Theoretical Computer Science 29 (1984) 87-121 87
North-Holland

NETS, SEQUENTIAL COMPONENTS AND CONCURRENCY
RELATIONS*

Ryszard JANICKI

Institute of Mathematics, Warsaw Technical University, 00-661 Warszawa, Poland

Communicated by M. Nivat
Received July 1982
Revised April 1983

Abstract. A lattice of unmarked nets is introduced and studied. It is proved that unmarked nets
representing the static structure of sequential systems are atoms of thai lattice. Marking classes
defined by the decomposition of nets into sequential components are introduced and properics
(safeness, fireability, etc.) of nets with those marking classes are investigated. The notion of
concurrency relation on the system level is defined and discussed. Two different definitions of
that relation are given. The first one starts with a given in advance decomposition of a net into
sequential components; the second one is constructed on the basis of a given in advance marking
class. Both definitions follow from a general concept of the symmetric and irreflexive relation
defined by a set covering. Petri’s postulate about a common element for every global system state
and every sequential component is carried up the system level and its strength is discussed. It
turns out that if a net is safe and each transition has a possibility to be fired then that postulate
implies that the net is decomposable into finite state machines.

1. Introduction

The approach presented in the paper follows from the author’s conviction that
people think sequentially. Of course, our brain works nonsequentially, and we can
understand parallel processes, but our mental perception of reality is sequential.

It turns out that not technology but human imagination is the main obstacle in
the use of concurrency in computers. Long before now, people have stated that it
is very difficult to comprehend the total effect of actions being performed concur-
rently and with independent speeds (compare Brinch Hansen [2] and his example
of troubles with learning the history of the whole of Europe).

People express their thoughts by means of a language, but every language is
sequential in the course of nature. Furthermore, the concept of ‘time continuum’
also sequentialises our perception of reality.' If we agree that the way of thinking

* The research reported in this paper was mostly supported by a Grant from the Polish Academy of
Sciences, and partly by a Grant from the Science and Engincering Research Council of Great Britain.

! For instance in the Hopi American Indian Tribe Language, there is no ‘time cortinuum’, the world
is treated as a collection of events, and the flow-time is a relation among vj:vcnts (ses [2:1]).
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and the way of speaking are strictly connected,” we obtain that people think in a
sequential way.

The sequential way of thinking implies two natural methods of specifying concur-
rent systems. The first method consists in starting with a functionally equivalent
sequential system, determining a set of independent actions and then perfori.iing a
set of transformations of the sequential system resulting in a concurrent system.
Although this method is frequently used in practice, especially to describe technologi-
cal processes, its thecretical principles are insufficiently examined. A mathematiczl
background of that method was given by Janicki [14].

The second method consists in decomposing the problem into components being
sequential in the course of their nature (frequently such a decomposition is
ambiguous), solving each sequential part of the problem in a relatively independent
way, and then composing all sequential solutions into the whole. There is a large
aumber of techniques for specifying concurrent systems, which are based on that
method. The well-known ones are the following: Semaphores [6], Synchronised
Parallel Processes [9], Communicating Systems [18], Path Expressions [7], Cosy
Formalism [16].

This paper also concerns the second method. We shall deal with general propesties
of concurrent systems decomposed into, and composed from, sequential components.
As a base for further considerations we shall use Petri nets [3, 7, 21]. A net model
of concurrency seems to be sufficiently wide, and contrary to the modeis quoted
above, it does not assume in advance the existence of sequential comporents,
althouxh its does not exclude that existence either (see [S, 8]).

The essential intent of our approach is to construct rules for decomposition of
nets into indivisible components (atoms) with simple, ‘primitive’ concurrency. In
this way one can describe properties of the whole net by means of properties of
components. Special attention is paid to such a class of nets whose components
represent sequential systems. We will try to define the marking class on the basis
of a net decomposition into sequential components. The notion of concurrency
relation is defined and precisely investigated on the system level.

It turns out that in our approach the concurrency relation is one of the most
important, very convenient, notions. Petri’s postulate that every sequential com-
ponent and every globul state must have one element in coramon, is carried up the
svstem level. and its strength is analysed.

