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Noninterleaving models of concurrency assume that behavioural properties of systems can be
adequately modelled in terms of causal partial orders. We claim that the structure of concurrency is
richer, with causality being only one of the invariants generated by a set of closely related executions
or observations. The model we propose supports three levels of abstraction: the observation level,
invariant level and system level; and we will proceed from the bottom (observation) level to the top
(system) level. This is in contrast to the way other models for concurrency are introduced, as they
essentially support two levels of abstraction, the system level and behavioural level (which includes
both observations and invariants), with the direction of development going from the system to
behavioural level. In this paper we first discuss the notion of an observation of a concurrent
behaviour; in particular, we investigate the role played by interval partial orders. We then introduce
a general framework for dealing with invariants generated by sets of closely related observations.
This leads to the formulation of the notion of a (concurrent) history whose structural properties are
subsequently studied.
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0. Introduction

The existing models of concurrency are usually developed on the system and
behavioural levels, and are top—down in the sense that the concept of a system is
introduced first. The system level is usually based on some notion of an abstract
machine [29, 38, 44, 50] or algebraically defined process [15, 34]. The operational
concepts on the behavioural level are influenced by the system level and are usually
expressed in terms of interleavings [15, 33, 37], step sequences [17, 42, 43], and
(labelled) partial orders [4, 29, 31, 40, 41, 47]. It seems that a disadvantage of such an
approach is that the behavioural level includes both single observations of concurrent
histories (interleavings and step sequences), and invariants characterising sets of
observations (causal partial orders). As a result, it is difficult to develop a fully
satisfactory model. For example, the description of invariants other than causality is
confusing. We believe that in order to obtain a truly general model of concurrency, the
behavioural level can be replaced by the invariant and observation levels. Moreover,
the development should proceed from the observation to the system level. In this
way, behavioural notions can be studied in more objective setting. without being
influenced by any specific representation of concurrent systems dealt with on the
system level.

In this paper we focus on the observation and invariant levels. We define observa-
tions as partially ordered sets of event occurrences, where ordering represents
precedence, and incomparability represents simultaneity. We then introduce a class of
basic invariants, and define a concurrent history to be the set of all observations
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consistent with a set of invariants. After that we discuss a connection between
paradigms (or general laws) of concurrency and the invariants. We identify eight basic
paradigms, including that usually adopted by different existing models: two events can
be observed as simultaneous if and only if they can be observed in both orders. Different
paradigms admit concurrent histories with different structural properties. As a result,
one may choose different invariant representations for concurrent histories. In par-
ticular, the above paradigms admits histories which can be represented by causal
partial orders. However, for the remaining seven paradigms, causal partial orders
either have to be replaced by stronger invariants or augmented. For one of these
paradigms, an axiomatic model as well as representation theorems for invariants will
be provided.

The existing models for concurrency essentially use only one kind of invariant,
usually referred to as causality. Even more complex structures, such as pomsets [40],
event structures of [49], or concurrent histories in the sense of [6], are in principle
based on causal partial orders. Both interleaving and partial order models have been
developed to a high degree of sophistication and proved to be successful specification
and verification frameworks. However, some aspects of concurrent behaviour are still
difficult to tackle. For example, the specification of priorities using partial orders is in
some circumstances problematic [5, 17, 22, 26]; in our opinion, mainly because their
concurrent behaviour cannot always be defined in terms of causality-based structures.
A similar comment applies to inhibitor Petri nets [37] which are virtually admired by
practitioners and almost completely rejected by theoreticians. Problems like these
follow from a general assumption that concurrent behaviours can always be ad-
equately modelled in terms of causality-based structures. We claim that the structure
of concurrency phenomenon is richer, with causality being only one of the invariants
generated by a set of closely related observations. An attempt to define other
invariants was made in [12, 27, 28], however, with different objectives in mind. We
will show how these approaches fit into our approach.

The paper is organised as follows. A motivating example is discussed in the
next section. In Section 2 we present the model of observations. Section 3 introduces
invariants in a general setting which is independent of any specific notion of
observation. Section 4 contains the definition of a history, while Section 5 establishes
a link between paradigms and invariants. Section 6 discusses the notions developed in
the preceding sections for the observation model from Section 2. In Section 7
a detailed analysis of one of the paradigms is presented. Section 8 briefly
describes some related work. A short statement about the system level is provided in
Section 9.

1. Motivation

Consider the nets in Fig. 1. (PN and PN employ inhibitor arcs — an inhibitor arc
between place p and transition ¢ means that if ¢ is enabled then p must be unmarked
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PNy PNy

Fig. 1. Motivating cxample.

[37].) We want to define their semantics so that:
(1) Each net generates exactly one a, b-history (i.c., one involving both a and b).
(2) Different nets generate different a, b-histories.
(3) Histories are defined on the same level of abstraction as the causality relation.
In terms of step sequences, interpreted as executions or observations, the nets
generate [20] the following step sequences involving both ¢ and b:

PN, generates {a} {b},{b}{a} and {a,b},
PN, generates {a}{b} and {b}{a},

PN, generates {a}{b},

PN, generates (b} {a},

PN generates {a, b},

PN generates {a}{b} and {a, b}.

Whereas it seems natural to require that each PN, for i # 2, generates just one
a, b-history (there is no conflict between a and b), this may not be obvious for PN,. To
see that it may in some cases be advantageous to allow PN, generate only one
a, b-history, we consider the following program statement:

ax=x+1& b: x=x+3.

Here ‘& denotes commutativity operator [30] implying that the assignments may
be performed in any order but not simultaneously. We think that this could be
adequately modelled by PN, generating one history consisting of two, essentially
equivalent, executions {a}{bh} and {bh}{a}. Hence, we want each PN; to generate
exactly one g, b-history 4;, where

i Fh S ( 1
Al—na}{b},-lb,la},vla,b”,

dy={{aj{by {bjlaji,
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dy={{a}{b}},
As={{b}{a}},
4s={{a,b}},
de={{a}{b},{a,b}}.

A question which one might now ask is whether the 4;’s could be represented in
a more structured or compact way using, e.g., the notion of causality. Whereas this can
be achieved for 4, (a and b are independent), A5 (a causes b) and A4, (b causes a), no
such characterisation is possible for the remaining histories. We may, however,
introduce three new relations (invariants): commutativity (=), synchronisation (<)
and weak causality ( ~ ) in the following way:

a==b iff a precedes b or b precedes a in the step
sequences a history comprises.

a«b iff a is simultaneous with b in the step sequences a history comprises.

a » b iff a never follows b in the step sequences a history comprises.

Now it is possible to characterise 4, by a<==b, A5 by a< b, and A4 by a 7 b.
Although it is possible to require that PN, generate only one a, b-history, there may

also be cases where it would be more appropriate to interpret PN, as a net generating

two disjoint a, b-histories, A3={{a}{b}} and 4,={{b}{a}}. A question then arises

as to how one might characterise these two different interpretations of the behaviour

as 10 DLW QL HLELY Lialdl LOLHOOU LWO GLLTIULR LIl Ui il Uttt

of PN,. In this paper we propose a solution based on the notion of a paradigm.
A paradigm is a statement about the internal structure of a single history, such as: if
there is a step sequence in which a preceded b, and a step sequence in which b preceded a,
then there is also one in which a and b were simultaneous. If this paradigm were adopted,
4, would no longer be a valid history, and we would have to replace it by 45 and 4,.

Remark. Although we used nets to illustrate the above discussion, our approach is
not intended to be tied to any particular model of concurrent systems.

2. Observations

Observation is an abstract model of the execution of a concurrent system. It is
a report supplied by an observer who has to fill in a (possibly infinite) matrix with
rows and columns indexed by event occurrences. The observer fills in the entire
matrix, except the diagonal, using — to denote precedence, « following, and « simul-
taneity. For example, the fact that a was observed simultaneously with b and ¢, and
b preceded ¢, would be represented as in Table 1.
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Table 1
Observer's report

a b ¢
]
a > >
b PN N
l
C Ll “—

In the existing literature one can identify basically three kinds of observations: In
the interleaving approach [ 15, 33, 37], observations are sequences of event occurren-
ces. The step sequence approach [17, 42, 43] defines observations as sequences of sets
of events observed simultaneously. The third approach advocates the use of interval
orders: [18, 36, 47] and, implicitly, [46]; however, (except [18]) usually without
providing precise motivation and without adapting the theory of interval orders [8]
to the needs of concurrency theory. The partial orders of [4, 29, 41] or pomsets of
[40], where ordering represents causality and incomparability represents indepen-
dence, cannot, in general, be interpreted as observations. As it was pointed out in [34],
causality cannot be observed (by single observers, see [39]). Causal partial orders
represent sets of closely related observations and belong to the invariant level. In this
section we shall define precisely what kind of mathematical objects could be regarded
as observations and what properties they possess. We will make the following basic
assumptions:

(A1) The observer can state that one event preceded another event, or that two
events occurred simultaneously.

(A2) The observer can always state whether two events occurred simultaneously,
or whether one event preceded another event.

Together with transitivity of the precedence relation, these mean that observations
can be represented by partially ordered sets of event occurrences, where ordering
represents precedence, and incomparability represents simultaneity. Note that leaving
out A2 would essentially amount to the introduction of uncertainty into the model.
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Not all partial orders can be interpreted as valid observations. The three additional
assumptions are:

(A3) The observer only perceives a single thread of time.
(A4) One observes finitely many events during a finite period of time.
(A5) Events are finite.

A5 means that we exclude nonterminating events. A4 and A5 mean that an event
can be preceded or simultaneous only with finitely many events. (Partial orders with
this property will be called initially finite.) To capture A3 we first note that for any
maximal set of simultaneous events there must be a point on the observer’s time scale
at which all the events in the set have been observed. Then A3 can be expressed by
requiring that the time points corresponding to such maximal sets be linearly ordered.

2.1. Posets and principal posets

A partially ordered set (poset) is a pair p0=(dom(po),;;) such that dom(po) is
a nonempty set and w2 is an irreflexive transitive relation on dom(po). (We
reserve the symbol < to denote the usual ordering in R.) po is total if for all distinct
a and b, a—» b or b;;a holds. po is initially finite if for every a there is only finitely
many b such that a—l;;b does not hold. po is combinatorial if = is the transitive
closure of the immediate successor relation g defined by

agb:<=a—>ba—13c. a—>c—b.
po po ~ po

We will denote <;3b if @ and b are distinct incomparable elements of po, while
Cuts,, will denote the set of maximal antichains [9], i.e., sets C of incomparable
elements such that each a¢ C is comparable with at least one element in C. We also
define C,,=(Cuts,,, «pvg), where w2 is a relation on Cuts,, such that B C if B+ C and
there are no beB and ceC satisfying c—»b. po is stratified [9] if 2 Yidgom(po) 1S an
equivalence relation. A discrete representation of po is any @:dom(po)— N, such that
for all a,bedom(po), a—’;;b = P(a)<P(b). The representation is image-finite if
@~ 1(n) is finite for all n, and is exact ifa;;b©¢(a)<<b(b).

If po represents an observation then s will be interpreted as precedence, and
<7 as simultaneity. For the poset in Fig. 2(a) we have: dom(po)={a,b, c,d},a;;b,
dera, Cutsp={{ac},{ad},{bc},{bd}} and {ac}->{b.c} (C, is shown in
Fig. 2(b)). We first show that C,, is always a poset.

Proposition 2.1. Let po be a poset.
(1) Ifa;;b then there are A, BeCuts,, such that ac A, be B and A~>B.
2) IfA ~2B and ac A — B then there is be B such that a;;b.
(3) Iwava»B and be B— A then there is ac A such that a;{;b.
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a b
a
¢ d NS d {a.bt  {c} {d}

b o d)

Fig. 2. Posets and principal posets.

4) If A ;an;gC and ae AN C then aeB.
(5) If A~y B then A—B#Q and B— A #0.

Proof. (1) LetaeAeCutsy,,and C={c|c—b}. Define D=A4—-Cu {b}. Clearly, there
is BeCuts,, such that D = B. Suppose "1 A e B. Since A # B, we must have ¢ d for
some ceB and deA. We obtain ded—B< A—D=AnC, which yields d;ﬂ»b.
Hence, c—pgd;;b, contradicting ¢, be Be Curs,,.

(2) If — a;;b for all be B then, by A "SZB and acA~— B, a«pgb for all be B. Hence,
B is not a maximal antichain, a contradiction.

{3) Similarly as for (2).

(4) If a¢ B then, by (2), a;;b for some be B, contradicting B C.

(5) Follows from A # B and the maximality of cuts. [

Proposition 2.2. For every poset po, C,, is also a poset.

