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Noninterleaving models of concurrency assume that behavioural properties of systems can be 

adequately modelled in terms of causal partial orders. We claim that the structure of concurrency is 

richer, with causality being only one of the invariants generated by a set of closely related executions 

or observations. The model we propose supports three levels of abstraction: the observation level, 

invariant level and system level; and we will proceed from the bottom (observation) level to the top 

(system) level. This is in contrast to the way other models for concurrency are introduced, as they 

essentially support two levels of abstraction, the system level and behavioural level (which includes 

both observations and invariants), with the direction of development going from the system to 

behavioural level. In this paper we first discuss the notion of an observation of a concurrent 

behaviour; in particular, we investigate the role played by interval partial orders. We then introduce 

a general framework for dealing with invariants generated by sets of closely related observations. 

This leads to the formulation of the notion of a (concurrent) history whose structural properties are 

subsequently studied. 
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0. Introduction 

The existing models of concurrency are usually developed on the system and 

hehaciourul levels, and are top-down in the sense that the concept of a system is 

introduced first. The system level is usually based on some notion of an abstract 

machine [29, 38, 44, 501 or algebraically defined process [15, 341. The operational 

concepts on the behavioural level are influenced by the system level and are usually 

expressed in terms of interleavings [15, 33, 373, step sequences [17, 42, 431, and 

(labelled) partial orders [4, 29, 31,40,41, 471. It seems that a disadvantage of such an 

approach is that the behavioural level includes both single observations of concurrent 

histories (interleavings and step sequences), and invariants characterising sets of 

observations (causal partial orders). As a result, it is difficult to develop a fully 

satisfactory model. For example, the description of invariants other than causality is 

confusing. We believe that in order to obtain a truly general model of concurrency, the 

behavioural level can be replaced by the invnriant and obsewation levels. Moreover, 

the development should proceed from the observation to the system level. In this 

way, behavioural notions can be studied in more objective setting. without being 

influenced by any specific representation of concurrent systems dealt with on the 

system level. 

In this paper we focus on the observation and invariant levels. We define observa- 

tions as partially ordered sets of event occurrences, where ordering represents 

precedencr, and incomparability represents simultaneity. We then introduce a class of 

basic invariants, and define a concurrent history to be the set of all observations 
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consistent with a set of invariants. After that we discuss a connection between 

paradigms (or general laws) of concurrency and the invariants. We identify eight basic 

paradigms, including that usually adopted by different existing models: two events can 

be observed as simultaneous ifand only ij’they can be observed in both orders. Different 

paradigms admit concurrent histories with different structural properties. As a result, 

one may choose different invariant representations for concurrent histories. In par- 

ticular, the above paradigms admits histories which can be represented by causal 

partial orders. However, for the remaining seven paradigms, causal partial orders 

either have to be replaced by stronger invariants or augmented. For one of these 

paradigms, an axiomatic model as well as representation theorems for invariants will 

be provided. 

The existing models for concurrency essentially use only one kind of invariant, 

usually referred to as causality. Even more complex structures, such as pomsets [40], 

event structures of [49], or concurrent histories in the sense of [6], are in principle 

based on causal partial orders. Both interleaving and partial order models have been 

developed to a high degree of sophistication and proved to be successful specification 

and verification frameworks. However, some aspects of concurrent behaviour are still 

difficult to tackle. For example, the specification of priorities using partial orders is in 

some circumstances problematic [S, 17, 22, 261; in our opinion, mainly because their 

concurrent behaviour cannot always be defined in terms of causality-based structures. 

A similar comment applies to inhibitor Petri nets [37] which are virtually admired by 

practitioners and almost completely rejected by theoreticians. Problems like these 

follow from a general assumption that concurrent behaviours can always be ad- 

equately modelled in terms of causality-based structures. We claim that the structure 

of concurrency phenomenon is richer, with causality being only one of the invariants 

generated by a set of closely related observations. An attempt to define other 

invariants was made in [12, 27, 281, however, with different objectives in mind. We 

will show how these approaches fit into our approach. 

The paper is organised as follows. A motivating example is discussed in the 

next section. In Section 2 we present the model of observations. Section 3 introduces 

invariants in a general setting which is independent of any specific notion of 

observation. Section 4 contains the definition of a history, while Section 5 establishes 

a link between paradigms and invariants. Section 6 discusses the notions developed in 

the preceding sections for the observation model from Section 2. In Section 7 

a detailed analysis of one of the paradigms is presented. Section 8 briefly 

describes some related work. A short statement about the system level is provided in 

Section 9. 

1. Motivation 

Consider the nets in Fig. 1. (PN, and PN6 employ inhibitor arcs ~ an inhibitor arc 

between place p and transition t means that if t is enabled then p must be unmarked 
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Fig. 1. Motivating example 

PNs 

1373.) We want to define their semantics so that: 

(I) Each net generates exactly one a, b-history (i.e., one involving both u and h). 

(2) Different nets generate different a, b-histories. 

(3) Histories are defined on the same level of abstraction as the causality relation. 

In terms of step sequences, interpreted as executions or observations, the nets 

generate [20] the following step sequences involving both u and b: 

PN, generates {~~~(h~,{b){a} and (u,hj, 

PN2 generates i(l) (h) and {b} (a}, 

PN3 generates { (1) { h ), 

PN4 generates (h ) ( 17 ), 

PN5 generates {a, h}, 

PN6 generates [u) { hj and {a, b). 

Whereas it seems natural to require that each PNi, for i # 2, generates just one 

a, b-history (there is no conflict between a and b), this may not be obvious for PN2. To 

see that it may in some cases be advantageous to allow PN, generate only one 

a, b-history, we consider the following program statement: 

a: .X:=.x+ 1 & h: x:=x+3. 

Here ‘&’ denotes commutatioity operator [30] implying that the assignments may 

be performed in any order but not simultaneously. We think that this could be 

adequately modelled by PN2 generating one history consisting of two, essentially 

equivalent, executions { ~1, , , ’ ‘h\ and [h) {u ). Hence, we want each PNi to generate 

exactly one II, b-history di. where 

d,=(Iu){b),(biiu),ju,bji, 

d,={ju;{b),{b}{ul), 
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A question which one might now ask is whether the di’s could be represented in 

a more structured or compact way using, e.g., the notion of causality. Whereas this can 

be achieved for d 1 (a and b are independent), A3 (a causes b) and A4 (b causes a), no 

such characterisation is possible for the remaining histories. We may, however, 

introduce three new relations (invariants): commututivity (z$), synchronisution (-) 

and weak causality ( 7 ) in the following way: 

a G b iff a precedes b or b precedes a in the step 

sequences a history comprises. 

a-b iff a is simultaneous with b in the step sequences a history comprises. 

a 7 b iff a never follows b in the step sequences a history comprises. 

Now it is possible to characterise A, by a + b, A, by a c) b, and A, by a /* b. 

Although it is possible to require that PN2 generate only one a, b-history, there may 

also be cases where it would be more appropriate to interpret PN2 as a net generating 

two disjoint a, b-histories, A, = {(u} {b}} and A4 = {(b} (u)}. A question then arises 

as to how one might characterise these two different interpretations of the behaviour 

of PN2. In this paper we propose a solution based on the notion of a paradigm. 

A paradigm is a statement about the internal structure of a single history, such as: if 

there is a step sequence in which a preceded b. and a step sequence in which b preceded a, 

then there is also one in which a and b were simultaneous. If this paradigm were adopted, 

A2 would no longer be a valid history, and we would have to replace it by A3 and A4. 

Remark. Although we used nets to illustrate the above discussion, our approach is 

not intended to be tied to any particular model of concurrent systems. 

2. Observations 

Observation is an abstract model of the execution of a concurrent system. It is 

a report supplied by an observer who has to fill in a (possibly infinite) matrix with 

rows and columns indexed by event occurrences. The observer fills in the entire 

matrix, except the diagonal, using --f to denote precedence, c following, and c) simul- 

taneity. For example, the fact that a was observed simultaneously with b and c, and 

b preceded c, would be represented as in Table 1. 



Table I 
Observer’s report 

In the existing literature one can identify basically three kinds of observations: In 

the interleaving approach [ 15, 33, 371, observations are sequences of event occurren- 

ces. The step sequence approach [ 17,42,43] defines observations as sequences of sets 

of events observed simultaneously. The third approach advocates the use of interval 

orders: 118, 36, 471 and, implicitly, [46]; however, (except [1X]) usually without 

providing precise motivation and without adapting the theory of interval orders [S] 

to the needs of concurrency theory. The partial orders of [4, 29, 411 or pomsets of 

[40], where ordering represents causulitql and incomparability represents indepen- 

&Ice, cannot, in general, be interpreted as observations. As it was pointed out in [34], 

causality cannot be observed (by single observers, see [39]). Causal partial orders 

represent sets of closely related observations and belong to the invariant level. In this 

section we shall define precisely what kind of mathematical objects could be regarded 

as observations and what properties they possess. We will make the following basic 

assumptions: 

(Al) The observer can state that one event preceded another event, or that two 

events occurred simultaneously. 

(A2) The observer can always state whether two events occurred simultaneously, 

or whether one event preceded another event. 

Together with transitivity of the precedence relation, these mean that observations 

can be represented by partially ordered sets of event occurrences, where ordering 

represents precedence, and incomparability represents simultaneity. Note that leaving 

out A2 would essentially amount to the introduction of uncertainty into the model. 
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Not all partial orders can be interpreted as valid observations. The three additional 

assumptions are: 

(A3) The observer only perceives a single thread of time. 

(A4) One observes finitely many events during a finite period of time. 

(A5) Events are finite. 

A5 means that we exclude nonterminating events. A4 and A5 mean that an event 

can be preceded or simultaneous only with finitely many events. (Partial orders with 

this property will be called initially finite.) To capture A3 we first note that for any 

maximal set of simultaneous events there must be a point on the observer’s time scale 

at which all the events in the set have been observed. Then A3 can be expressed by 

requiring that the time points corresponding to such maximal sets be linearly ordered. 

2.1. Posets and principal posets 

A partially ordered set (poset) is a pair po=(dom(po),-+) such that dom(po) is 

a nonempty set and 2 is an irreflexive transitive relation on dom(po). (We 

reserve the symbol < to denote the usual ordering in R.) po is total if for all distinct 

a and b, a; b or bz a holds. po is initially jinite if for every a there is only finitely 

many b such that as b does not hold. po is combinatorial if ;;ct is the transitive 

closure of the immediate succes.sor relation q defined by 

We will denote z b if a and b are distinct incomparable elements of po, while 

Cuts,, will denote the set of maximal antichains [9], i.e., sets C of incomparable 

elements such that each a$C is comparable with at least one element in C. We also 

define CD,= ( Cutspo, -+), where -y is a relation on Cuts,, such that B --- C if B # C and 

there are no bEB and cgC satisfying c;;btb. pa is stratged [9] if ~~Vid~~,,,~~~~ is an 

equivalence relation. A discrete representation of po is any @ : dom( po) -+ N, such that 

for all a, bEdom(po), a2 b 3 @(a)< Q(b). The representation is image-jinite if 

@ - ’ (n) is finite for all n, and is exact if a 2 b o @(a) < Q(b). 

If po represents an observation then 2 will be interpreted as precedence, and 

2 as simultaneity. For the poset in Fig. 2(a) we have: dom(po)= (a, b, c, d},as b, 

d z a, Cuts,, = { { a,c},ia,d),{b,c},{b,d): and {a,c};~{b,c} (CpO is shown in 

Fig. 2(b)). We first show that C,,, is always a poset. 

Proposition 2.1. Let po be a poser. 

(1) If a-g b then there are A, BECutsp, such that aEA, bEB and A:; B. 

(2) [j’A “p;;*B and aEA -B then there is bEB such that a 2 b. 
(3) If A-gB and bcB-A then there is aEA such that azb. 
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{cbl 14 Cdl 

Cd) 

Fig. 2. Poscts and principal posets. 

