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Abstract. A lattice of unmarked nets is introduced and studied. It is proved that unmarked nets 
representing the static structure of sequential systems are atoms of that lattice. Marking classes 
defined by the decomposition of nets into sequential components are introduced and proper:+zs 
(safeness, fireability, etc.) of nets with those marking classes are investigated. The notion of 
concurrent>’ relation on the system level is defined and discussed. Two different definition? of 
that relation are given. The first one starts with a given in advance decomposition of a net into 
sequential components; the second one is constructed on the basis of a given in advance marking 
class. Both definitions follow from a general concept of the symmetric and irreflexive relation 
defined by a set covering. Petri’s postulate about a common element for every global system state 
dttd every sequential component is carried up the system level and its strength is discussed. It 

= turns out that if a net is safe and each transition has a possibility to be fir:< then that postulate 
implies that the net is decomposable into finite state machines. 

I e Introduction 

The approach presented in the paper follows from the author’s conviction that 

people think sequentially. Of course, our brain works nonsequentially, and WIZ can 

understand parallel processes, but our mental perception of reality is sequenti4. 

It turns out that not technology but human imagination is the main obstacle in 

the use of concurrency in computers. Long before now, people have stated that it 
is very difficult to comprehend the total effect of actions being performed concur- 

rently and with independent speeds (compare Brinch Hansen [2] and his example 

of troubles with learning the history of the whole of Europe). 

People express their thoughts by means of a language, but every language is 

sequential in the course of nature. Furthermore, the concept of ‘time continuum’ 

also sequentialises our perception of reality.’ If we agree that lhe way of thinking 

* The research reported in this paper was mostly supported by a Grant from the Polish Academy of 
Sciences, and partly by a Grant from the Science and Engineering Reseanzh Council of Great Britain 

’ For instance in the Hopi American Indian Tribe Language, there is no ‘time corltinuum’, the world 
is treated as a collection of-events, and the flow-time is a relation among Ij:vents (se.2 [24]). 

03043975/84/53.00 @ 1984, Elsevier Science Publishers B.V. (North-Ko!land) 



8X R. Janicki 

and the way of speaking are strictly connected,’ we obtain that people think in a 

sequential way. 
The sequential way of thinking implies two natural metholds of specifying concur- 

rent systems. The first method consists in starting with a functiona!ly equivalent 

bcquential system, determining a set of independent actions and then perforr.ling a 

set of transformations of the sequential system resulting in a concurrent system. 

Although this method is frequently used in practice, especially to describe technologi- 

cal processes, its theGretica1 principles are insufficiently examined. A mathematicnl 
background of that method was given by Janicki [Ml. 

The second method consists in decomposing the problem into components being 

sequential in the course of their nature (frequently such a decomposition is 

ambiguous), solving each sequential part of the problem in a relatively independent 

way, and then composing all sequential solutions into the whole. There is a large 

numhcr of techniques foJ. specifying concurrent systems, which are based on that 

method. The well-knslwn ones are the following: Semaphores [h], Synchronised 
Parallel Processes [9], Communicating Systems [ 18], Path Expressions [7], COSY 

i crrmalism [ 163. 

This paper also concerns the second method. Wc shall deal with general prope,.titss 

of corlcut-rent systems decomposed into, and composed from, sequential components. ,, 
As a twc for further considerations we shall use Petri nets [3, 7, 211. A net model 

of concurrency seems to bc sufficiently wide, and contrary to the mode;:; quoted 

&ovc, it does not assume’ in advance the existence of sequential compollents. 
althoui:h it\ does not exclude that existence either (see L-5, S]). 

The cassential intent of our approach is to construct rules for decomposition of 

net\ into indivisible components (atoms) with simple. ‘primitive’ concurrency. In 
11114 way one can describe properties of the whole net bv rntxm~ of properties of 

coniponcnt\. Special attention is paid to such a class of net5 whose component4 

rcprc\cnt scqucntial systems. WC will try to define the marking clus~ on the b;tlsis 

of a net decomposition into sequential components. The notion of concurrency 
relation is defined and precisely investigated on the system level. 

It turns out that in c)ur approach the concurrency relation is one of the most 

important, very conveiiicnt, notions. Petri’s postulate that every sequential COJII- 

poncnt and every gloM state must have one element in COIJJIIOJI, is citrried up the 

sj stem level. and its strength is an:\lys~tl. 
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the equivalence class containing the set k’ will be denoted by [ Y],+ The remaining 

detailed notations will be given in suitable sections. 

Some results of the pager have been announced (see /12, IS, lS]). 

2. A lattice of s-nets 

The approach presented in the paper is based on the notion of so-called s-nets. 

This concept and the notation connected with it enable us to create a convenient 

algebraic structure of nets. Both the concept and the notation follow from [IO]. 

For every set X, let left : X X X + X, right : X x X + X be the following projections: 

V( x, y) E x x x, left((x, y)) = x, right((x. y)) = y. 

By a simple rtef (abbr. s-net) we mean any pair 

N=(T,Y), 

where T is a set (of !rartsittons). PC 2 I X 2 “ is a relation (interpreted as a set of 

places), and 

QG 7’ 3p.q~ P, n E left( p) n right( 4). 

In the paper we restrict our attention to finite s-nets. Instead of writing 

({(I,. . . . , a,,},{h,, . . . 7 h,,,})~ l’ we shall write [[I,. . . . . a,,: h,, . . . , h,,,]~ P. 

Avery s-net N = ( T, P) can be represented, using the graph shown in Fig. 1, to 

denote that [u,, . . . , a,,: h,, . . . , h,,,]E i? 

Example 2,1. Let N = ( T, P), where 

T = { II. 1% c. rl., e, J g } , 

P={[Ck a], [rr,f: h, g]. [Lfyc?], [I-: e], [b: e], [h: d], [d: c], [e:f]}. 

The pair ( 7; P) is an s-net and it can be represented by the graph shown ii 

Fig. 2. 

In the literature, nets are usually defined differently, starting with two disjoint 

sets of transitions and places, and introducing a flow-relation among them (compare 

[3,21]). Our approach has an advantage in the sense that it makes it mole easy to 

handle operations among nets. 
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Fig. 2. 

Using a standard notation, we define a net as a triple N = ( T, P, F), where T is 
a set of transitions. P is a set of places, T A P = 8, T u P # c3, and F c T x P u P X T 
is a flow relation. 

To define ‘successors’ and ‘predecessors’ under the relation F, the convenient 

‘dot’ notation i:$ usually used: 

VXC Tu P, ~_v={y~(y,x)~ F}, .I-‘={yl(x, y)~ F}. 

The triple ( T, P. F) is an s-net in the above sense iff 

(11 V/M@? (‘/I=$ & p’=q’) 3 p=q. m 

(2) VUC T. ‘N f 43 & n’ f g. 

Then every p c P can unambiguously be represented by a pair (‘p, p’) c 2 ’ X 2 ‘. 

The flow relation, in our approach, can be defined as follows. Let N = ( T, P) be 
an s-net. Let F c TX Pu PX T (or Fiv if N is not understood) be the following 

relation: 

V’s, y E Tu P, (.I-. yf E F G xc Ml(y) or y E right(x). 

In our approach the ‘dot’ operation can be defined without using the notion of flow 
relation. 

Lemma 2.2. A pir t T, P) where P z 2 ’ x Z ’ is ml s-net if 

h t_ 7: (I . f 0 ‘! ‘(1 f 0. 
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Proof. The proof of the lemma follows from the definition of ‘a and a’. Cl 

For every X c T u P, let ‘X_= IJ,, x ‘x, X’ = Uxix x’. 
Let SNETS denote the family of all finite s-nets. Note that the class of SNETS is a 

set. 

Let c be the following relation on SNETS: 

Note that G is a partial order and N, c N+ TI E T2. Let sup{N,, N,), inf{N,, N?) 
denote respectively the least upper and the greatest lower bound under the 
relation r=. 

Theorem 2.3. For every N, = ( T, , P,), IV2 = ( T2, 5) E SNETS: 

(1) sup(NJVJ=( T, u T2, PI uPz), 
(2) inf{N,, N$= (‘P. P), &h ti ereP=U{P’IP’cP,f-& & ‘(P’)=(P’)‘}. 

