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We discuss an abstract semantics of concurrent systems generalising
causal partial orders. The new semantics employs relational structures
—called stratified order structures—which comprise causal partial
orders and weak causal partial orders. Stratified order structures can
be represented by certain equivalence classes of step sequences—
comtraces—directly generalising Mazurkiewicz traces. We use Elemen-
tary Net Systems with inhibitor arcs as a system model and show that
stratified order structures can provide an abstract semantics which is
consistent with their operational semantics expressed in terms of step
sequences. Two different types of operational rules are considered. We
also construct occurrence nets to enable the generation of stratified
order structures for a given run of the net. ¢ 1995 Academic Press, Inc.

1. INTRODUCTION

In the development of mathematical models for con-
current systems, the concepts of partial and total order
undoubtedly occupy a central position. Interleaving models
use total orders of event occurrences, while so-called “true
concurrency” models use step sequences or causal partial
orders (compare {3, 11, 28]). Even more complex struc-
tures, such as failures [ 11] or event structures [ 32], are in
principle based on the concept of total or partial orders.
While interleavings and step sequences usually represent
executions or observations and can be regarded as directly
representing operational behaviour of a concurrent system,
a causal partial order represents a set of executions or obser-
vations. The lack of ordering between two event occurrences
in the case of a step sequence is interpreted as simultaneity,
while in the case of a causal partial order it is interpreted as
concurrency. The latter means that the event occurrences
can be executed (observed) in either order or simul-
taneously. In other words, a causal partial order is an
invariant describing an abstract history of a concurrent
system. Both interleaving and true concurrency models
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have been developed to a high degree of sophistication
providing a successful specification and verification frame-
work. However, there are some problems; for instance, the
specification of priorities using partial orders alone is
often problematic (see [12, 18, 20]). Another example
are inhibitor nets (see [27]), which are greatly admired
by practitioners, and almost completely rejected by
theoreticians even in the bounded case. in our opinion
mainly because their full concurrent behaviour cannot be
adequately specified in terms of causality based structures
[16]. We think that these kind of problems follow from the
general assumption that all behavioural properties of a con-
current system can be modelled in terms of causal partial
orders or causality-based relations. We claim [ 14, 16] that
the structure of concurrency phenomena is richer and there
are other invariants which can be used to represent abstract
histories of a concurrent system.

In this paper we consider one of such invariants, called
weak causality. More precisely, we employ stratified order
structures [ 17] to provide one such invariant semantics of
concurrent systems modelled by Elementary Net Systems
with inhibitor arcs. Each stratified order structure is a rela-
tional structure comprising causality and weak causality
invariant. We introduce a representation of stratified order
structures using a novel concept of comtrace—a direct
extension of Mazurkiewicz trace [ 1, 22, 23]. Stratified order
structures correspond to posets, comtraces correspond to
traces, while step sequences play the role of interleaving
sequences. The independence relation on events used to
define Mazurkiewicz traces in [ 22, 23] is replaced by two
new relations on events, simultaneity and serialisability. The
former specifies which events may be executed in one step;
the latter comprises pairs of events (e, /') such that if {e, f}
is a possible step then e and f can also be executed in the
order ¢ followed by f (but not necessarily in the order f
followed by ¢).

The paper is organised as follows. In the next section two
different operational rules involving inhibitor arcs are infor-
mally discussed. In Section 3 we introduce stratified order
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2 JANICKI AND KOUTNY

structures. Section 4 contains the development of the com-
trace model. Section 5 shows how comtraces can provide an
invariant semantics for the Elementary Net Systems with
Inhibitor Arcs (ENI-systems). In Section 6 a different, more
restrictive, but easier to handle semantics is analysed.
Section 7 contains final comments.

This paper is a revised and full version of [ 15].

2. SIMULTANEITY AND INHIBITOR ARCS

The standard execution rule for inhibitor arcs says that
an inhibitor arc between a condition (place) s and an event
(transition) e means that ¢ can only be fired if s is
unmarked [2, 25, 27]. Such a rule 1s sufficient if one is to
define purely sequential (interleaving) semantics, since a
non-interleaving semantics of any kind of nets requires
(explicitly or implicitly) the definition of a simultaneous
step of events (transitions). There seems to be no general
agreement on an exact definition of a simultaneous step for
nets with inhibitor arcs. To explain this let us consider the
net from Fig. 1. There is no problem with its interleavings,
the net can only produce three non-empty sequences: e, /
and fe. Moreover, one can observe that while the firing of
e is completely independent of the firing of /. the firing of
f depends on the behaviour of ¢ since ¢ may disable f by
finng first. Hence the intuitive independence relation 1s
not symmetric. A fundamental question which one must
now answer is: Can this net fire simultaneously the step
fe.f}?

Let us call the step sequence semantics which allows
the step {e, f} #ype-1, and the step sequence semantics
which disallows the step {e, f} type-2. What is interesting
is that both can be found in the literature. Type-1
semantics 1s assumed in [4, 15, 16, 18], while type-2 1s
assumed in {7, 24] and (implicitly) {27]. Both types are
considered in [6]: the first was called the “a-priori con-
current semantics,” and the second the “a-posteriori con-
current semantics.” In this paper we will adopt this ter-
minology.

We think that, in principle, both types of semantics are
admissible, e.g.. depending on whether the events (transi-
tions) involved are viewed as taking time or not:'

(1) Events (transitions) are interpreted as representa-
tions of activities whose completion takes some time. This
interpretation seems to be frequently present in both
software and hardware applications [ 2, 19, 25]. If the event

! As pointed out by one of the referees, an alternative (and more general)
interpretation of the a-posteriori semantics is that a step in this semantics
is only allowed if no problem may ever arise during its execution (hence a
duration is allowed) until the very end, of the kind “a token occurs in a
place controlling the inhibition of a fired transition.”

FIG. 1. Net with inhibitor arcs.

e takes a non-zero time to complete, then there should be
some moment during the occurrence of ¢ in which the event

fis still enabled (so it can be fired) because the occurrence

of ¢ has not yet finished and s, is still empty. Hence, in this
case, there is intuitively nothing that would seem to disallow
the simultaneous occurrence of ¢ and f.

(2) Events (transitions) are instantaneous, their occur-
rence takes zero time. In such a case the simultaneous
execution of e and f ought to be excluded. One may argue
that firing an instantaneous event e places a token in s, in
the very moment it removes a token from s,.

The problem is that under the firing rules of the a-priori
semantics, the process level cannot be defined in terms of
partial orders ({e,f} and {f}{e} are allowed, but
{e}{ f} is not, see [ 16] for a detailed discussion). We need
a more powerful apparatus, and we shall use stratified
order structures instead of partial orders. For the
a-posteriori semantics the standard posets are sufficient.”
In this paper we assume the a-priori semantics everywhere
except Section 6. In Section 6 we show that on the process
level, in our approach, the a-posteriori semantics can be
treated as though it was a special (and much simpler) case
of the a-priori semantics. In particular, no new definitions
or concepts are needed. Thus the theory developed in the
sequel covers both the a-priori and a-posteriori semantics.

3. BASIC CONCEPTS AND NOTATION

We use the standard mathematical notation. In par-
ticular, if P and Q are binary relations over a set X then their
composition P Q is defined thus:

P O={(x,p)eXxX|(FZzeX)x.z2)ePA(z,y)e Q}.