Proof. Suppose A B C. By Proposition 2.1(2,5), b—>c for some ceC and beB.
Hence, A # C. If—wAA;gC then, c—2da for some ceC and ac A. By B«;g C, a¢B. Thus,
by Proposition 2.1(2), a—» b for some be B. Hence, c;;b, contradicting B~»>C. U

C,, will be called the principal poset of po. It will be used to formalise A3. We first
investigate the relationship between posets and their principal posets.

Proposition 2.3. Let po and pr be posets. Then C,,=C,, iff po=pr.

Proof. It suffices to prove the left-to right implication. Suppose C,,=C,, and a;gb.
By Proposition 2.1(1), there are A4, BeCuts,, such that aeA, beB and A w2 B.
Clearly, 4 o B. Hence, ™1 b—;a. Moreover, b«p—;a since, otherwise, there would
be CeCuts,, with a,beC. Clearly, C¢Cuts,,, contradicting Cuts,,= Cutsy,. Hence,
a—b. [

o

Proposition 2.4. Every initially finite poset has an injective discrete representation.

Proof. Let po be an initially finite poset. For aedom(po), let V, ,,=
{bedom(po)lb;;av a«;};b}. From Szpilrajn-Marczewski extension theorem [45] it
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follows that po can be extended to a total order ¢ such that dom(t)=dom(pe) and
=ET The latter implies V,, < V, ,, for all a. Hence, ¢ is initially finite. Define
@(a)=card(V,,). Clearly, @ is injective since ¢ is total. Moreover,

a;’b =apb= V.V, > P(a)< P(b). OJ

Corollary 2.5. Every initially finite poset is countable and combinatorial.
The implication in Proposition 2.4 cannot be reversed (take po=(N,®) and @(i)=1).
Proposition 2.6. If a poset po is initially finite then C,, is also initially finite.

Proof. Let CeCuts,,. We first observe that E={ | _.. V.. » is finite, since po is initially

finite. Suppose Vc, ¢, is infinite. If Be V¢, then b — ¢ for some be B and ceC. Hence,
BAE # 0. Consequently, since E is finite and Vee, is infinite, there is ee E which
belongs to infinitely many cuts in V¢, ¢, . Hence, {d|e = d} must be infinite, contradic
ting the initial finiteness of po. O

The implication in Proposition 2.6 cannot be reversed (take po=(N, 0)).

Proposition 2.7. If all cuts of a poset po are finite, and {c| a—pgc;ﬂ»b} is finite for all
a and b, then C,, is combinatorial.

Proof. It suffices to show that {C|A4~» C~» B} is finite for all A, BeCuts,,. Suppose
Am C;vgB. If ceC—(A v B) then, by Proposition 2.1(2, 3), a-p—(;c;;b for some ac A
and beB. Hence, C = D, where D=AuBu{c|3acA 3beB. a—};;c—p—;b}. Clearly, D is
finite. Hence, there is only finitely many C satisfying A Mp;;CygB. ]

Corollary 2.8. If po is initially finite poset then C,, is combinatorial.

We end this section proving that the principal order is total iff the original poset
does not contain the four-element poset of Fig. 2(a).

Proposition 2.9. Let po be a poset. Then the following are equivalent.
(1) There are no a,b,c,dedom(po) such that

a—bc—>dand cobeodoaoc.
po po po po po po
(2) C,, is total.

(3) For all a,b,c,dedom(po), a;;b A c—p;»d:»a—p;»d v c;;b.

Proof. (2)<= (3): This is proved below as Theorem 2.12.
(3) = (1): Obvious.
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(1y=(3): If card({a,b,c,d})<4 then (3) is always satisfied. Suppose a;}»b A c;}»d
and card({a,b,c,d})=4. From (1) it follows that

Z=({ab}x{cdiu{cdx{ab})n— £0.

Now, by taking any (x, y)eZ one may easily show that a;gd or c;ﬂ»b. =

2.2. Observations and interval orders

Let Ev be the sev of event occurrences. The definition of posets representing
observations can now be formulated as follows:

An observation, o€ Obs, is an initially finite poset such that dom(o) < Ev and
C, is total.

Note that the finiteness properties of the observation, A4 and AS, are guaranteed by
the poset’s initial finiteness, while the assumption about the single thread of time, A3,
is captured by total ordering on all the snapshots (maximal antichains).

We now look closer at the structural properties of observations. Directly from
Propositions 2.3 and 2.6 and Corollary 2.8, we obtain that the principal poset of an
observation o can be represented as

A1 V(? A2 \vg* \v’(\;) A,,, or

Ao Ay A Ay o oo

We call (A)ici1, ..y =(A1, 43, ..., A,) or (Ap)iey =(A1, Az, ...) the cut-sequence of o.

Proposition 2.10. Ler (A;);c; be the cut-sequence of an observation o.
() If i,i+1€eJ then a;»b for all ae A;— A;. | and all be A; | — A;.
(2) {ilaeA;} is finite for all acdom(o).

Proof. (1) Suppose —1a—b for some aed;—4;+, and bed;,,—4,. This and
A~ A;vq yields a<>b. Hence, there is m such that a,beA,. Clearly,
i #m#i+ 1. By Proposition 2.1(4), m <iimplies b€ 4;, while m>i+ 1 implies ae 4, .
In either case we obtain a contradiction.

(2) Follows from the initial finiteness of 0. [

Thus, an event always belongs to a finite set of contiguous snapshots. This suggests
that events may be characterised by intervals on the observer’s time scale. There
already exists a theory of interval partial orders [7, 8] developed within the measure-
ment theory. We will use some of the notions and results obtained there to character-
ise observations. The name of interval order follows from [7]; its origin can be traced
back to Wiener's 1914 paper [48], where interval orders were used to analyse
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temporal events. Abraham et al. [1] claim that such a concept was also known to
Russell. In this section we first recall a fundamental result of Fishburn [7], followed by
a series of results leading to a representation theorem for observations.

A poset po is an interval order [48] if a;;b and c;;d implies that a;}»d or c— b
holds, i.e., if its graph does not contain a subgraph isomorphic to the poset of Fig. 2(a)
(see Proposition 2.9).

An interval representation of a poset po is a pair of mappings ¢ =(¢, ¥) and a total
order (X, £ ) such that &, ¥:dom(po)— X and for all a and b,

®(a) L ¥(a)

a—rb < ¥(a) L P(b).

That is, with each a can be associated an interval J(a)={x|®(a) L x £ ¥(a)Vv
x=®(a)vx=¥(a)} such that a;;b iff J(a) is to the left of J(b). The interval
representation ¢ is injective if @ is injective, real if X =R, and discrete if both @ and
¥ are integer-valued functions.

Theorem 2.11 (Real representation of interval orders, Fishburn [7]). Let po be a poset
such that there is countably many equivalence classes of

eq={(a,b)|Ve. (cra< c;;b)/x(ct;»c«@b;;c)}.
Then po is an interval order iff it has a real interval representation.

We obtain a general result linking the theory of interval orders with our model of
observations.

Theorem 2.12 (Principal posets and interval orders). A poset po is an interval order iff
C,, is a total order.

Note: The theorem is a direct consequence of Theorem 1 and Corollary 2 in
Chapter 3 of [8]. In terms of interval graphs similar results were established in
[13, 11]. [1] claims this result was known to Russell and Wiener. We present our
simple proof to make the presentation self-contained.

Proof. <: Suppose a—> b, 2 d, ’ra?;d and — c— b. We have a < d since, otherwise,
c;;d;; a—> b, contradicting — c;;b. Similarly, cer b. Hence, there are A, BeCuts,,
such that a,de A and b,ceB. Clearly, A # B. Moreover, — A~;;>B since c;;d, and
1 B> A since a—» b. Hence, C,, is not total.

=: By Proposition 2.2, C,, is a poset. Suppose A, BeCuts,, are such that 4 # B,
—1A~va»B and —nvav(;A. Then, a;}»b for some be A and aeB, and c—};;d for some ce A4
and deB. By a,deB and ¢,be A, a—p—(;d and ﬁc;;b. Hence, po is not an interval
order. [J
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By Theorem 2.12, the poset of Fig. 2(c) is an interval order; its principal order
is shown in Fig. 2(d). We have obtained an alternative definition of observable posets:

Observation is an initially finite interval order of event occurrences.

The representation theorem for interval orders (Theorem 2.11) does not take into
account the initial finiteness of observations. It can be strengthened (Theorem 2.16) to
provide a better characterisation of the way events are observed.

Proposition 2.13. A4 poser with an interval representation is an interval order.

Proof. Let ¢=(®,¥) and (X, . ) be an interval representation of po. Suppose
a;»b,c;}»d, ﬁa;ﬂ»d and _|C;;b. By ¥Y(a) L @(b) and @(d) .. ¥(a)v &(d)=¥(a),
we have @(d) £ ®(b). By ¥(c) £ ®(d)and &(b) L. ¥(c)v @(b)=¥(c), d(b) L ®(d).
Thus we obtained a contradiction. [

Theorem 2.14 (Injective real representation of interval orders). A countable poset is an
interval order iff it has a real injective interval representation.

Theorem 2.14 is proved in the Appendix without using Fishburn’s result {Theorem
2.11). Moreover, the latter is a direct consequence of the former (the proof below is
simpler and uses a different technique than those in [7, 8]).

New proof of Theorem 2.11. 1f po is countable then Theorem 2.14 is a stronger version
of Theorem 2.11. Let po be uncountable and dom(po)/,, countable. Let pr=
(dom(po)/.,, R), where ([a].,. [b].,)eR ¢>a-pgb. One can easily see that pr is a well-
defined countable interval order. From Theorem 2.14 it follows that there is an
injective real interval representation ¢y =(®,, ¥,) or pr. Let &, ¥ :dom(po)— R be
defined by: @(a)=®y([a].,) and Y(a)="Yq([al.,). Clearly, ¢ =(®, ¥)is a (noninjec-
tive) real interval representation of po. U

Theorem 2.14 can be strengthened if we essentially assume that po is combinatorial.

Lemma 2.15. Let po be a combinatorial interval order such that for all a,bedom(po),
‘0 R .
(1) {clacyc}is finite.
(2) {c|a;;c;;b} is finite.
Then po has an injective discrete interval representation.

Proof. See Appendix. [l

We now can prove the main representation theorem for observations.

Theorem 2.16 (Injective discrete representation of observations). A poset po of event
occurrences is an observation iff it has an injective and discrete interval representation
O=(P, V) such that &(a)>0 for all a.
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Proof. =: From Corollary 2.5 and Theorem 2.12 it follows that po is a combinatorial
interval order. Moreover, po is initially finite. Hence, by Lemma 2.15, po has an
injective and discrete interval representation 0=(®, ¥). Moreover, using the initial
finiteness of po, we can find ¢=(®, ¥) such that ®(a)>0 for all a.

<: Since ¢ is injective and ®(dom(po)) = N, po is initially finite. Moreover, by
Proposition 2.13 and Theorem 2.12, C,, is total. Hence, po is an observation. [

That is, events involved in an observation can be interpreted as intervals on the
discrete time scale. We also conclude that in our model the discrete time scale and
dense time scale are equally expressive.

2.3. Interleaving and step sequences

The interleaving and step sequences are part of the model. An interleaving sequence,
poe0bsy,, is an initially finite total order such that dom(po) < Ev. A step sequence,
po€0bsy,,, is an initially finite stratified poset such that dom(po)< Ev. Clearly,
Obs;; & Obsg,, & Obs. The representation theorems for the interleaving and step
sequences have very simple form.

Proposition 2.17. Let po be a poset and dom(po) = Ev.
(1) po is an interleaving sequence iff it has an exact injective discrete representation.
(2) po is a step sequence iff it has an exact image-finite discrete representation.

Unlike [47] (and implicitly [46,36]), we have not arbitrarily assumed that the
interval orders should model observations. We have introduced a general notion of
observation based on some natural assumptions, A1-AS, about the way events are
recorded by the observer. As a consequence, we defined observation as an initially
finite poset whose principal order is total. Theorem 2.12 says that this is equivalent to
being an initially finite interval order. The classical Fishburn representation theorem
which usually provides the motivation for the use of interval orders assumes the dense
observer’s time scale, even if the orders are combinatorial. We have shown that for
initially finite interval orders there is an equivalent injective interval representation
using discrete time scale (Theorem 2.16). We have also strengthened Fishburn’s
characterisation of countable posets by proving the existence of injective representa-
tions (Theorem 2.14).

3. Invariants

There are many reasons why describing a concurrent system solely in terms of the
observations it may generate can be unsatisfactory. In fact, most of the arguments
made in favour of causality-based structures (see [4]) can also support the introduc-
tion of the new invariants. To define them, we will focus on the relationship between
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the events involved in the observations of the same concurrent history. When dealing
with a single observation (as defined in the previous section), we distinguished three
forms of relationship between two events, a and b, namely: a before b, a after b, and
a simultaneous with b. Given a set of observation 4 and two events a and b in its
event-domain, one might ask what was the relative order of the two events in all the
observations belonging to 4. This time the question cannot be answered as easily as in
the case of a single observation. For example, there may be some observations in
which a occurred before b, some in which a occurred simultaneously with b, but none
in which b occurred before a. (We will later characterise such a situation using an
invariant, denoted by 4 and defined by: a 7 b<>VoeA. a— b v a«<>b.) In this section
we will investigate how precedence and simultaneity can be lifted from the level of
single observation to the level of sets of observations.