Proof. (1) Because left(P, v PJ = right(P, u P2) = T, LJ T2, the pair ( T, u T,, PI u 
P2) is an s-not. L&note N1? = ( T1 u T2, P, u Pz). Let [*I = sup(N,, N,}, and let N = 

( T, P). Since obviously Ni c /VI1 for i = 1,2, N c N12. On the other hand, Pi c P, 
T, C_ T t’or i = 1,2, SO T1 u Tz c T, PI u P2 c P; but this means that NirG N. Thus 
N,- = N. 

f 2) Follows directly from the definition of the greatest lower bound. 0 

Let us define the well-known lattice operations 

N, u N2 = supIN,, hi,}, N, n N2 = inf(N,, N,}, 

u N=su~(NINES}, n N = inf{ N 1 N E S}. 
R; 6 s N t s 

Corollary 2.4. The algebra (SNETS, u , n > is a complete lattice with the greatest 
lower bold (v), fl). 

Since SNETS is a lattice, we can introduce the notion of an atom. An s-net N is 

said to be an aiotn iff 

(0 NWhd), 
(2) (N’~lb’j =+ (N’= N or N’=(H,(E)). 

In other words, the s-net N is zu-r atom if it is an atom in the lattice SNETS. 

For every s-net N, let atoms(N) denote the set of all atoms contained in N, i.e., 

atoms{ N) = {N’ 1 N’ L N & N’ is an atom}. 

An s-net Iv is said to be atomic iff 
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Example 2.5. Let us consider the s-nets shown in Figs. 3 and 4. 

We have: atoms(N) = (IV,} and N f N, , so Iv is not atomic; and atoms(N) = 

(Iv;, IV;}, IV’ = N’, u IV’,, thus N’ is atomic. 

N= 

N’= 

Fig. 3. 

N; = 

2 

@ 

c d e 

4 

Fig. 4. 

An s-net Iv = ( T, P) is said to be connected iff 

Vx,~~TuP, (x,y)~W\uF~')*. 

In other words, an s-net is said to be connected if its graph is connected in the 

Ural sense of this word. 

Let us put C’V =(F+JF,;‘)* f or every s-net N. Note that CV is an equivalence 

relation on Tc) P. Thus we can say that an s-net N ‘= ( T, P) is connected iff 
I’LJ PC 1 TuP)/Cx, i.e., if T u P is an equivalence class of C.&. 

Theorem 2.6. Ecer~ atom is i~ortnected. 

Proof. Assume that an s-net N = ( T. P) is disconnected. This means that 1f.T u 
p,lc\p 1. 

Let /I k ( 7% P)/Cy. Note that A f Tu P, and IV,., =(A n T, A r\ P) is :ur s-net! 

Hut t~cause A f T u P then J ,c N C! AC1 f N. Thus N is not ;I’! atom. Cl 

3 Elementary, quasielemen&uy and proper s-nets 

It is a \vell-known fact that sequential systems GE? he adequately modelled by 

finite state machines (see, for example, [3, 71). In t!Gs section we define finite state 
machines using the notation defined above and show that they are atoms of SW-IL 

An \-net N = ( T, PI is said to be qrrClsiel,.t~l~~ilt,~r~ iff 
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An s-net N = ( T, P) is said to be elementary iff it is elementary and connected. 
Elementary nets are equivalent with totally labelled connected finite state 

machines, and will represent sequential systems or subsystems in our approach. 
Quasielementary nets will represent disconnected sequential systems. 

Example 3.1. The net defined in Fig. 5 is elementary. 

[d,f:a] 

[Y a: 

t-1 c:f 

&:d+] 

Fig. .c 

Theorem 3.2. bery elementary s-net is an atom. 

Proof. Suppose that N = (T. P) is an elementary net, and that there is an s-net 

N1 =- i T, , P,) such that 

We must consider two disjoint cases: 

(1) &= T&P&P, 

(21 T, 5 T (of course, T, s: T+P, 5 P). 

Case I. Let P1 = P- P, , and let p E P2. 

Since N is elementary, there is a E T, = T such that ‘a = { p) or a’ =(n). But if 

‘u = { p) then aZ right( P,), and if a ’ = {I,), then aE kft( P,), in both cases ( TI : P,) 

is not an s-net. l’i~s, the assumption P2 = P- P, # v) leads to the discrepaky. 
Case 2. Here T, 2 T, P, 5 I? 

Let P2 = P- P, . T, = T - T, . The s-net ( T, P) is connected because it is elementary. 
But this means that th(*re is a E T2 such that (‘a LJ a’) n P, f (4. In other words: 

3ac ‘i’? 3pfz P,, pcz’a,a’. 

Suppo se that p E ‘11. Since N in elementary, it is equivalent to ‘a = { p}. 

But ‘a = { p) implies a II right(p) clr right{ P, ). Thus we have a c right( P,) 6r aE T,. 

so T1 # rlght( Pl>. Similerly, the assumption pi a’ implies T, # left( P7 1’. But this 
means that the pair ( T,, PJ is not an s-net-in spite of the assumption. 0 

It turns out that not every atom is an elementary s-net. For example the s-net 

shown in Fig. 6 is an atom, but is not an elementary s-net. 
Qua.sielementary s-nets are characterised by the following theorem. 
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Theorem 3.3. Let N be a quasielementaty s-net. Then 
I 1) N! c lV + N, is quasielementary. 
(2) Ecery connected component of N is an elementary s-net. 

Proof. The proof of the theorem follows directly from the definition. q 

For every s-net N, let elem( N) denote the set of all elementary nets included 

N, i.e., 

elem(N) = { N’I N’c= N Rr N’ is elementary}. 

Of course, clem( N) c atoms(N), and generally this inclusion i,$ a proper one. 

in 

The most important class of s-nets is the class of nets decomposable into sequential 

\tatc machines. These nets represent concurrent systems built by superposition of 

qucntial subsystems, a nd they are called proper in our approach. 
An s-net N is said to be proper iff 

Yotc that every proper net is atomic but not vice versa. 

Example 3.4. Consider the three s-nets N, N,, ZV?, shown in Fig. 7. 

Xotc that elem(N) ={ , N , AL}, N = N, u N2, so N is proper. Now consider the 
next three s-nets: N’, N \, Ni. shown in Fig. 8. 

In this case: elem(N’)=(N~}~atoms(jV’)={N’,, Ni), N’-N’, u N’,. so N’ is 

not proper. although it is atomic. 
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N; = 

Fig. 8. 

Corollary 3.5. An s-net N is proper iff there is a set {N, ) . . . , N,,,) of elementary nets 
and 

One may prove that the family of all proper nets is not closed under the 

operation n . 

4. Marked s-nets 

We are now going to extend the present approach to marked nets. As was 
mentioned above, unmarked nets represent the static aspects of dynamic systems, 

while marked nets represent the dynamic aspects of these systems. 

Let N = (T, P) be an s-net. 
Let R 1 5 2” x 2 be the following relation: 

(M,,M,)ERI G 3aE T, M,---‘a=M,-a’ & ‘acM, & kM2. 

The relation R is called the forward reachability in one step. It can easily be 
extended to the forward concurrent reachability in one step CRl, namely let C!. i E 

2”X 2’ be the relation de’fined as follows: 

(M1,M7)&Rl e 3Ar T,M,- ‘A=M2-A’ & AcM,&AkM2. 

.Directly from the definition we have the following lemma. 

Lemma 4.1. (R~uRI~‘)*=(CR~UCR~ I)? 

Let us define R = (R 1 u R 1 ‘)*. 

‘The relation R is called the forward and backward reachability of N. If the net 

N is not fixed we shall write R,,,, R lI\: or CR1 N, respectively. 

In fact we are interested in proy;erties of R, and the representation of R in the 

form R = (R 1 u R l-l)* is more convenient for proofs ihan the representation by 

CRl. On the other hand, because we admit the possibility of concurrent execution, 

we have to define the relation CRl. 
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Note that R is an equivalence relation. For every M E 2’, let [MIR denote the 

equivalence class of R containing M. 
By a marked simple net (abbr. ms-:,et) we mean any triple 

MN = (T, P. Mar), 

where N = ( 2: P) is an s-net, Mar c 2’ is a c\et of markings of MN, and 

An ms-net MN = (T, P, Mar) is called compact iff 

VM G Mar, Mar = [Ml,<%. 