? For this reason the a-posteriori semantics was chosen in [ 7]: in their
terminology, the a-posteriori semantics satisfies the “diagonal rule,” while
the a-priori semantics does not.
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We also define

P’=id,
P'=P~' P (iz])
P =) P
i1
pr=J P
20

3.1. Partially Ordered Sets

A partially ordered set (poset) is a pair po =(X, <) such
that X is a set and < is an irreflexive transitive relation on
X. In this paper we will always assume that X is finite.* We
will use a—~b& to denote that ¢ and b are distinct incom-
parable elements of X. If necessary, we will write <, and
~,, to denote < and —~. The poset is total if ~ is empty, and
stratified {9] if —~J id is an equivalence relation. In the
latter case X can be partitioned onto a unique sequence of
non-empty sets of elements U,,=B,--- B, (k>0) such
that

<=1\J B,xB, and

~=J B,xB,—id,.

i<j i
Conversely, if X can be partitioned onto non-empty sets
B,. ... B, satisfying the above conditions then po 1is
stratified. We will sometimes identify po with U,,,,.“ A poset
(X, <) 1s an extension of po = (X, <) If < = <.

In Fig.2, po’ and po” are stratified extensions of po,
U, ,={a}{b.c},and U,,. = {a. c}{b}.

po

ProPoSITION 3.1.  For every poset po=(X. <,,) there is
exactly one stratified poset q= B, --- B, which is an exten-
sion of po such that

(#)Ifi=2andbe B, then there isa e B, _ satisfying a<,, b.

Proof.  Although the result follows from [ 5], we include
a simple proof to make the paper self-contained.

For every po, let A,, be the set of all stratified extensions
g=B,--- B, of po for which (*) holds. We want to show
that |4, =1 by applying induction on the size of X.

If X = then 4, = {¢} and the thesis holds. The induc-
tion step for X # ¢ follows from the following observation:
Let B be the set of all minimal elements of po (ie., ae B iff

* This is mainly due to the fact that we only define finite comtraces (see
Section 4). A smooth extension to the infinite ones is a non-trivial problem,
even for the restricted case of Mazurkiewicz traces [ 8], and is left as a topic
for further research.

*1f X'is empty, U, is the empty sequence, .

oC c
A a b
po po’
c c
¢
]
|
a b a b
S pOII

FIG. 2. Partial orders and a stratified order structure.

there is no b such that » < a). and let po’ be po restricted to
X — B. Then

(1) IfB,---B,ed,,then By=Band B,---B,e4,,.
(2) IfB,---Byed,, then BB, ..-B,eA

po-

Both (1) and (2) follow directly from (*) and the definition
of a minimal element of a poset. Then (1) can be used to
show that |4,,|<1. and (2) to show that |A,|>0. The
induction hypothesis can be applied for po' since B # ¢ as
X is finite. ||

The stratified poset ¢ from Proposition 3.1 will be called
canonical for po and denoted by can,,,. In Fig. 2, can,,, = po”.

PO

3.2. Stratified Order Structures

By a relational structure we will mean a triple S= (X, <,
=), where < and = are binary relations on X. We
will sometimes use < and — to respectively denote <
and . A relational structure §' = (X, <’, =') is an exten-
sion of S, S8, if <= <" and = ==, Sis a srratified
order structure if for all a, b, ¢ € X the following hold:

Cl artza
C2
C3

a<b=ac=bh
acbhrcra#c=arc

C4 acb<cva<bme=a<ec.

C1-C4 imply® that (X, <) is a poset and a<b=bza.
Figure 2 shows a stratified order structure S such that

Sa « afollows from C1 and C2; a < b < ¢ = a< ¢ from C2 and C4; and
a<b=bzafromC4and a € a.
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a<bcand a <¢. In the diagrams, solid arrows represent
< (causality) and dashed arrows represent — (weak
causality). We do not draw a dashed arrow between « and
b if both a < b and a= b hold; arrows which can be deduced
from those which are drawn using C3 and C4 can be
omitted.

The relationship between stratified order structures and
stratified posets is very much like that between partial
orders and their total extensions (cf. Section 3.4). In par-
ticular, a poset po = (X, <) is stratified if and only if (X, <,
< w ) is a stratified order structure [ 17].

Stratified order structures were independently introduced
in [ 10] (as “prossets”—preorder specification sets) and in
[14] (as “composets™—combined posets). In both [10]
and [14] the defining axioms are slightly different from
C1--C4, although equivalent.

Stratified order structures are a special case of (general)
order structures, which were introduced and analysed in
[ 17]. Besides stratified order structures and (general) order
structures, Janicki and Koutny consider interval order
structures and total order structures in [ 17]. Interval order
structures are a refined version of the relational structures
defined in [21]. For more details the reader is referred to
[17]. In this paper we shall use only stratified order struc-
tures.

3.3. Closure Properties of Relational Structures

In this section we develop the notion of $-closure of a
relational structure. It roughly corresponds to the notion of
transitive closure of a binary relation which is often used in
the construction of partial orders. For a relational structure
S=(X, <, =), its O-closure will be defined as (X, </,
(< w)* —idy), where <’ is the composition of three rela-
tions: (< u =)* and < and (again) (< u )*. In other
words, a <'b if aR,a,R,--- R, _a, _, R, b, where each R,
is < or =, and at least one R, is <. The <-closure will be
used to construct stratified order structures.

Formally, the &-closure of a relational structure S = (X,
<, =) is defined as

SO = (X, o < 2@, Q_I(l\’)

where o = (< u = )*. We will also use g to denote 9. The
terminology is justified by part (2) and (3) of the following
result. (Below § = (X, <, =) 1s a fixed relational structure.)

PROPOSITION 3.2.

(1) ((g°<-g)ulg—idy))*=0*
(2) If = is irreflexive then S S
(3) (§7)7 =87,

Proof. (1) The < inclusion follows from ¢- < g Sg.
To show the = inclusion we first observe that

o—idy=(<vu)*—idy

=(Ruc)*(<Kum)e(<um)*—idy
=(g: < g)ule-=5@)—idy
Sl <)o —idy

Sl < 0)ulg—idy)

Hence o* = (g — id)* S ((0- < »g) v (o —idy))*.

(2) We have < =idy < -idy<=g>»<~g. Moreover,

since i is irreflexive, . == —idy S o —idy.
(3) Follows from
s <guolge = ((@<ce)ule—idy))*
v < ego (e <o) u(@—idy))*
=) Q*“Q“<"“Q‘Q*=Q°<3‘Q~
0. —idy=((g-< @)U le—idy))* —
:u)Q*‘idng_’.dx- |
A necessary and sufficient condition for S to be a

stratified order structure is given next.

PROPOSITION 3.3. S is a stratified order structure if and
only if 0 < - is irreflexive.
Proof. Follows from C1 and C2.

(<) CI1 clearly holds, and C2 follows from g- < =@
being irreflexive. Moreover, C3 and C4 follow from

(=)

0—idy)o(o—idy))—idy<So—idy
(e—idy) (e <rg)Sg>< g
(0o <-0) (o—idy)sp-<<9. |}

In the rest of this section we prove some useful properties
of the & -closure.

PrRoOPOSITION 3.4. If S is u stratified order structure then
§=5°.

Proof. Follows from
¥ < eZ*=r, < and
== —idy=c =. |

(<u)*
(<uz)*

=L (< UEZ)* =0

—idy=c, ¥ —idy

ProrosiTION 3.5. If S=(X, <, ) is a relational struc-
ture such that S is a stratified order structure, and S, =
(X, <, T, ) is a relational structure such that

<5S0° <0 and =g <Sg—idy,

then S5 is a stratified order structure satisfying Sg < S°.
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Proof. We have

((er < @) ule—idy))*
rer<ee((gr<ro)ule—idy))*

s, <s, 05, S

=3y 0¥ 0 <90 0* = g-<op.

—idy ({o-<-@Yulg—idy))* —idy

In

25,

I

« g .
i 0% —idy=0—idy.

Using (twice) Proposition 3.3, the first inclusion and the
assumption made about S§~, we obtain that S; is a
stratified order structure. S;' S follows from both
inclusions. |

The next result shows two different ways of augmenting a
stratified order structure. Note that the S in Fig. 2 could be
augmented by adding either b < ¢ or cc=b.