(4) If A ;zB-;;;:C and u6AnC then UGB. 

(5) IfA;;B then A-B#@ and B-A#@ 

Proof. (1) Let uEAECutsp,and C=jcJc ;;;tb).DefineD=A-Cu{b}.Clearly,there 

is B~Cuts,, such that D G B. Suppose 1 A 7; B. Since A # B, we must have cz d for 

some CEB and deA. We obtain dEA-Bg A-D=AnC, which yields d;b. 

Hence, “3 II+, contradicting c, b~B~Cuts,,,. 

(2) If 1 a;h for all DEB then, by A pn ‘-+ B and aE A - B, a +g b for all DEB. Hence, 

B is not a maximal antichain, a contradiction. 

(3) Similarly as for (2). 

(4) If a$B then, by (2), a; h for some by& contradicting B,;; C. 

(5) Follows from A # E and the maximality of cuts. 0 

Proposition 2.2. For every poset po, C,, is also a poser. 

Proof. Suppose A ;; II?-;; C. By Proposition 2.1(2,5), h; c for some CEC and ~GB. 

Hence, A # C. If 1 A-b;: C then, c po 4 a for some cEC and aEA. By B;; C, a$B. Thus, 

by Proposition 2.1(2), a ;;o b for some DEB. Hence, cs b, contradicting B ;; C. 0 

C,, will be called the principal poset of po. It will be used to formalise A3. We first 

investigate the relationship between posets and their principal posets. 

Proposition 2.3. Let po and pr he posets. Then C,,= C,, @ po =pr. 

Proof. It suffices to prove the left-to right implication. Suppose C,,= C,,, and as b. 

By Proposition 2.1(l), there are A, BECutsp, such that aEA, b~l3 and A;: B. 

Clearly, A -;: B. Hence, 1 b 7;: a. Moreover, 1 bTa since, otherwise, there would 

be CECutsp, with u, bEC. Clearly, C$Cuts,,, contradicting Cuts,,,,= Cuts,,. Hence, 

Proposition 2.4. Every initially finite poset has un injective discrete representation. 

Proof. Let po be an initially finite poset. For aEdom(po), let O,,,,= 

{hedom(po)(h;avu z h). From Szpilrajn-Marczewski extension theorem [45] it 
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follows that po can be extended to a total order t such that dom(t)=dom(po) and 

2 E 7. The latter implies VO,, c VO,PO for all a. Hence, t is initially finite. Define 

@(a) = card( VO, ,). Clearly, @ is injective since t is total. Moreover, 

Corollary 2.5. Every initially jinite poset is countable and combinatorial. 

The implication in Proposition 2.4 cannot be reversed (take po = ( N, 0) and Q(i) = i). 

Proposition 2.6. If a poset po is initially jinite then C,, is also initially jnite. 

Proof. Let CECuts,,. We first observe that E = u ccc V,rO is finite, since po is initially 

finite. Suppose Vcc,cPO is infinite. If BE Vc,cP, then b 2 c for some bEB and CEC. Hence, 
Bn E # 8. Consequently, since E is finite and VC,C,, is infinite, there is eeE which 

belongs to infinitely many cuts in V,, c-,. Hence, (d 1 
ting the initial finiteness of po. 

e 2 d} must be infinite, contradic 

0 

The implication in Proposition 2.6 cannot be reversed (take po =( N, 0)). 

Proposition 2.7. If all cuts of a poset po are finite, and (c 1 az c;b} is finite for all 

a and 6, then C,, is combinatorial. 

Proof. It suffices to show that {C ( A 2 C 2 B} is finite for all A, BE CutsPO. Suppose 

AsCzB. If csC-(AuB) then, by Proposition 2.1(2,3), azcsb for some aEA 

and bEB. Hence, CED, where D=AuBu{c~3a~A 3bEB. a;c;b). Clearly, D is 

finite. Hence, there is only finitely many C satisfying A 2 C-;-B. 0 

Corollary 2.8. If po is initially jinite poset then C,, is combinatorial. 

We end this section proving that the principal order is total iff the original poset 

does not contain the four-element poset of Fig. 2(a). 

Proposition 2.9. Let po be a poser. Then the following are equivalent. 
(1) There are no a, 6, c, dcdom(po) such that 

asb,c;;;:d and czbbddaac. 

(2) C,, is total. 

(3) For all a,b,c,dEdom(po), a;b A czd=asd v czb. 

Proof. (2)0(3): This is proved below as Theorem 2.12. 

(3) G- (1): Obvious. 
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(l)*(3): If card((a,b,c,rl))<4 then (3) is always satisfied. Suppose a;b A c;d 

and card( { a, h, c, d )) = 4. From (1) it follows that 

Z=({u,h) x {c,d’iu{c,d} x (L&h})“-$ # 8. 

Now, by taking any (.Y, ~)EZ one may easily show that aztd or c; b. z 

2.2. Observations und interval orders 

Let Ec be the set of event occurrences. The definition of posets representing 

observations can now be formulated as follows: 

An observation, o~Obs, is an initially finite poset such that dam(o) G Ez; and 

Co is total. 

Note that the finiteness properties of the observation, A4 and A5, are guaranteed by 

the poset’s initial finiteness, while the assumption about the single thread of time, A3, 

is captured by total ordering on all the snapshots (maximal antichains). 

We now look closer at the structural properties of observations. Directly from 

Propositions 2.3 and 2.6 and Corollary 2.8, we obtain that the principal poset of an 

observation o can be represented as 

We call (Ai)ie[l,...,n) = (AI,A~, . . ..A.) or (Ai)itW= (A 1, AZ, . ) the cut-sequence of o. 

Proposition 2.10. Let (Ai);,J he the cut-sequence of un observation o. 

(1) [f‘i,i+lEJ then a;b ,for all a~Ai-Ai+l und al/ b~Ai+l-Ai. 

(2) jilu~A~) is finite ,for all aEdom(o). 

Proof. (1) Suppose 1 a~b for some aEAi--Ai+l and b~Ai+l--Ai. This and 

Ai--*Ai+I yields u ‘;;‘b. Hence, there is m such that u, bEA,. Clearly, 

i~~~i+l.ByProposition2.l(4),~~<iimpliesbtAi,whilem>i+limplies~~A,+,. 

In either case we obtain a contradiction. 

(2) Follows from the initial finiteness of o. 0 

Thus, an event always belongs to a finite set of contiguous snapshots. This suggests 

that events may be characterised by intervals on the observer’s time scale. There 

already exists a theory of interval partial orders [7,8] developed within the measure- 

ment theory. We will use some of the notions and results obtained there to character- 

ise observations. The name of interval order follows from [7]; its origin can be traced 

back to Wiener’s 19 14 paper [48], where interval orders were used to analyse 



Structure of concurrency 15 

temporal events. Abraham et al. [l] claim that such a concept was also known to 

Russell, In this section we first recall a fundamental result of Fishburn [7], followed by 

a series of results leading to a representation theorem for observations. 

A poset po is an interoal order [48] if a 2 b and c 2 d implies that a 2 d or c z b 

holds, i.e., if its graph does not contain a subgraph isomorphic to the poset of Fig. 2(a) 

(see Proposition 2.9). 

An interval representation of a poset po is a pair of mappings o’= (@. Y) and a total 

order (X, L ) such that @, Y : dom(po) +X and for all a and b, 

@(aI L Y(a) 

a-$b 43 Y(a) L Q(b). 

That is, with each a can be associated an interval J(a) = {x 1 @(a) L x L Y(a) v 

x=@(u)vx=Y(u)~ such that a 2 b ifSJ(u) is to the left of J(b). The interval 

representation 0’ is injective if @ is injective, real if X = [w, and discrete if both @ and 

Y are integer-valued functions. 

Theorem 2.11 (Real representation of interval orders, Fishburn [7]). Let po be a poset 
such that there is countably many equivalence classes of 

eq={(a,b)IVc. ( czuo c~b),+z-gccb~c)}. 

Then po is an interval order iffit has a real interval representation. 

We obtain a general result linking the theory of interval orders with our model of 

observations. 

Theorem 2.12 (Principal posets and interval orders). A poset po is an interval order ifJ 

C,, is a total order. 

Note: The theorem is a direct consequence of Theorem 1 and Corollary 2 in 

Chapter 3 of [S]. In terms of interval graphs similar results were established in 

[13, 111. [l] claims this result was known to Russell and Wiener. We present our 

simple proof to make the presentation self-contained. 

Proof. e: Suppose us b, c 2 d, 1 a zd and 1 c 2 b. We have a z d since, otherwise, 

cs d 2 a; b, contradicting 1 c 2 b. Similarly, c z b. Hence, there are A, B~Cuts,, 

such that a, deA and b, CEB. Clearly, A # B. Moreover, 1 A 2 B since c; d, and 

1 B 2 A since a 2 b. Hence, C,, is not total. 

*: By Proposition 2.2, C,, is a poset. Suppose A, BECutsp, are such that A # B, 
lA%B and lB--;;o*A. Then, ash for some bEA and aEB, and c-gd for some CEA 

and dEB. By a, deB and c, bE A, 1 a 2 d and 1 cz b. Hence, po is not an interval 

order. cl 
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By Theorem 2.12, the poset of Fig. 2(c) is an interval order; its principal order 

is shown in Fig. 2(d). We have obtained an alternative definition of observable pose&: 

Observation is an initially finite interval order of event occurrences. 

The representation theorem for interval orders (Theorem 2.11) does not take into 

account the initial finiteness of observations. It can be strengthened (Theorem 2.16) to 

provide a better characterisation of the way events are observed. 

Proposition 2.13. A poser bvith an interval representation is an interval order. 

Proof. Let i; =( @, Y) and (X, L ) be an interval representation of po. Suppose 

a;b,c;d, la-gd and lczbb. By Y(a) L Q(b) and Q(d) L Y(a)v@(d)=Y(a), 

we have Q(d) L Q(b). By Y(c) i Q(d) and G(b) L Y(c)v Q(b)= Y(c), Q(b) L Q(d). 

Thus we obtained a contradiction. 0 

Theorem 2.14 (Injective real representation of interval orders). A countable poser is an 

interval order [fit has a real injectice interval representation. 

Theorem 2.14 is proved in the Appendix without using Fishburn’s result (Theorem 

2.11). Moreover, the latter is a direct consequence of the former (the proof below is 

simpler and uses a different technique than those in [7, 81). 

New proof of Theorem 2.11. If po is countable then Theorem 2.14 is a stronger version 

of Theorem 2.11. Let po be uncountable and dom(po)/,, countable. Let pr = 

(dom(po)l,,, R), where (Gale,, Cble,) R E o a ;;;: b. One can easily see that pr is a well- 

defined countable interval order. From Theorem 2.14 it follows that there is an 

injective real interval representation so = (O,,,YO) or pr. Let @,Y:dom(po)-+R be 

defined by: @(a)=@,([~]~~) and Y(a)= Yu,([a],,). Clearly, Z=(@, Y) is a (noninjec- 

tive) real interval representation of po. Z 

Theorem 2.14 can be strengthened if we essentially assume that po is combinatorial. 

Lemma 2.15. Let po be a combinatorial interval order such that for all a, bedom(po), 

(1) (c(azc} is ,finite. 

(2) (cIa;c;;ofbj is ,finite. 

Then po has an injective discrete interval representution. 

Proof. See Appendix. 0 

We now can prove the main representation theorem for observations. 

Theorem 2.16 (Injective discrete representation of observations). A poset po qf event 

occurrences is an observation i. it has an injective and discrete interval representation 

c?=(@, Y) such that @(a)>0 for all a. 
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Proof. +: From Corollary 2.5 and Theorem 2.12 it follows that po is a combinatorial 

interval order. Moreover, po is initially finite. Hence, by Lemma 2.15, po has an 

injective and discrete interval representation d = (@, Y). Moreover, using the initial 

finiteness of po, we can find Z=( @, Y) such that @(a)>0 for all a. 

