. L. Parnas, Tabular Representation of Relations, CRL Report 260, Telecommunications Research Institute
of Ontario (TRIO), McMaster University, Hamilton, Ontario, Canada, 1992.

[30] D. L. Parnas, G. J. K. Asmis, J. D. Kendall, Reviewable Development of Safety Critical Software, Interna-
tional Conference on Control and Instrumentation in Nuclear Installations, Glasgow, U.K., 1990, No. 4.3.

[31] D. L. Parnas, G. L. K. Asmis, J. Madey, Assessment of Safety-Critical Software in Nuclear Power Plants,
Nuclear Safety, 32,2 (1991), 189-198.

[32] D. L. Parnas, J. Madey, Functional Documentation for Computer Systems Engineering, Science of Computer
Programming, 25, 1 (1995), 41-61.

[33] D. L. Parnas, J. Madey, M. Iglewski, Precise Documentation of Well-Structured Programs, IEEE Transactions
on Software Engineering, 20, 12 (1994), 948-976.

[34] G. Schmidt, T. Ströhlein, Relations and Graphs. Discrete Mathematics for Computer Science, Springer 1993.



28 R. Janicki and A. Wassyng / Tabular Expressions and Their Relational Semantics

[35] A. J. van Schouwen, The A-7 Requirements Model: Re-examination for Real-Time Systems and an Appli-
cation to Monitoring Systems, Technical Report 90-276, Queen’s University, CIS, TRIO, Kingston, Ontario,
Canada, 1990.

[36] A. J. van Schouwen, D. L. Parnas, J. Madey, Documentation of Requirements for Computer Systems, Inter-
national Symposium on Requirements Engineering, IEEE Computer Society, San Diego, California, 1993,
pp. 198-207.

[37] E. Sekerinski, Exploring Tabular Verification and Refinement, Formal Aspect of Computing 15 (2003), 215-
236.

[38] SERG - Software Engineering Group, Table Tool System Developer’s Guide, CRL Report 339, TRIO, Mc-
Master University, Hamilton, Ontario, Canada 1997.

[39] A. Wassyng, GARD Research Consulting Inc., Software Requirements for AECB Project 2.314.1, 23141-
DOC-4, Revision 2, 1995.

[40] A. Wassyng, R. Janicki, Tabular Expressions in Software Engineering, Proc. of ICSSEA’03 (Intern. Conf. on
Software and System Engineering), Vol. 4, Paris, France 2003, pp.1-46.

[41] A. Wassyng, M. Lawford, Lessons Learned from a Successful Implementation of Formal Methods in an
Industrial Project, Proc. of FME’03 (Formal Methods Europe), Lecture Notes in Computer Science 2805,
Springer 2003, pp. 133-153.

[42] A. J. Wilder, Recursive Tables and Effective Definition Schemes, The Journal of Logic and Algebraic Pro-
gramming, 51 (2002), 101-121

[43] Y. Yang, R. Janicki, On Concurrency and Tabular Expressions, Proc. of SERP’2004 (Software Engineering
Research and Practice), Las Vegas, USA, 2004, pp. 455 - 461.

[44] J. Zucker, Transformations of Normal and Inverted Function Tables, Formal Aspects of Programming, 8
(1996), 679-705.