PROPOSITION 3.6. Let S be a stratified order structure
anda, be X, a#b.

(1) Ifactb then T is a stratified order structure, where
T=(X,<ul{b,a)},=)
(2) Ifa¥bthenT “isa stratified order structure, where

T=(X,<,= u{(b,a)})

Moreover, in both cases S T~

Proof. (1) By Proposition 3.3, it suffices to show that
o7~ <g-gpis irreflexive. From C2 for S it follows that

(@) o <p-or=(=u{h,)})* (<u{(b a}})
(= u b, a)})*

(b) g:<g=r=* < mx

Suppose (c.c)eor <y-04 Since (¢, c)¢gm* < =*
(follows from (b) and Propositions 3.3 and 3.4), we must
have, by (a) and C2 for S, (¢, b)e =* and (a, c)e =*.
Hence, by a#b, (a, bye* —idy. Since, by Proposi-
tion34, . =(<u)*—idy=*—id,, this yields a =5,
a contradiction.

(2)
(c)

Suppose (¢, c)egr <r-g4 Since (¢, )¢ =% <o=* at
least one of the following three cases holds:

We proceed as before and obtain

or <r-or=(Cuf{(ba)})* < (=u{(ba)})*

{c, bYe =* and

(a,b)e =* < —* and

(a,c)e =¥,

or (¢,b)e—* and

(a,cle=* <2,

or {¢.,b)e=* <-—* and

{a, c)e=*.

In either case, (4, b)e =*s < =¥,
Since, by Proposition 34, <={(<um)* < (<uU
C)* =% < o *, we obtain a < b, a contradiction.
Finally, by Proposition 34, S=5“. Moreover, by the
definition of the O-closure, S“ < T Hence S 7. |

The last result provides a means of proving equality of
stratified order structures obtained through simple com-
position.

ProrosITION 3.7. Let 8, and S, (resp. T, and T,) be
relational structures with the same domain X (resp. Y).
Moreover, let XNnY=¢, <SXxY and = <XxY.
Define

Wi=(XuY, <u<gu<poumgumy) (i=1,2)

ISy =Sy and T =T5 then W =W

Proof. FromXnY=<n(¥YxX)= n(YxX)=
it follows that

(1) eun(YxX)= fori=1,2.

Moreover, by S7” =S5 and T} = TS, we have

(2) 0s, = 0s, and er=Qr.
(3) gSlc‘ <SIOQS| = QS:V <S: ‘QS: and QT|‘ <T| "QTl =
01 <7907y

From (1) we obtain, fori=1, 2,

On <wo0w = (05 <g, 05 ulor <7 -07)
wies, <s, o5 (<um)oer)
Vigs, (<u)oggy <rpoer)
wles, <-0r)
0w, =05,V Qr Vg (KuT) er)
This and (2, 3) implies W," = W, |

3.4. Stratified Order Structures and Stratified Posets

As we already mentioned, the relationship between
stratified order structures and stratified posets is very much
like that between partial orders and their total extensions.

Let §=(X, <, =) be a stratified order structure, and let
po=(X,<’) be a stratified poset. Then po is a stratified
(poset) extension of S, poestrai(S), f <<= <" and
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— < < u~".% Proposition 3.8 shows that strat(S) is

always non-empty.

ProposiTION 3.8.  If S=(X, <, =) is a stratified order
structure then can, . _, € strat{S).

Proof. Letcan y ., =(X,<)and Uy, ., =B, - - B,. By
definition, << <'. What we need to show is that
= < <"u~'". Suppose «—b (hence ¢ #5b) and a ¥’'b and
a+"b. Then b <’a, which means that a € B; for some i > 2.
Hence, by (*) in Proposition 3.1, there is ce B, _, such that
¢ < «a. Thus, by a=b and C4, ¢ < b, which yields ¢ <’ b. Hence
be B, for some j >, contradicting h<"aand a€ B;. ||

ProrosiTiON 39 [16]. Let S=(X, <,

stratified order structure and let a, be X, a#b.

=) be a

(1) If actb then there is po € strat(S) such that b < po .
(2)  If a Kb then there is po € strat(S) such that b <, a
orb—,  a

po

Proof. Follows directly from Propositions 3.6 and 3.8
and the fact that if S” and S” are two stratified order struc-
tures satisfying §” € §', then strat(S’) € strai(S"). |

Every poset is unambiguously identified by the set of its
total order extensions [30]. The same does not hold for
stratified order structures. It may even happen that a
stratified order structure has no total order extensions (for
example, S=({a, b}, &, {(a. b), (h,a)})). To distinguish
between different stratified order structures one needs to
compare their stratified order extensions.

TaeorREM 3.10 [16].
structures.

Then S =S'" if and only if strat{S) = strat(S').

Let S and S’ be stratified order

Proof. To prove the right-to-left implication we assume
a<g¢b and a <« b. Then, by Proposition 3.9(2), there is
po € strai(S') such that b<,, a or b~,,a which means
podstrat(S). Hence strai(S)+ strat(S'). Similarly, using
Proposition 3.9(1) we may show that if «cZ¢ b and az ¢ b
then strat(S) # strat(S’). Hence strat(.S) = strat(S') implies
S< S and (by symmetry) S'<S. |

Every poset can be reconstructed by taking the intersec-
tion of its total order extensions [ 30 ]. A similar result holds
for stratified order structures and their stratified order
extensions.

THeOREM 3.11 [16].
order structure. Then

Let S=(X, <, =) be a stratified

<pr ()

poEstral(s)

<pu o Apu> .

s:(x, N

po e stral(S)

® An equivalent definition of strat(S) is obtained by requiring that if
0, =8,--- B, thenae B,and be B, imply that « <h=i<jand a=h =

po

i<

Proof. The theorem 1is correctly formulated since, by
Proposition 3.8, strat(S)+# . From the definition of
strat(S) it follows that the < inclusion holds.

Suppose ¢, be X, a#b and ¢ £ b (or arzh). Then, by
Proposition 3.9, there is po e strat(S) such that <, a or
a—,,b (resp. b<,,a). Hence a «,, b (resp. a «,,b and

«+,,b), which means that the = inclusion holds. |

A similar theorem holds also for infinite structures [ 17].

4. GENERALISING MAZURKIEWICZ TRACES

In trace theory [ 1, 22, 23] partial orders are interpreted
as abstract behaviours of concurrent systems such as
EN-systems and l-safe Petri nets. In this section a class of
stratified order structures will be introduced to provide a
representation of abstract behaviours of EN-systems with
inhibitor arcs under the a-priori semantics (see Section 5).

4.1. Simultaneity and Serialisability

A concurrent alphabet 1s a triple 3 = ( E, sim, ser), where E
1s a non-empty set of events and sercsimc Ex E. We
assume that sim is irreflexive and symmetric. Intuitively, if
(e, f)esim then ¢ and f can occur simultaneously, while
(e, ) e ser means that ¢ and f may occur simultaneously
and ¢ may occur before f. We interpret sim and ser as
simultaneity and serialisability.

In what follows the concurrent alphabet is fixed. In the
examples we use 3, =(E, sim, ser), where E={e, f. g, h!,
sim={(e, [). (f.e). (e.g), (g.e)} and ser={(e. ), (f. e),
(e, g)}.

In the standard treatment of Mazurkiewicz traces, a con-
current alphabet is defined as 3 =(E, ind), where ind is a
symmetric and irreflexive independence relation on events.
Intuitively, independent events can be executed simul-
taneously and are serialisable. Thus ind corresponds in our
presentation to the situation where sim = ser =ind (note
that this implies ser = ser ™).

4.2. Step Sequences and Comtraces

A non-empty finite set 4 < E is a step if for all distinct
e, fe A, (e, [')esim. For our example concurrent alphabet
3, the possible steps are {e}, {f}, {g}, {h}. {e.f}, and
{e, g}. Finite sequences of steps, called step sequences, are
meant to represent possible runs of a concurrent system.
Abstract histories will be represented by equivalence classes
of step sequences.