3.1. Report systems

To provide a formal framework for dealing with invariants generated by sets of
related observations, we first introduce the notion of a report system.

Let Z, be a set of objects (e.g., event occurrences). A relational system p=
(Z,r1,..., %), where k=2, is a report over 2o if £ < 2y and ry, ..., r;, form a partition of
X xX—idy. Wedenoter; ,=r;(i=1,...,k)and dom(u)=2. For(a,b)eX x X —idy, we
denote by index(a,b, i) the [ <k for which ar, , b holds. A report system over X is any
nonempty set RS of reports over X, such that if (X,r,,...,r)eRS and
(2',81,...,5)€RS then k=1

Let RS be a report system fixed until the end of Section 5, and k be the number of
the relations in its reports.

The report system of concurrent observations, RS,,,, is defined over the set of event
occurrences and comprises all reports (Z,r,,#,,r3) such that there is an observation
0€0bs satisfying dom(o)=2, —»=ry, «~=r; and <»=r;. That is, reports in RS, are
just different representations of observations (see Section 6).

There are two reasons why we have introduced the general notion of a report
system, instead of directly dealing with observations. Firstly, the general approach can
be easily adapted if, for instance, one needs to introduce a relation representing
observer’s uncertainty about the relative order of events. The new report system
would then contain reports (X,ry,F,,Fs,Fs), With r4 representing uncertainty. Sim-
ilarly, one could use a model similar to Allen structures [2] or allow reports to be
produced by teams of observers as in [39]. Secondly, many of the properties of
invariants are independent of the specific representation chosen for observations, and it
seems important to be able to separate them from those properties which follow from
the specific properties of interval orders.

The first approximation of the notion of a history is introduced as follows: A report
set over RS is a nonempty set 4 of reports over RS with a common domain, denoted
by dom(A4). We denote this by 4eRSet(RS).
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Throughout the rest of this paper, we will assume that RS is nondegenerated,
meaning that for every /<k there is ueRS such that r,, #0. Clearly, RS, is
a nondegenerated report system.

3.2. Invariants of paradigms in RS ., an intuition

(a,b)el = a#b A Yoed. ®(a,b,0),
where @(a, b, 0) is a formula defined by the grammar:

@ = true | false | a—>b | acb|acb| 7P| PvD | OAD

Some of the basic terms of the above grammar are redundant, e.g., a<-b is
equivalent to —1(a—> b v a < b). However, this does not cause any problems, while
simplifies the discusston in general case.

Let T T 4R be relations on dom(4) defined as follows:

a—ob < a#Fba(Voed.a—ob),
a<b < a#bn(Voed. acb),
apb <= a#bna(Voed.aecb),
a?b < a#bn(Voed.a—bvab),
azb< a#bnr(Voed.a—bvaesb),
afb < a#ba(Voed.ac-bva«sb)

- and «- are called causalities, 5 commutativity, < synchronisation, while  and
weak causalities. We will use —, «, &, =, ~ and < to denote mappings which for
AeRSet(RS,,,) return, respectively, o 4 and \. We shall call these
mappings invariants, and denote their set by SRI. It can be shown that the following
holds (the proof will be presented for the general case):

SRI(A)={0,—, <, 52, 4, 5,dom(4) x dom(4)—idyom s }-

By symmetry, we can consider only four nontrivial invariants: ahrdt and

4. Note that = 7= and <= 7§ which means that each invariant in
SRI(4) can be derived from <= and 7.
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The approach to concurrency based on the concept of causality requires that for
every history 4 and all a,bedom(A), the following rule ( paradigm) holds:

(Joed.a«<rb) < (Joed.a—b)r(30ed.ac-b)

Paradigms will be used to characterise the internal structure of histories. In
Section 6 we will analyse RS,,, in detail.

3.3. Simple report formulas

Let 4 be a report set over RS and X =dom(4). In general, a binary invariant of
A might be defined as a relation I € X x ¥ characterised by a formula: V(8,y)el YxeA.
®(f,y,x), where B,y are variables ranging over X, x is a variable ranging over RS, and
®(f,7,x) is a formula buiit using the fr; .y terms, quantifiers and standard logical
connectives and constants. For example, causality could be characterised by V(8, y)el
VxeA. f— 7. In this paper we are interested in most basic invariants, generalising the
notions of precedence and simultaneity, characterised by quantifier-free formulas &.
The simple report formulas, @eSRF, are defined as follows:

D = true | false | fri v | - | By | TP | ove | dAD.

Two formulas, (S, 7, x) and @o(f,7, x), are equivalent, d ~ &y, if for all ue RS and
all distinct a,bedom(u), @(a,b, pu)<= dy(a,b, 1t). (The evaluation of simple report
formulas follows the standard rules [35].) Equivalent simple report formulas can be
substituted for each other.

Notation 3.1. Let B be the set of sequences o=(a,, ..., 5,) such that o;e{true, false}.
We apply the logical 71, v and A operations to be elements of B componentwise. We
will usually denote true by 1 and false by 0.

Theorem 3.2. For every 6=(0,,...,0,)eB, let =& v ---v &, where Ei=0,ABr; 7.
Then (upto ~). SRF={®,|oeB}. Moreover, ®, ~ ®; <> g=04.

Proof. See Appendix. 0O
For the report set of concurrent observations RS, we have (upto ~):
SRF ={ false, a—babacbaobvacba—bvacb,

a<bvaob, true}.
0 o

We now introduce the invariant relations characterised by simple report formulas.
A relation I € X x X is a simple report invariant of A, denoted by IeSRI( A), if there is
@_eSRF such that

I={{a.b)eXxZ|la#tbaVued. ¢,(a,b,u)}.
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In what follows, I will be noted by I,(A4). Moreover, we will use I, to denote the
mapping, called invariant, which for every 4eRSet(RS) returns I,(A). The set of ail
such mappings will be denoted by SRI. Note that

4={(a,b)eXxZla#baVYoed.a—>bvacb}
is an example of a simple report invariant in RS,,,.

Proposition 3.3. (1) SRI(4}={1,(4)|ceB}.
(2) If o # 0 then there is Age RSet(RS) such that 1,(A4q) # 15(4,).

Proof. (1) Follows directly from Theorem 3.2.

(2) Let 6=(04,...,0) and d=(J,,...,d;). Without loss of generality, we assume
that o, =1 and 6, =0. Since RS is nondegenerated, there is ueRS such that r, , # 0.
Let (a,b)er, ,. Define do,={u}. Clearly, 4oeRSet(RS). Furthermore, we have
(a,b)el (4y) and (a,b)¢l5(4y). O

Fori=1,...,k, let R;(4) and 5,(A4) be simple report invariants defined as follows:
Ri(d)={(a.b)eXxZ|a#bAVued.ar; b},
Ai(d)y={(a,b)eZ xZ|a#bAVued.ar; ,b}.

R;(4) is called an evidence (it says that something has happened according to all
reports in 4), and 51;(4) is called an alibi (it says that something has not been
reported). For RS,,,, —» ¢ are evidences and i, 7 .= are alibis. It is possible to
express each simple report invariant as an intersection of alibis.

Proposition 34. If o=(0,,...,0,)€B and {i, ...,i;}={ilo;=0}#0 then I,(4)=
A, (4)n -, (4).

3.4. Signatures

Although the set of simple report invariants comprises 2* relations, we do not really
need all of them since they are not independent. We will now address the problem of
finding a set of invariants from which all the relations in SRI(4) can be derived.

A signature of a nonempty set 4 < RSet(RS)is a set of invariants S < SRI such that,
for all 4, Aye A, if dom(A)=dom(4,) then

VIES. I(4)=1(4y) = VIeSRI. I(A)=1I(4,).

S is universal if A=RSet(RS). For RS,,,, { 7, <=} is a universal signature. Clearly, SRI
is always a universal signature. In general, the smaller A is, the fewer and simpler
invariants one needs to obtain a signature.
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Consider RS,,, and two observations, o; and 0,, shown in Fig. 7. Then S={-} is
a signature for A={{0,},{0,}}, while {<} is not ( o= 0= ). We further observe
that § can be regarded as ‘smaller’ than two other sliglljnaturesl of A {—>, e and { ~}.
(For the latter, this is motivated by the fact that -S4 holds, for all 4.)

A signature comprises invariants which for every 4e A provide enough information
to construct SRI(4). It is, therefore, natural to always look for a ‘minimal’ signature.
For distinct 1, JeSRI, let Iv J if I{A} < J(A), for all AeRSet(RS). That is I » J means
that the size of 1(4) never exceeds that of J(A). For RS,,,, we have:—» ~, ->» = and
Ll 4N

A signature S of 4 = RSet(RS) is minimal if the following hold:

No proper subset of S is a signature of A.
If I»J and Je§ then S—{J}u{[l} is not a signature of /.
For A above {—} is minimal signature, while {—, <} and { »} are not.

Theorem 3.5. (Existence of minimal signature). For every nonempty A < RSet(RS)
there is a minimal signature.

Proof. Let I':SRI—N be any mapping such that I» J = I'(I)<I'(J). For a signature
S, let I'(SY=Z,.sI'(I). Clearly, if S is not minimal then there is a signature §’ such that
I'(S")<I'(S) (see the last definition). Thus, since the number of the signatures of A is
finite, there is at least one minimal signature.

Finding minimal signature can be a nontrivial problem. However, it is always
possible to find one comprising no more than k invariants:

Theorem 3.6. {51,,...,5,} is a universal signature.

Proof. Follows directly from Proposition 3.4. [

4. Histories

A report set 4 was the first approximation of the notion of a history; it has been
assumed that the reports in 4 have the same domain. What we also need is some
notion of completeness for 4 which would be based on the invariant properties

introduced in the previous section.
Let AcRSet(RS) and S < SRI. The S-closure of A, denoted by 4¢5?, comprises all
1€ RS such that dom(g)=dom(4), and for all I €S,

(a,b)el (4) = P,(a.b, ).
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Consider 4=1{0,,03,05}€RSet(RS,,,) and S={=, ~}, defined in Fig. 3. Then
0eA<S? iff dom (0)={a,b,c,d, e} and

Vx,yedom(o).(xgy=>x—0>yvx<7y)/\(x—\A_‘y:x7yvx<o—y)
where 7 and 5= are as in Fig. 3. One may check that

A</~:>:A0:{01,...,010}"—_4‘3/‘,:>.

req 1
Ll |
' 1
1 c!
I |
1 9b i
i !
I 1
] 1
| e i
09 = 03= | | 04=
) )
1 !
I d I
b J r
a !
1
!
0= Wb ¢ 0g= !
|
_ d ¢ :L
0g=
a b a
9= ®b ¢ 010= c b
c
d e d é 011= 019= d .
e
a a
$ 4
d c de c
—A =A <A
¢ g ¢
e b e b e \1‘)
L] ® . ®
k ec dee—e de ecC
la =A Sa

Fig. 3. Invariant closure and components (symmetric relationship is represented by undirected arcs):
Az{olvosaos} and A0={01a---~010}, S:{:,/‘}, A<S>:A(SRI>:A0=A6S>=ASSRI> and
CSRIM)={0. 2. 9. 2 . 5. 5, 4.
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Similarly, if dom(o)={a,b,c.d, e} then

0e A < Vx, yedom(o).(X5my =Xy V x-y),

0€A¢”) < Vx,yedom(0).(x Jy = x>y Vv Xxory).

Note that 0,;€45— A< and 0,,e4¢">— A", For example, 0,,¢4<"” since
d—b and b 7d, and 01244 because cevebut e

Proposition 4.1 (Basic properties of S-closure). Let A, A,eRSet(RS) be such that
dom(4)=dom(A4,). Moreover, let S < S, = SRI.

() A< A,

(2) A<S()> [out A<S>

(3) (VIES.I(A)=1(4o)) = A =45

(4) L(A)=1(4%5) for all I€S.