In other words, an ms-net is compact if its marking class is the equivalence class of 
reachability relation. Most authors dealing with nets, restrict their attention to 

ctjmpact nets. Petri [21] h;as assumed that his Condition-Event-System is compact 

icr the sense defined above. Equivalence classes of RN may be interpreted as dynamic 
rcalisations of a system. An ms-net is compact if a system has oniy one dynamic 

rcalisation. 

A transition LZ G T is called fireable iff 

An ms-net is said to be locally fireable if all its transitions are fireable, and it is 

iireuhle if it is compact ;rnd locally fireable. 
&I ms-net MN = ( 71 P, Mar) is said to be .slJ.fe ifT VA c P Vi1 E 7: 

Safeness is crsually defined differently. starting wi, n the concepts of so-called token 

capacity of places. and a little different definition of reachability relation. Usually. 

;I marked Petri net is said to be k-safe if it never has more than k tokens in a place 

in any marking reachable from its initial marking (see [3]). 
The definition given above follows from [ 171 and it is equivalent with bilateral 

I +ffcness. 

It turn\ out ihat ir; the C;IW of marked clzmentary net>. J c.. such m+nets 

4 7: I-‘. Slrrr~ L-thcrc ( 7: ip) is an-i clementar~ s-net, safeness JY;GS a very regular 

marking class. 
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In the general case, properties o< marked nets are more complicated, and in order 

to express them we will use the concept of concurrency relation. 

Example 4.3. Consider the ms-net MN = ( T, P, Mar) (see Fig. 9), where N = ( K P), 

Mar = WY 21, {4,V, {6), (3)). 
This ms-net is compact, safe, but the transition b is not fireable, so it is not locally 

fireable. 

N= 

Fig. 9. 

Example 4.4. Consider the ms-net MN = ( T, P, Mar) (see Fig. 1 O), where N = 

(T, I-“), M:ir ={{l), {2.3}, {1,2}}. 

Tl-:is ms-net is compact, fireable, but it is not safe. 

N= 

Fig. lo. 

Example 4.5. Consider the ms-net MN = ( T, P, Mar) (see Fig. 1 1 ), where N = 

( T, P). Mar = {{1,3}, {2,3}, { 1,4}, (2.4)). 
This ms-net is safe, locally fireable, but it is not compact because ({ 1, 31, (1,4}) g 

R,+ In this case Mar consists of two equivalence classes of RN: {{ 1,3}, (2.4)) and 

{{I l 41, {2,3}}. 

N= 

Fis. I 1. 
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Example 4.6. Consider the following triple ( T7 P, Mar) (see Fig. 12), where N = 

( T1 P L Mar = {{ 1,2}, {A a)). 
This triple is not an ms-net because Mar is not a set-theoretic union of equivalence 

classes of RN. 

N= 

Fig. 12. 

Example 4.7. Consider the triple ( T, P, Mar), where N = (T, P) as in Example 4.6, 

but .Mar=({1.2}. {3,4}, {2,3), (1.4)). 
This triple is a safe, compact and fireable ms-net. 

5. C:Bncutrency relation and sequential components 

The concept of concurrency relation originates from Petri [ 193. who has shown 

that a suficicntly comprehensive theory of parallel processes can be established on 

the bar?is of that relation. When we deal with concurrent processes, i.e., with partially 

ordered sets of event occurrences, the concurrency relation can be defined as the 

complement of the partial order relation. Then many properties of one follows from 

the well-known theory of partial orders. In particular, the most interesting results 

of H<sf [ l] and Petri [ 19,20] follow from that fact. 
A gcneralisation of the concurrency relation concept was considered in [ 111. 

Unfortunately, [ 111 contains errors. 

In dhis section we recall and modify for our purposes some results from [ 111. 

Our approach is based on the notion of a symmetric and irreflesive relation 

defined by a fixed covering of a set. Elements of the covering will represent hequential 

components of a system. 

Let X be a set, and let id C_ X X X be the ider;tity relation on X. 
A relation c E X X X is said to he a sir-refatiot~ (from symmetric :ind irreflexivt) 

ifI 

Va.hcX.(a,h);rC‘ a (h.a)EC * a#b. 

Let <’ bc ti sir-relation, and lc 

4Llb~C’fS of A-: 

kens(C) ={AlVa, b E A, ( 
--_- 
kens{ C) = (Al Va, b c A. 

kcns( c‘), kens(C) be ?n, following families elf 

a, b) E C u id 6% Y& A 3a E A, (a, c) E C), 

a, h) @ C Ri ‘VS’CT A 3a E A, (a, c) E C}. 
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It should be pointed out that kens(C), kens(C) are coverings of X. It is obvious 

when the set X is finite, in general it follows from the well-known Kuratowski-Zorn 

Lemma. 

From the viewpoint of graph theory, the set kens(C) is the set of all cliques of 
_- 

the indirect graph representing C, while the set kens(C) is the set of all cliques of 

the indirect graph representing X X X - C. 
Note that C u id is an equivalence relation if and only if kens(C) is a partition 

of X. Then kens(C) = X/( C u id). Similarly, X X X - C is an equivalence relation 

iff kensf C) is a partition of X, and then kens(C) = X/(X X X - C). Therefore 

sir-relations can be treated as a kind of generalisation of equivalence relations. 

Every equivalence relation describes the partition of a set, while every sir-relation 

describes the family of set coverings. 

We 
Let 

Let 

are now going to show how coverings can define sir-relations. 
cov be a covering of X. 

sir(cov) c X X X be the relation defined as follows: 

Vu, b E X (a, 6) E sir(cov) e a # b & VA E cov, a& A or b& A. 

Corollary 5.1. If cov is a partition of X, then X X X - sir(cov) is an equicalence 
relafio)z nncf c’ov = kens(sir(cov)). 

Corollary 5.2. For every covering cov of X: 

VA E cov 3 B E kens( sir{ cov)), A c B. 

In our approach, a covering cov will represent an arbitrary set of sequential 

system components, and the rtlr-ttion sir(cov) will represent the concurrency relation 

defined by this set of components. 

Let Mar C_ 2‘Y be a family of subsets of X satisfying the following properties: 

( I ) Mar E kens(sir(cov)), 

(2) Mar is a covering of X. 

The family Mar will represent the set of global system states (marking class). 

Let us put DC = (cov, Mar). The pair DC, called dolfble covering of X, represents 

t.ix most general information about a system; it describes system sequential com- 

ponents but without information about control flow inside each of the components, 
and it describes global s#ystem states, zlso without details about communicaiic?n 

among them. 

Summing up, we have the following interpretations: 

sir(cov): the concurrency relation, 

cov: the set of sequential system components, 

Mar: the set of global system states, 
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.- 
ikens(sir{cov)): the family of all maximal locally dependent sets, 

where by a locally dependent set we mean any set 

A G X, such that Va, b E A, (a, b) rd sir(cov), 

kens(sir(cov)): the family of all maximal locally concurrent sets, 

where by a locally concurrent set we mean any set 

A c X, such that Va, b E A, (a, b) C: sir(cov). 
-- 

The family kens(sir(cov)) is only a set of sequential system components if cov = 

kens(sir(cov)), and the family kens(sir(cov)) is only ;EI set of global system states if 
,Mar =- kens(sir(cov)). That is the main difference between Petri’s approach and ours. 

Petri assumes that kens(C), and kens(C) represent sequential components and 

plobal states respectively. This assumption is only valid on the process level, and it 

is usually false on the system level. 

A sir-relation sir(cov) is said to be consistent iff 

cov = kens(sir(cov)). 

/I sir-relation sir(cov) is said to be serniconsistent iff 

WV c kens{ sir( cov)). 

‘l’hc consistency property means that the concurrency relation describes precisely 
the \ct of sequential components, while the semi-consistency property means only 

that cvcry sequential component is defined by the concurrency relation. 

In fact, the above properties are rather properties of the covering WV than the 

r&tion sirtcov), because many coverings can define the same wlation. 