Let =~ be the relation comprising all pairs (7, u) of step
sequences such that

t=wAz

u=wBC(C:z,



SEMANTICS OF INHIBITOR NETS 7

(e,1)

(g,1)

(£i1)

Ty

(e,l)\
AN

(g9.1)

(fi1)
Sy

FIG. 3. Poset and stratified order structure generated by a step sequence.

where w, - are step sequences { possibly empty) and 4, B, C
are steps satisfying

BnC=g
BuC=4
B x C < gser.

Note that 4 can only be split into two consecutive steps,
B and C. if the events in B are all serialisable with those in
C. For the example alphabet 3,

Hleg) = {f}{et el
Hlegh 2 {/H{gile}

The property = is supposed to capture is that if 1 ~ u then
t 1s a valid run of the system if and only if u is. The reflexive
symmetric transitive closure of ~ will be denoted = (ie. =
is equal to ( = v = ~')*) and its equivalence classes will be
called comtraces” A comtrace containing a given step
sequence ¢ will be denoted [ 1] and interpreted as an abstract
history of a concurrent system. For the alphabet 9,

144

\\

f
t.
f
[

[{e.fHgt{e}1={{e. fHgt el {e}{/H et el
e {gHeh A/ He gl e}

The original notion of Mazurkiewicz trace [22] deals only
with sequences of events. It has been generalised in [ 13] to
step sequences which roughly corresponds to assuming that
sim = ser in the above definitions.

4.3. Posets Generated by Step Sequences
Let t=A,---A, be a step sequence. The set of event
occurrences in 1 1s defined as

occ(t)=1{(e,i) [ ee EAL I #,(1)},

" The problem of deciding whether 7 = u can be reduced to that of check-
ing whether the stratified order structures induced by r and « (and con-
structed using the <'-closure) are equal (cf. Theorem 4.10).

where #,(t)=1|{i|eeA,}|, for all ee E. For a= (e, i)e
oce(t), the position within t and labe! are defined respectively
by pos(x)=min{j| #.(4,---4,) =i} and [(a)—e For 9,
and 1 = {e, f}{ 1{e} we have oce(1) = {(e. 1), ) (o 1),
(g. DY, posfe,2)=3and I f. 1)=f

The step sequence t induces a partial order,
(oce(t), <), where

T, =

a < fi<=pos(a) <posf).
For 9, and r={e. f}{g}{e}, the Hasse diagram of =, is
shown in Fig. 3.

Directly from the definition of ~ we obtain:

PrOPOSITION 4.1.
and x, f e occ(t).

Let t=A,---A; be a step sequence

(1) 7, is a stratified poset and T, =pos, 1. ..

pos; (k).

(2) LetU,=B,---B,. Then {B;y=A, and |B,| = 4,1,
Sfor all i.

(3) If uis a step sequence such that t ~ u or ux 1t then

[( pos(x) —pos,(B)) — (pos,(a)—pos ()] <1
The next result states two “invariant” properties concern-
ing the relative position of two event occurrences in step

sequences belonging to the same comtrace.

PROPOSITION 4.2. Let t be a step sequence and let o, f e
occ(l).

(1) If posfo)<pos(B) and (lx). Np))éser then
pos, (o) <posB) forallue[1].
(2) If pos(a)<pos(PB) and (UB), lx))éser then

)<< pos B) foralluelt].

Proof. 1f (1) does not hold, then there are u,we[¢]
such that pos («) <pos, (). pos,{«) = pos,(f), and u = wor
w = u. Hence. by Proposition 4.1(3), pos,(x) =pos () —1
and pos,(a) =pos (f). From the definition of ~ it then
follows that w ~ u and (Ka), /(#)) € ser, a contradiction.

(2)

pos,(x

can be proved in a similar way. ||
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4.4. Swratified Order Structures Generated by
Step Sequences

In trace theory it is possible to construct, for every
sequence of events 7, a partial order whose linearisations
correspond to the sequences in the trace comprising 7. In the
model we are developing now, a similar construction is
possible. This time, however, for a step sequence ¢ we are
going to construct a stratified order structure, &. Its defini-
tion is based on Proposition 4.2 which expresses two basic
Invariant properties of non-serialisable event occurrences.
Part (1) captures a situation that o always precedes f, and
part (2) captures a situation that « never follows f, in the
sequences belonging to a comtrace. We turn these into the
following definition:

Let 7 be a step sequence and «, f € occ(?), o # f. Then

a <, B> (Ua), K B)) ¢ ser A pos(a) <pos(p)

ar, <= ([(B), (o)) ¢ ser A pos {a) < pos (B).
The stratified order structure induced by ¢ is then defined
as & =(oce(t), <,, =,)°. Proposition 4.4 shows that & is

indeed a stratified order structure. For 3, and ¢ = {e, f}{g}
{e}, & is shown in Fig. 3.

PROPOSITION 4.3.
occll).

(1

Let ¥ =(occ(t), <, =) and a, fe
If x < B then pos (o) < pos ().

(2) Ifx=f then pos (a) < pos, ().

(3) Iflle)=Kp) and pos,(a) <pos,(f) thena < f.

Proof. (1, 2) Follow directly from the definition of <,
=,, and the <-closure.

(3)

PROPOSITION 4.4. % is a stratified order structure and
n, € strat{ F).

Since ser is irreflexive, a <, f. Hence a < 8. |

Proof. Let (o, Ble(<, u,)* <, (<, vr,)* From
the definition of <, and —,, pos(a) < pos,(f). Hence, by
Proposition 3.3, % is a stratified order structure. =, €
strat( %) follows directly from Proposition 4.3(1,2). |

If ser = sim then % is de facto a poset.

ProPosITION 4.5.
then < == = <.

If ser =sim and % = (occ(t), <, =)

Proof. By ser =sim, <, = [, since ser is symmetric and,
furthermore, a#5b and ([ f), {a)) ¢ ser implies pos(x) #
pos(p).

Hence <=<*:<,o<}=<
idyeeiny=<" 1

and C=<}-—

4.5. Comtraces and Stratified Order Structures

In this section we prove some basic properties of com-
traces and the corresponding stratified order structures.
First we show that the stratified extensions of .% are all
induced by step sequences.

PROPOSITION 4.6. Let t be a step sequence and n € stratl(.%,).
Then there is a step sequence u such that n =n,,.

Proof. Let m={(occ(t), <), & =(occlt), <, =) and
0,=B, - B,. We will show that u = B,) --- {(B,) is a step
sequence such that z =7,

Suppose a and f are distinct elements in B; such that
(l(0), I(B)) ¢ sim. Then (Kx), {( B)) ¢ ser and (I(B), [(«)) & ser.
If posfa}# posf) then a<, f or f#<,«, which implies
a<f or f<a This and nestral(¥) implies a<'f or
f<'a, contradicting «, fe B,. Hence pos,(a)=pos(p).
which is impossible, since 7 is a step sequence. We have thus
proved that for all i <k,

(1)

Moreover, by Proposition 4.3(3), if (e, i), (e, i + 1) eoce(t)
then (e, i/} < (e, i + 1), which implies

(2)
k<m.

%, ffeB;na# = (lx), B))esim.

If (e,ko)e B, and (e, my)e B, then: k,<my<

From (1) it follows that u is a step sequence and (since sim
is irreflexive) [/(B;)| = |B,| for all i. Hence occ(u) = oce(t)
and, by (2), pos, '(i)=B, for all i. Thus, by Proposi-
tion4.1(1), U, =0U,.. Hence n, =7n. |

Ttu

Theorem 4.10 below states that two step sequences induce
the same stratified order structures if and only if they belong
to the same comtrace. To prove this we need three auxiliary
results.