(5) (A<S>)<S>:A<S>'

Proof. (1)—(3): Obvious.
(4) Let I,eS. We have the following;
[,(A)y={(a,p)eX x Z|a#bAVued® @, (a,b,u)}
= iab)eXxZ)a#tba(Vued. @ (a,b, ) A(YueAS &, (a,b,u))}.
From the definition of S-closure it follows that
((a,b)eXx X Aa#bAYuedS @ (a,b,u))
< (a,b)el (A) = Yued. @ (a,b,pu)
Hence,
1(A)={(a,h)eZ x X |a#bAVued.da,b,u)} =1,(A)
(5) Follows directly from (3) and (4). O

Proposition 4.2. (Closure by universal signature). If AeRSet(RS) and S is a universal
signature then A5 = ASRD,

Proof. By Proposition 4.1(2), A8 < 45>, To show the reverse inclusion we first
observe that, by Proposition 4.1(4), VIeS.I(4)=1(4 ). Hence, since S is a universal
signature, VIeSRI.I(A<5?). Consequently, by Proposition 4.1(3), AR =(f<S)SRE,
Thus, by Proposition 4.1(2), 45 < (4S7)SRD Hence, AS5> =« ASRD . O

We now may introduce formally the central notion of our model:

A history over the report system RS, Ae Hist(RS),
is a nonempty report set A such that A= A4Sk,
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Remark. The term “history” has been used by many authors, e.g., [6, 16, 24, 32], to
denote different concepts in the area of concurrency. We added yet another notion to
that list, but we feel that it captures best the meaning of the last definition.

In other words, every history is a report set which can be fully described by the
invariants it generates. For example, in Fig. 3, 4 is not a history, while 4q is ({ #,=} is
a universal signature and Aé"*:>=AO). As a direct consequence of Proposition 4.2
and Theorem 3.6 we obtain the following:

Proposition 4.3. A nonempty report set A is a history iff
A={peRS|dom(u)=dom(A)AVi<k. (a,b)eA(A)=>"ar;,b}.
Proposition 4.4 (Identification of history by signature). Let S be a signature of
A S RSet(RS). If A, AgeA are two histories with the same domain then
(VIeS. I(A)Y=1(Ay)) = A=A,.
Proof. From the definition of the signature, it follows that VIeSRI.I(A)=I(4,).
Hence, by Proposition 4.1(3), ASRD =48R This and 4, 4,eHist(RS) yields
A=A,. O
The last result implies that if A is a history then the following can be identified:
A — set of observations,
{1,(4)|geB} — all invariants,
A,(A), 8,(4), ..., 5 (A) — all alibis,
1;(4),...,1;(4), A—some invariants and a family of report sets,

where {I;,,...,1;} is a signature of A and AeA. For example, the history 4, in Fig. 3
can be identified with { 7, =}, where  and <> are shown in Fig. 3.

5. Paradigms

In this section we consider structural properties of a single history. Suppose 4 is
a history over RS,,,, oe4 and a<>b. The classical approach based on causality
relation would now imply that there be two additional observations in A, one in which
a precedes b, and one in which b precedes a. So far our model does not provide any
means to ensure that 4 does include the two additional observations. What we need is
the ability to express rules relating different observations of the same history, such as:

(Joed.a<>b) < (Joed. a—>b)A(Joed. ab).
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We will call such rules, capturing the structural properties of histories, paradigms of
the report system. They can be used to project the structural properties of systems
described on the system level onto the behaviours (histories) dealt with on the
invariant level; different paradigms will essentially correspond to different types of
constructs used on the system level. The paradigms, we Par, are defined by

w = true | false | ¥ | - | ¥, | 7o | ove | orw | o=o,

where each ¥;=3x. fr; .y is called a simple trait. It is a formula stating that a given
relationship r; . has been observed. The evaluation of we Par follows the standard
rules [35]. A history AeHist(RS) satisfies a paradigm w(f,y)ePar if for all
a,bedom(4),

a#b = wylab),

where the index in w, means that x ranges over 4. We denote this by 4 Par(w). Two

paradigms, w and wy, are equivalent, denoted by o~ w, if Par(w)=Par(wy).
Before formulating a characterisation theorem for paradigms, we discuss the

relationship between paradigms and the components of simple report invariants.
Let AeRSet(RS),~=dom(4) and 6=(04,...,0,)eB. Define

Co(M={(a,h)eZ x X —idy|Vi<k.((3ueAd. ar; ,b) < 5,=1)}.

The set CSRI(A)={C,(4)|aeB} is called the set of components of simple report
invariants (see Fig. 3). Each component can be obtained from the sets in SRI(4) using
the standard set-theoretic operations, and each set which can be obtained in this way
is the union of some of the components of CSRI(4).

For 4 of Fig. 3, we have [ ,=C1,(4) and «>=Coo1(4), where

al4b < Joed.a—bnrJoeda«—bnrloed acb

a?b < ﬁﬂoeA.a—;»b/\“lEloeA. a<0—b/\306A.a<;>b.

Proposition 5.1. Let Ae Hist(RS).
(1} C AN Cg(A)=0 for o #0.
(2) Uyep Co(d)=dom(4) x dom(A) — idgom -
(3) Coo.,.o(A):Q)- ]

Lemma 5.2. For every w(f, y)ePar there are ', ...,a' (1= 1) such that if Ae Hist(RS)
and a,bedom(4), a # b, then the following holds.

wyla,b) = (a,b)¢Co(A)u---uCu(A).

Proof. For w=true we have

wy(a.b) = (a’b)¢® <>Prop. 5.1(3) (a,b)Y¢Coo.. o(A4)
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For «w=false we have
wy(a,b) < (a,b)¢dom(4)x dom(A)—idgem4)
brop.5.12) (@.0)E ), pC,(A).
For w=Y¥,, where 1 <i<k, we have
ws(a,b) < (a,0)¢), _oCiop.....on(4).
Suppose now that o and J are such that the following hold.
wy(a,b) < (a,0)¢C(4)o---0Cr(4),
d4(a,b) <= (a,h)¢Co(A)u---UCym(A).

We need to show that the Lemma holds for —w and w A é (then it would, of course,
hold also for wv d and @ =>9J). For —1w we have

(T1@)a(a,b) < not ws(a,b) < (a,b)eCo(d)u---u Ca(4d)
Sprop. 510123 (@DIECo0_ o0 Ugror o ColA)
For w A é we have
(wnd)lab) < wy(a, b)and d,(a,b)
< (a,b)¢C(d)u---uC,u(4) and
(a,b)¢ Cor(A)---0Com(4)
< (a,b)¢Ci(Ayo- U Cu(A)UCoi(A) U+ UCym(A). O

Next we obtain a characterisation of paradigms in terms of empty components.

Theorem 5.3. For every wePar there are o, ...,6'€B(l>1) such that
Par(w)={A4€eHist(RS)| Co (4}~ Cnu(d)=0}.

Conversely, if 6*,...,a'eB (1= 1) then there is wePar such that the above holds.

Proof. The first part follows directly from Lemma 5.2. The second part follows from

the fact that for every o€ B there is k€ Par such that Par(x,)={ Ae Hist(RS)| C,(4)=
0} (see Proposition 5.4 below). Hence, for @ =x,1 A --- A K we have

Par{w)=Par(kz A - AKkg)=Par(k,: ) ---nPar(kz)
={AeHist(RS)| C,i(A)0---wCau(A)=0}. O
Theorem 5.3 establishes a link between the paradigms of report systems and the
components of simple report invariants. To obtain an alternative characterisation of

paradigms, we proceed as follows: Let 6 =(0,...,0)eB, {i;,...,i,}={i|o;=1} and
{Ji1..--sJqt={jlo;=0}. A simple report law, k,e SRL, is defined as

true ANV A AWy = falsevW; v.-v¥;.
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Proposition 54. For all AeHist(RS) and g&B, AePar(k,)<C,(4)=9.

Proof. Let k,=(true AWy A AW = falsev ¥; v ---v ¥; ). We have the following
(below a, b range over dom(A4) x dom(A4) —idgem(a)):

AePar(k,)

< Va,b.(true ndx.ar;, (bA--Adx.ar; (b)

= (falsevAx.ar; (bv--v3Ix.ar; .b)

J1.X

< VYa,b. (true ndx.ar;, (bA--AIx.ar, . b)

ip.x

vfalsev3x.ary, bv---v3Ix.ar; b

< Va, b (true ndx.ar; (bA---Adx.ar, b
Atrue A—13dx.ar;

J1ex

< Va,b.(a,b)¢C,(4) < C,(A)=0. [

ba-Am3x.ar;, b)

By joining Theorem 5.3 and Proposition 5.4, we obtain the main characterisation
theorem for paradigms of report systems.

Theorem 5.5. Paradigms are conjunctions of simple report laws
Par={k, A+ AKua|l=1 A0, ... c'eB}.

Note: The above equality holds up to ~.

6. Report system of concurrent observations

We now will use the results from the previous sections to analyse the report system
of concurrent observations. RS,,, comprises reports u=(2,r,r,, r3) for which there is
an observation 0eObs such that dom(o)=2,—>=r,,«~=r; and «>=r;. We identify
w with the observation o.

6.1. Simple report invariants

Let AeHist(RS,,,) be a history, fixed until the end of Section 6.3. Moreover, let
Z=dom(A4) and Q=X x X —ids. Recall that although there are eight simple report
invariants in SRI(4), it is sufficient only to consider four: ebrds and /. The first
two can be interpreted, respectively, as causality and synchronisation. The third
invariant, 2=, can be interpreted as commutativity since a <> b implies that there is no
observation oe 4 for which a «> b. The last invariant, 7, can be interpreted as weak
causality, as a 7 b implies a—»bva<«sb for all oed. We now prove a number of
properties of simple report invariants.
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Proposition 6.1. (1) a—;b:aé‘b/\—ﬂbga.

(2 apbjcvajbope=ajc

Proof. (1) Obvious.
(2) Suppose a—»b 7 ¢ and T1a fc. We first observe that a # ¢ since, otherwise, we

would have a—A>b and b ja. Hence, there is o€ such that ¢c—a. Thus, by a—;b,
c—b. On the other hand, bjc implies b—c or bee, a contradiction.
Hence, a—;b Zc=ajc The second part can be shown in a similar way. []

Proposition 6.2. (1) a—pbjc—od = a—>d.

(2) ajb—pcjd=ajdva=d

Proof. (1) Suppose a—b zc—d and T1a—d. We first observe that a+#d since,
otherwise, we would have cpa— band b jc. Thus, from — a— d it follows that there
is oed such that — a—d. We also have a—>b,c—d and c—>b a contradiction
with the definition of an interval order.

(2) Suppose afb—pc7d, a#d and —ajd. From —a ;d it follows that there is
oe4 such that d—;»a. We also have b—u> c, ﬁb—;a and —ld—0> ¢, a contradiction with
the definition of an interval order. (O

Proposition 6.3. Let A < Obsg,,.
(Vagbje=ajcva=c.
() azb—ocvabze=a—c

Proof. (1) Suppose a 4 b f¢, a#c and —1a jc. From —a ;¢ it follows that there is
oed such that c—a. By ajb, a—»bvacb If a—b then c—b. If a«<>b then,
because o is a step sequence, also c— b. Hence, in both cases there is a contradiction
with —a ¢

(2) Suppose a— b /7 c. From Proposition 6.1(2) we have a j c. Suppose a—c
Then there is oe4 such that a <> c. By a— b, a—> b. But because o is a step sequence,
this means that ¢c— b, a contradiction with b 7 ¢. The second part can be shown in
a similar way. [

In Section 7 we show that sometimes the assertions from the above three proposi-
tions can be used as axioms for minimal signatures.

Proposition 6.4. (1) If A < Obsg,,then acrboc=(agcva=c)
)] a?b?c’?a?d?b:(c:dvc?d).

Proof. (1) From Proposition 6.3(1) and =507
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(2) Suppose that 1(c=d v ¢ ?d)' Without loss of generality, we may assume that
there is oe4 such that ¢ —d. We may also assume that a— b. Thus, by a«>d and
b«»c, we obtain a contradiction with the definition of interval poset.