Nwerthclcss. in further considerations the wvering will usually be fixed, whereas 

\pcaking about consistency :md wmiconsisttxcy as the relation proper:ies enable 
II\ mot-c uniform considerations. The same reinark concerns notions of KM-, CM- 

,;:t~i C-density introduced below. 

(‘c,,nridering nets of occurrcnccs, Petri [ 191 has postulated that fc~ every r-4 
proccs~ the following condir;ljn is fulfilled: e\rery sequential componclnt and every 

‘C;IW (global state) have one element in common. This is a gencralisation of the 

wll-known postulate of phvaio that every time sequence and every space must 

h;tw one common c’lt’nit’nt. or, equivaluntly: there is no spxe outsid< the time. 
Petri has calltx! thi\ property by K-density. 

Aithouzh K-density ws form;~llv d~‘fint’d ;t? ;t propt’rtv of the c’onwxnq rt‘lation 
i\LSC f 1% _ %I]). in w;lli;), ;IS it WI, justiy notiwd by Hcst [ 1 1. i. is ;i propert) of 
occurxnw wt. 

----- 
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cov = kens(sir(cov)) and Mar = kens(sir(cov)). Therefore we have to replace it by 

more adequate notions. 

Let DC = (cov, Mar) be an arbitrary double covering of X. 

A sir-relation sir(cov) c X X X is said to be KM-dense ifi 

VA E kens(sir(cov)) VA E Mar, .4 n B # 4). 

A sir-relation sir(cov) E X X X is said to be CM-dense iff 

VAEcovV&Mar, .4nB#@. 

A sir-relation sir(cov) G X X X is said to be C-dense iff 

VA E cov VI3 E kens(sir(cov)), A (7 B f CJ. 

Corollary 5.3 

(1) Mar = kens(sir(cov)) + (KM-density e k’-density 

& CM-density e C-density). 
PC 

12) WV = kens{ sir( cov)) --J, (K-density ti C-density 
& KM-density @ CM-density j. 

(3 coi C_ kens(slr( cov)) 3 ( K-density =+ C-density 
& KM-demity 3 CM-density). 

The property of CM-density describes Petri’s postulate on a common clement 

for ever!/ sequential subsystem and every global system state. KM-density means 

that the above property concern5 not only real sequential system components but 

all locally dependrnt sets as well. 

The following two theorems claracterise the notions considered above. 

Theorem 5.4. Let X be n set, and let DC = (cov, Mar) be (1 double covering of X. Then : 

sir(covj is CM-dense ~j cov c kens(sir(cov)). 

Proof. Assume that cov-kens(sir(cov)) f fl. 

L,ct ,4 E cov and ,U kens(sir(cov)). From Corollary 5.2 we h:lve 3B E -- 
ktzns( sir(cov)), k\ c R. 

Lxt p E B -A. Since Mar is a covering of /Y, there is a D F_ Mar such that p E I>. 
Since sir(cov) is CM-dense, 3q E L) n r\. But D n A c D! ‘I H, SO 4 t u n B. Thus 

we ha: L’ { p. q} c D A B, so by definitions of kens and kens: p I- q. But on the other 

hand, VE B-A, SEA. then p#q. El 

A covering cov of X is called ntirzirmzl iff VA E cov, cW-{A} Is not a covering 

of x. 
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Theorem 5.5. Let C z X x X be a sir-relation. If kens(C) is a minimal covering, 
then C is K-dertse. 

Proof. Assume that A E kens(C), B E kens(C) and A n B = 0. From the definition 

of kens(C) it follows that Va E A 3 b E B, (a, b) & C. 
This means that 

Obviously, for every pair (a, b} the set Qclh differs from A (because A n B L- Cn by 
the awunption). 

Since Va c A. a E Q‘,,,, then A E U,, ,,l Q(,,,. Thus 

in +tc of the assumption that kens(C) is a minimal covering. C 

Detailed analyGs of K-density and C-density properties can bc found in [22]. 

6. Seminaturally marked s-nets 

In thi\ \cction WC :)hal! deal with the relationship between a static net structure 

(ix.. the pair ( T, P)) and properties of the marking class (i.e., the set Mar). We 

rt’Wict our attention to proper s-nets only. 

Ixt 1V = ( 71 P) he an arbitrary proper s-net, and ict C‘ = {IV,, . . . , IV,,,} C_ elem( R’) 

be a \et of elementary nets, such tFlt N = IV, u l - m u N,,[. Assume that ZV, = ( Tl, P,) 

for i - I , 2, . . . , m. 

‘i’hc relation coexC. is said to be the coesistenq defined h the e-cowring C. 
An ms-net IMN = ( T, P, Mar) is said to be scnrinatrrrdl_v marked with respect to 

;in c-covering (‘ if-f: 
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Corollary 6.1. Let MN = (T, P, Mar) be seminaturally marked with respect to C. 
Then the pair (cove, Mar) is a double covering of P. 

Let MN = (T, P, Mar) be a fixed seminaturally marked s-net with respect to an 

e-covering C Let also N = ( T, P). 

Lemma 6.2 

Va E T VPi E COVE-, Pin’a#(!Ie Pina’f(d. 

Proof. Assume that SE P, n ‘a and Pi n a’= Q). This means that a E right!? \ G 

right(P,) 3nd ag left, Pi&in spi+- LL of the assumptions that (Ti, Pl) is an elemer;rary 
net. Cl 

Theorem 6.3. MN is safe. 

Proof. Let a E T, r\ t 2”. ‘a n A = v) & ‘a u A c M E Mar E kens(coex,.). First we 

prove that (M- a) -la’=@ 

Assume that s E %I - ‘a & s E a ‘. Assume also that s E Pi. 

By Lemma 6 2 we obtain 31’ E PI n ‘a. 3 Cince ‘a c_ M, we have t E M. But this means 

that {s, t) E M n Pi. 

Since jit E kens(coex, .), we have IM n P,\ s 1, i.e., s = t. On the other hand: if 

t E ‘n, s E3 AZ - ‘a, then s # t. Thus. the assumption that (M- ‘a) n a’ =v) leads tc~ a 

Jiscrepancy. 
Hence (!!4--‘n9n a’=@). 

Define 52 = (A? - ‘n) u a’. Since (&I - ‘Q ) t-1 a’ = k$, we have ( Ad, M’ ) E R 1 and 

,%I’ E [Ml& Of tour-se, M t= - Mar; then by the definition of hfar we obtain [Ml,< c 

Mar, thus M’ E Mar. 
Since ‘crr,A=C)&‘auA~_M, ;ve have Ac_M--‘a=,Id’--a’. Thlls Ana’= 

~4 & G’ v A c M E Mar. 
In this way we prove that 

The implication e can be proved similarly. Cl 

Note that notions KM-density and CM-density can be expressed in the terms 

used in this section only, namely, the relation coexc. is said to be KM-dense iff 

VA E Mar W3 E kens(coex& A n B # 8, and coex,- is said to be CM-dense iff 

VA E Mar VI3 E cov,., A n B f g). 

As a consequence of Theorem 5.4 we have the following. 
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Corohy 6.4 

coex,. is CM-dense + coex(, c kens(coeq-). 

Thus CM-density of coex c implies its semiconsistency. 

We are now going to formulate the main theorem characterising the strength of 

KM-density. 

Theorem 6.5. f’ coex c’ is KM-derzse, then for every set A E kens(coexc) the pair 
N,., = ( *A, A) is a quasielementary s-net. 

Proof. Note that ‘A = left(A). First we prove that (‘A, A) is an s-net. Let a E left(A). 
This means that 3p,, E /a, a E ‘pU. Because MN is locally fireable 3M E Mar, ‘a c Ad. 

Since coexc is KM-dense, M n A f 0. 
Frc )rn T heor em 6.3 -we have that MN = ( T7 P, Mar) is safe. 

Dcfinc M’ = (M -‘a)u a-. Since MN is safe, (M, M’) E R 1, and consequently 

,%I’r[M]c_Mar.Notcthat M’nA={p,).Thus{y,}=a’nM’nA=M’nA=a’n 
A. But this means that (M’- a’) n A =fl. 