LEMMA 4.7. Let t and u be step sequences such that = u.
Then %= %,

Proof. We first show thatif r xu (oru = ¢) then <, € <,
and —, € =, It is easy to see that if this does not hold then
there are « and g such that pos,(x) <pos(f), pos(f) <
pos, (o) and (/(a), K{f)) ¢ ser. Thus, by Proposition 4.1(3),
pos. () =pos, (). Hence, by Proposition 4.2(2}, pos,(«) =
pos (B}, a contradiction,

From what we have just proved it follows that if txu
then <, = <, and —,< —,, and (by reversing the roles of
t and u and taking the “or” part) <, < <, and —, = —,,.
Hence % = ,. Thus the thesis follows since = is the trans-
itive symmetric reflexive closure of ~. |

A step sequence t=A,--- A, is canonical if for all i>2
there is no step B < A, satisfying 4, _, x BSser and Bx
(A;~ B) S ser. Note that B= 4, is allowed but B= & is not.
If sim = ser then the above definition reduces to thatin [S].
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PROPOSITION 4.8. Let t be a canonical step sequence and
F=(ocelt), <, =). Then n, = can ), <)-

Proof. Let t=A,---A,. By Proposition 44,
n,estrat( %), so n, 1s an extension of (oce(r), <). Let
U, =B, --- B,. By Proposition 3.1, it suffices to show that
for every i =2 and every f e B, there is x € B,_, such that
a < f. If this does not hold then

B={peB,|(VaeB,_))aLf} #T

for some i = 2. From the definition of %, 4,_, x {( B) < ser.
Suppose there is a € Band f € B, — B such that ({(a), {(f)) ¢
ser. Then fr—a. Moreover, by the definition of B, y < f for
some y € B;_,. Hence y < a, contradicting the definition of
B. Thus we have /(B)x(A4,—KB))<serand A, ,xlB)<
ser, contradicting ¢ being canonical. ||

PROPOSITION 4.9. For every step sequence t there is a
canonical step sequence u such that t = u.

Proof. Forevery step sequence u=4,--- A, let u(u) =
1-[A)|+ --- +k-|A,]|. There is ue[r] such that u(u) <
u(w) for all we []. Suppose u= A, --- A, is not canonical.
Then there is i 2 and a step B = A, such that

A;_, xB<ser

Bx(A;,— B)< ser.
If B= A, then w=u and pu(w) < u(u), where
w=A,- A, J(A4,_VA)A, - A
If B# A, then wx z and « = - and u(w) < u(u), where

c=A, A, A, B4, —-B)A4,., - A,
Ay Ai A4, OBNA,—B) A, - Ay

In either case we obtain a contradiction with the choice
ofu. |

Again, for sim = ser the above proposition corresponds to
aresult of [5].

THEOREM 4.10. Let t and u be step sequences. Then
K= ifand only if t=u.

Proof. By Lemma 4.7, we only need to show the left-to-
right implication. From Proposition 4.9 it follows that there
are canonical step sequences ¢', ¥’ such thatr =/ andu=u'.
By Lemma4.7, & =%,. This and Proposition 4.8 yields
n,=m,. Thus ¢ =u’ and, consequently, r=u. |}

We end this section proving two other major results.
Theorem 4.12 says that the stratified extensions of &
are exactly those generated by step sequences in [¢].
Theorem 4.13 says that the stratified order structure

induced by a comtrace is uniquely identified by any of its
stratified extensions.

LemMa 4.11. Let t and u be step sequences and m, e
stratl(S,). Then S,=%,.

Proof. Let ¥ =(occ(t), <, =), n,={occlu),<') and
a, feoce(t) =occ(u). We have

1<, f=a<f
=a<'f
= pos.(a) < pos, ()

a <, = (l2),U(B)) ¢ser.

which means that « <, § implies & <, f5.

Suppose a—, . Then ({f), lx)) ¢ser and a—f. The
latter implies («, f)e <" v ~". Hence ({(f). {(x)) ¢ ser and
pos ) <pos,(B) which yields a=,f. Consequently,
<, € <, and —, € —, which means that ¥ c .%,.

Suppose a <, f and a ¥, 8. By a <, 8, ({a), {f)) ¢ ser.
This and « «, f means that pos () > pos(f). Hence =, «
(and so fc—a), producing a contradiction with z,, € strat(¥})
and « <’ # (which follows from o <, 8}.

Suppose a—, f and acz, f. By ac=, B, ({B), l(a)) ¢ ser.
This and ez, f means that pos,(f) < pos(a). Hence f <, «,
producing a contradiction with r, € strat(.¥,) and f«'a
(follows from x—, ).

Thus ¥, %. |

THEOREM 4.12. Let t be a Then

stral$)={n,|ue[t]}.

Proof. 1f ue[t] then, by Theorem 4.10, ¥, =¥,. This
and Proposition 4.4 yields 7, € strat(.%;). Hence the = inclu-
sion holds.

Suppose 7 € strat{.#;). By Proposition 4.6, there is a step
sequence u such that # = z,,. Thus, by Lemma 4.11, .%, = %.
This and Theorem 4.10 yields r = u. Hence the < inclusion
also holds. |

step  sequence.

THEOREM 4.13.  Let t and u be step sequences such that
stratl( Sy nstrat( Sy # . Then t=u.

Proof. Let mestrat(.%;) nstrat(¥,). By Proposition 4.6,
there is a step sequence w such that z =#,.. By Lemma 4.11,
S, =9,=9%. This and Theorem 4.10 yields r=u. |

Comtraces form a monoid with the identity [ 1], where A
is the empty step sequence, and the monoidal operation ©
defined by [t] O [u] =[tu]. That © is well defined follows
from the following result.

PROPOSITION 4.14. Let t, and u, be step sequences.
Then [tyu, ] =[t u,], forall t,e[t,] anduse[u,].
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Proof. By Theorem 4.10, it suffices to show &, = ¥,.,.

Let X=occ(t,)=o0cc(t,) and Y=occ(tyu,)—occ(t))=
occ(tyu,) — oce(t,). Define for i =1, 2:

Si = ( X~ <r,u, l X x X :l,u, l X x ,\’)
Ti :( Y- <l,u,l Yx Y L-;1,.41| Y x Y)'

Moreover, let < =<, ly.y and = ==, lv.y We
observe that:

(1) <= <r:u:|Xx Y and = :!wzll\'x ¥
(2) XnY=0.

(3) Fori=1, 2, '<I,u, =<v -<nu,|‘\’><,\'u <1:“r| Y=Y and
[:t,u, =V [:l,u,lXqu :I,u,‘ Yx Y-

By t,=t,, S =S5, and® by u, =u,, T, =T . Thus, by
(1, 2, 3) and Proposition 3.7, %, ,, = %,..- |

5. ELEMENTARY NET SYSTEMS WITH INHIBITOR ARCS

Traces provide an abstract semantics of 1-safe Petri nets
[22] and EN-systems [26]. In this section we will show
that comtraces can be used to provide an abstract a-priori
semantics for EN-systems with inhibitor arcs. As mentioned
in Section 2, posets and Mazurkiewicz traces are too weak
for this purpose in the general case.

5.1. Inhibitor Arcs

A net with inhibitor arcs is a tuple N=(S, T. F, I) where
S, T are finite disjoint sets, FS{(SxT)uwu(TxS) and
1< S x T. The meaning and graphical representation of S, T’
and F are the same as in the standard net theory, whereas
I is a set of inhibitor arcs. An inhibitor arc (s, ¢) € I means
that ¢ can be enabled only if s is not marked; in the
diagrams, (s, e) is indicated by an edge with a small circle.
ForeveryxeSuT,

x={yl(x,y)eF}
x={y|(y.x)eF}
x={yl(x,y)elul '}

The dot-notation extends in the usual way to sets. We
assume that for every x e T, both °x and x* are non-empty
and disjoint. Moreover, they both must have empty inter-
section with x".°

® Follows from the fact that (occlw,), <,. =, ) and T, (i=1,2) are
isomorphic via (the same) mapping : occ(w;) — Y defined by yle, j) =
(e, #A1,) + )

° These assumptions can be best explained by looking at the event ena-
bling rule in Section 5.3: *x N x* = "x N x" = J excludes events which could
never occur, and if s € x*n x” then the arc (s, x) € I would be redundant as
(x, s} € Fimplies that s must be empty for x to be enabled. Note that for the
a-posteriori semantics, sex*nx" would mean that x could never be
executed.