6.2. Components of simple report invariants

The relationship between the components of simple report invariants is illustrated
in Fig. 4 (see also Fig. 3). Note that we use the following notation:

Cioo(M)==,  Coro(M)=5.  Coni(N=p.  Crps(d)=]a
CllO(A):?, Cl()](A)Z_—) COll(A):iAj-

=

We do not need Cyo(A4)as it is always empty (Proposition 5.1(3)). By symmetry we
only discuss five components: —., || 4, S, 9 and —. The first component (and also an
invariant), e is a well-known causality. The next component, |4, should be inter-
preted as concurrency (two events can be observed simultaneously and in both orders);
it is supported by the so-called true concurrency models. The third component,
S, represents interleaving (two events can be observed in both orders, but not
simultaneously). Interleaving is used, e.g., in models that are based on sequences of
event occurrences. The fourth component (and also an invariant), <», can be inter-
preted as synchronisation. It is used in its implicit form to model ‘handshake’ commun-
ication. The fifth component, —, is not, to our knowledge, supported by any of the
existing models. It captures diéabling of one event by another event, and was first
discussed in [17] and [22], from where we took a priority system represented by the
net in Fig. 5 (b has a higher priority than ¢). In the initial state ¢ can occur
simultaneously with a, or ¢ can be executed first and then a. In both cases the priority
constraint is satisfied. However, it is not possible for a to precede ¢ since the execution
of @ makes event b enabled, disabling c. Hence, the system generates a concurrent
history 4 such that ¢ — a. Note that in [5] it was observed that whether {a, ¢} should
be allowed as a validAobservation is intrinsically related to whether or not one can

“a s -4
= L YXE-idy
N e A =4 78
fa
|

Fig. 4. Components and simple report invariants in RS,,.
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u b >prwre

—

Fig. 5. Priority system.

regard a as an event taking some time. Essentially, if ¢ is instantaneous (takes zero
time) then {a,c} should not be allowed, and a partial order semantics can be
constructed along the lines described in [S]. If, however, a cannot be regarded as
instantaneous (possibly because a is itself a compound event) then {a,c} should be
allowed. As [13] point out, a proper treatment of priorities in real-time systems
usually requires considering noninstantaneous events. Note that, for the six histories
discussed in Section 1, we have the following:

all 4, b, as b, a—b, b—a, a<—b, a—b.
Az A3 Aa As Ag
6.3. Paradigms and signatures

In the terminology introduced in Section 5, we have

q’l (ﬂ)}')=30 ﬂ?%
2 (f.7)=30. B,
Ys3(B,y)=30. By

Some of the paradigms of RS.,, are equivalent, which reduces the number of cases
we consider. There are 2°=8 simple report laws; however, only five of them are
independent, namely,

o =¥;=>¥,v¥,,
W=V AV, =V,
3=V A¥Vi=>Y,,
Wa=¥ =¥, v¥,,

ws=Y AV, A¥5= false.



32 R. Janicki, M. Koutny

From Proposition 5.4 we obtain the following.

Proposition 6.5. Let AeHist(RS,,,).
(h AePar(w,) = 7:(2),
(2)  dePar(w;) <= 5=0,

(3) AePar(ws) <= = =<7—=®,
4) AePar(wy) = — ==,
(5) AePar(ws) < || 4=0.

From Theorem 5.5, it follows that there are 2° =32 possible paradigms for RS.,,.
But the nature of problems considered in concurrency theory are such that two of the
simple report laws may be rejected. The first rejected law is w,, which excludes the
sequential composition construct. For a similar reason, we reject ws since it excludes
systems consisting of completely independent components. Hence, we have 2°=38
paradigms to consider:

Ty=true, M=, T3=0,;, "A4=03, As=0;AW0,,
Me=W{ AW3, T=W3AQ3, Tg=wW;AW;AD;
The connection between the eight paradigms and simple report invariants is
established below.
Theorem 6.6. Let AcHist(RS,,,).
(n AePar(m,),
(2) AePar(m,) <= 7:(]),

(3)  AePar(m,) <= ?=®,

4) AePar(ny) < —Z>:®,

(3) AePar(ns) < < =">=0,

6) AePar(ng) <= 7=?:@,

(7 AePar(n;) < L}:—j»:(b,
(8) AePar(ng) < 7:?:?:(2)

Proof. Follows directly from Proposition 6.5. [
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We obtained a hierarchy of the fundamental paradigms of concurrency shown in
Fig. 6. Paradigm =, simply admits all concurrent histories. The most restrictive

paradigm, =g, admits concurrent histories 4 such that

Joed. aer b < (Joed. a— b)a(30ed. b— a).

It is adopted by several models, including [4, 29, 41, 44, 49, 50]. Paradigm 7
essentially says that simultaneity can only be observed if events are independent

Joed. ac>b = (Joed. a— b) A (3o0e4. b— a).

Complementary to g is paradigm 73, as it says that the existence of observations in
both orders implies a possibility of observing simultaneously

(Joed. a— b)A(Joed. b—a) = Joed. acb.

The remaining paradigms have less elegant representation in terms of simple report
laws. Table 2 shows the components each paradigm excludes. We end this section
deriving minimal signatures of the eight fundamental paradigms.

Theorem 6.7 (Minimal signatures for paradigms). (1) {=, / } is a minimal signature
for Par(my), Par(mn,) and Par(n,).

(2) {—,=} is a minimal signature for Par(ms).

(3) {—, 7} is a minimal signature for Par(ns) and Par(ms).

(4) {7} is a minimal signature for Par(ms).

(5) {—} is a minimal signature for Par(mg).

m

g ny

s a7

ng

Fig. 6. Hierarchy of fundamental paradigms.
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Table 2
Paradigms, components and signatures

Paradigm Empty components Minimal signatures
T {~,=
23 < { 2 ,ﬁ}
T3 S {~. 7}
T4 5 {~.=}
}
s Vighyd {~. 7}
T e “7" 1= =
s s 2 {}}
4 4

bid «— 5 2 -

8 i {~}

Proof. Let (MSig;) Sig; denote the set of (minimal) signatures of Par(m;). We first
recall that {=, ~} is a universal signature. Moreover,

P P L B
{—,==}€Sig, since dePar(ng) implies 7 =—,

{—, 7 }eSig3nSigs since A€Par(n;) implies==-—U

=1

s

|
BN
|
-
b
~
1

{ 7 }€Sig, since AePar(n;) implies ==L« and —

{—}€eSigs since dePar(ng) implies ©=-=— U« and J =—.

To show the minimality of the signatures, we proceed as follows. Let oy, 0, and o3 be
observations shown in Fig. 7, and 4y, A5, A3, 44, 45 be histories defined by

A4,={01,05,03},4,={01,02},45={01},

442{03}’ 45:{01’03}-
Note that 4,, AyePar(ng), A,€Par(ng), AyePar(n,) and AsePar(ns).
Fact 1. {—, o, =}¢Sigs since 4,,AsePar(ns) and

—— — — PR —_— —_—
= =0g=g=0 ad $=3=0.

Fact 2. {—, 7 }¢Sigs since Ay, A ePar(ne), p=—=0and 7 = 7, =0.

Fact 3. {«<,=}¢Sig since A,, AyePar(ne), and

Fact 4. { 7, ) ¢Sigs since A5, Ase Par(ns) and

o=e=0ad 5 =7 ={(ab)}
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*>—ne ot——@ [ ®
a 01 b a 09 b a 03 b
Fig. 7.

Fact 5. {—,=}¢Sig, since 4,,A,€Par(n,) and

J— — —_—— e
ZT‘I,’—Q) and Z_—I—(D.

To show that {<, .~ }e MSig, " MSig,, it suffices to show that none of {=}, { 7},
{#,—}, {=,—} and {=, <} is a signature of Par(n,) or Par(zn,). For {<=}, {=, —}
and {=, <} this follows from Fact | and Par(ns) < Par(n,) < Par(n,). For { #} and
{ », >}, this follows from Fact 2 and Par(n¢) € Par(n,) < Par(n,).

Similarly, {==, ~}eMSig, since none of {=}, { 7}, { #, -} {=, -} and {=, -} is
a signature of Par(n,). For {=}, { #}, { #, =} and {=, «} this follows from Facts
2 and 3, and Par(ng) € Par(n,). For {—, =} this follows from Fact 5.

To show that {=, —}eMSigs, it suffices to show neither {=} nor {—} is a signa-
ture. The former follows from Fact 3. The latter follows from Fact 2.

To show that {—, »}eMSig; " MSigs, it suffices to show that none of {—},{ 7}
and {—, <} is a signature of Par(n;) or Par(ns). For {—} and {—, <} this follows
from Fact 1 and Par(ns)< Par(rmy). For {~} this follows from Fact 4 and
Par(ns) < Par(ns).

To show that { ~}eMSig-, we observe that neither { >} nor {«} is a signature of
Par(m,). The former follows from 4,,4,ePar(n,) and 71):3;»:(2); the latter from
4y, 43ePar(n7) and = =0.

{—} is obviously a minimal signature. [J

In the most general case, 7,, the explicit causality invariant is not needed (in fact,
there is no universal minimal signature containing —). We also observe that no
paradigm requires a signature comprising more than two invariants (see Table 2).
Note that if 7 holds then causality, —, is the only invariant needed, and this fact is
a theorem in our approach.

6.4. The paradigm of partial order histories

Paradigm =g deserves our special attention as it is usually adopted by concurrency
models. We now show that for the histories in 7g it is enough to keep record only of
the sequential observations.

A base of a history 4 is a pair, 4o = 4 and S = SRI, such that 4§%” = 4. It provides
a complete description of a history in terms of a (smaller) set of observations and
a suitable set of invariants.
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Theorem 6.8 (Histories under ng can be represented by interleavings). If AePar(ng)
then Ap,=A4n0bs;, and {—} form a base of A.

Proof. 1t suffices to show that ;> =— since, due to Theorem 6.7(5), 4 (=>=A. For every
ocd, let A(o)={red,,| - 7} From the extension theorem [45] it follows that, for
every oed, 4(0)#0 and —= (| —. Furthermore, 4;,={J 4(0). Thus,

red(o) oed

a—b < Voed a—b < VoedVred(o). a>b

< Vredpapb = a—I:b. U
For 7y it is possible to adequately represent a history by taking its interleaved
observations. This was exactly the idea behind the Mazurkiewicz traces [31, 32] and
the interleaving set temporal logic [23]; within our framework, Theorem 6.8 provides
a justification of that approach. However, it cannot be extended to any other
paradigm introduced in Section 6.3.

7. Representation theorems

We now consider axiomatic models for minimal signatures under paradigm n5.

7.1. Paradigm 7,

Paradiem 7, ic general enoueh ta model nriority cvesteme and inhihitor nets 2071
1 ulu\usun 193 19 svuwlcu viivuglil v Livavg klll\.llll OJOLMAAID ARl IULIUvILUL LIwlo LAVJ,
from Theorem 6.7(3) it follows that {—, ~ } is its minimal signature. [t turns out that it

can be axiomatised in terms of relational structures that we call weak composets
{combined posets). A weak composet is a triple

we=(dom(wc),—, 2)

we 7 ‘we

such that dom(wc) is a set of event occurrences and —, 2. and binary relations on

we 7 we

dom(wc) satisfying the following:
(WCI) (dom(wc),—2)is a poset, £, is irreflexive.
(WC2) a2b=az.brT1bja
(WC3) appbgcva fbpe=ag.c
(WC4) aob f.crd=ard

(WC5) ag.bocgd=ag dva=d

Relational structures similar to weak composets were introduced and subsequently
analysed in [1, 3, 27, 28], however, with different objectives in mind. Conditions
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WC1-WC4 were used in [27], WCS5 in [3]. (Note that [3, 27] required that ;. be
reflexive, but this is a minor technical detail.} Directly from Propositions 6.1 and 6.2
we obtain the following.

Corollary 7.1. For every A€ RSet(RS,,,), (dom(4),—, 7 ) is a weak composet.

An interval order po is an interval extension of a weak composet we, denoted by
poeintervals(wc), if dom(po)=dom(wc), — s and 7. & e

Theorem 7.2. (First representation theorem for weak composets [1, Theorem
2.10]). Let wc be a weak composet. Then, there is a partial order (X, /) and

&,V :dom(wc)>X
such that for all distinct a and b in dom(wc) the following hold:
®(a) /. V(a),

a—b <« ¥(a)L ®(b),

azb < &)L P(b)vd(a)=¥OH). O

Proposition 7.3. (Existence of an interval extension for weak composets). For every
weak composet we, intervals(wc) # 0.

Proof. Let (X, /) be any total extension of (X, /) from Theorem 7.2. Define
po:(dom(wc),;;) where a—ﬁ;ba ¥(a) L, @(b). By Proposition 2.13, po is an inter-
val order. Moreover, for all distinct @ and b,

ab = ¥(a)LP(b) = ¥Y(a)L,P(b) = a—sb,
az.b =&)L Pb)ve(a)=P(h) = ®(a)lL, ¥ (b)v P(a)=V(b)
="Y(b) L, P(a) = ﬁb;;a = a;gbva}—o»b.

Hence, poeintervals(wc). [

We shall show that every weak composet is unambiguously identified by the set of
its interval extensions, in the same way as every poset is unambiguously identified by
the set of its total extensions [45].

Lemma 7.4. If po is a poset and a«;gb then there is a total order to such that
dom(to)=dom(po), <% and a—b.
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Proof. Let Y:{a}u{yly—p—am}, Z={b}u{z|b>z} and po’=(dom(po), L), where
L=y YxZ.