-+: Since 2 is injective and @(dom(po)) E N, po is initially finite. Moreover, by 

Proposition 2.13 and Theorem 2.12, C,, is total. Hence, po is an observation. Cl 

That is, events involved in an observation can be interpreted as intervals on the 

discrete time scale. We also conclude that in our model the discrete time scale and 

dense time scale are equally expressive. 

2.3. Interleaving and step sequences 

The interleaving and step sequences are part of the model. An interleaving sequence, 
po~Obs~~~, is an initially finite total order such that dom(po) c Ev. A step sequence, 

POE Obss*ep, is an initially finite stratified poset such that dom(po) G Ev. Clearly, 

Obsitl E Obssrep s Obs. The representation theorems for the interleaving and step 

sequences have very simple form. 

Proposition 2.17. Let po be a poset and dom(po) G Ev. 

(1) po is an interleaving sequence ifs it has an exact injective discrete representation. 

(2) po is a step sequence ifs it has an exact image-$nite discrete representation. 

Unlike [47] (and implicitly [46,36]), we have not arbitrarily assumed that the 

interval orders should model observations. We have introduced a general notion of 

observation based on some natural assumptions, Al&A& about the way events are 

recorded by the observer. As a consequence, we defined observation as an initially 

finite poset whose principal order is total. Theorem 2.12 says that this is equivalent to 

being an initially finite interval order. The classical Fishburn representation theorem 

which usually provides the motivation for the use of interval orders assumes the dense 

observer’s time scale, even if the orders are combinatorial. We have shown that for 

initially finite interval orders there is an equivalent injective interval representation 

using discrete time scale (Theorem 2.16). We have also strengthened Fishburn’s 

characterisation of countable posets by proving the existence of injective representa- 

tions (Theorem 2.14). 

3. Invariants 

There are many reasons why describing a concurrent system solely in terms of the 

observations it may generate can be unsatisfactory. In fact, most of the arguments 

made in favour of causality-based structures (see [4]) can also support the introduc- 

tion of the new invariants. To define them, we will focus on the relationship between 
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the events involved in the observations of the same concurrent history. When dealing 

with a single observation (as defined in the previous section), we distinguished three 

forms of relationship between two events, a and b, namely: a before b, u after b, and 

CI simultaneous with b. Given a set of observation A and two events a and b in its 

event-domain, one might ask what was the relative order of the two events in all the 

observations belonging to A. This time the question cannot be answered as easily as in 

the case of a single observation. For example, there may be some observations in 

which a occurred before b, some in which a occurred simultaneously with b, but none 

in which b occurred before a. (We will later characterise such a situation using an 

invariant, denoted by 4 and defined by: a 4 b o VOE A. u-;’ b v a~ b.) In this section 

we will investigate how precedence and simultaneity can be lifted from the level of 

single observation to the level of sets of observations. 

3.1. Report systems 

To provide a formal framework for dealing with invariants generated by sets of 

related observations, we first introduce the notion of a report system. 

Let CO be a set of objects (e.g., event occurrences). A relational system p= 

(Zr 1, . , rk), where k 2 2, is a report over CO if C E CO and r 1, . . , rk form a partition of 

C~C-id,.Wedenoter~,,=r~(i=l,...,k)anddom(~)=C.For(a,b)~CxC-id,,we 

denote by index( u, b, p) the 1~ k for which a r,, ~ b holds. A report system over C, is any 

nonempty set RS of reports over C, such that if (C,r,,...,rk)ERS and 

(C’,s i, . . ..s~)ERS then k=l. 

Let RS be a report system fixed until the end of Section 5, and k be the number of 

the relations in its reports. 

The report system of concurrent observations, RS,,,, is defined over the set of event 

occurrences and comprises all reports (2, rl , rz, r3) such that there is an observation 

oeObs satisfying dom( o) = C, 7 = rl , 7 = r2 and 7 = r3. That is, reports in RS,,, are 

just different representations of observations (see Section 6). 

There are two reasons why we have introduced the general notion of a report 

system, instead of directly dealing with observations. Firstly, the general approach can 

be easily adapted if, for instance, one needs to introduce a relation representing 

observer’s uncertainty about the relative order of events. The new report system 

would then contain reports (C, rl, r2, r3, r4), with r4 representing uncertainty. Sim- 

ilarly, one could use a model similar to Allen structures [2] or allow reports to be 

produced by teams of observers as in [39]. Secondly, muny of the properties qf 

invariants are independent of the spec$c representation chosen for observations, and it 

seems important to be able to separate them from those properties which follow from 

the specific properties of interval orders. 

The first approximation of the notion of a history is introduced as follows: A report 

set over RS is a nonempty set A of reports over RS with a common domain, denoted 

by dom( A). We denote this by AERSet( RS). 
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Throughout the rest of this paper, we will assume that RS is nondegenerated, 

meaning that for every I,< k there is ,acRS such that T[+ # 8. Clearly, RS,,, is 

a nondegenerated report system. 

3.2. Invariants of’ paradigms in RS,,,: an intuition 

Consider a report set A E RS,,,. In this case a simple relational invariant of A, 

ZESRZ(A), is a relation on dam(A) defined by 

(a,b)EZ o a # b A VOEA. @(a, b,o), 

where @(a, b, o) is a formula defined by the grammar: 

Some of the basic terms of the above grammar are redundant, e.g., a 7 b is 

equivalent to 1 (a T b v a 7 b). However, this does not cause any problems, while 

simplifies the discussion in general case. 

Let + +--, c) - 
A’ A 

A , %_’ 4 ,> be relations on dam(A) defined as follows: 

aT,b o a#br\(VoEA.aTb), 

aTb o a#br\(VoEA.aTb), 

avb 9 a#br\(VoeA.avb), 

a?b o a#bA(VoEA.aTbvaTb), 

a 3 b o a#br\(Vo~A.a~bva~b), 

a>b o a#br\(Vo~A.a~bva~b). 

7 and 7 are called causalities, Z$ commutativity, 7 synchronisation, while d and > 

weak causalities. We will use -+, +, c), +, 7 and 7 to denote mappings which for 

AcRSet(RS,,,) return, respectively, 7, 7, 7, 9, $ and >. We shall call these 

mappings invariants, and denote their set by SRI. It can be shown that the following 

holds (the proof will be presented for the general case): 

SRZ(A)=(& t TV A , d , d ,+ 4, ~,dom(A)xdom(A)-id,,,,,,}. 

By symmetry, we can consider only four nontrivial invariants: ~,y,y and 

$. Note that t= g ns and y= 4 n > which means that each invariant in 

SRZ(A) can be derived f&m $ and 4. 
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The approach to concurrency based on the concept of causality requires that for 

every history d and all a, kdom( d), the following rule (paradiym) holds: 

(30Ul.a+$) tj (3o~d.a~,b)A(30Ed.a~~). 

Paradigms will be used to characterise the internal structure of histories. In 

Section 6 we will analyse RS,,, in detail. 

3.3. Simple report formula.5 

Let A be a report set over RS and Z=dom(d). In general, a binary invariant of 

A might be defined as a relation I E C x C characterised by a formula: V(fi, y)~1 VXGA. 

@( 8, y, x), where fl, ;’ are variables ranging over C, x is a variable ranging over RS, and 

@(fl,r,x) is a formula built using the pri,X~ terms, quantifiers and standard logical 

connectives and constants. For example, causality could be characterised by V(j?, ~)EI 

Vx~d. fl~r. In this paper we are interested in most basic invariants, generalising the 

notions of precedence and simultaneity, characterised by quantifier-free formulas @. 

The simple report formulus, @ESRF, are defined as follows: 

@ := true 1 @se j fir,,,7 1 ... 1 fir,,.7 j i@ 1 @v@ 1 @A@. 

Two formulas, @( fi, 7, X) and @,( /?, 7, x), are equivalent, @ = @,, if for all PE RS and 

all distinct a, bedom(/l), @(a, b, p) o QO(u, b, p). (The evaluation of simple report 

formulas follows the standard rules [35].) Equivalent simple report formulas can be 

substituted for each other. 

Notation 3.1. Let B be the set of sequences CJ =( err , . . , ok) such that die { true, #se ). 

We apply the logical 1, v and A operations to be elements of B componentwise. We 

will usually denote true by 1 and @se by 0. 

Theorem 3.2. For euery Q = ( ol, . . , ~L)EB, let @‘,=(I v ... v (k, tvhere <i=Oi A jJri,*y. 

Then (upto -): SRF = { Qg I crib}. Moreover, Qd = Qs o 0=6. 

Proof. See Appendix. 0 

For the report set of concurrent observations RS,,, we have (upto -): 

ut;;-bvuyb, true). 

We now introduce the invariant relations characterised by simple report formulas. 

A relation I c C x C is a simple report invariant of d, denoted by IESRI(A), if there is 

@,ESRF such that 
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In what follows, I will be noted by l,(d). Moreover, we will use Z, to denote the 

mapping, called invariant, which for every dcRSet(RS) returns I,(d). The set of all 

such mappings will be denoted by SRI. Note that 

is an example of a simple report invariant in RS,,,. 

Proposition 3.3. (1) SRZ(d)={l,(d)l OEB}. 

(2) If CJ # ii then there is doERSet such that &(A,) # Ia( 

Proof. (1) Follows directly from Theorem 3.2. 

(2) Let a=(al ,..., ok) and 6=(6, ,..., 6,). Without loss of generality, we assume 

that c1 = 1 and h1 =O. Since RS is nondegenerated, there is HERS such that rl,p # 8. 

Let (a,b)Er,,,. Define d, = {p}. Clearly, doERSet( Furthermore, we have 

(a,b)El,(&) and (a, b)$lB(&). 17 

For i = 1, . , k, let Ri( d) and 5l i( d) be simple report invariants defined as follows: 

R,(d) is called an evidence (it says that something has happened according to all 

reports in d), and ITi is called an alibi (it says that something has not been 

reported). For RS,,,, f,y,~ are evidences and J& , Q , T are alibis. It is possible to 

express each simple report invariant as an intersection of alibis. 

Proposition 3.4. If ~J=(cT~, . . , cr,)eB and Cii,...,i,1={i(ai=O}#~ then I,(d)= 

5&,(d)n . ..nlI.,(Ll). 

3.4. Signatures 

Although the set of simple report invariants comprises 2k relations, we do not really 

need all of them since they are not independent. We will now address the problem of 

finding a set of invariants from which all the relations in SRI(d) can be derived. 

A signature of a nonempty set /1 c RSet(RS) is a set of invariants S E SRI such that, 

for all d, d,,~/1, if dom(d)=dom(d,) then 

t’Z~S.I(d)=l(d,,) =a VZESRZ. Z(d)=Z(do). 

S is universal if /1= RSet( RS). For RS,,,, ( /1, e } is a universal signature. Clearly, SRI 
is always a universal signature. In general, the smaller /i is, the fewer and simpler 

invariants one needs to obtain a signature. 
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Consider RS,,, and two observations, o1 and 02, shown in Fig. 7. Then S = { +) is 

a signature for 4 = { {or }, { 02} ), while {-) is not ( r~i = 8 = I~j ). We further observe 

that S can be regarded as ‘smaller’ than two other signatures of 4, { +, -} and { 7 }. 

(For the latter, this is motivated by the fact that 7 s 4 holds, for all d.) 

A signature comprises invariants which for every 4 E 4 provide enough information 

to construct SRI(d). It is, therefore, natural to always look for a ‘minimal’ signature. 

For distinct I, JESRI, let I b J if I( 4) E J(d), for all 4 gRSet( RS). That is It J means 

that the size of I( 4) never exceeds that of J( 4). For RS,,,,, we have:+, 7, +w c$ and 

++,Y’. 