5.2. EN{[-Systems

An elementary net system with inhibitor arcs (ENI-
system) is a tuple

Z=(B,E.F.Ic,)

where (B, E, F, I) is a net with inhibitor arcs, and ¢;, = B is
the initial case. Each element of E is called an event. and of
B a condition. In general, any ¢= B is a case. In the
diagrams, it will be represented by placing tokens inside cir-
cles representing the conditions in c.

EN-systems (ENI-systems with /= ¥) constitute prob-
ably the simplest system model of net theory. ENI-systems
could be seen as the simplest system model whose non-inter-
leaving a-priort semantics would require relational struc-
tures richer than causal partial orders.

EN-systems can be given a trace semantics [ 26 ] with the
independence relation derived from the structural proper-
ties of the net. In Section 5.4 this approach will be
generalised to ENI-systems. Figure 4a shows an example
ENI-system. We will assume that = is fixed throughout the
rest of this section.

FIG. 4.

Elementary net systems with inhibitor arcs.
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5.3. Operational Semantics

The operational semantics of = is defined via a “token
game” which differs from that defined for ordinary
EN-systems by insisting that an event can be enabled only
if no condition with which it is joined by an inhibitor arc is
marked.

We first introduce the interleaving (or firing sequence)
semantics of Z. An event e is enabled at case ¢ if "e = ¢ and
(e*we Yne= . An enabled e can occur leading to a new
marking ¢’ = ¢ — "e ue”. We denote this by c[e) ¢'. A firing
sequence of Z is any sequence of events e, --- ¢, for which
there are cases ¢, .., ¢, satisfying

cmler) ciled e [e,) ¢,
We generalise the above definition to sequences of sets of
events executed simultaneously. Let U < E be a non-empty
set such that for all distinct e, fe U,

(e*ueln{fufi=T.

Then U is enabled at case cif ‘Uccand (U"w U )ne= .
We also denote ¢c[U) ¢/, where ¢/ =c—"UuvU" A step
sequence is a sequence of sets U, --- U, for which there are
cases ¢, ..., ¢, satisfying
cl Uy ellUsd e [UD ¢

We will denote ¢, [U,- - U,> c,and U, --- U, esteps(Z).

For the ENI-system of Fig. 4a, feghfegh is a firing
sequence while ef is not. Moreover, {e, f}{g, h}{e. [}
{g. h} is a step sequence while {e}{/, g} is not. Note that
there can be cases reachable ( from the initial case) under the
step sequence firing rule which are not reachable under the
firing sequence rule. For the ENI-system in Fig. 4b, {3,4} is
such a case. There is an essential difference between the
firing sequence and (a-priori) step sequence semantics
of Z. For example, the ENI-system of Fig. 4b has only
two non-empty firing sequences, ¢ and f. yet infinitely
many step sequences generated by the regular expression
{e, /) {gh)* (4 {e}, { /). {e. f}), where i is the empty
step sequence.

5.4. Comtraces of ENI-Systems

For EN-systems, traces are constructed by first deriving
an independence relation on events, ind. The situation is
more complicated if we consider ENI-systems. For example,
the ENI-system of Fig.4a can execute ¢ and f simul-
taneously, or f followed by e. But e followed by f is not
allowed. Hence simultaneity does not imply independence.
To deal with this problem we will specify two relations: one
identifying events which can be executed in one step
(simultaneously), the other identifying events which can

be executed in a specific order {(serialised). Define sim,
ser € E x E as follows:

(e, fresimes(e*ue)n(f Uf)
=dalenNHulf ney=g

(e. fleser< (e, flesimne nf = .

Let 9= (FE, sim, ser) be the concurrent alphabet with sim
and ser we have just defined. That comtraces provide an
abstract semantics of ENI-systems follows from the next
result which can be proved directly from the definition of 9,
the concurrent enabling rule, and the results presented in
Section 4.

ProposITion 5.1. (1)

sequences w.r.t. 3.

(2) If t, u are step sequences w.r.t. 3 such that t = u then
testeps(EY if and only if u e steps(E).

(3)

This means that there is a basic consistency between step
sequences generated by the concurrent alphabet 3 and step
sequences obtained via the operational rule.

All elements of steps( =) are step

steps(Z) can be partitioned into disjoint comtraces.

5.5. Processes of ENI-Systems

From Proposition 5.1(1) it follows that every step
sequence t of = induces a stratified order structure . (see
Section 4.4) which can be identified with the step sequences
in [ +]—the comtrace containing ¢. In this section we will
show that it is possible to generate % directly from ¢, by
generalising the standard construction of processes
(occurrence nets) for Petri nets [ 3, 26, 29].

In the rest of this paper we assume that every condition
s € B has its complement. That is, there is exactly one condi-
tion § € Bsuch that §*="s, ¥ =s*and [{s, §} n¢,| =1 Note
that § =s.

PROPOSITION 5.2.  For every case ¢ reachable from ¢, and
every se B, |{s,§} nec|=1.

Constructing a process of a Petri net amounts to unfold-
ing of the net into an occurrence net respecting local
environments of events. To see whether this approach can
be adopted for ENI-systems, we consider = of Fig. 4¢, and
two step sequences, 1, ={g}{e}{/} and 1,={e}{f}{g}.
By unfolding =, in both cases we obtain the same net shown
in Fig. 5. But 7, and ¢, belong to different comtraces, [1,] =
{t,} and [#,]= {1, {g. e}{Sf}}. and should generate two
different occurrence nets. It is therefore necessary to modify
the unfolding procedure. The reason for this is that in ¢,
event g was enabled because 2 has not yet been marked with
a token produced by the occurrence of ¢, while in ¢, event g
was made enabled by the occurrence of f which removed the
token from 2. Intuitively, the two occurrences of g resulted
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(3.1) G
(1,1) Q—‘
(2,1) Q——~e,l
(4,1) Q

(2,2)

f

_,0(3,1)
1h<>

: g,l_O(Z,l)
(5,1) Q ‘ O(s,l)

FIG. 5. An attempt to derive the occurrence net of an ENI-system.

from two different “non-holdings” of 2. In unfolding =,
however, we had in both cases only one occurrence of 2, and
could not distinguish between these two, clearly different,
situations. To solve this problem, the unfolding will be modi-
fied by binding the occurrences of g to the holdings of the com-
plement condition 2. That is. g can be enabled only if 2 holds.
We then will unfold = into occurrence nets with activator
arcs—indicated by black dots at one end. Essentially, an
activator arc ($, e) will replace inhibitor arc (s. ). As a result,
we generate two different processes (occurrence nets) for the
step sequences 7, and 7,, as shown in Figs. 6 and 7.