We observe that Y Z =0 since a‘,,‘,,’b- Hence, £ is irreflexive. Moreover, if x £ y £ z
then X—2yory—-z. Suppose x /. Y2z and TIX > Then xeY and y,zeZ. Thus,
x £ z. Similarly, if X2y Lz and Ty then x £ z. Thus, ¢~ is also transitive.
Hence, po' is a partial order, a £ b and =EL. Let to be any total extension of po’.
Then 2<% and a—>b. [J

Lemma 7.5. Let we be a weak composet and a, b be distinct elements in its domain. Then
(1) If a—» b then there is poeintervals(wc) such that b;»a or b;;a.
(2) If mva .z.b then there is pocintervals(wc) such that b?a.

Note: This lemma is basically equivalent to Theorem 2.11 in [1]; however, the
proof below is much simpler.

Proof. Take (X, ~) from Theorem 7.2. Suppose x, ye X are such that x <> y. From
Lemma 7.4 it follows that there is a total order (X, /2 ,)}suchthatx/ ;yand £ < / ;.
Define po,, =(dom(wc), — ), where C;E.’yd‘::’ Y(c) L, P(d). By Proposition 2.13 (and

g
POxy

proceeding similarly as in the proof of Proposition 7.3), one may show that
poy,Eintervals(we).

(1) Suppose —1a —b. We may assume —1b 7 g; otherwise, every element of inter-
vals(wce) # § satisfies the required property. Let x=@&(b) and y=¥(a). We have

’_\ar‘:b = —1¥(a) L P(b),

—bz.a=1D(b) L ¥(a) A ®(b)# P(a).

Hence, x <y and po,,eintervals(wc). Moreover,

X /L1y = Ob)L,¥(a) = ¥(a) L, P(b) = ﬁar;):yb

= b—o>avh e a
DPoxy poxy

(2) Suppose Ta . b. We may assume T1b—>a; otherwise, every element of inter-
vals(wc) # 9 satisfies the required property. Let x=F(b) and y=&(a). Similarly as
before, we obtain Xy and po,,€eintervals(we). In this case,

X/qy = YY), Pa) = b};\_»ya. O

Theorem 7.6. Let wey and we, be weak composets. Then

Wy =we, <> intervals(wcy)=intervals(wc;).
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Proof. It suffices to show that intervals(wc,) < intervals(wc,) implies we, = wey (e,
dom(wc,) = dom(we,), ;> S > and . < 4,) From Proposition 7.3, it follows that
dom(wc,)=dom(wc,). If aw—;zb and — amb then, by Lemma 7.5(1), there is
poeintervals(wcy) such that b;}»a or b*p—; a. Clearly, po¢intervals(wc,), a contradic-
tion. Hence, — < —. Similarly, by using Lemma 7.5(2), we show 7 < /.. U

Let X be a nonempty set of interval posets with a common domain 2. The combined
intersection of X is the relational structure

O(X)=(2’77 /'X):<Z, m E’, m (;;UE’ )

C poeX poeX

Proposition 7.7. Combined intersection is always a weak composet.
Proof. Similar as for Proposition 6.1 and 6.2. O

A fundamental result of [45] says that by intersecting all total extensions of
a partial order one obtains the original partial order. A similar result holds for weak
composets.

Theorem 7.8 (Second representation theorem for weak composets). Let we be a weak
composet. Then we= [\ (intervals(wc)).

Proof. Let X =intervals(wc). Clearly, we = ﬂC(X). If a—pb and a2 b then, by
Lemma 7.5(1), there is poeX such that b—"—ga ot b« a, a contradiction with a—pb.

Hence, o> =-. To show 4 = 7., we use Lemma 7.5(2). O

we*
A poset po is an observation extension of a weak composet we, poeobs{wc), if

poeintervals(wc) and po is initially finite. Note that obs(wc) can be interpreted as
a report set over RS,,,.

Lemma 7.9. Let wc be a finite weak composet. Then:
(1) obs(wc)=intervals(wc).
(2) obs(wc)=obs(wc)$™ 77,

Note: In (2) symbols — and ~ denote invariants as defined in Section 6, i.e., they are
mappings which for every report set A return, respectively, —> and /. In particular,
for obs(wc) they return ,— and /2

obs(wc) obs(we)*

Proof. (1) Finite interval orders are observations.
(2) By the definition of obs(wc), for every observation o with dom(o)=dom (wc):

oeobs(wc) < Va,bedom(wc). (azb=a—b)r(aj b=>a—pbvacb)
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By the definition of S-closure, for every observation o, with dom(o)=dom(wc) (below
A=o0bs(wc)),

0€4<™ 77 < VYa bedom(4). (a-pb=a—ob)a(arb=a—bvacrb)

By Theorem 7.8 and (1), = ,— and 7 =/

we  obs(we) we obs(wc)?

so (2) holds. O
We now can formulate the main result of this section.

Theorem 7.10 (Axiomatisation of finite concurrent histories in 73). (1) If Ae Par(n;)
and dom(A4) is finite then there is a finite weak composet we such that A= obs(wc).
) If we is a finite weak composet then obs(wc)ePar(my).

Proof. (1) Define we=(dom(4), —, /). By Corollary 7.1, we is a finite weak com-
poset. From Theorem 7.8 and Lemma 7.9(1), it follows that —=_ - = and

obs(wc)
Ze = opsther Hence, — = et and = e By (2), obs(wc)ePar(ny). Thus, by
Theorem 6.7(3), Proposmon 44, — obm” and - = bTney WE get A=obs(wc).

(2) By Lemma 7.9(2), obs(wc)zobs(wc)“‘ ’>. This and Proposition 4.1(1, 2)
yields obs(wc)eHist(RS,,,). By Theorem 6.6(3), it now suffices to show that
obs(‘;’_wc):m' Suppose a gb;::w) b. Then, by Theorem 7.8, 7a 4.band —1b 7, a. Let (X, /)
be as in Theorem 7.2. We have ®(a) <> @(b)«>¥(a). Using a construction similar
to that in Lemma 7.4, one can show that there is a total extension (X, /)
of (X, /) such that ®(a)/,®(b) L,¥(a). Define po=(dom(po), ;;), where
c—»d@ Y(c) L,P(d). By proceeding similarly as in Proposition 7.3, one may show
that poeintervals{wc)=obs(wc) and aes b. This, however, contradicts aahs(s:mb. O

The last theorem provides an axiomatisation of finite concurrent histories conform-
ing to paradigm 7;: Every finite weak composet of event occurrences may be
interpreted as a representation of a history in n5. In other words, in this case histories
can be represented by finite weak composets (in the same way as the histories in 7g can
be represented by causal partial orders). If n; does not hold, then {—, #} may no
longer be a signature and obs{wc) may not be a concurrent history.

7.2. Step sequences within m,

We now assume that 3 holds and that all observations are step sequences. In this
case we replace weak composets by composets. A composets is a triple

=(dom(co).—, 7,)

3 “co

such that dom(co) is a set of event occurrences and —», .2, are binary relations on
dom(co) satisfying the following:
(C1) (dom(co),—)is a poset, 7, is irreflexive.

> co
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(C2) amb=az,brmbrza

(C3) ar by c=az cva=c
{C4) a—brcvalboc=aoc
co co co
Composets have been used to model concurrent behaviours in [12, 19, 20]. [20]
provides a detailed analysis of finite composets.

Proposition 7.11. Every composet is a weak composet.

Theorem 7.12 (First representation theorem for composets). Let co be a composet.
(1) There is a partial order (X, ) and ®:dom(co)— X such that for all distinct
a and b in dom(co) the following hold:

a—b=®(a) L (D),
az be@d(a) L P(b)v P(a)=P(b)
(2) There is a partial order (X, /) and ®:dom(co)— X such that for all distinct
a and b in dom(co) the following hold:
a—b <= &(a) L D(b),

azb < ®(a) L d(b)v d(a)=d(b).

Proof. The proof of (1) is just a modification of a well-known result of E. Schréder
(1890) characterising pre-order relations. (Axiom C3 says that 7 uidy is a pre-order
[9,253)

Define a=b<(az, bab, a)va=b By C3, = is an equivalence relation on
dom(co). Let [a] denote the equivalence class of = containing a, and X =dom(co)/=.
(1) Define [a] /. [b]<= (a2, bAa—b 2, a) By C3, £ is a well-defined irreflexive
relation. The transitivity of £ also follows from C3. Hence, (X, /) is a partial order.
For all distinct a and b we have

a—b = az,babz a = [a] L[b]
[a] £ [b]v[al=[b] = (aZ,bam1b 7 a)
viaz, babz a) < az b
Hence, we can define &(a)=[a] for all a.
(2) Define [a] L[b]<>a—>b. Suppose [a] L [b], ce[a] and de[b]. Then
Lal s [bIncelalnde[b] = apbA(a=cvc], a)
Alb=dvbz d) = cpd
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Hence, £ is well-defined, reflexive (a—»>b=-"b 7, a=[a] #[b]) and transitive (by
C1). Thus, (X, ) is a partial order. For all distinct ¢ and b, we have

Lal £ [b]v[a]l=[b] = a—_bv(az babz a) = aZ,b.

Hence, we can define ¢(a)=[a] for all a. [

A stratified poset po is a stratified extension of a composet co, poestrat(co), if

dom(po)=dom(co), pra s and 7, S

Proposition 7.13 (Existence of stratified extension for composets). For every nonempty
composet co, strat(co) # @.

Proof. Let (X, £ ;) be a total extension of (X, £) from Theorem 7.12(1). Define
poz(dom(co),;;), where a;;b < ®(a) L, P(b). Clearly, po is a stratified poset.
Moreover, for all distinct a and b, we have

a—b = ®(a) L P(b) = d(a) L, P(b) = a;}»b,
az,b = ®(a) L &(b)v P(a)y=d(b) = P(a) L, P(b)v P{a)=(b)

= ¢(b) £, P(a) = —|b70>a = a—pgbva«pgb.

Hence, poestrat(co). O

Lemma 7.14. Let co be a composet and a,b be distinct elements in its domain. Then
(1) If mva—» b then there is poestrat(co) such that b;;a or b«;;a.
(2) If a2, b then there is poestrat(co) such that b;;a.

Proof. Let Y={bjuiclcz, b}, W={clcob},Z={ajuiclaz cjand V={cla—c}.

(1) By ma— b, we have VnY=0=WnZ. Define co; =(dom(co), > ), where

2= wYWxZuYxVand / =7, 0YxZ—idy,z.
Using a straightforward yet tedious argument it can be shown [21] that co, is
a composet and b g a. By Proposition 7.13, there is poestrat(co,) < strat(co) such
that b—avbea.
po po

(2) By ma -

co

b, we have Z n Y=0. Define cozz(dom(co),—q», 7 ), where

—->=—uUYxZ and /2 =2 UYXZ.
q 0 q co
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It can be shown [21] that co, is a composet and b_»a. By Proposition 7.13, there is
poestrat(co,) < strat(co) such that b;;a. O

We now can show that the relationship between step sequences and composets is
exactly the same as that between interval orders and weak composets.

Theorem 7.15. (1) Let co, and co, be composets. Then

(2) For every nonempty set of stratified posets A with a common domain, ﬂC(A) is
a composet.
(3) Let co be a composet. Then co= () (strat(co)).

Proof. ((1)is shown similarly as Theorem 7.6 using Proposition 7.13 and Lemma 7.14;
(2) as Proposition 6.3; while (3) as Theorem 7.8 using Lemma 7.14.) O

For the finite case Theorem 7.15 was independently proved in [21].

A poset po is a step sequence extension of a composet co, poesteps(co), if
poestrat(co) and po is initially finite. Note that steps(co) can be interpreted as a report
set over RS,,,.

Lemma 7.16. Assume that RS, comprises only step sequences. Let co be a finite
composet. Then

strat(co)=steps(co)=steps(co)<™ 7.
Proof. Similarly as Lemma 7.9 using Theorem 7.15. [
The main result of this section reads as follows.

Theorem 7.17 (Axiomatisation of finite concurrent histories in 73 with step sequence
observations). Assume that RS,,, comprises only step sequences.

(1) If AePar(n;) and dom(A) is finite then there is a finite composet co such that
A=steps(co).

(2) If co is a finite composet then steps(co)ePar(n;).

Proof. (1) Similarly as Theorem 7.10(1), using Theorem 7.15 and Lemma 7.16.
(2) By Lemma 7.16, steps(co)=steps(co)*™ . This and Proposition 4.1(1, 2) yields
steps(co)e Hist(RS,,,). By Theorem 6.6(3), it now suffices to show that
s =0. Suppose a = )b. Then by Theorem 7.15, —1aZ, b and —1b 2 a. Let

steps(co) steps(co
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(X, £) be as in Theorem 7.12(1). We have ®(a)«> ®(b). Let
Y={®(a)}ui{y|®(a) L y} and W={d(a)]u{w|w L d(a)},
V={v|®(b) L v} and Z=!z|z . ®(b)},

Xi=X—{®h)} and / =(L "X xX)DUZxYUWXV.