A signature S of 4 E RSet( RS) is mininzal if the following hold: 

No proper subset of S is a signature of 4. 

If I,J and JES then S-(J)u{I) is not a signature of 4. 

For 4 above { -+) is minimal signature, while ( 4, -} and { 7 } are not. 

Theorem 3.5. (Existence of minimal signature). For every nonempty 4 G RSet( RS) 

there is a minimal signature. 

Proof. Let F : SRI -+ N be any mapping such that I b J * F(I) < F(J). For a signature 

&let T(S)=C,,, F(l). Clearly, if S is not minimal then there is a signature S’ such that 

T(S’) <T(S) (see the last definition). Thus, since the number of the signatures of 4 is 

finite, there is at least one minimal signature. =I 

Finding minimal signature can be a nontrivial problem. However, it is always 

possible to find one comprising no more than k invariants: 

Theorem 3.6. (HI, . . . . fl,] is a universal signature. 

Proof. Follows directly from Proposition 3.4. n 

4. Histories 

A report set 4 was the first approximation of the notion of a history; it has been 

assumed that the reports in 4 have the same domain, What we also need is some 

notion of completeness for 4 which would be based on the invariant properties 

introduced in the previous section. 

Let dcRSet( RS) and S E SRI. The S-closure of 4, denoted by d(‘), comprises all 

HERS such that dom(p)=dom(d), and for all I,ES, 

(0, h)~l,(4 1 = @,(a, b, ,u). 
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Consider d={a,,03,~g}~RSet(RS,,,) and S={*, 7 
MA(~) iff dom(o)=(a,b,c,d,e} and 

‘, defined in Fig. 3. Then 

where 3 and F are as in Fig. 3. One may check that 

A<?.* ~=d~={o~,...,o,~}=d~~~~~. 
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Fig. 3. Invariant closure and components (symmetric relationship is represented by undirected arcs): 

~={o,,o,,o,} and &=(o,,...,o,,}, S={k r}, and 

‘=U4={0,-;*,~_,c;t,~ 
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Similarly, if dam(o) = {a, h, c, d, e} then 

old o Vx,yEdom(o).(x~y+x~yvxxy). 

old o ~‘x,4’Edom(o).(x~~pxx-;:vvx~~). 

Note that olI~d(*)-d(“) and o12~d(‘)--d(*). For example, oI1$d(‘) since 

dzb and bgd, and o12$AC*) because cze but eye. 

Proposition 4.1 (Basic properties of S-closure). Ler A, AOgRSet(RS) he such that 

dom(d)=dom( A,). Moreover, let S E SO z SRI. 

(1) A E A(s). 
(2) A (&) c A cs), 

(3) (VkS:I(A)=l(A,))* ACs)=Ais? 

(4) I( A)=I( A(s)) for all 1~s. 
(5) (A (s))<s) = A(s), 

Proof. (l)-(3): Obvious. 

(4) Let 1,~s. We have the following: 

I,(A~s~)=((u,b)~CxZ~a#h~V~~A~~~.~,(a,h,~)} 

=,,,~(~,~)EZ.~CJ~#~A(V~EA.~,(~,~,~))A(V~EA~~~.~,,(~,~,~))}. 

From the definition of S-closure it follows that 

((u,h)~Cx~~u#b~r\~.~A(~).~,(u,b,~~)) 

o (u,b)El,(A) o k’jlEA.@,,(a,b,p). 

Hence, 

l,(A(“))={(a,b)~CxC/u#br\V~~A.~,(u,b,~)}=I,(A). 

(5) Follows directly from (3) and (4). Z 

Proposition 4.2. (Closure by universal signature). If’AERSet( RS) and S is a universal 

signature then A(‘)= ACSR’). 

Proof. By Proposition 4.1(2), A (sR’) G A(s). To show the reverse inclusion we first 

observe that, by Proposition 4.1(4), VIES.I( A) = I( A (‘)). Hence, since S is a universal 

signature, VI ESRI. I( A(‘)). Consequently, by Proposition 4.1(3), AcSR’) = ( A(S))(SR’). 

Thus, by Proposition 4.1(2), A(‘) G ( A(S))(SR’). Hence, A(‘) G A (SR’). 0 

We now may introduce formally the central notion of our model: 

A history ouer the report system RS, d~Hist(RS), 

is a nonemptJ1 report set A such that A = ACSR’). 
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Remark. The term “history” has been used by many authors, e.g., [6, 16, 24, 321, to 

denote different concepts in the area of concurrency. We added yet another notion to 

that list, but we feel that it captures best the meaning of the last definition. 

In other words, every history is a report set which can be fully described by the 

invariants it generates. For example, in Fig. 3, A is not a history, while A, is (( P,+} is 

a universal signature and A, (‘,=>=Ao). As a direct consequence of Proposition 4.2 

and Theorem 3.6 we obtain the following: 

Proposition 4.3. A nonempty report set A is a history ifJ 

A=(p~RSIdom(,~~)=dom(A)/\Vi<k. (a,b)EIIi(A)=>lari,,b}. 

Proposition 4.4 (Identification of history by signature). Let S be a signature of 

A E RSet(RS). If A, AO~/l are two histories with the same domain then 

(VIES. Z(A)=Z(A,)) * A=AO. 

Proof. From the definition of the signature, it follows that VZESRZ.Z( A)=Z(A,). 

Hence, by Proposition 4.1(3), AcSR’)= A$sR”. This and A, A,EHist(RS) yields 

A=A,,. 0 

The last result implies that if A is a history then the following can be identified: 

A - set of observations, 

{Z,(A) 1 aEB) ~ all invariants, 

H,(A),II,(A) ,..., II,(A) - all alibis, 

Z,,(A), . . ..Zi.(A), A -some invariants and a family of report sets, 

where {Ii,, . , Ii,} is a signature of A and AEA. For example, the history A, in Fig. 3 

can be identified with { 4, 5}, where 4 and 5 are shown in Fig. 3. 

5. Paradigms 

In this section we consider structural properties of a single history. Suppose A is 

a history over RS,,,, OEA and a 7 b. The classical approach based on causality 

relation would now imply that there be two additional observations in A, one in which 

a precedes b, and one in which b precedes a. So far our model does not provide any 

means to ensure that A does include the two additional observations. What we need is 

the ability to express rules relating different observations of the same history, such as: 

(30~4. avb) o (3o~A. a-;;tb)r\(3oEA. aTb). 



We will call such rules, capturing the structural properties of histories, paradigms of 

the report system. They can be used to project the structural properties of systems 

described on the system level onto the behaviours (histories) dealt with on the 

invariant level; different paradigms will essentially correspond to different types of 

constructs used on the system level. The parudigms, wEPar, are defined by 

0 := true I,fulse / Yl 1 ... / YYk ( lw / wvw ) WAC0 j o*w, 

where each Yj = 3x. /3 ri,x; is called a simple trait. It is a formula stating that a given 

relationship ri,* has been observed. The evaluation of WEPar follows the standard 

rules 1351. A history d EHist( RS) satisfies a paradigm o(& y)EPur if for all 

u,bEdom(d), 

where the index in 01~ means that x ranges over d. We denote this by A~Par(w). Two 

paradigms, w and (I)~, are equiculent, denoted by o w w,,, if Par(w) = Pur(wO). 

Before formulating a characterisation theorem for paradigms, we discuss the 

relationship between paradigms and the components of simple report invariants. 

Let dERSet(RS),Z=dom(d) and a=(~~, . . ..c~)EB. Define 

The set CSRl(d)=jC,(d)ja~B} 1s called the set of components of simple report 

invariants (see Fig. 3). Each component can be obtained from the sets in SRI(A) using 

the standard set-theoretic operations, and each set which can be obtained in this way 

is the union of some of the components of CSRl(A). 

For d of Fig. 3, we have I/ d = C, 1 1 (d ) and 7 = COO I (A ), where 

a+ o ~3o~A.u+1~3o~A. u++JoEA.uyb 

Proposition 5.1. Let A ~Hist( RS). 

(1) C,(A)nCg(A)=@ .for D # 0. 

(2) U~,,C,(d)=dom(d)xdom(d)-iddom~d~. 

(3) C,,.,.,(d)=0. 0 

Lemma 5.2. For every w( fl, y)E Pur there are c~ ‘, . . , a’(I>l)suchthatif’A~Hist(RS) 

and u, bedom( A), a # b, then the following holds. 

tu,(u,b) o (a, b)$C,~(A)u~~~uC,~(A). 

Proof. For w = true we have 
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For o=false we have 

w,(a,b) 0 (a,b)~dom(d)xdom(d)-id,,,(,, 

-Prop.5.1(2) (a,b)$UdEBCd(d). 

For UJ = Yi, where 1 <i 6 k, we have 

o,(a,b) - (a,b)4U~,=,C(,,,...,,,)(d). 

Suppose now that o and b are such that the following hold. 

w,(a,b) o (a,b)~C,l(d)u...uC,l(d), 

d,(a,b) o (a,b)4CeI(d)u...uC,,(d). 

We need to show that the Lemma holds for 10 and w A 6 (then it would, of course, 

hold also for w v 6 and w z=- 6). For 1 w we have 

(lW)d(a,b) o not o,(a,b) o (a,b)EC,l(d)u...uC,l(d) 

-P~~~.s.~(~,~..T) (a,b)~Coo...o(~)uU~4~ol,._.,~~)CO(~). 

For o A 6 we have 

(coA&)d(a,b) o o,(a,b) and Sd(a,b) 

o (a,b)~C,l(d)u~~~uC,~(d) and 

(a,b)$CoL(d)u~.~uCem(d) 

o (a, b)$CoI(d)u... uc,,(d)uC~l(Ll)u~~~uC@m(d). 0 

Next we obtain a characterisation of paradigms in terms of empty components. 

Theorem 5.3. For every WE Par there are CT~, . , CT~E B( 13 1) such that 

Par(o)={dEHist(RS)IC,l(d)u~~.uC,l(d)=@}. 

Conversely, if c1 , . .., a’cB (13 1) then there is o6Par such that the above holds. 

Proof. The first part follows directly from Lemma 5.2. The second part follows from 

the fact that for every crib there is ti,cPar such that Par(tii,)= { deElist ( C,(d)= 

0} (see Proposition 5.4 below). Hence, for o = K,~ A ... A K,+ we have 

Par(o)=Par(ti,2 A ... A k.61)=Par(K,l)n...nPar(~,l) 

={AEWist(RS)~C,1(A)u...uC,,(A)=~). 0 

Theorem 5.3 establishes a link between the paradigms of report systems and the 

components of simple report invariants. To obtain an alternative characterisation of 

paradigms, we proceed as follows: Let 0 = (cr, , . . , O~)E B, ( iI, . . . , ip} = ( i 1 oi = 1 } and 

{j,> . . ..jq}={jIGj=O}* A simple report law, K,ESRL, is defined as 

ti%le A Yi, A ... A yip a ,fUh V Yj, V ... V yj,. 



Proposition 5.4. For all d~Hist(RS) and aeB, A~Par(x,)-C,(A)=@ 

Proof. Let K, =(true A Y/i, A ... A Yip *,false v y/i, v ... v Yj,). We have the following 

(below a, b range over dam(A) x dam(A)-id,,,,,,): 

AEPar(k-,) 

By joining Theorem 5.3 and Proposition 5.4, we obtain the main characterisation 

theorem for paradigms of report systems. 

Theorem 5.5. Paradigms are conjunctions of simple report laws 

Note: The above equality holds up to -. 

6. Report system of concurrent observations 

We now will use the results from the previous sections to analyse the report system 

of concurrent observations. RS,,, comprises reports p = (1, r 1, r2, r3) for which there is 

an observation oE0bs such that dom(o)=Z,T=rI,c;;=r2 and y=r3. We identify 

p with the observation o. 