Bcc;uw (M, M’) E R I, we have M’- a’ = M - ‘a; thus we can write (M - ‘a) n 
A = (3. The relation coex,. is KM-dense, so M n A f v). Let p E M n A. From the 

facts (M - *a ) n A = fl and p E M n A, it follows that p E ‘a. But p E ‘a G a ~7’ right( p). 

Of course’. righti a) c right(A), so a E right(A). Hence left(A) c right(A). 

In a similar way we can prove that right(A) c left(A). Thus the pair (7’,,!, AL 

uhcrc 7’, = left(A) = right(A) = ‘A = A’, is an s-net. 
Xow wt’ prove that N,, = ( T.,. A 1 is quasielementary. Lut u E T.,. Wc want to 

prove that \(‘a)%,,l = [‘a n Al = I. Of course ‘Q n A cl: ‘a. 
Let bid, t: Mar be such marking that ‘n c M,(. We have: ‘a n A c ‘a c M(, E Mar. 

Assume that (p, q] c- ‘a A A and p f q. This means that {p, q} c M(, E WWG 
kcn\fccsex, 1. so (p. 9) (.I coex,.. But (p q) E coex,++A’ E kerls(coexJ, p< A’ OI 
yg A’=+p@ ‘LI Afit A or q@ 21 c--? A---_;~ discrepancy. Thus VO E T.,, 1.0 f> Al = 1. 

In a similar Nay we can prove that VU E CT’..:. la’n A[ = 1. [I! 

Of cour\c,‘, b> the construction WC’ h:tvc that ewcry element for COY( cleGlcribcs an 
clcmcniary s-net, but we do not know anything about elements ’ “:zi(coes~~ ). -- 

Note that, in g,eneral. ut3 do not assume the property cc‘ ( c kens(coex& 

i%ctjrem 0.5 states that if COG+ is KM-dense, lht’n every tkwnt of kens(coex,+ 
i,@ ) cvcry maximal locally dependent set, creates a seqztrwal finite state machine 
t no1 neccssarify connected). 

WC consider now two examples illustrating ideas anct results formulated above. 

:tnd proving that the rccipr-ocal of Theorem 6.5 i< n:)t true as well as that the word 
‘C~u;~riclcmcntary’ cannot bt- rcplac~~d by ‘ele~~,~ntrirv’. 

i ct GG, = (I’X f’ -cot’x( ) -id,*. Of coi.7.5’ k~&(ct~t3,~) 
-_- 

= kcns(cc:cx,. ). 
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Example 6.6. Let N = (T, P), Mi z= (T, Pi) for i = 1, . . . ,5 be the s-nets, given in 

Fig. 13. Note that A = A$ u IV2 u l l 9 LJ A&, and elem(N) = (N, , . . . , I&}. Let C = 

(N, 7. . . , Ns}. The net family C 2~ obviously an e-covering of N. Graphs of coexr- 

and coex(- are shown in Fig. 14. 

Fig. 14. 

Here we have 

kens(coex( ) ={(l, 3}, { 1,6}. { 1,7}, (2.4). {2,5}, (3, S}, {4,6}, {4,7}), 

kcns(coes,.) = {{ 1,2}, {3.“4). { 1,4* 5}, (5, 6.7}, (2.,.X 4,7& 

COV( = kens{ coex( ). 

Let Mar =({ 1 I 3}, (?, 4}, (3,s). {4,6}, {4,7}} 5 kens(ooex,.). Note that the triple 
MN = ( T, P, Mar) is a seminaturally marked s-net with respect to the set C = 

{N,. . . . , N,}. The Ins-net MN is c.afe, locally tireable, but not compact because, for 

example, (( 1, 31, {3,5})& Ru. Since cov( 
-- , 

= ktns(coex( >. KM-density is equivalent 

to CM-density. The relation coex ecY is not CM-dense because, for example, (1,3} n 

(5,6,7} = v). Note that all elements of kens(coexcS) define elementary s-nets, &hough 

coex(. is not KM-dense, thus the reciprocal of Theorem 6.5 is false. 

Exampte 6.7. Let N = (T. P), AJ, = ( Tl, P,) fqr i = 1, . . . ,6 be the s-zets, grvel: irr 

Fig. 15. Note that iV = N1 u - l - CJ N6. 
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N !I N4 

Fig. 15. 

Let uspu’, C={N,,. . . , IV(,). Of course C is an e-covering of IV, and C f elem(lV). 

In this c.we elem(N) = C u(N,, IV,}, where I& = ((a, b), {3,4}), N, = ((a, b), (7,8}). 
Graphs of relations coex C. and coexc. are shown in Fig. 16. 

coex 
C 

coex 
C 

Fig. 16. 

kcnskocx,4 =(( 1,X 7}, {2,4,8}, {3,6,8). {4,S, 7}, {3,3, 7, S}}, 
_--- 
kcns(cocx, ~={{1,2.S,6},{2,3,S},{1,S.8},{2.7.(,).{l,4,6}), 

Thus, the relation coex,. is not semiconsistent. 

tct us define: ,Mar = ((I, 3,7}, (2,4,8}, (3,h, 8). (3,5,7}} 5 kcns(coex,J Note 

that the triple :&IN = (T, P, Mar) is a seminaturally marked s-net. This net i> \afc, 

locally fireable, but not compact, because, for instance, ({ 1.3, 7}, {3,6, 7})$ K,%;. 
The relation coex,. is not CM-dense, because { 1,2}n{3,6, 7) = (13+ but it ic; 

Ii .W&:n~e. 

‘I hc statement U E ktns(coex,. j. ( ‘A, A) is an element;fry s-nel is lot true, 

h~au~,; the set ( I. 2. 5,6} defines a disconnected quasielementar\, -ilet. The state- 
-~ 

mcnt VA E kens(coex,+ ( ‘A, A) is a quasielementary s-net is ob )usly true. Thus, 
in Theorem i.5. the word ‘quasielementary’ catznot be replacri l-y ‘elementary’. 

C’ompactncs\ is the property. which is frequently req&rtzd from concurrent 
systems. Most alternate models of concurrent systems a\sume the property like 

compactness defined above. A?nong others, Petri’s condition/event systems and 

wts quit rrlcnt to path cxprc:;sions [16, 211 are compact. 

G~~ipac t ~~:minaturally mrrrkcd s-nets are ckmctcrised by the following three 
t hcl.jrcrn\. 
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Theorem 6.8 

MN is compact + coexC is CM-dense. 

Proof. Fgr every A E Mar, let aA = {Pi 1 Pi ECOV~ & PinA=z0}. From Lemma 6.2 

it follows that 

(A.B)ER~uRI-’ %’ tkA=ayH. 

Since MN is compact, VA E Mar, Mar = [AIR. Thus VA, B E Mar, aA = LYJ+ 

Assume that 3A E Mar 3Pi E cov c‘, A n Pi ~0. Of course this means that Pi ‘E aA. 

But we have shown that VA, BE Mar, (Ye, = Q, then VB E Mar, Pi E aB. 
Thus VB E Mar, Pi r B = 0, or equivalently, Pi n lJBr Mwr B = 0, or Pi n P =r: 0. 
But this is a discrepancy because Pt E cov (-, then Pi 5 E Thus VA E Mar VPi E COVE-, 

AnPi+@. q 

Theorem 6.8 states that if a seminaturally marked s-net is compact, then every 

sequential subsystem anli every global system state have one element in common. 
From Theorems 5.4 and 6.8 we immediately obtain the following. 

Corollary ii.9 

MN is compact * covCT c kens(coexc.). 

This means that in the case of compact seminaturally marked s-nets, every 

sequential subsystem is described as a clique of the relation coex(.. The reciprocals 

of Theorem 6.8 and Corollary 6.9 are not true. To prove this fact let us consider 

the ms-net MN = ( 7’, P, Mar) from Example 4.5. This net is a seminaturally marked 

s-net wit5 respect to the set c = {IV,, IV?}, where IV, = ((a, 6, c), { 1,2}), IV2 = ({a, b, c), 
(X4)). In this case the relation coex(. is K-, G, KM-, CM-dense and cov(. = 

kens(coex,.), but MN is not compact. 

If we assume thaf MN is compact then the result of Theorem 6.5 can be 

strengthened. 