Let t= U, --- U, be a step sequence of = fixed for the rest
of this section. We define the process generated by ¢ as

IT,= N,, where N, is the last net in the sequence N, ..., N,
constructed in the following way:
ConsTRUCTION. Each net N,.=(S;, T,, F, A,

0 <k <n, is a net with activator arcs.'® The first three com-
ponents of N, are the same as in the definition of the net
with inhibitor arcs, while 4, € S, x T, is the set of activator
arcs. The elements of S, u T, are of the form (x, i), where
xeBuFEandi> 1 Wewilldenote /(x, i) =xand n{x, i) =1
Moreover, for every xe Bu E and k <n, #* is the number
ofxe S, u T, such that [(x) =

Step 0. No=({(s,1)|sec,,,},@,@,g),

Step k+1. Given N, and U= U, , we define N, ., in

the following way:

Scar=S,u{(s, #5+1)|se U}

To o1 =Teufle, #5+1) | ec U}

Fo 1 =F, u{((s, #5), (e, #*+ 1)) |ee Un(s,e)e F}
U{((e, #5+1), (s, #5+ 1)) e Un(e, s)e F}

A=A 0 (S #5), (e #E+ 1)) [eeUn(s.e)el}. 1

10 Recall that an activator arc has the meaning “opposite” to that of an
inhibitor arc. More precisely, if s and e are joined by an activator arc, then
e can only occur if 5 contains a token, but the firing of e does not remove
the token from s.

FIG. 6. Process (occurrence net) generated by r,.

If in the above construction we ignore everything concer-
ning inhibitor and activator arcs, then it reduces to that of
a process (occurrence net) generated by the step sequence ¢
for the EN-system underlying =. This implies a number of
useful properties, formulated as the next lemma (cf. [3,
291]). Below, for every 0 < k < n, we denote by Max, the set
of all « € S, for which there is no y € T, such that («, y) € F;.

LemMA 53. Let0<k<n.

(1) (Si, Ty, F.) is a process of the EN-system (B, E. F,
Cin)'

(2) [lis injective on Max, and ¢,,[U,---

(3) IfxeMax, and fe Max,,

U,> l{Max,).

where k < J, then:

(@) Ka)e{lp), ()} = (a freFL.
(b) Ho)=1Up)=nla) <n(f).
(4) S,(=Uf=(,Ma,>cj. |

We first observe that the construction is correct, by
noting that 4, is well defined since ee U and (s,e)e’

3.1 (}

2.1 Q__.e,l—@&Lum

O(s, 1)

FIG. 7. Process (occurrence net) generated by ¢,.
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implies #%>1
enabled at { Max,), and Proposition 5.2). We also note that

T,=occ(t).

LemMmA 54. LetO<k<nandyeT, —T,.

(1) pos(y)=k+1.

(2) {xf(xy)eF,uAd,} =Max,.

(3) {lal(y,x)eF,} =Max, .

(4) {lo) | (. y)eF,} =1{s|(sl(y)eF}.

(5) {l) | (p0)eF,}=1{s|(ly).s)eF}.

(6) {la)|(x.y)ed,} ={s|(5Uy)el}.

Proof. (1,4, 5, 6) Follow directly from the construction.

(3) and {a](x y)eF,} € Max, follow from the corre-
sponding properties of the processes of EN-systems (cf. [ 3,
29]) and Lemma 5.3(1). {x|(a, 7)€ A,} =Max, follows
from Lemma 5.3(2, 3b, 4) and Proposition 5.2. |

To show that the construction of I7, is sound, we will
prove that .% and ¥ “—a stratified order structure in a
natural way induced by /7,—are identical. Let ¥ =(T,, <,
), where (see Fig. 8):

y<d<>(Joe S, )y,
y=d<>(Jxe SN, d)e F A

x)eF,n(a,0)eF,uA,

(a, y)EA,.
We first prove three auxiliary lemmata.

LEmMMA S.5.
(1)
(2)
(3)

Lety,5eT,.

o= is irreflexive.

If v <0 then pos(y) < pos,(6).
If y=6 then pos (y) < pos (0).

YIELDS ¥ <6

[~ O]
O]

YIELDS yCé

[-—O—=

FIG. 8. Definition of < and — derived for /7,.

(this follows from Lemma 5.3(2), ¢ being

Proof. Let k=pos,(y) and m = pos (J).

(1) Followsfrome* ne = foralleekF.

(2) Suppose (y,2)eF,and (z,d)e F, U A,. By Lemma
5.4(1, 3), xe Max, and (by construction) « ¢ Ma\',- fori<k.

Moreover, from Lemma354(1, 2) it follows that
aeMax,, ,.Hencem—1zk.

(3) Suppose (x,0)eF, and (ay)ed,. By
Lemma 54(1, 2), ae Max,, , and (by construction)

o ¢ Max, for i >m — 1. Moreover, again from Lemma 5.4(1,
2), it follows that a € Max, _,. Hencek—1<m—1. ||

LEMMA 5.6. Lety, 6eT,.
(1Y If posy

(a,p)e A, and (B, 0)e F, and (%)

) < pos(6) and there are a, f € S,, such that

~i{(p). or
(y,a)eF,and (p,8)e F,u A, andl(a) e

——

B IR}

then (y,6)€0,° <0,
(2) If pos(y)< pos/d) and there are o, f € S, such that

(a, 7)€ A, and (B, 0)e F, and o) =I( )

then (y,0)ee., —idr,
Proof. Let k=pos,(y)and m = pos, ().
(1) Suppose (a,y)e A, and (f,0)€ F, and /(oc)=l(/,[)7).

n

(Other cases can be dealt with in a similar way.)
From Lemma 5.4(1, 2) it follows that xe Max, _, and
feMax,,_,. From k <m, (o) ={(f) and Lemma 5.3 (3a),
we obtain («, f)e F}. This and a#f yields («, f)eF,".
Hence there are y,, .., y;€ T, (j= 1) such that («, ;)€ F,,
N <y2< .- <yand(y, fleF, Thusy=y, <y, < - <
7, <0 which (together with j > 1) yields (7, )€ o, > <@, .
(2) Asin (1), we can show (a, f)e F* If a=p then
y= 4. Hence, by Lemma 5.5(1), (y,d)eo, —id; . If a#f
then as in (1) there are y,,.., y,€T, (j=1) such that
Yy <y, < - <y;<d. Hence (y, 6) e ¢ ,. Moreover, by
Jj=1 and Lemma 5.5(2, 3), k <m. Thus (y,d)e o, —id,.

LEMMA 5.7. Lety,6€T,.

(1) If (l(y), L)) ¢ sim then there are a, B S, such that
one of the following holds, where the roles of y and & may be
interchanged.:

{(y,a)eF,and (B, d)e F, and l(«
(y,a)e F, and ( ﬁ.é)eA,,andl(a)=

e{Up) (ﬁ)}- or
Ip), or
(a,y)eA,,and(ﬁ,&)eF,,andl(a):1(/,[)7).

(2)
that

If (I(y), {9)) e sim — ser then there are o, f € S, such

(v,a)e F,and (fi,0)€ A, and l(x —I(ﬁ)
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(3)
that

If (I(0), Ky)) € sim — ser then there are a, f € S,, such

(x,y)eAd,and (B, 8)e F, and l(2) =I(f).

Proof. Follows from the definition of sim, ser, and
Lemma 5.4 (4, 5, 6). For example, if (/{(y), /(J)) € sim — ser
then there is sel(y)*m#(d)". Thus, by Lemma 5.4(5, 6),
there are «, f € S, such that (o) =5, [(f) =43, (3, ) e F, and
(f,0)eA,. Hence (2) holds. We further observe that
§€ *l(y) which, by Lemma 5.4 (4), means that thereisa’ € S,
such that /(a') =§and (', y) e F,. From this and (8. d) e 4,
(and after interchanging the roles of y and 0) it follows that
(3) is also satisfied. |}

We can now prove the desired resuit.

THEOREM 58. #° =9

Proof. Lety,deocc(t)=T,, l(y)=e¢and I(J)=/.

Suppose y < 4. Then, for some a= (s, i), (y.a)e F, and
(a,0)eF,uAd, If (x, 6)eF, then see n*f If (a,d)e A,
then fe‘enf". In either case (e, )¢ sim which implies
(e, /)¢ ser. Hence, by Lemma 5.5(2), y <, d. Similarly, we
may show that — < —,. This, together with the irreflexivity
of =, and Proposition 3.5, means that ¥ “ is a stratified
order structure such that ¥~ = .%. To show that the reverse
inclusion holds it suffices, again by Proposition 3.5, to
demonstrate that <, <¢, - <9, and =, =9, —id,.