6.1. Simple report im2riunt.s 

Let A E Hist( RS,,,) be a history, fixed until the end of Section 6.3. Moreover, let 

C = dom( A) and Q = 1 x C - idz. Recall that although there are eight simple report 

invariants in SRI(A), it is sufficient only to consider four: 7, y,y and 4. The first 

two can be interpreted, respectively, as causality and synchronisution. The third 

invariant, y, can be interpreted as comrnutativity since a y b implies that there is no 

observation OEA for which a 7 b. The last invariant, 4 , can be interpreted as weak 

causality, as a 4 h implies a2 h v a 7 h for all OE A. We now prove a number of 

properties of simple report invariants. 
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Proposition 6.1. (1) aTb+agbAlbgu. 

(2) a~b~cvqb-pcuncc. 

Proof. (1) Obvious. 

(2) Suppose u~b 4 c and 1 a 4 c. We first observe that a # c since, otherwise, we 

would have a 7 b and b 4 a. Hence, there is OE A such that c 7 a. Thus, by a 2 b, 

CT b. On the other hand, b g c implies b2 c or b 7 c, a contradiction. 

Hence, uTb z c = a 4 c. The second part can be shown in a similar way. 0 

Proposition 6.2. (1) uTbgcT,d * uTd. 

(2) u~b--p~d=zqdvu=d. 

Proof. (1) Suppose a 7 b d CT d and 1 a~ d. We first observe that a # d since, 

otherwise, we would have c 7 a f b and b 4 c. Thus, from 1 a 7 d it follows that there 

is OE A such that 1 a~ d. We also have a 2 b, CT d and 1 CT b, a contradiction 

with the definition of an interval order. 

(2) Suppose a 4 b -;’ c g d, a # d and 1 a 3 d. From 1 a 4 d it follows that there is 

OEA such that d-da. We also have b 7 c, 1 b T a and 1 d 7 c, a contradiction with 

the definition of an interval order. 0 

Proposition 6.3. Let A s Obs,,,p. 

(1) agbgc-ugc vu=c. 

(2) u~b~cva-pbgccaac. 

Proof. (1) Suppose a 4 b g c, a # c and 1 a 4 c. From 1 a 4 c it follows that there is 

OEA such that c~u. By ugb, uTbvuTb. If uTb then cTb. If uTb then, 

because o is a step sequence, also c 7 b. Hence, in both cases there is a contradiction 

with -~a 4 c. 

(2) Suppose a 7 b 4 c. From Proposition 6.1(2) we have a 4 c. Suppose 1 a 7 c. 

Then there is OEA such that a y c. By a~ b, a~ b. But because o is a step sequence, 

this means that CT b, a contradiction with bGc. The second part can be shown in 

a similar way. 0 

In Section 7 we show that sometimes the assertions from the above three proposi- 

tions can be used as axioms for minimal signatures. 

Proposition 6.4. (1) [f A c ObsslCp then a 7 b 7 c + (a 7 c v a = c). 

(2) uyb+p+pc;;td~b=(c=dvcyd). 

Proof. (1) From Proposition 6.3(l) and y= 2 n $. 
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(2) Suppose that l(c=d v c ++). Without loss of generality, we may assume that 

there is OE A such that c 7 d. We may also assume that IIT b. Thus, by a 7 d and 

bTc, we obtain a contradiction with the definition of interval poset. C, 

6.2. Components of simple report inouriants 

The relationship between the components of simple report invariants is illustrated 

in Fig. 4 (see also Fig. 3). Note that we use the following notation: 

C,oo(A)=+, G,,(A)=t;?-, C,,,(A)=?, Clll(A)= IId> 

Lo(A)=$, Go,(A)=;> C,,,(A)= f. 

We do not need Cooo( A) as it is always empty (Proposition 5.1(3)). By symmetry we 

only discuss five components: 2, /I dr $,T, and *. The first component (and also an 

invariant), 7, is a well-known causality. The nett component, IId, should be inter- 

preted as concurrency (two events can be observed simultaneously and in both orders); 

it is supported by the so-called true concurrency models. The third component, 

7, represents interleaving (two events can be observed in both orders, but not 

simultaneously). Interleaving is used, e.g., in models that are based on sequences of 

event occurrences. The fourth component (and also an invariant), 7, can be inter- 

preted as synchronisation. It is used in its implicit form to model ‘handshake’ commun- 

ication. The fifth component, 2, is not, to our knowledge, supported by any of the 

existing models. It captures dikzbling of one event by another event, and was first 

discussed in 117) and [22], from where we took a priority system represented by the 

net in Fig. 5 (b has a higher priority than c). In the initial state c can occur 

simultaneously with a, or c can be executed first and then u. In both cases the priority 

constraint is satisfied. However, it is not possible for a to precede c since the execution 

of a makes event b enabled, &sabling c. Hence, the system generates a concurrent 

history A such that cr’a. Note that in [S] it was observed that whether ( a, c} should 

be allowed as a valid’observation is intrinsically related to whether or not one can 

Fig. 4. Components and simple report invariants in RS,,, 
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Fig. 5. Priority system 

regard a as an event taking some time. Essentially, if a is instantaneous (takes zero 

time) then {a, c> should not be allowed, and a partial order semantics can be 

constructed along the lines described in [S]. If, however, a cannot be regarded as 

instantaneous (possibly because a is itself a compound event) then {a, c) should be 

allowed. As [13] point out, a proper treatment of priorities in real-time systems 

usually requires considering noninstantaneous events. Note that, for the six histories 

discussed in Section 1, we have the following: 

a II A, b, 

6.3. Paradigms and signatures 

In the terminology introduced in Section 5, we have 

Some of the paradigms of RS,,, are equivalent, which reduces the number of cases 

we consider. There are 23 =8 simple report laws; however, only five of them are 

independent, namely, 

o,=Y,*YJylvY~, 

o~=Y,AY~*Yyg, 

w~=Y~AYj~Y2, 

wq= Y’1=> Yyz v Y3, 

wg = Y, A Y2 A Y3 3 false. 
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From Proposition 5.4 we obtain the following. 

Proposition 6.5. Let A whist ( RS,,,,). 

(1) A~Par(ol) o y=8, 

(2) AczPar(u2) o $=8, 

(3) AEPar(w3) 0 *=t= 
A A ” 

(4) AEPar(u4) - T’=+z= 8 ’ 

(5) AcPar(w5) o Ida=@. 

From Theorem 5.5, it follows that there are 2 5 = 32 possible paradigms for RS,,,. 

But the nature of problems considered in concurrency theory are such that two of the 

simple report laws may be rejected. The first rejected law is 04, which excludes the 

sequential composition construct. For a similar reason, we reject o5 since it excludes 

systems consisting of completely independent components. Hence, we have 23 = 8 

paradigms to consider: 

7cr = true, i’t2=(l)l, 713=cu2, 714=03> 7ccg’Ol AW2, 

716=Q1 ACU3, n,=w2 Ac93, ?-cg=clll AW2AW3 

The connection between the eight paradigms and simple report invariants is 

established below. 

Theorem 6.6. Let A ~Hist( RS,,,). 

(1) AgPar(n,), 

(2) AEPar(x2) o T=@, 

(4) AcPur(x4) o T=@ 

(5) AEPur(7r5) 0 y=y=@ 

(6) AePur(n6) o ‘;‘=?=O, 

(7) AcPar(n,) o y=3=&, 

(8) AEPar(x8) o ‘r;‘= fs=+=@. d 7 

Proof. Follows directly from Proposition 6.5. 0 
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We obtained a hierarchy of the fundamental paradigms of concurrency shown in 

Fig. 6. Paradigm x1 simply admits all concurrent histories. The most restrictive 

paradigm, 7tg, admits concurrent histories d such that 

%EA. at;tb o (3o~d. a~bh)/\(3od by). 

It is adopted by several models, including [4, 29, 41, 44, 49, 501. Paradigm 716 

essentially says that simultaneity can only be observed if events are independent 

SIEA. aTb a (3o~d. uTb)r\ (3o~d. b-p). 

Complementary to 716 is paradigm 7c3, as it says that the existence of observations in 

both orders implies a possibility of observing simultaneously 

The remaining paradigms have less elegant representation in terms of simple report 

laws. Table 2 shows the components each paradigm excludes. We end this section 

deriving minimal signatures of the eight fundamental paradigms. 

Theorem 6.7 (Minimal signatures for paradigms). (1) {$, /” } is a minimal signature 

.for PLr(7cl), Par(Tcr,) and Pur(?-c,). 
(2) I- , +} is u minimal signature for Pur( 716). 

(3) 1-t’ 7 ) is a minimal signature fbr Pur(z3) and Pur(ns). 

(4) { 7) is a minimal signature for Pur(n,). 

(5) (-1 is a minimal signature for Par(n,). 

n2 

n5 

Fig. 6. Hierarchy of fundamental paradigms. 
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Table 2 

Paradigms, components and signatures 

Paradigm Empty components Minimal signatures 

Proof. Let (MSiyi) Siyi denote the set of (minimal) signatures of Par(q). We first 

recall that {G, 7 } is a universal signature. Moreover, 

(+,+}6Siy, since dEPar(n,) implies 4 =f, 

{-+, /1 jESiq3nSig5 since dGPar(n3) impliesz$=~u~, 

{ 7 }ESig, since AEPur(z,) impliesT- --TUT and f= 4 -( 4 n( 4)-l), 

{-+jESig, since d~Par(7cs) implies %=~u’;s- and 4 =T. 

To show the minimality of the signatures, we proceed as follows. Let or, o2 and o3 be 

observations shown in Fig. 7, and Al, AZ, A3, A4, A5 be histories defined by 

A,={~,,oz,~,~,A,={~,,~,),A,={~,), 

AS={&}, A~=j%r~}- 

Note that Al, A,EPar(z8), A2EPur(n6), A4EPar(x,) and A, sPur(x5). 

Fact 1. (+,++,+}$Sig, since Al, AgEPar and 

~=~=@,t,:=~=$ and z=e=@. 
Al 

Fact 2. I+, r}$Sig, since Al, A2EPur(x6), zt=z=@ and g, = & =8. 

Fact 3. {-,zS}$Sigs since AZ, A3EPur(ne), and 

z=z=@ and ~=~={(u,D),(b.u)j. 

Fact4. {r, ++}$Sig5 since A3, AgEPar und 

2=x=@ and 4 = 4 ={(u,b)}. 3 3 
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e w ” . . . 

a 
01 

b a 
02 

b a 
03 

b 

Fig. 7. 

Fact 5. {-,~$=)$Siy 4 since Al, A,EPar(z4) and 

To show that (CC+ r}~MSig, n MSig,, it suffices to show that none of {$}, { 7}, 

Cry -1, {=, +} and (s, -} is a signature of Par(nl) or Par(z2). For {=$}, (+, -} 

and {+, -) this follows from Fact 1 and Par(z5) L Par(7c2) G Par(x,). For { 7) and 

17, +}, this follows from Fact 2 and Par(zn,) c Par(x2) E Par(zn,). 

Similarly, {c+, r}~MSig, since none of {G$}, { /1}, { 7, -} I*,-+} and (S-} is 

a signature of Par(z, ). For {+}, { /1}, { 7, +} and {$, -)- this follows from Facts 

2 and 3, and Par( x6) E Par( x4). For { -+, G} this follows from Fact 5. 

To show that {+, -f}~MSig~, it suffices to show neither {c$} nor (-1 is a signa- 

ture. The former follows from Fact 3. The latter follows from Fact 2. 

To show that { +, 7 ) EMSiy3 n MS@, , it suffices to show that none of { -+}, { 7 > 

and { -+,++} is a signature of Par(n3) or Par(n,). For (-1 and {+,++} this follows 

from Fact 1 and Par(n,) G Par(7c3). For { 7) this follows from Fact 4 and 

Par( n5) G Par( n3). 