Asin Lemma 7.4, it can be shown (X |, £ ) is a poset. Define @, : dom(we)— X, by
D (c)=P(c), for all ¢ # b, and @,(b)=D(a). Let (X,, L ,) be any total extension of
(X, 2 ;). Define po:(dom(co),—p—a»), where c;;dc»d)l(c) L >®,(d). Proceeding as in
Proposition 7.13, one may show poesteps(co)and a < b,contradictinga < b O

steps{co)

Theorem 7.17 provides an axiomatisation of finite concurrent histories conforming
to paradigm w3 under the assumption that all observations are step sequences. If n3
does not hold, then {—, ~} is no longer a signature and steps(co) may not be
interpreted as a concurrent history of step sequence observations.

The results of this section could be interpreted in three ways. One is to treat them as
an extension of Szpilrajn-Marczewski result [45] that each poset is uniquely repre-
sented by the set of its total extensions. Theorem 7.15 states that each composet is
uniquely represented by the set of its stratified extensions, while Theorem 7.8 together
with Theorem 7.6 and Proposition 7.7, say that each weak composet is uniquely
represented by the set of its interval extensions.

Theorems 7.10 and 7.17 provide the second, major, interpretation for the finite case:
When paradigm 7 is enforced, finite weak composets are signatures of concurrent
histories. Under additional assumption that all observations are step sequences, finite
composets become signatures of concurrent histories.

The third way of interpreting the results of this section is to assume relativistic real
time observers. In our approach observations are just observer reports about instan-
ces of a concurrent behaviour. In principle, we identify observations with executions
and next identify equivalent executions creating what we call a concurrent history.
Thus our observation is an abstraction of an execution. However, we may also
consider the following situation: There is one system execution, physically many
observers, and Einstein-Minkowski space-time is assumed. (This is exactly the
situation considered in [1, 27, 287.) Each observer’s {ocal time is linear, but the time
structure generated by all observers is a partial order. Theorem 7.2 (a major result of
[17) says that weak composets can be used to model this kind of system execution
provided that observers can observe and report time intervals. If they can use only
time points then, by Theorem 7.12, composets seem to be a good model of system
executions.
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8. Related work

The idea of using structures based on interval orders on the observation level has
been advocated in [46] (implicitly) [19], [36] and [47]. In [46], van Glabbeek and
Vaandrager introduced the concept of real-time consistency and then defined real-
time consistent bisimulation (ST-bisimulation). The intuition behind ST-bisimulation
is that when observing a system run we see actions starting and finishing, i.e., the
execution of an action corresponds to some time interval, and the order of the
actions is exactly that of their time intervals. This is exactly an application of
Fishburn’s representation theorem (Theorem 2.11) as the definition. Van Glabbeek
and Vaandrager in [46] did not define or use interval orders, they expressed this
intuition in terms of ST-bisimulation, using Petri nets as a general framework.
Nielsen et al. [36] studied the use of (labelled) partial orders as denotational model for
process algebras. They started with the step sequence model, and next, by change of
atomicity, ended up with the interval order model. They used Wiener’s definition
(a=brc—od=a—->dvc—b) calling it P, -property and seemed to be unaware of
earlier results concerning this concept. They did not mention work due to Wiener,
Fishburn or others. Janicki and Koutny’s work [18] is an early version of the results
presented here in Section 2. As in this paper, the motivation was that if a poset is an
observation, then its principal poset is total. Theorem 2.12 says that this is equivalent
to being an interval order. In [47], Vogler started with a similar motivation as [46],
i.e. Fishburn’s representation theorem (Theorem 2.11) provided a required intuition.
He next defined failure semantics based on interval orders for Petri nets. He used both
Fishburn’s theorem and Wiener’s definition in his work.

From the formal point of view, interval orders can be defined in three ways. One
way is to use Wiener’s definition (as in [36]); the second is to use Fishburn’s
representation theorem (intuition in [46, 47]); the third possibility is to use the
concept of principal order and Theorem 2.12, as in [ 18] and this paper. None of [46,
36, 47] provides detailed analysis of the interval orders themselves. Fishburn [7, 8]
does, but he always assumes dense time and almost neglects the relationship between
interval orders and their principal orders (Theorem 2.12). We consider this relation-
ship very important, as it provides the basic intuition in our definition of observation.
We analysed both discrete and dense time, provided representation theorems in both
cases, and showed this representation is injective (Theorems 2.14, and 2.16).

In [39] Plotkin and Pratt analysed the situation whereby observers work as a team.
Each observer alone can only observe sequences of events, but they can communicate
among themselves and subsequently provide a joint statement on their observations.
In our framework this means that k observers provide a single report. Plotkin and
Pratt in [39] show that the resolving power of a finite team of observers increases
strictly with k, and that they can see more complex posets (in fact, pomsets) than
interval orders, as the axiom A3 of our definition of observation is no longer valid for
teams of observers. The use of such observers would change some results of Section 6.
It would not change the analysis of the paradigms, but, e.g., Propositions 6.2 and
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6.4(2) would not hold. Most of the results of Section 7 also assume interval order
observations. Nevertheless, the observations of [39] can still be modelled as report
systems, so they fit into our general framework.

On the invariant level structures similar to composets and weak composets can be
found in [1, 3, 12, 19, 20, 27, 28]. In [12], Gaifman and Pratt defined behaviours as
structures (called prossets—preorder specification sets) of the form: (2, <, =, €),
where X is a multiset of events, <, =, < are relations interpreted as precedence,
simultaneity and not later than, and = 1s defined as a=bh < a<b A b<a. The axioms
for (2, <,<) are essentially the same as C1-C4 for composets (we restrict ourselves to
sets, but the extension to multisets is quite straightforward) with < corresponding to
-, and < to 7, Uidgom(co)- Hence, the results of the entire Section 7.2 hold for the
prossets as well. Gaifman and Pratt [12] defined and used prossets, but have not
analysed their structure.

In [27, 28] Lamport provides a model for system execution using Einstein’s concept
of time—space relationship. He argues that the relativistic view is relevant whenever
signal propagation is not negligibly small compared with the execution time of
individual operations. He defines a system as a set of operation executions where each
operation execution consists of a nonempty set of space—time events. Lamport [27,
28] defines the relations —>and —-> on the set of operation executions as follows:

A->B <= VYaeA VbeB. a<b,
A-—>B < JaeA3IbeB. a<bva=h,

where 4 and B are operation executions, a and b are space—time events, and < is the
(irreflexive) order in Minkowski space. One may verify that ~> and ——> —id; satisfy
the axioms WCI1-WCS5 for weak composets. Lamport next argues that in computer
science we may ignore the space—time events that constitute operation executions, and
defines system execution as a structure (X,—>,-—>), where X is a set of operation
executions and —>, —-> —id; satisfy WCI-WC4. He advocates the use of this
concept on various levels of abstraction. The structure (X,—>,—->), with —>,
——> —idy satisfying WCI-WC4, is frequently called Lamport structure [1]. The
axioms corresponding to WCI1-WC5 were proposed (in Lamport’s framework) in [3].
Hence, the results of Section 7.1 can also be used in that model. The main result of
Abraham et al. [1] plays a central role in obtaining the main results in Section 7.1
(Section 7.2 does not need it). Due to its roots, Lamport’s model is often used to
analyse the global time assumptions [1]. In the framework of ~>, ——>, the global
time axioms is stated as: A—>B<>—"1B-—> A. Our observations are just observer
reports, they do not mention time explicitly, different observers may observe different
instances of the same concurrent history in disjoint time intervals. Global time axiom
implies Newton model of time and in our approach all observers observing in the
same physical time. So they all must observe the same, ie. 30. a—b=>VYo. a—>b,
which clearly implies: a—b<>—1b 7 a. In [20] finite composets were analysed in
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a style similar to the middle part of Section 7.2. Janicki and Koutny’s [19] is an early
version of the results presented in Section 6.

9, Systems

The development of the system level is still in an initial phase, however, some
nontrivial results do already exist. To some extent, the results of Gaifman and Pratt
[12] can be seen as an example of such a development. In [12] the composet-like
structures are used to analyse such concepts as: fairness, input event, the location of
a process, etc. Another more direct example is Janicki and Koutny’s [20] where
a formal semantics for inhibitor nets is defined and analysed. Janicki and Koutny’s
[20] shows that the composets provide an invariant semantics for inhibitor nets and
that such a semantics is in full agreement with the operational semantics defined in
terms of step sequences. It also shows that composets can be generated by inhibitor
nets just by generalising the standard construction of processes for Petri nets. We
believe that the structural complexity of the behaviours generated by concurrent
systems depends on the kind of the operators the system uses. If only sequential
operators and parallel composition are involved, then causal partial orders suffice to
describe concurrent histories. However, if other operators, e.g. priority or com-
mutativity, are allowed, we need more complex structures, e.g., composets or weak
composets.

10. Conclusions

In this paper we presented first steps of the development of a new approach to
modelling concurrent systems. We started our discussion on the observation level and
introduced a general notion of an observation of a concurrent history. We have
obtained representation theorems for the general observations and also for some more
restricted classes of observations. We then introduced the notion of a report system of
concurrent observations, and investigated the invariant properties of sets of related
observations. We have identified and interpreted a class of fundamental invariants of
concurrent histories. We have also established a connection between the paradigms
of concurrency and the invariants of concurrent histories. A direct consequence of
Table 2 is that depending on the paradigm, a minimal invariant representation of
concurrent histories will in most cases be different. As one of the referees has pointed
out, by selecting minimal signature for a paradigm, one can help choosing most
adequate algebraic framework before specifying a concurrent system. Finally, we
provided an axiomatisation of minimal signature for one of the paradigms.
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Appendix
Lemma A.1. Countable total orders have real injective interval representations.

Note: In fact, this is an immediate consequence of Theorem 2.11, as for total orders eq
reduces to identity. However, the result can independently be proved by induction (the
simple proof below is due to Franek [10]).

Proof. If suffices to show that if po and pr are finite total orders, with 2 S and
dom(pr)=dom(po)u {a}, such that 8=(®, ¥) is a real injective interval representa-
tion of po, then one can define ®(a) and ¥{a) in such a way that the extended 0 is
a real injective interval representation for pr. To show this we observe that since pr is
total and finite, there is an interval (x, y) < R such that ¥ (b)<x for all hedom(po)
satisfying b;»a, and y<®(c) for all cedom(po) satisfying a—rc. It now suffices to
define ®#(a)=x+¢ and ¥Y(a)=y—¢, where O<e<i(y—x) [

Lemma A.2. Let 3 be a relation on the domain of a poset po defined by

a¥b < a>bv(c.cobrbeoaoc).
po po po po
Then po is an interval order iff (dom(po), ) is a poset.

Note: The left-to-right implication is equivalent to the first part of Theorem 2 in
Section 2 of [8]. We provide a proof to make the presentation self-contained.

Proof. <=: Suppose a—> b, 2 d, Ta d and e b. Then b+ d and d 3 b. Hence,
(dom(po), ) is not a poset.
=: We only need to show the transitivity of 3. Suppose a® b > cand 7 a—_>c. We
consider three cases.
Case 1: a—b o c. Then d— c and b < d for some d. We have 71a— c and —1d —b,
po po po po po po
a contradiction since po is an interval order.
Case2: a<>b - C Then, d e banda 2 d for some d. Furthermore, ¢ —2 a. Hence,
d—c and d = ao ¢, yielding a $ c.
po po po
Case 3: a<>b<>c. Then, e—b, e<>a, f—¢ and b< f for some e and f. Hence,
po po po po v po po .
since po is an interval order, e2c By a e and e—>c aFc. Also, T ¢ a since
a<—e¢—c, and we assumed —1a-—c. Hence a<«> ¢, which together with aoe—c
po po po po po po
yields ac. [

Proof of Theorem 2.14. <=: Follows from Proposition 2.13.

=: Let po be a countable poset and X =dom(po). Consider (X, ) defined as in
Lemma A.2. From Lemma A.2 and Szpilrajn-Marczewski extension theorem [45], it
follows that there is a total order t=(2,—) such that ¥ <—. From Lemma Allit
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follows that ¢ has a real injective interval representation J,=(®,, ¥,). Also, we can
assume that ¥,(a)<0 for all a. (If this does not hold then we can take dg=(Py, ¥,)
defined by @,(a)=—2"% and ¥o(a)=—2"*' for all a, which is another in-
jective interval representation of t.) Hence, 'I’(a)zsup{‘l’,(cf)l(::avc;;a} is de-
fined for all aeX. Suppose a—p—(;b. Then, for all ce2 we have: (c=a vc<p—0>a)=
crb=c—ob=Y¥(c)<®P(b). Hence, ¥(a)< (D). Let ?(a)=5%(P,(a)+ ¥, (a))forall
aeX. Clearly,®(a)<®(a)< ¥ (a)< ¥ (a)

We now prove that ¢ =(®, ¥) is an injective interval representation of po. We first
observe that if @(a)=®(b) then &,(b)<®(b)=P(a)< ¥,(a). Hence, m1a—b. Sim-
ilarly, b — a. Hence, since t is total, a=b. To show a~p—0>b© Y{a)< ®(b) we observe
that

a—pgb = ¥Y(a)<D,(b)<D(b) = ¥Y(a)<P(b),
b;;a = Y(b)<d(a) = 1¥(a)<P(b),

a=b = ¥(a)>®(h) = —1¥(a)<d(b),

acb = ¥(a)z¥,(h)>o(b) = 1 ¥(a)<P(b). U

Notation. A set of integers J is gap-free if i<j<k and i,keJ implies jeJ. If two
intervals on real line, K=[a,b] and L=[c,d], satisfy b<c then we will write K / L.