Suppose y <, 8. Then pos () < pos(3), and (e, f) Esim v
(e, f) e sim — ser. Hence, by Lemmata 5.6(1) and 5.7(1, 2),
(1. 0)ee, " <rQy.

Suppose y—,d. Then posly) <post(d), and (f e)¢
simv (f, e)esim—ser. If (f.e)¢sim then (e, f)¢sim and
pos,(y) # pos,(J). so by Lemmata 5.6(1) and 5.7(1), (y,d) €
0., <-0,. Moreover, y # 9 since pos(y) # pos{d). Hence
(y,0)eo, —idy,. If (f e)esim—ser then, by Lemmata
5.6(2)and 5.7(3), (y,8)ep, —idy,. |

The above result justifies the chosen notion of a process
(occurrence net) of an ENl-system. For it states that /7, can
be seen as an accurate representation of the abstract history
{comtrace) of the ENI-system, [ ], to which ¢ belongs (cf.
the results in Section 4 and Proposition 5.1).

6. A-POSTERIORI SEMANTICS OF ENI-SYSTEMS

In this section we will define formally the a-posteriori
semantics of the ENI-system =, ie, one in which the
simultaneous firing of e and f'in Fig. 1 is not allowed. As it
will turn out, the results already obtained are general
enough to cover this type of semantics as well; one only
needs to modify some of the definitions.

Let Z=(B, E, F, I, c¢,) be an ENI-system with the
a-posteriori semantics. Its interleaving semantics is exactly the
same as that defined in Section 5.3. Moreover, a non-empty

set of events U< E is enabled at case ¢ if U is enabled at ¢
as defined in Section 5.3 and, in addition, U"n U = (.

We then define ¢c[ U)o, [U, - U,>, and steps{ =} as
the corresponding notions in Section 5.3.

Since under the a-posteriori semantics ¢ and f cannot be
fired simultaneously if ¢~ f* # (&, we have to re-define the
simultaneity relation from Section 5.4.

Define the concurrent alphabet 3,=(E, simg, ser,).
where"!

sing = sery = ser U ser .

Note that the serialisability relation has become redundant.
Clearly, all the results of Section 4 are valid for 3,; in most
cases in a considerably simplified form. In particular, from
Proposition 4.5 it follows that for every testepsy(=E),
<., =, SO comtraces are now nothing but partial
orders.

The following equivalent of Proposition 5.1 can be
proven directly from the definition of 9, the simultaneous
enabling rule for the a-posteriori semantics, and the results
in Section 4.

PROPOSITION 6.1.
w.r.t. 3.

(1) stepsg(Z) are step sequences

(2} If't, uare step sequences w.r.t. 34 such that t = u then
testeps{ Z) if and only if ue stepsy(Z).

(3)  stepsglE) can be partitioned into disjoint com-
traces. |}

Thus there is a basic consistency between the step sequen-
ces generated by 9, and the step sequences obtained via the
a-posteriori operational rule.

The construction of processes, i.e. activator occurrence
nets for the a-posteriori semantics is exactly the same as that
described in Section 5.5. This is possible since stepsy(Z) =
steps(Z). For resteps,(Z) the same activator occurrence
net /7, represents the process under the a-priori semantics as
well as under the a-posteriort semantics. However, /7, is in
both cases interpreted in a different way. Under the a-priori
semantics defined in Section 5, 77, represents the stratified
order structure & © =(T,. <, =)“ where < and — were
defined in Fig. 8. Under the a-posteriori semantics, I7, will
represent the stratified order structure .y, where % =
(T,, <uiz, <uwrz) It turns out that this 1s consistent
with the comtrace semantics defined for 9.

THEOREM 6.2. If testepsy(Z) then ¥ =.9, assuming
that &, is defined for 3.

Proof. From Lemma 5.5(2, 3), the definition of sim,,
and Proposition 6.1(1) it follows that:

(h
(2)

If y— d then pos (y) < pos(d).
< u = 1s irreflexive.

! Below sim and ser are defined as in Section 5.4,
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(2,1)

FIG. 9. Process which cannot be generated under a-posteriori semantics.

By Proposition 4.5 and (2). <,=c, =< and
<y, ==, =(<uvC )*. Hence it suffices to prove that
(<um)e<,and <, S(<uvur)”.

Suppose (7, d)e(< w = ). Then ({y). I(3}) & sery which
together with (1) yields y <, 4.

Suppose (7. d)e <,. Then pos(y)<pos o) and ({(y).
[(0)) ¢ ser,,. The latter implies that (/(;), /(6)) ¢ sim or ({(y).
{J)) e sim — ser or ({3}, ly))esim— ser. Hence, by Lem-
mata 5.6 and 5.7,

(o) ((<um)* < (<KuE)Mu(<uE=)*—idy,)

:12>(<UE:)+' I

The a-posteriori process semantics presented in this sec-
tion corresponds to the cc-processes of [24]. We feel that
the approach of [24] cannot be easily extended to the
a-priori semantics.

It is worth mentioning that there are occurrence activator
nets generated by the a-priori semantics that cannot be
derived under the a-posteriori semantics. For instance. the
occurrence activator net in Fig. 9 represents the process
11, , generated by the ENI-system from Fig. 4b (after
adding the complement conditions) under the a-priori
semantics, but this occurrence net cannot be derived under
the a-posteriori semantics.

7. CONCLUDING REMARKS

We have introduced the concept of a comtrace—-an exten-
sion of Mazurkiewicz trace—and shown that comtraces
correspond to stratified order structures in the same way as
Mazurkiewicz traces correspond to posets. Next we have
shown how both stratified order structures and comtraces
can provide a semantical model for inhibitor nets consistent
with operational (a-priori) semantics expressed in terms of
step sequences. This in general cannot be done by using just
posets and Mazurkiewicz traces. Although our model has
been built having the a-priori operational rule in mind. it is
general and flexible enough to handle the a-posteriori
operational rule as well (essentially, as a simplified case of

643°123°1-2

the a-priori semantics). In this way we have developed a se-
mantical model for both a-priori and a-posteriori semantics.

In [31] Vogler introduced “step traces,” another
generalisation of classical trace theory. There is an impor-
tant common characteristics shared by our approach and
that of [31]. namely in both cases it is possible to have
steps which are “indivisible.” More precisely. dividing such
a step leads to a run which is an observation of a different
abstract concurrent history of the system. Despite this
similarity, comtraces are not the same as step traces. For
instance, there is no step trace equivalent to the comtrace
[{a}{b}]=1{{a.b}. {a}{b}}."* We conjecture that step
traces with steps being sets rather than multisets of events
are equivalent to comtraces with a symmetric serialisability
relation, ser. That step traces and comtraces are fundamen-
tally different models is consistent with the approach
developed in [ 16 ]. it can be seen that step traces conform to
paradigm 7, of concurrency (in the terminology of [ 16]).
while comtraces to paradigm 74."

We conjecture that the approach presented in this paper
(except for the process construction) can be smoothly
extended to |-safe nets with inhibitor arcs. The process con-
struction can also be extended provided that no side condi-
tion'® is incident to an inhibitor arc. This follows from the
fact that our construction relies heavily on being able to con-
struct complement conditions (places). Moreover, it seems
that the entire approach can be applied (after minor changes)
to l-safe nets with activator arcs as the process construction
could then be done without complement conditions.

Finally, we conjecture that the processes of an ENI-
system can be given an axiomatic characterisation. similar
to that which exists for the occurrence nets of an EN-system.
The main extension required would be to have a condition
that the < —closure of two relations defined similarly as <
and — in Fig. 8 yields a stratified order structure.
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