To show that { 7 }EMS~~,, we observe that neither { -} nor f-} is a signature of 

Par(x7). The former follows from A,,d,~Par(n,) and x=2=@ the latter from 

Al,A3EPur(z7) and 2=x=@. 

{+} is obviously a minimal signature. Cl 

In the most general case, zl, the explicit causality invariant is not needed (in fact, 

there is no universal minimal signature containing -). We also observe that no 

paradigm requires a signature comprising more than two invariants (see Table 2). 

Note that if n8 holds then causality, 2, is the only invariant needed, and this fact is 

a theorem in our approach. 

6.4. The paradigm of partial order histories 

Paradigm zg deserves our special attention as it is usually adopted by concurrency 

models. We now show that for the histories in zg it is enough to keep record only of 

the sequential observations. 

A base of a history A is a pair, A, c A and S E SRI, such that A As> = A. It provides 

a complete description of a history in terms of a (smaller) set of observations and 

a suitable set of invariants. 
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Theorem 6.8 (Histories under n8 can be represented by interleavings). If AEPar(n8) 
then Alrl= A nObsit, and (+} .form a base qf A. 

Proof. It suffices to show that z=~ since, due to Theorem 6.7(.5), A(‘)= A. For every 

o~A,let A(o)={r~A,,~l 7 G T}. From the extension theorem [45] it follows that, for 

every OEA, A(o) # 8 and -;‘= n 7. Furthermore, A,,[= 
rsA(oj 

,; A (0). Thus, 

aTb o VOEA. aTb o VOEA VrcA(o). a-;tb 

For 7~s it is possible to adequately represent a history by taking its interleaved 

observations. This was exactly the idea behind the Mazurkiewicz traces [31, 321 and 

the interleaving set temporal logic [23]; within our framework, Theorem 6.8 provides 

a justification of that approach. However, it cannot be extended to any other 

paradigm introduced in Section 6.3. 

7. Representation theorems 

We now consider axiomatic models for minimal signatures under paradigm 71~. 

7.1. Paradigm i-c3 

Paradigm rc3 is general enough to model priority systems and inhibitor nets [20]; 

from Theorem 6.7(3) it follows that { +, 7 } is its minimal signature. It turns out that it 

can be axiomatised in terms of relational structures that we call weak composets 

(combined posets). A weak composet is a triple 

wc=(dom(wc),z, &) 

such that dom(wc) is a set of event occurrences and -+, <,, and binary relations on 

dom( WC) satisfying the following: 

(WCl) (dom(wc),-+) is a poset, r,, is irreflexive. 

(WC2) azb-a<,:.,br\l h&a. 

(WC3) a-;;;rtb&cva G,bzc-a ccc. 

(WC4) azb ~cc~d-a~dd. 

(WC.5) ar,,b~c~,?,d~a~,:,,dva=d. 

Relational structures similar to weak composets were introduced and subsequently 

analysed in [l, 3, 27, 281, however, with different objectives in mind. Conditions 
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WCl-WC4 were used in [27], WC5 in [3]. (Note that [3, 271 required that r,, be 

reflexive, but this is a minor technical detail.) Directly from Propositions 6.1 and 6.2 

we obtain the following. 

Corollary 7.1. For every d~RSet(l-S,,,), (dom(d),T, 4 ) is a weak composet. 

An interval order po is an interval extension of a weak composet WC, denoted by 

poEintervals( if dom(po)=dom(wc), z ~2 and 4, G~UZ. 

Theorem 7.2. (First representation theorem for weak composets [l, Theorem 

2.101). Let WC be a weak composet. Then, there is a partial order (X, L) and 

@, Y : dom( wc)+X 

such that for all distinct a and b in dom(wc) the following hold: 

O(u) L Y(a), 

azb - Y(a) L Q(b), 

a&b o @(a)LY(b)v@(a)=Y(b). 0 

Proposition 7.3. (Existence of an interval extension for weak composets). For every 

weak composet WC, intervals( wc) # 8. 

Proof. Let (X, L r ) be any total extension of (X, L) from Theorem 7.2. Define 

po=(dom(wc),;) where azbo Y(a) Lo Q(b). By Proposition 2.13, po is an inter- 

val order. Moreover, for all distinct a and b, 

azb * Y(a)L@(b) * Y(a)LI@(b) - ash, 

a <,, b *@(a) L Y(b) v @(a)= Y(b) S- @(a)L1 Y(b) v @(a)= Y(b) 

+-Y(b) Lo @(a) = lbza =j a~bva~b. 

Hence, poEintervals( 0 

We shall show that every weak composet is unambiguously identified by the set of 

its interval extensions, in the same way as every poset is unambiguously identified by 

the set of its total extensions [45]. 

Lemma 7.4. If po is a poset and az b then there is a total order to such that 

dom(to)=dom(po), 2’2 and udb. 
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Proof. Let Y={a>u{!:I~;u}, Z={b)ujz~b~z} and po’=(dom(po), L), where 

We observe that Yn Z = 8 since a z b. Hence, L is it-reflexive. Moreover, if x L 4’ L z 

then X~J’ or y;z. Suppose _x L y;r:z and 1.x~~. Then XE Y and JI,ZEZ. Thus, 

x L z. Similarly, if xsy L z and 1~2~ then x L z. Thus, L is also transitive. 

Hence, po’ is a partial order, a L b and + E L. Let to be any total extension of PO’. PO 
Then Gc-;d and a;;:b. 0 

(X, L 1 ) such that x i, y and L E L, 

Define poxr =(dom(wc),pzy), where cpz,dG Y(c) Lo Q(d). By Proposition 2.13 (and \ 
proceeding similarly as in the proof of Proposition 7.3) one may show that 

poxyEintercals(wc). 

(1) Suppose 1 a 2 b. We may assume 1 b &u; otherwise, every element of inter- 

II&( WC) # Q, satisfies the required property. Let Y = Q(b) and _r = ul( a). We have 

ia2 b => 1 Y(a) L Q(b), 

lb<,:.,a=>l@(b) L Y(a)r\@(b)# Y(a). 

Hence, x t+ y and po,,Einterz>als( wc). Moreover, 
i 

x or J’ => Q(b) ~~ Y(a) * lY(a) iI@ => 1 aPzsb 

* b*z>,aVb$+ya. r 

(2) Suppose 1 a 0, b. We may assume 1 b ;;;: a; otherwise, every element of inter- 

IX&( WC) # 8 satisfies the required property. Let Y = Y(b) and y=@(a). Similarly as 

before, we obtain .Y ‘;’ y and po,,Eintervals( wc). In this case, 

Theorem 7.6. Let wcl and wcz be weak composets. Then 

wcI = wcz 0 intercals( wcl) = intertxzls( wcz). 
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Proof. It suffices to show that interuals(wc,) c intervals(wc,) implies wc2 G wcl (i.e., 

dom(wc2) G dom(wc,), zz G z and <WC* E &,). From Proposition 7.3, it follows that 

dom(wc,)=dom(wc,). If a ;x b and 1 a z b then, by Lemma 75(l), there is 

po~intervals(wc,) such that b; a or bz a. Clearly, po$interuals(wcZ), a contradic- 

tion. Hence, ;;;: G z. Similarly, by using Lemma 7.5(2), we show c,, c cc,. 0 

Let X be a nonempty set of interval posets with a common domain C. The combined 

intersection of X is the relational structure 

Proposition 7.7. Combined intersection is always a weak composet. 

Proof. Similar as for Proposition 6.1 and 6.2. 0 

A fundamental result of [45] says that by intersecting all total extensions of 

a partial order one obtains the original partial order. A similar result holds for weak 

composets. 

Theorem 7.8 (Second representation theorem for weak composets). Let WC be a weak 

composet. Then WC = n,(intervals( wc)). 

Proof. Let X= interuals(wc). Clearly, WC E nc(X). If a~ b and la;;t b then, by 

Lemma 7.5(l), there is po~X such that b 2 a or b z a, a contradiction with a~ 6. 

Hence, ;;r =d. To show /;i = <,,, we use Lemma 7.5(2). 0 

A poset po is an observation extension of a weak composet WC, poEobs(wc), if 

poEintervals and po is initially finite. Note that obs(wc) can be interpreted as 

a report set over RS,,,. 

Lemma 7.9. Let WC be a &finite weak composet. Then: 

(1) obs( wc)= intervals( wc). 

(2) obs( wc) = obs( wc)+, /’ ). 

Note: In (2) symbols -+ and /” denote invariants as defined in Section 6, i.e., they are 

mappings which for every report set d return, respectively, 7 and r, . In particular, 

for obs(wc) they return obzfi,cj and <:obs(wcJ. 

Proof. (1) Finite interval orders are observations. 

(2) By the definition of obs(wc), for every observation o with dom(o)=dom(wc): 

oeobs(wc) o Va,bedom(wc). (a~b=>a~b)r\(ar,,b~a~bvu~b). 



By the definition of S-closure, for every observation o, with dom( o) = dom( wc) (below 

A = ohs( WC)), 

OEA (+, ‘) o Vu,hedom( A). (a ~h*u~b)r\(ar, h=>aTbvayb). 

By Theorem 7.8 and (1) s= ohzw,c,and & =&s(M,Cj, so (2) holds. 0 

We now can formulate the main result of this section. 

Theorem 7.10 (Axiomatisation of finite concurrent histories in zj). (1) [f’d EPar(n3) 

und dam(A) is jinite then there is u finite weuk cornposet WC such thut A =obs(wc). 

(2) [f WC is u jinite weak composet then obs(wc)EPar(n3). 

Proof. (I) Define wc=(dom( A), 3, 7, ). By Corollary 7.1, wc is a finite weak com- 

poset. From Theorem 7.8 and Lemma 7.9(l), it follows that ~=Oob~~cj and 

G, =&&j. Hence, T=,,/&C) and ?l =&&j By (2) obs(wc)~Par(x,). Thus, by 

Theorem 6.7(3), Proposition 4.4, 7 = ubsVCj and r, = ohzw,c), we get A = obs( wc). 

(2) By Lemma 7.9(2), ohs( wc) = ohs( wc) (-. rj. This and Proposition 4.1 (I, 2) 

yields obs(wc)EHist(RS,,,). By Theorem 6.6(3), it now suffices to show that 

4 
obsl wc) 

= 8. Suppose a ohs~WcJ b. Then, by Theorem 7.8,~ u {,, b and 1 b &, a. Let (X, L) 

be as in Theorem 7.2. We have @(a) r@(b) ‘;’ Y(a). Using a construction similar 

to that in Lemma 7.4, one can show that there is a total extension (X, or) 

of (X, L) such that @(a) I,@ ~~ Y(a). Define po=(dom(po), s), where 

cs d o Y(c) Lo @P(d). By proceeding similarly as in Proposition 7.3, one may show 

that poEinterca/s(wc) = obs(wc) and a F h. This, however, contradicts a 
ohs(w)” ’ 

+ 

The last theorem provides an axiomatisation of finite concurrent histories conform- 

ing to paradigm rr3: Every finite weak composet of event occurrences may be 

interpreted as a representation of a history in n3. In other words, in this case histories 

can be represented by finite weak composets (in the same way as the histories in zg can 

be represented by causal partial orders). If 7t3 does not hold, then { -+, /1> may no 

longer be a signature and obs( WC) may not be a concurrent history. 

7.2. Step sequences ,z,ithin TT~ 

We now assume that n3 holds and that all observations are step sequences. In this 

case we replace weak composets by composets. A composets is a triple 

co=(dom(co),z, 4,)) 

such that dom(co) is a set of event occurrences and 2, & are binary relations on 

dom( co) satisfying the following: 

(Cl) (dom(co),z) is a poset, & is irreflexive. 
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(C3) a<Ob& c=a&cva=c 

(C4) a~b&cva&b~ccaac. 

Compose& have been used to model concurrent behaviours in [12, 19, 201. [20] 

provides a detailed analysis of finite composets. 

Proposition 7.11. Every composet is a weak composet. 