‘Theorem 6.10. If MN is compact and c~~exC~ is KM-dense, then for er;ery Tet 

A E kens(coexc3 the pair N,.\ = ('A, A) is a!1 eiemerltary s-net. 

Proof. By Theorem 6.5 we have that IV1 is quasielementary. Let p, q E A. Since 

MN is fireable 32, IW E Mar, p E A4, q E M’. Since MN is also compact, (M, M') E 
R .N =(Rl,+JRl$)*. Let M,,. . . , M,! be a sequence of markings satisfying the - 

following conditions: 

(1) M,=R&, M,,=M’, 
(2) (,21,,Mt+,)E Rl~WuKIN1 for i= 1,. ,.3-l. 
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Since coex(- is KM-dense, Vi -= 1, . . . , n, A n Mi Z 0. Let pI , . . . , p,, he the following 

sequence of places: 

{p,)=AnMi fori=l,..., n. 

NotethatVi=l,... 7 nAbMPi+J~~Rl .v,4 u R lit\. But this means that ({p}, (9)) E 

RN,,, and, as a consequence, that I’& is connected. Cl 

Of course, if MN is compact then covcX E kerls(coexcY) (by Corollary 6.9) and 

every element of cov(- generates, by the definition, an elementary !;-net. Theorem 

6,. 10 states that elements of kens(coex,,) - cov c3 also generate elementary s-nets. 

Example 6.6 shows that the reciprocal is false. The ms-net from this example is 

neither cctmlpact nor KM-dense, but every element of kens(coex<.) defines an 

elementary s-net. 

It turns out that if C = elem(N), then compactness implies the equivalence of 

KM-density And consistency. 

Theorem 6.11. Ler c‘ = elem(N). Then 

MN is compucf 3 (coexC is KM-&se t;j COVE, = kens(cc 

Proof. Assume that MN is compact and coex (. is KM-dense. By Corollary 6.9 WC 

have cov( c kensfcoex, ). By Theorem 6.10 we have 

ken4coe (( ) c (J l-4 = cov, . 
I . ..I. \ ts L.lcrn( s I 

‘I’h u\. 

MN is compact Nr coex( is KM-dense =+ CC+- = kens(coex(.). 

Achume that MN is compact 6r cot‘(. = kens( coex( ,). 13~ Theorem 6.8 and 

(I’orollar~ 5.3 we have that coeq is KWdense. i;l 
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Let us put C = {N,, A$, A$, Nd} 5 eBem(N) = C u {A&). Of course, N = 
N,u ..’ u & so C is an e-covering of A? In this case the relations coex,. and -- 
coexc are of the form shown in Fig. 17. Thus, 

kens(coexA = W, 3,7), k3, f9, {2,4,6), C&4,7), {2,3,% GA 3,@, G,3,7H, 
-. 
kensboexc) = W, 21, {3,4), {%6 71, U,4, W, 

cove- = kens(coexc). 

coex 
C 

Fig. 17. 

Let us put 

Mar =W. 3,7), {I,3,& {2,4,& {2,4,7), {2,3,5)) c, kttns(coex& 

Note that the triple MN == ( T, P, Mar) is a seminaturally marked s-net with respect 

tothesst C={NI,. . . , N4}. This ms-net is safe, compact, fireable, the relation coexc 

is W&dense and CM-dense. 

Example 6.13. Let N = ( T, P), IV, -= ( T,, P,) for i = 1,2, 3 be the s-nets, given 

Fig. 18. 

‘J v 

i:1 

Note that N = N, u Nz u A$, and elem( N) = {N, , ZV,, IV,}. Let us put C = 

{& , N,. IV,). Of course C is the e-covering of W. Note that in this case there is -- 
only ant: e-covering of Iv. Graphs of coex,. and coex(. are shown in Fig. 19. In this 

case we have 

kens( toes, .) = {{ 1,3}, (2,3,4}, (2. h}, {G, S}}, 
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coex c COCX c 

Fig. 19. 

t hll?, 

cov( c, kens(cocx(. I= coved u { 1,5,6}. 

Note tP rcll MN = ( T, r, Mar) is a seminaturally marked s-net with respect to the set 

< ’ = {A$, N2. NJ. The ms-net MN is safe, compact and fireable. The relation coex,. 

IS CM-{tense, but it is not KM-dense, because (1,5,6} n (2,3,4} = 0. The statement 
__ 

VA ‘ kens(coex& ( 3, A) is a quasielementary s-net is not tl ue, because the set 
_- 

( I. 5, hi_ r kcns(coexJ does not define any s-net. Since Mar = kens(coexJ, KM- 
dcrtGt~ is equivalent with K-density and CM-density with C-density. 

7. ?4urally marked s-nets 

t ‘cjn\idcring zminaturally marked s-nets representing real systems. one can 

oh\cr\e that there i\ frquently the case: Mar-= kens(coex, ). 

Thrr~ one can it& if kenstcocx,.) is always a correctly defined rmjrking class. The 

;ifl\v42- i\ “Ycs” and this kind of net will be caiied ‘naturally markecl’. 

We shall deal with that kmd of net in this section. At first we prove that for every 

e-covering C. the triple ( 7: P. kens(coex, 1) is really an ms-net. 

I_c.t IL’ = ( 71 I’) fw a fixed f-voper net. and let C = {IV1 , . . . , IV,,,}, where N, = ( T,, Ip: ) 

hf k-l..... II. hc an c-c:ock.ring of C. Let covC ., co+. be identically defined ;KS in 

the prcviou\ \etctionc. 

Lemma 7.1 
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(2) Vp,qd% (p,qkcoex c & 3 t& B Vp E B, (t, p) E coexr. 

easel. Becausepfqandp,qEPi,wehavep,q~a’,sop,qEB-a’.B~~tB-a’= 

A----a, SO {py q}S An Pi. 
But if A E kens(coexC) & Pi E cov c, then IA n PiI s l-a discrepancy. 
Case 2. In this case we have 

Vp,CjE B(VPiECOVc,,p& Pi orqf! Pi)& (3tSE BVp~l3 

VP, E COV<., tiZ Pi or p& Pi). 

Since rz’~ B, tg u’, and by Lemma 6.2 we have ZB ‘a. Because A-k = B-a’, we 

have ‘QE A- ‘a, (t, p) E coexC-. By Lemma 6.2 we also obtain that 

Vp E a’, ( p, t) E coex,.) =3 (Vp’ E ‘a, (p’, t) E coexd 

From the above considerations ne have 

Vp E B, (t, y) E coex(- + 

=3 WpdG-n’,(f,p)~coex,~ & VpEa’,(Z,p)Ecoexc. 

=+ V~EA- ‘~1, (t,p)Ecoex (. & Vp E ‘a, (t, p) E coex(.. 

Since ‘ac_A, we have A=(A-‘du’n. 

So we can write Vp E A, (t, p) E coex,.. On the other hand we have shown thztt 

MA---' Q and f& ‘a. But this means that t& A & Vp A, (t, p) E coexI., thus 

A $2’ h;ens( coex, - 1 -in spite of our assumption. 

In this way we have proved that (A, B) E K I+ B E kens(coex,J For (I?, A) c H 1 

we proceed similarly. cl 

Theorem 7.2. The triple ( T, P, kens(cc)ex is n safe, Iocally firenble m-net. 

Proof. From Lemma 7.1 it fallows that 

VA1 E kens(coex, . ), [AIlK, c kens(coex(,). 

Thus. 

U [MI,;, c kens(coex,-). 
.\I$ hcrls(ccrC\, 1 

On the uther hand: V,‘I\ I E kens{ cotx+), A4 E [MIK.\, so 

kens(coex,.) c U WI RX. 
.Ilt hcm(c tx?s, ) 

Thus the triple MN = ( T, P, kem(coex,- j) is a marked s-net. From Lemma ‘7.1 we 
have that MN is locally fireable. Thus MN is seminaturally marked with respect to 

the covering C, so by Theorem 6.3 we get that it is safe. ‘il 
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Theorem 7.2 makes correct the following definition. If C is an e-covering of 

t T’, P), then the triple MN = ( T, P, kens(coex& is said to be a naturally marked s-net. 
Note that every e-covering describes exactly one naturally marked s-net. Of 

course, every naturally marked s-net is also seminaturally marked. Since in this case 
&Mar = kens(coex& KM-density is equivalent to K-density, and CM-density is 

equivalent to C-density. 