Proof of Lemma 2.15. From Theorem 2.12 it follows that C,, is total. Moreover, by
Proposition 2.7, C,, is combinatorial. Hence, there is a gap-free set of integers J such
that Cuts,,={A;|jeJ} and 4;~2>4;,,, for j,j+1eJ.

For every aedom(po), let K,=[m,, M, ], where m,=min{i|acA4;} and M,=
max{i|aeA;}. Note that m, and M, are well defined due to (1). It is not difficult to see
that

(A.1) Va,bedom(po). a;;b < K,/ K.
Let K={K,|aedom(po)}, and let 6:dom(po)— R be any injection.
We define <K x K as follows. Let a,bedom(po).
K, <Ky = (my<my)v(mg=my A M,<M)v
(mg=my A M,= M, A d(a)< (b))

Clearly, (K, <) is a total order such that /. = <. Moreover, by (1), (K, <) is
combinatorial. Hence, there is a gap-free set of integers H such that
dom(po)={a;|icH} and K,, < K,,,, for all i,i+ leH.

For every ieH, let L, =(2i,2l;+1], where ;=max{ j| K, nK,, #0}. Clearly, [; is
defined due to (1) and (A.1). We also note that 2;+1>2i+1>2i, so each L, is
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a nondegenerated interval. We also observe that
(A2) Vi, jeH.i<j = m,<m,,.
We now show that
(A3) VijeH. K, L K, <= L, L L,,.

Suppose K, L K,. If there is p>j such that K, nK, #¢ then, by (A.2),
mg, <mg, <m, <M, contradicting Ku'nKaj:Q). Hence, K,, L K, for all p>j.
Thus [;< j, which yields 2[;+ 1 <2j. Consequently, L,, / L,,. To show the reverse
implication, we assume L, / L, . Then 2[;+ 1 <2j, which yields ;< j. Consequently,
K., L K,,. Hence, (A.3) holds.
Let aedom(po) and L, =[x, y]. Define &#(a)=x and ¥ (a)=y. From (A.1) and (A.3)
it follows that ¢=(®, ¥) is a discrete interval representation of po. Moreover, 0 is

1ﬂlP{\fl\1P i
nj L

(%9 8

Lemma A3. Let 6=(0y,...,0.) and 6=(5,,....0,) be tuples in B. Then, 7, ~ P,
(pav(pé >~ (pavé and d)a/\(b(;’: (pq/\(5~
Proof. Let ueRS, and let a,bedom(u) be such that a # b. We have

(_—] dja)(aabs/’l) < not (pa(aabaﬂ) had éindex(a.b‘u)zfalse

had O-index(a.b.u)z() e (_‘G)index(a.b.u):] <~ (p‘ﬂa(a7buu')

(D, v Ps)(a,b, 1) = D,(a,b, ) or ys(a, b, p)
< Oindextab,u)™ 5...dex{ ;.'):] had (Gindex{a,b.u) v 5ind€x{a,b,u))=1
had (pavh( ba,u)

Consequently, @, ~d—, and @, v P;=P,, ;. We also have the following.
(pa A q)é —:-ﬁ(_‘ d)a v (Dé):_‘((p‘ﬁa v (pﬁé)z—] (plﬂo)v(ﬁé)

:d)_\((*lﬂ)v(ﬁd)):(poA()V U

Proof of Theorem 3.2. Clearly, {®,|0eB} = SRF. To show SRF ={®,|ceB} we
observe that true~®, . false~®y op, and fr; 7= P, . 4 ), Where o;=1 =j=i,
for all i<k. Moreover, by Lemma A.3, {®,|ceB} is closed w.r.t. ~ under the 1, v
and A operations. Hence, SRF < {®,|ceB}.

Let 6=(04,...,0,) and 8 =(0,, ..., 8 ). Without loss of generality we assume that
o,=1 and &; =0. Since RS is nondegenerated, there is peRS such that r; , # 0. Let
(a,b)er, ,. We observe that @,(a,b, u) holds, while ®;(a, b, 1) does not hold. Hence,
@, ~P; does not hold, which completes the second part of the proof. O



Structure of concurrency 51

Acknowledgment

We thank Eike Best, Frania Franek, Chris Holt, Peter Lauer, Tomek Miildner,
Vaughan Pratt, Piotr Proszynski, Teo Rus, Bill Smyth and Jeff Zucker for their
helpful comments. We gratefully acknowledge all six referees, whose comments
significantly contributed to the final version of this paper. We are particularly
indebted to the referee who found an error in the earlier version of Theorem 6.7.

References

[1] U. Abraham, S. Ben-David and M. Magidor, On global-time and inter-process communication, in:
Semantics for Concurrency, Leicester 1990, Workshops in Computing (Springer, Berlin, 1990)
311-323.

[2] JF. Allen and H.A. Kentz, A model of naive temporal reasoning, in: J.R. Mobbs and R.C. Moore, eds.,
Formal Theories of the Commonsense World (Ablex, Norwood, NJ, 1985) 251-268.

[3] F.D. Anger, On Lamport’s Interprocess Communication Model, ACM TO-PLAS 11 (3) (1989)
404-417.

[4] E. Best and R. Devillers, Concurrent Behaviour: Sequences, Processes and Programming Languages,
GMD-Studien Nr. 99, GMD, Bonn, 1985.

[5] E. Best and M. Koutny, Petri net semantics of priority systems, Theoret. Comput. Sci. 94 (1992)
141-158.

[6] P. Degano and U. Montanari, Concurrent histories; a basis for observing distributed systems, J.
Comput. System Sci. 34 (1987) 422-467.

[7] P.C. Fishburn, Intransitive indifference with unequal indifference intervals, J. Math. Psych. 7 (1970)
144-149.

[8] P.C. Fishburn, Interval Orders and Interval Graphs (Wiley, New York, 1985).

{91 R. Fraisse, Theory of Relations (North-Holland, Amsterdam, 1986).

[10] F. Franek, private communication, 1989.
[11] D.R. Fulkerson and O.A. Gross, Incidence matrics and interval graphs, Pacific J. Math. 15 (1965)
835-855.
[12] H. Gaifman and V. Pratt, Partial order models of concurrency and the computation of function, Proc.
Symp. on Logic in Computer Science (1987) 72-85.
[13] R. Gerber and 1. Lee, A resource-based prioritized bisimulation for real-time systems, Inform. and
Comput., to appear.
[14] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs,
“Canad. J. Math. 16 (1964) 539-543.
[15] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).
[16] JJ.M. Hooman, S. Ramesh and W.P. de Roever, A compositional axiomatisation of safety and
liveness properties for statecharts, in: Semantics for Concurrency, Leicester 1990, Workshops in
Computing (Springer, Berlin, 1990) 242-261. )
[17] R. Janicki, A formal semantics for concurrent systems with a priority relation, Acta Inform. 24 (1987)
33-55.
[18] R. Janicki and M. Koutny, Observing concurrent histories, in: H.M.S. Zedan, ed., Proc. Real-Time
Systems, Theory and Applications, York 1989 (Elsevier, Amsterdam, 1990) 133-142.
[19] R. Janicki and M. Koutny, Invariants and paradigms of concurrency theory, Proc. PARLE 91,
Lecture Notes in Computer Science, Vol. 506 (Springer, Berlin, 1991) 59-74.
[20] R. Janicki and M. Koutny, Invariant semantics of nets with inhibitor arcs, Proc. CONCUR'9/,
Lecture Notes in Computer Science, Vol. 527 (Springer, Berlin, 1991) 317-331.
[21] R. Janicki and M. Koutny, Structure of Concurrency II, Technical Report No. 91-05, McMaster
University, 1992.



52 R. Janicki, M. Koutny

[22] R.Janickiand P.E. Lauer, On the semantics of priority systems, in: /7th Ann. Internat. Conf. Parailel
Processing, Vol. 2 (Pen. State Press, 1988) 150-156.

[23] S.Katz and D. Peled, Interleaving set temporal logic, in: 6:h ACM Symp. on Principles of Distribured
Computing, Vancouver (1987) 178-190.

[24] S. Katz and D. Peled, Defining conditional independence using collapses, in: Semantics for Concur-
rency, Leicester 1990, Workshops in Computing (Springer, Berlin, 1990) 262-280.

[25] K. Kuratowski and A. Mostowski, Set Theory (North-Holland, Amsterdam, 1976).

[26] L. Lamport, What it means for a concurrent program to satisfy a specification: why no one has
specified priority, in: [2th ACM Symp. Principles of Programming Languages (New Orleans,
Louisiana, 1985) 78-83. ‘

[27] L.Lamport, The mutual exclusion problem. Part I — A: theory of interprocess communication; part I1I:
statements and solutions, J. ACM 33 (1986) 313-326.

[28] L. Lamport, On interprocess communication. Part I basic formalism; Part I1: algorithms, Distributed
Comput. 1 (1986) 77-101.

[29] P.E. Lauer, M.W. Shields and J.Y. Cotronis, Formal behavioural specification of concurrent systems
without globality assumptions, Lecture Notes in Computer Science, Vol. 107 (Springer, Berlin, 1981).

[30] C. Lengauer and E.C.R. Hehner, A methodology for programming with concurrency: an informal
presentation, Sci. Comput. Programming 2 (1982} 1-18.

[31] A. Mazurkiewicz, Concurrent Program Schemes and Their Interpretations, DAIMI-PB-78, Aarhus
University, 1977.

[32] A. Mazurkiewicz, Trace theory, Lecture Notes in Computer Science. Vol. 225 (Springer, Berlin, 1986)
297-324.

[33] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92
(Springer, Berlin, 1980).

[34] R. Milner, Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25 (1983) 264-310.

[35] I1.D. Monk, Mathematical Logic (Springer, Berlin, 1976).

[36] M. Nielsen, U. Engberg and K.S. Larsen, Fully Abstract Models for a Process Language with
Refinement, Lecture Notes in Computer Science, Vol. 354 (Springer, Berlin, 1988) 523-548.

[37] J.L. Peterson, Petri Net Theory and the Modeling of Systems (Prentice-Hall, Englewood Cliffs, NJ.
1981).

[38] C.A. Petri, Kommunikaten mit Automaten, Ph.D. Thesis, University of Bonn, 1962.

[39] G. Plotkin and V. Pratt. Teams Can See Pomsets, unpublished memo, available electronically as
pub/pp2.tex by anonymous FTP from Boole Stanford. EDU.

[40] V. Pratt, Modelling concurrency with partial orders, Int. J. Parallel Programming 15 (1986) 33-71.

[41] W. Reisig, Petri Nets (Springer, Berlin, 1985).

[42] G. Rozenberg and R. Verraedt, Subset languages of Petri nets, Theoret. Comput. Sci. 26 (1983)
301-323.

[43] A. Salwicki and T. Mdldner, On Algorithmic Properties of Concurrent Programs, Lecture Notes in
Computer Science, Vol. 125 (Springer, Berlin 1981) 169-197.

[447 M.W. Shields, Concurrent machines, Comput. J. 28 (1985) 449-465.

{45] E. Szpilrajn-Marczewski, Sur 'extension de 'ordre partial, Fundam. Math. 16 (1930) 386-389.

[46] R. van Glabbeek, F. Vaandrager, Petri net models for algebraic theories of concurrency, in: Proc.
PARLE 87, Lecturc Notes in Computer Science, Vol. 259 (Springer, Berlin, 1987) 224-242,

[47] W. Vogler, Failure semantics based on interval semiwords is a congruence for refinement, in: Proc.
STACS 90, Lecture Notes in Computer Science, Vol. 415 (Springer, Berlin, 1990) 285-297.

(48] N. Wiener, A contribution to the theory of relative position, Proc. Camb. Philos. Soc. 17 (1914)
441-449.

[49] G. Winskel, Event Structure Semantics for CCS and Related Language, Lecture Notes in Computer
Science, Vol. 140 (Springer, Berlin, 1982) 561-567.

[50] W. Zielonka, Notes on finite asynchronous automata, Informatique Théorique et Applications 21
(1987) 99-135.