Theorem 7.12 (First representation theorem for composets). Let co be a composet. 
(1) There is a partial order (X, L) and 0 : dom(co) + X such that for all distinct 

a and b in dom(co) the following hold: 

azb*@(a) I@, 

a{O b-=@(a) L @(b)v@(a)=@(b). 

(2) There is a partial order (X, L) and @: dom(co) -tX such that for all distinct 

a and b in dom(co) the following hold: 

a;b 0 @(a) L Q(b), 

aTO b G= @(a) L @(b)v@(a)=@(b). 

Proof. The proof of (1) is just a modification of a well-known result of E. Schroder 

(1890) characterising pre-order relations. (Axiom C3 says that {0 u id, is a pre-order 

[9,251.) 
Define a 3 b o(a {,, b A b & a) v a = b. By C3, E is an equivalence relation on 

dom(co). Let [a] denote the equivalence class of = containing a, and X = dom(co)/, . 

(1) Define [a] L [b] o (a <O b A 1 b & a). By C3, L is a well-defined irreflexive 

relation. The transitivity of L also follows from C3. Hence, (X, L) is a partial order. 

For all distinct a and b we have 

azb = a& br\lb&,a * [a] L[b]. 

[al L [blv[a]=[b] 0 (acO br\lb{O a) 

v(u& br\b<O a) o asO b. 

Hence, we can define @(a)= [a] for all a. 

(2) Define [a] L[b]~u~b. Suppose [a] L [b], ce[u] and dE[b]. Then 

[al L [b]AcE[u]r\dE[b] * u~bb(u=cvc& a) 

r\(b=dvb/&d) z czd. 
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Hence, L is well-defined, reflexive (u ~b~~b~Oa~[a]#[b])andtransitive(by 

Cl). Thus, (X, L) is a partial order. For all distinct u and b, we have 

[a] L [b]v[u]=[b] * u~bv(qO br\b<<, a) * aTO b. 

Hence, we can define 4(u)= [a] for all a. 0 

A stratified poset po is a stratijied extension of a composet co, poEstrut( if 

dom(po) = dom ((,o), 2:‘~ and & z;b’vz. 

Proposition 7.13 (Existence of stratified extension for composets). For every nonempty 

composet co, strut(c0) # 8. 

Proof. Let (X, il) be a total extension of (X, L) from Theorem 7.12(l). Define 

po =(dom(co),$, where u; b - @(a) L 1 a(b). Clearly, po is a stratified poset. 

Moreover, for all distinct a and b, we have 

azb * @(a) i Q(b) * @(a) am@ * uzb, 

a{0 b * @(a) L @(b)v@(a)=@(b) * Q(u) L, @(b)v@(a)=@(b) 

Hence, poEstrut( 0 

Lemma 7.14. Let co be a composet and a, b be distinct elements in its domain. Then 

(1) Ifluzb then there is pocstrut(co) such that b;u or bgu. 

(2) [f’l u <” b then there is poGstrut(co) such thut b 2 a. 

Proof. Let Y={b)u(cIc& b), W={clc ;b),Z=ja3_u{cla<, cjand V={c1u~c}. 

(1) By lazb, we have Vn Y=@= WnZ. Define co,=(dom(co), 7, 4 ), where 

+=--tu WxZu Yx V and pq = <(, v YxZ-idYnZ. 4 cu 

Using a straightforward yet tedious argument it can be shown [21] that co, is 

a composet and b 6, a. By Proposition 7.13, there is poEstrat(co,) c strat( co) such 

that b;;utavbza. 

(2) By la<<,, b, we have Zn Y=@, Define co,=(dom(co),~, <), where 

~=zuYxZ and pq = &u YxZ. 
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It can be shown [21] that co2 is a composet and bzu. By Proposition 7.13, there is 

po~strat(co,) G strat(co) such that b; a. q 

We now can show that the relationship between step sequences and coniposets is 

exactly the same as that between interval orders and weak composets. 

Theorem 7.15. (1) Let co1 and co2 be compose&. Then 

(‘01 =co2 0 strat(co,)=strat(co2). 

(2) For every nonempty set of stratified posets A with a common domain, f&(A) is 

a composet. 

(3) Let co be a composet. Then co = n C (strat( co)). 

Proof. ((1) is shown similarly as Theorem 7.6 using Proposition 7.13 and Lemma 7.14; 

(2) as Proposition 6.3; while (3) as Theorem 7.8 using Lemma 7.14.) 0 

For the finite case Theorem 7.15 was independently proved in [21]. 

A poset po is a step sequence extension of a composet co, poesteps( if 

poEstrut and po is initially finite. Note that steps(co) can be interpreted as a report 

set over RS,,,. 

Lemma 7.16. Assume that RS,,, comprises only step sequences. Let co be a jnite 

composet. Then 

strat(co)=steps(co)=steps(co)(‘-’). 

Proof. Similarly as Lemma 7.9 using Theorem 7.15. Cl 

The main result of this section reads as follows. 

Theorem 7.17 (Axiomatisation of finite concurrent histories in rc3 with step sequence 

observations). Assume that RS,,, comprises only step sequences. 

(1) If AePar(n3) and dom( A) is jinite then there is a jinite composet co such that 

A = steps( co). 

(2) [f co is a finite composet then steps(co)EPar(7r3). 

Proof. (1) Similarly as Theorem 7.10(l), using Theorem 7.15 and Lemma 7.16. 

(2) By Lemma 7.16, steps( co) = steps( co) (+. ?). This and Proposition 4.1(1,2) yields 

steps(co)EHist(RS,,,). By Theorem 6.6(3), it now suffices to show that 

,,,,5,,) = 0. Suppose a s,,p~co~ b. Then by Theorem 7.15, 1 a & b and 1 b cO a. Let 



(X, L) be as in Theorem 7.12(l). We have @(a)t;t@(h). Let 

Y=(@(a))u{y)@(a) L Y) and W=(~(U))U(M!~M: Lo), 

L,=(LnX, xX,)uZx YuWx I? 

As in Lemma 7.4, it can be shown (X 1, L I ) is a poset. Define @i : dom( wc) + X1 by 

@i(c)=@(c), for all c # b, and @,(b)=@(a). Let (X,, Lo) be any total extension of 

(Xi, I). Define po=(dom(co),-+), where c;do@,(c) ~~@i(d). Proceeding as in 

Proposition 7.13, one may show poEsreps( co) and CI z b, contradicting u SfLP3CO) b. 0 

Theorem 7.17 provides an axiomatisation of finite concurrent histories conforming 

to paradigm rc3 under the assumption that all observations are step sequences. If 7c3 

does not hold, then (-+, /* ) is no longer a signature and steps(co) may not be 

interpreted as a concurrent history of step sequence observations. 

The results of this section could be interpreted in three ways. One is to treat them as 

an extension of Szpilrajn-Marczewski result [45] that each poset is uniquely repre- 

sented by the set of its total extensions. Theorem 7.15 states that each composet is 

uniquely represented by the set of its stratified extensions, while Theorem 7.8 together 

with Theorem 7.6 and Proposition 7.7, say that each weak composet is uniquely 

represented by the set of its interval extensions. 

Theorems 7. JO and 7.17 provide the second, major, interpretation for the finite case: 

When paradigm rr3 is enforced, finite weak composets are signatures of concurrent 

histories. Under additional assumption that all observations are step sequences, finite 

composets become signatures of concurrent histories. 

The third way of interpreting the results of this section is to assume relativistic real 

time observers. In our approach observations are just observer reports about instan- 

ces of a concurrent behaviour. In principle, we identify observations with executions 

and next identify equivalent executions creating what we call a concurrent history. 

Thus our observation is an abstraction of an execution. However, we may also 

consider the following situation: There is one system execution, physically many 

observers, and EinsteinMinkowski space-time is assumed. (This is exactly the 

situation considered in [I, 27, 281.) Each observer’s local time is linear, but the time 

structure generated by all observers is a partial order. Theorem 7.2 (a major result of 

[l]) says that weak composets can be used to model this kind of system execution 

provided that observers can observe and report time intervals. If they can use only 

time points then, by Theorem 7.12, composets seem to be a good model of system 

executions. 
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8. Related work 

The idea of using structures based on interval orders on the observation level has 

been advocated in [46] (implicitly) [19], [36] and [47]. In [46], van Glabbeek and 

Vaandrager introduced the concept of real-time consistency and then defined real- 

time consistent bisimulation (ST-bisimulation). The intuition behind ST-bisimulation 

is that when observing a system run we see actions starting and finishing, i.e., the 

execution of an action corresponds to some time interval, and the order of the 

actions is exactly that of their time intervals. This is exactly an application of 

Fishburn’s representation theorem (Theorem 2.11) as the definition. Van Glabbeek 

and Vaandrager in [46] did not define or use interval orders, they expressed this 

intuition in terms of ST-bisimulation, using Petri nets as a general framework. 

Nielsen et al. [36] studied the use of (labelled) partial orders as denotational model for 

process algebras. They started with the step sequence model, and next, by change of 

atomicity, ended up with the interval order model. They used Wiener’s definition 

(a + h A c -+ d * a + d v c + b), calling it PO,-property and seemed to be unaware of 

earlier results concerning this concept. They did not mention work due to Wiener, 

Fishburn or others. Janicki and Koutny’s work [ 1 S] is an early version of the results 

presented here in Section 2. As in this paper, the motivation was that if a poset is an 

observation, then its principal poset is total. Theorem 2.12 says that this is equivalent 

to being an interval order. In [47], Vogler started with a similar motivation as [46], 

i.e. Fishburn’s representation theorem (Theorem 2.11) provided a required intuition. 

He next defined failure semantics based on interval orders for Petri nets. He used both 

Fishburn’s theorem and Wiener’s definition in his work. 

From the formal point of view, interval orders can be defined in three ways. One 

way is to use Wiener’s definition (as in [36]); the second is to use Fishburn’s 

representation theorem (intuition in [46, 471); the third possibility is to use the 

concept of principal order and Theorem 2.12, as in [l S] and this paper. None of [46, 

36, 471 provides detailed analysis of the interval orders themselves. Fishburn [7, 81 

does, but he always assumes dense time and almost neglects the relationship between 

interval orders and their principal orders (Theorem 2.12). We consider this relation- 

ship very important, as it provides the basic intuition in our definition of observation. 

We analysed both discrete and dense time, provided representation theorems in both 

cases, and showed this representation is injective (Theorems 2.14, and 2.16). 

In [39] Plotkin and Pratt analysed the situation whereby observers work as a team. 

Each observer alone can only observe sequences of events, but they can communicate 

among themselves and subsequently provide a joint statement on their observations. 

In our framework this means that k observers provide a single report. Plotkin and 

Pratt in [39] show that the resolving power of a finite team of observers increases 

strictly with k, and that they can see more complex posets (in fact, pomsets) than 

interval orders, as the axiom A3 of our definition of observation is no longer valid for 

teams of observers. The use of such observers would change some results of Section 6. 

It would not change the analysis of the paradigms, but, e.g., Propositions 6.2 and 
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6.4(2) would not hold. Most of the results of Section 7 also assume interval order 

observations. Nevertheless, the observations of 1391 can still be modelled as report 

systems, so they fit into our general framework. 

On the invariant level structures similar to composets and weak composets can be 

found in [ 1, 3, 12, 19, 20, 27, 281. In [ 121, Gaifman and Pratt defined behaviours as 

structures (called prossets-preorder specification sets) of the form: (C, <, c, <), 

where C is a multiset of events, <, --, d are relations interpreted as precedence, 

simultaneity and not luter than, and = is defined as a = h o a < b A b < a. The axioms 

for (C, <, <) are essentially the same as Cl-C4 for composets (we restrict ourselves to 

sets, but the extension to multisets is quite straightforward) with < corresponding to 

2, and d to & uiddom,co,. Hence, the results of the entire Section 7.2 hold for the 

prossets as well. Gaifman and Pratt [12] defined and used prossets, but have not 

analysed their structure. 