The basic difference between naturally and seminaturally marked s-nets is that 

in the case of first ones the marking class is fully described by the e-covering C. 

Other properties are very similar. 

Applying results of Section 6 to the class of naturally marked s-nets we obtain 

the following theorem. 

‘Theorem 7.3. Let MN = ( T, P, kens(coex(.)) be a natmally marked s-net with respect 
to the e-cwuring C. Then : 

rlr coex~~ is K-dense 

3 [VA E kens(coe.+), N,% = (‘A, A) is a yuasielementa~*y s-net]. 

m ,MN is mnzpact -3 coexc. is C-dense 3 COVE - G kens(coex,. j. 

-_ 
3 [VA f kcns(coex& Nf2 = (-A, A) is an elementary s-net]. 

a-t) r= t&MN) & MN is compact 

2 (coc’x( is K-dense G cov(, = kens(coex, )). 

8. Concurrency relation and global system states 

fri Section 5 WC have started with a given in advance set of seyucntial component. 

;tnd rwt, on the back of that set. we have constructed the concurrency relation of 
;i %y&.!rn. 
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Corollary 8.2 

(1) z(cov) u sir(cov) u ids = X X X; sir( cov) n sir( cov) = (d. 

(2) kens&( cov)) = kens( sir( cov)) ; kens(sir(cov)) =kens(sir(cov)). 

(3) cov is a partition of X e sir(cov) w idx is an equivalence reiatfon. 

(4) ~(COV) v idX is an equivalence relation =+ cov = kens(%$cov)). 

In the approach presented here, a covering cov is interpreted as an arbitrary set 

of coexisting system states, and the relation ~(COV) is interpreted as the concurrency 

relation defined by that set. 

As <opposed to Section 5, we shall assume that the family kens(sir(cov) j represent 

the set of sequential components of a system. The full list of interpretations is the 
following: 

cov: the set of all global system states, 

%(cov): the concurrency relation defined by the set of 

global system states, 

kens@(cov)): the family of all maximal locally concurrent sets, 

kens(sir(cov)): thiz set 0: all sequential components of a system. 

Here the family kens(G(cov)> is a set of all global system states only if cov = 

kens(G(cov)). Notions of consistency and semiconsistency are defined, in this case, 

in a somewhat different way. 

A relation ~(COV) is said to be consistent iff cov = kens(sir(cov)), and it is said 

to be semiconsistent iff cov c kens(sir(cov)). 

The property of consistency means in this case that the set of global system stz tes 

and the set of locally concurrent sets are identical. In other words, if (a, h)( b, c)k, a> 
belong to the concurrency relation then the statement ‘(a, h, c) are all concurrent’ 

is sensible. This fact means that the concurrency, which by the definition is only a 

binary relation. can be extensible to more complex structures such as cliques. The 

property of semiconsistency means in this case that the set of all global system states 

is defined by the concurrency relation, which is only partially extensible to more 

complex structures. In fact, in the case of the approach from Section 5 we have 

also assumed that the cet of all system states is included in the set of cliques defined 

by the concurrency relation. 
Note that in order to describe Petri*s postulate on a common element, we have 

to introduce a new kind of density, because densities defined in Section 5 are 

inadequate. 
A relation sir(cov) is said to be M-derzse iff 

‘dA~covVB&%ii(sir(cov)), AnB#@. 

Usually, X is a set of net places and cov is a set of net markings, hence the name: 

M-density (from marking). 
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CorolIary 8.2 
(1) ~(COV) is M-dense e sir(cov) is C-dense. 

(2) cov = kens( %$cov)) + (M-de&y @ K-density). 

(3) cov c kens(% cov)) 3 (K-densdy 3 M-density). 

From Theorem 5.4 and Corollary 8,2( 1) it follows that M-density implies semi- 

consistency, or more formally 

Corollary 8.3 

z(covl is M-dense + cov G kens(sir(cov)). 

9. Analysis of m-nets bj means of concurrency relations 

In previous slections we dealt with a special kind of net, namely we started with 
;I proper s-net and then we described a marking class on the basis of a given 

c-covering. And so the considerations were restricted to nets decomposable into 

qucrrtiall finite state machines. 

In this section we start with an arbitrary ms-net MN = ( ?I, P, Mar), and we shall 

try to design the concurrency relation and its properties on the basis of that triple. 

WC shall use rec,ults of Section 8 and prove that the acceptance of Petri’s postulate 

about a common element reduces considerations back to nets decomposable into 
quential finite state machines. 

Let WIN = ( 7-t P, Mar) be an arbitrary, fixed for the rest of the section, ms-net. 
Let COt’Y I X1.,, c Px P be the following relation: 

cc XX \,.*, = cf( .Mar). 

in other words. 

I bus. if COC’S>~,,‘ is Wdcnse, then cvcry marking is a clique defined by the 

cocxistcnci. relation. 

WC now show that %&density connected with safeness and local fireability forms 
*8 0 crt %t rcmg pr~ycrty of a net. 
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Theorem 9.2. If an ms-net MN = ( T, P, Mar) is safe, locally fireable and the relation 

COeXMiW is M-dense, then for every set A E kens(coex,,,) the pair (‘A, A) is a 
quasielementary s-net. 

Proof. The way of proving is similar to that of Theorem 6.5. Of course ‘A = left(A). 
At first we prove that (‘A, A) is an s-net. To this end it is enough to prove that 

left(A) = right(A). Let a E left(A). This means that 3p, E P, a E pi. 
Because MN is locally fireable, 3M E Mar, ‘a c M. Because coexMM,, is M-dense, 

MnAZfl. 
Define M’ = (M - ‘a) u a’. Since MN is safe, we have (M, M’) E R 1 N, where 

IV = (T, P). Since (N, M’) E R 1 N & M E Mar, M’ E Mar. Note also that {p,} = 
M’n A. 

Let pi M n A. Since a E ‘pa, a’ s M’, pa E A, then (M’- a’) n A = kt. Note that 

M’--a‘=M-‘a,soptiM- ‘a.ButpEM,sopCa.Ontheotherhand:pE’aeaE 

right(p) c right(A), hence left(A) E right(A). 

In a similar way we can prove that right(A) E left(A). Thus Z& = ( TA, A), where 

T,, = left(A) = ‘A, is an s-net. Let a E r.%. We shall prove that 1-a n Al = 1. Of course 

‘a n A c ‘a. Let MCI E Mar such that ‘a E M,. Then ‘a n A E Mel E Mar. Assume that 

{p, q} E ‘a n A & p f q. This means that {p, q} c M, E Mar, so 

( p, 4) 2 coexXl,, + VI? E kens(coex&, pi l? or qg B 

=3 pa ‘a n .I or qe ‘a n A 

-a discrepancy. 

Thus Va E T, l’(a)N.J =1-a (7 Al = 1. 
For a’ we proceed similarly. Thus IV.4 is a quasielementary s-net. 0 

As an immediate consequence of Theorem 9.2 we obtain that if MN = ( T, P, Mar) 

is safe, locally fireable and coexkl,l;,, is M-dense, then MN is decomposable into 

sequential finite state machines (but not necessarily connected). 

The reciprocal theorem is false. To prove that we recall Example 6.6. Let us 

consider the ms-net MN’ = (T, P, Mar’), where Mar’ = kens(coex,-). In this case we 

have coexXlare = coexC., and every element of kens(coex,4,,f) is an elementary s-net; 

but coexILltlrf is not M-dense because { 1,3} n {5,6,7} = C3, and (I, 3) E Mar’, { 5,k 7) E 

Examples 9.5, 9.6 and 9.7 show that the assumptions of Theorem 9.2 cannot be 

weakened. Example 9.8 shows that the word ‘quasielementary’ cannot be replaced 

by ‘elementary’. 

Local fireability and safeness are rather obvious properties demanded from nets 

representing correctly defined systems. The first property means that every transition 

has a possibility to be fired, so there is no useless transition, the second one may 
be interpreted as: ‘any action cannot disturb other actions’ (see [ 171). Adding the 

property of M-density, we obtain a very regular static (or ‘topoIogica1’ in the common 



sense of this word) structure of a net. This betokens the fact that M-density is a 

strong property of an ms-net. 