In [27,28] Lamport provides a model for system execution using Einstein’s concept 

of time-space relationship. He argues that the relativistic view is relevant whenever 

signal propagation is not negligibly small compared with the execution time of 

individual operations. He defines a system as a set of operation executions where each 

operation execution consists of a nonempty set of space-time events. Lamport [27, 

281 defines the relations - > and - - > on the set of operation executions as follows: 

A->B o VasA VbeB. a<b, 

A-p>B o 3aeA3bEB. a<bva=b, 

where A and B are operation executions, a and b are space-time events, and < is the 

(irreflexive) order in Minkowski space. One may verify that - > and ~ - > - id, satisfy 

the axioms WCl-WCS for weak composets. Lamport next argues that in computer 

science we may ignore the space-time events that constitute operation executions, and 

defines system execution as a structure (C,->,-->), where C is a set of operation 

executions and ->, --> - idI satisfy WCl-WC4. He advocates the use of this 

concept on various levels of abstraction. The structure (C,->,-->), with ->, 

--> -id, satisfying WCl-WC4, is frequently called Lamport structure [ 11. The 

axioms corresponding to WCl-WC5 were proposed (in Lamport’s framework) in [3]. 

Hence, the results of Section 7.1 can also be used in that model. The main result of 

Abraham et al. [l] plays a central role in obtaining the main results in Section 7.1 

(Section 7.2 does not need it). Due to its roots, Lamport’s model is often used to 

analyse the global time assumptions [l]. In the framework of ->, -->, the global 

time axioms is stated as: A-> B-1 B--> A. Our observations are just observer 

reports, they do not mention time explicitly, different observers may observe different 

instances of the same concurrent history in disjoint time intervals. Global time axiom 

implies Newton model of time and in our approach all observers observing in the 

same physical time. So they all must observe the same, i.e. 30. a~ b => ‘do. UT b, 

which clearly implies: UT b ol bpd a. In [20] finite composets were analysed in 
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a style similar to the middle part of Section 7.2. Janicki and Koutny’s [ 191 is an early 

version of the results presented in Section 6. 

9. Systems 

The development of the system level is still in an initial phase, however, some 

nontrivial results do already exist. To some extent, the results of Gaifman and Pratt 

[12] can be seen as an example of such a development. In [ 121 the composet-like 

structures are used to analyse such concepts as: fairness, input event, the location of 

a process, etc. Another more direct example is Janicki and Koutny’s [20] where 

a formal semantics for inhibitor nets is defined and analysed. Janicki and Koutny’s 

[20] shows that the composets provide an invuriant semantics for inhibitor nets and 

that such a semantics is in full agreement with the operational semantics defined in 

terms of step sequences. It also shows that composets can be generated by inhibitor 

nets just by generalising the standard construction of processes for Petri nets. We 

believe that the structural complexity of the behaviours generated by concurrent 

systems depends on the kind of the operators the system uses. If only sequential 

operators and parallel composition are involved, then causal partial orders suffice to 

describe concurrent histories. However, if other operators, e.g. priority or com- 

mutativity, are allowed, we need more complex structures, e.g., composets or weak 

composets. 

10. Conclusions 

In this paper we presented first steps of the development of a new approach to 

modelling concurrent systems. We started our discussion on the observation level and 

introduced a general notion of an observation of a concurrent history. We have 

obtained representation theorems for the general observations and also for some more 

restricted classes of observations. We then introduced the notion of a report system of 

concurrent observations, and investigated the invariant properties of sets of related 

observations. We have identified and interpreted a class of fundamental invariants of 

concurrent histories. We have also established a connection between the paradigms 

of concurrency and the invariants of concurrent histories. A direct consequence of 

Table 2 is that depending on the paradigm, a minimal invariant representation of 

concurrent histories will in most cases be different. As one of the referees has pointed 

out, by selecting minimal signature for a paradigm, one can help choosing most 

adequate algebraic framework before specifying a concurrent system. Finally, we 

provided an axiomatisation of minimal signature for one of the paradigms. 
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Appendix 

Lemma A.l. Countuble total orders huve real injective interval representations. 

Note: In fact, this is an immediate consequence of Theorem 2.11, as for total orders eq 

reduces to identity. However, the result can independently be proved by induction (the 

simple proof below is due to Franek [lo]). 

Proof. If suffices to show that if po and pr are finite total orders, with z G 2 and 

dom( pr) = dom(po) u {a}, such that 8 = ( @, Y) is a real injective interval representa- 

tion of po, then one can define @(a) and Y(a) in such a way that the extended 8 is 

a real injective interval representation for pr. To show this we observe that since pr is 

total and finite, there is an interval (x, y) c R such that Y(b) <x for all bEdom(po) 

satisfying b 2 u, and y d Q(c) for all cEdom(po) satisfying a 2 c. It now suffices to 

define @(u)=x+E and Y(a)=y-c, where O<e<f(y-x). 0 

Lemma A.2. Let I# be a relation on the domain of a poset po dejined by 

a$b o azbv(3c. czbhb+ga+gc). 

Then po is un interval order if (dom(po), >) is u poset. 

Note: The left-to-right implication is equivalent to the first part of Theorem 2 in 

Section 2 of [8]. We provide a proof to make the presentation self-contained. 

Proof. c=: Suppose a 2 b, cz d, -I a 2 d and 1 c 2 b. Then b I$ d and d k b. Hence, 

(dom(po), k) is not a poset. 

*: We only need to show the transitivity of > Suppose a Z+ b > c and 1 a 2 c. We 

consider three cases. 

CaseI: a~b~c.Thend;;;:candb~dforsomed.Wehave~a~cand~d~b, 

a contradiction since po is an interval order. 

Case 2: a z b 2 c. Then, d 2 b and a +g d for some d. Furthermore, 1 c s a. Hence, 

dsc and dsaac, yielding a >c. 

Case 3: as bzc. Then, e; b, ega, ,f po +c and b 2 f for some e and ,f: Hence, 

since po is an interval order, e 2 c. By a g e and e 2 c, u # c. Also, 1 c 2 a since 

aHe+c, and we assumed laze. 

yilyds r Y$ c. 

Hence azc, which together with aze;c 

0 

Proof of Theorem 2.14. -=: Follows from Proposition 2.13. 

3: Let po be a countable poset and C = dom(po). Consider (C, k) defined as in 

Lemma A.2. From Lemma A.2 and Szpilrajn-Marczewski extension theorem [45], it 

follows that there is a total order t=( C,T) such that I+ ‘7. From Lemma A.1 it 



Structure of concurrent) 49 

follows that t has a real injective interval representation a,=(@,, Yu,). Also, we can 

assume that YU,(u) <O for all a. (If this does not hold then we can take 8, =( @,,, Y,) 

defined by Qo(a)= -2-@f’“’ and Y,(a)= -2- ‘J”~ for all a, which is another in- 

jective interval representation of t.) Hence, Y(a) = sup ( Y,(c) ) c = a v c z a > is de- 

fined for all UEC. Suppose a ;;6’ b. Then, for all CEC we have: (c = a v c 2 a) * 

~>bbccb+Y~(c)<@,(b).Hence, Y(u)d@,(b).Let@(a)=~(@,(u)+YY,(u))forall 

UGC. Clearly,@,(u)<@(u)< Y,(a)< Y(u). 

We now prove that i3 = (@, Y) is an injective interval representation of po. We first 

observe that if @(a)=@(b) then @,(b)<@(b)=@(u)< Yu,(u). Hence, 1uTb. Sim- 

ilarly, 1 b -;’ a. Hence, since t is total, a = b. To show a 2 b o Y(u) < Q(b) we observe 

that 

uzb a Y(u)<@,(b)<@(b) a Y(u)<@(b), 

b;u =z- Y(b)<@(u) * lY(u)<@(b), 

u=b = Y(u)>@(b) s -MY<@, 

azb j Y(u)BYJb)>@(b) =s lY(u)<@(b). 0 

Notation. A set of integers J is gap-free if i < j < k and i, kEJ implies jEJ. If two 

intervals on real line, K = [a, b] and L = Cc, d], satisfy b < c then we will write K L L. 

Proof of Lemma 2.15. From Theorem 2.12 it follows that C,, is total. Moreover, by 

Proposition 2.7, C,, is combinatorial. Hence, there is a gap-free set of integers J such 

that Cats,,={AjIjEJ} and Aj~~j+,,forj,j+lEJ. 

For every uEdom(po), let Ko=[m,,M,], where m,=min{iIuEAi} and Ma= 

max ( i 1 UEAi 1. Note that m, and M, are well defined due to (1). It is not difficult to see 

that 

(A.l) Vu,bEdom(po). uzb o K, L Kh. 

Let K=(K,)u6dom(po)}, and let S : dom(po) + R be any injection. 

We define 6 K x K as follows. Let a, bEdom(po). 

K, +Kb :o (m,<mb)v(m,=mbAM,<Mb)v 

Clearly, (K, <) is a total order such that L s G. Moreover, by (l), (K, 4) is 

combinatorial. Hence, there is a gap-free set of integers H such that 

dom(po)={uiliEH} and Kaz 4 K,,+, for all i,i+ 1eH. 

For every iE H, let Lai = [2i, 21i + 11, where li = max { j ( K,, n K,, # @>. Clearly, li is 

defined due to (1) and (A.l). We also note that 2/i+ 1>2i+ 1>2i, so each L,, is 
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a nondegenerated interval. We also observe that 

(A.2) Vi, jEH. i<j =s m,,<m,,. 

We now show that 

(A.3) Vi,jgH. K,, L K,, o L,, L L,,. 

Suppose K,, L K,,. If there is p>j such that K,,n KaP # 8 then, by (A.2), 

m,, < muJ G ma, < M,, , contradicting K,, n Koj=8. Hence, K,, L KnP for all p>,j. 

Thus Ii< j, which yields 21i+ 1 < 2j. Consequently, L,, L L,,. To show the reverse 

implication, we assume L,, L L,, Then 21i + 1 < 2j, which yields li < j. Consequently, 

K,, L K,,. Hence, (A.3) holds. 

LetaEdom(po)andL,=[x,y].Define@(a)=xand Y(a)=y.From(A.l)and(A.3) 

it follows that 8 =( 0, Y) is a discrete interval representation of po. Moreover, a is 

injective. L1 

Lemma A.3. Let o = ( cl, . . , ok) and 6 = (6 r, . ,6,) be tuples in B. Then, 1 Q. ‘v @,,, 
@,v @a 2 QO”6 and @)a~@6~@bA~~. 

Proof. Let PER& and let a, hEdom(p) be such that a # b. We have 

(l@,)(a,b,p) * not @,(a,b,p) 0 <index(a,h,P)=false 

Consequently, 1 @0 z Q10 and QD, v Qa 2 Gd V 4. We also have the following. 

~,A~d-l(l~rrv~~j,)~~(~~~v~~b)^~~,?o)”(16) 

=%r(7n)“(In,,=@0~6. 0 

Proof of Theorem 3.2. Clearly, { @,, ( o~Bf G SRF. To show SRF G { CJ~) CEB} we 

observe that truec@l.,.ll, false-@o...oo, and Pri,x’/~~(D ,,,,,, .,), where aj=lej=i, 

for all id k. Moreover, by Lemma A.3, { 40) acB} is closed w.r.t. N under the 1, v 

and A operations. Hence, SRF G (Go 1 CJEB). 

Let a=(~~, . . . . ok) and 6 =(dl, . . . . &). Without loss of generality we assume that 

c1 = 1 and 6, =O. Since RS is nondegenerated, there is ,uERS such that Y~,~ # 8. Let 

(a,b)Er,,,. We observe that @,(a, b, p) holds, while Qd(a, b,p) does not hold. Hence, 

@,-_@,, does not hold, which completes the second part of the proof. 0 
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