As was mentioned above, in most approaches it is assumed that systems are 

compact in our sense. Pt turns out that in the case of compact ms-nets, the property 

of M-density is still stronger. 

Theorem 9.3. Jf MN = ( T, P, Mar) is compacf, safe, fireable and coeXMar is M-dense, 
then for eoery set A E kens(coexMo, ) the pair (‘A, A) is an elementary s-net. 

Proof. Similarly as the proof of Theorem 6.10, using Theorem 9.2 instead of 

Theorem 6.5. C 

‘rheorem 9.4. Let MN = ( T, P, Mar) be a compact and fireable ms-net. Then the 
folio wing are equiaalen t : 

!I) MN is sa&! and M-dense, 

(2) Marc kcns(coex& and for every A E kens(coexM,,) the pair (‘A, A) is 
an elemtvttary s-net. 

Proof. ll)=$ (2) This is a consequence of Corollary 9.1 and Theorem 9.3. 

(2)*(l) Let us put 
_- 

C = { N.,I Nn = ( ‘A, A ) & A E kens(coex,,,)). 

Note that C is a correctly defined e-covering of IV, and COVER = kens(coex&. 

But this means that sir(cov,.) = coexMar, and, consequently, coexFLlilr = coexc.. 

kena!coex, ) = kens(coexX,J. 
Since MN is fireable and MarE kens(coex,.), the ms-net MN is seminaturally 

marked with respect to the e-covering C. 
By Theorem 6.3 we obtain that MN is safe, and by Theorem 6.8 that coex,. is 

-- 
CM-dense. But coex(. =c~ex?,,~,, and cr)vc = kens(coex&, so CM-density of coex(- 

is equivalent to M-density of coexMar. q 

The ms-net MN considered after Theorem 9.2 also proves the untruth of the 

reciprocal of Theorem 9.3. Examples 959.8 considered below show that the 

assumptions of Theorem 9.3 cannot be weakened, and Examples 9.6 -And 9.8 show 

that the assumptions of Theorem 9.4 cannot be weakened. 

in ail examples below we have that coexhl;,, = (P X P-coex,, \ -- id,). 

Example 9.5. Let MN = ( T. P, Mar) be the ms-net given in I-+. 20; Mar ={( 1,2}, 

{l, 3}, (2.3], (4)). 
Graphs of relations coexMllr, coexhlar are shown in Fig. 21. In this case we have 

kens(coexM;,,) = ((1,2,3], (4)) Z! Mar, 
-- 
kens(coexXI.,,) = (( l-4). {2,4}, { 3, J?). 
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I he relation coexMM;,, is K-dense, but it is not M-dense, because {2,3} CJ (1, 4) = C$ 

and it is not semiconsistent. The nrs-net MN is compact, safe and fireable, but the 

s-net N = (T, P) is not proper, thus the assumption: coexKIz,, is M-dense cannot’be 

removed from Theorems 9.2 and 9.3. 

Example 
relations 

9.6. Let MN = (‘T, P, Mar) be the net defined in Example 4.3. Graphs of 

cock,. . coexbl,, are of the form shown in Fig. 22. Here we have 

kens(coex& = Mar = ({ 1,2}, {3,4}, {S], {6}}, 

kens(coex,,,,.) ={(l, 3,S, 6). { 1,4,5,6}, {2,3,5,6), {2,4, S, 6)). 

N=(T,P) 

Fig. 20. 

Fig. 21. 

coax cocx 
Mar 

Fig. 22. 

The relation coexk,Ii,, is K-dense, M-dense aud consistent. The- ms-net MN is safe 

and compact but it is not locally fireable. The s-net (T, P) is not proper. This proves 

that the assumption of local fireability cannot be removed from Theorems 9.2, 9.3 
and 9.4. 

Example 9.7. Let MN = ( T, P, Mar) be the ms-net, as shown in Fig. 23; Mar = 

U 13 3). 
1 

! 

a 

2 

N=(T,Pl 

Fig. 23. 
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Mere graphs of coexMar :jnd coexM~,r are as shown in Fig. 24. 

EiiiTi~ Cob5eir 
Fig. 24. 

Note that kens(coexM,,) = Mar, kens(coex,,,) = {{ l}, {2}}, the relation coexMar is 

consistent, M-dense and K-dense, the ms-net MN is fireable and compact, but not -_ 
safe. The s-net N = ( T. P) is proper indeed, but elements of kens(coex,,,), i.e., sets 

(I ). (21, do not define any s-net. Thus the assumption of safe!lzss cannot be removed 
from Theorems 9.2 and 9.3. 

Example 9.8. Let MN = ( T, P, Mar) be the ms-net shown in Fig. 2%; Mar = {{1,3}, 

{2,4}, (4.5). (396)). 

N=fT,P) 

Fig. 25. 

I Graphs of coexX1;,, and coexXi;,, are sho\tn in Fig. 26. In this case. 

kenskoex~,,,, 1 
-_... 
kcns(coex& 

3= M:ar, 
L 

= ((I, 2,s, 6}, (2.3, S}, { 1*4,6}. {3,4)). 

The rt’I:ition COCX~~~,, is con! &tent, M-dense and K-dense. 

coexMar 

The ms-net iMN is safe and locally fireable. but not cornpat. L. ‘cause for instance:, 
i{ 1, 31, {3,6# R,%. The family of quasielementary ?;-LY~ Gc: led by the set -~ 
kcns(cocxX,,,,) consists of the s-nets shown in Fig. 27. 

Of course, N = ( T, P) is proper an3 N = N, u . . a u IV+ This exaryple proves 

that in Theorem 9.2 the word ‘quasielementary c;lnnot be replaced by ‘e ementary’. 
H\ well as that the assumption of compactness cannot be removed from 1 heorem 9.4. 
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Fig. 27. 

Now we consider a very regular case. 

Example 9.9. Let MN = ( T, P, Mar) be the following ms-net: the pair I’d = ( T, P) 

is the same as in Example 9.8, and Mar = {(1,3,5}, { 2,4,5}, {2,3,5)). 

l&w graphs of coexM,, and coexMM,, are shown in Fig. 28. ln this case, 

kens(coexM,,,) = ?vlar u {{2,3,5}}, 

kensbexM,,) = ({1,2}, {3,4}, { 5,6}, { 1,4,6}). 

Fig. 2X. 

The relation coexX,l,l;,, is M-dense and semiconsistent, but it is not K-dense. The 

ms-net is safe, compact and fireable, the s-net (T, P) is proper. The family 

kens(coexhl,,,) describes the elementary nets shown in Fig. 2% 

N,= 8 N2=H $& N4= u 
Fig. 29. 

Note that IV = IV, u . . - u N4 and {IV,, IV,, IV?, IV,} 5 elem(Nj. Note also th:It MN 
is seminaturally marked with respect to the covering C = {IV,, . . . , A/j). 

In this approach the notion of M-density expresses Petri’s postulate that every 

sequential component and every global system state must have one element in 

common. From the above considerations it follows that such a postulate implies the 

reduction of considerations to nets decomposable into sequential finite state 

machines only. 

Besides the M-density implies semiconsistency, i.e., it makes it possible to talk 

about maximal sets of independent places. 



I 20 R. Jmicki 

From the results of this section, it follows that on the system level Petri’s postulate 

is equivalent to the opinion proclaimed by Lauer and others [ 161 that concurrency 

is a non-interleaving synchronisation of sequential subsystems. 

10. Final comment 

We wish to point out the importance of Petri’s postulate that every sequential 

component and every global system state has to have one element in common, in 

the approach presented in this paper. It: turns out that nets which do not satisfy this 

postulate have usually irregular remaining properties. This postulate is not, in the 

general case, described by the well-known property of K-density introduced by 

Petri. According to the need, this postulate is described by CM-density, C-density, 

or M-density. Only in particular cases is it described by K-density. 
In accordance with our intuition, properties: safeness, local fireability and A4 

density of cocxMM;,, can be treated as necessary condition< for ‘well-defined’ concur- 

rent systems. Hut this means that such a ‘well-defined’ concurrent system is always 
;: net Jecornposable into sequential finite state inachines. 
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