Although in the paper standard mathematical notation will he used. we recall
some basic notations. And so, by ¢ we shall denote the empty sct or empty relation,
N will denote the cardinality of X, id will denote the i’ atity relation, R* will
Jenote the relation defined by the equality R*={J , /. . for ~very cquivalence
relation R € X x X the set of all equivalence classes will be denoted by X/R. and

© For the first time this idea was expressed by Withelm von Humboldt (19th century), who said: “We
think such as we speak. acd at the same time we speak such as we think ™. In the fiist half of our century
those idess were investigated by the American linguists Sapr and Whorf, who formulated the so-called
Taw of Linguare relativism™, also known as “the Sapir Whott hvpothesis™ (see [23]).
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the equivalence class containing the set Y will be denoted by [ Y],. The remaining
detailed notations will be given in suitable sections.
Some results of the paper have been announced (see [12, 13, 15)).

2. A lattice of s-nets

The approach presented in the paper is based on the notion of so-called s-nets.
This concept and the notation connected with it enable us to create a convenient
algebraic structure of nets. Both the concept and the notation follow from [10].

Foreveryset X, letleft: X X X - X, right: X X X > X be the following projections:

Vix,y)e XXX, left((x, y))=x, right((x.y))=y.
By a simple net (abbr. s-net) we mean any pair
N =(T, P),

where T is a set (of transitions). P<2' x2" is a relation (interpreted as a set of
places), and

YueT 3Ap.qe P, acleft(p)nright(q).

In thc paper we restrict our attention to finite s-nets. Instead of writing
Ha,....,. a,} Aby...., b, e P we shall write [a,..... a,.b,,....b,JeP.

Every s-net N =(T, P) can be represented, using the graph shown in Fig. 1, to
denote that [a,...., a,: b,.....b,JecP

Fig. 1.

Example 2.1. Let N= (T, P), where
T={a.b.c.d ef g},
P={p:al.[a.f:b,g].[g:0W].[c:e].[b:e].[b:d],[d:e].[e: ]}
The  pair (T, P) is an s-net and it can be represented by the graph shown i

Fig. 2.

In the literature, nets are usually defined differently, starting with two disjoint
sets of transitions and places, and introducing a flow-relation among them (compare
[3.21]). Our approach has an advantage in the sense that it makes it more easy to
handle operations among nets.
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Using a standard notation, we define a net as a triple N=(T, P, F), where T is
a set of transitions, P is a set of places, TnP=0, TUP#®),and Fc TXPUPXT
is a flow relation.

To define ‘successors’ and ‘predecessors’ under the relation F. the convenient
‘dot” notation is usually used:

VxeTuP, “x={y[(y.x)eF}, x ={y[(x.y)eF}.
The triple (T, P, F) is an s-net in the above sense iff
(1) Vp.gqeP. (p=q & p=q) = p=q. -
2y VaeT, a0 & a #0.

Then every pe P can unambiguously be represented by a pair (‘p.p)c 2’ x2'.

The flow relation, in our approach, can be defined as follows. Let N =(T, P) be
an s-net. Let F€ TXPuUPXT (or Fy if N is not understood) be the following
relation:

Vy.yveTUP, (x.y)e F & xeleft(y) or yeright(x).

In our approach the *dot’ operation can be defined without using the notion of flow
relation,

(1  ¥YpeP, p =right(p). 'p=Ileft(p).

i2)  Vac<T. a ={pcPlacleft(p)}. ‘a={pe  aeright(p)}.
Note that the “dot’ operations are correctly defincd for every pair (T, P), where
Pc2 x2!
Lemma 2.2. A pair (T. P) where P<2' x2" is an s-net iff

VYac T, a #0 & ‘a#0.
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Proof. The proof of the lemma follows from the definition of ‘@ and a’. O

Forevery XcTUPlet X=U, .x %X =U, xx".
Let sNETs denote the family of all finite s-nets. Note that the class of SNETS s a
set.

Let = be the following relation on SNETS:
N,=(T,,P))=EN,=(T>,P,) & P,cP,.

Note that = is a partial order and N,= N,=>T, c T>. Let sup{N,, N,}, inf{N,, N-}

denote respectively the least upper and the greatest lower bound under the
relation .

Theorem 2.3. For every N,=(T,, P,), N>=(T1,, P.) € SNETS:
(1) Sup{N,,N3}=(T| W) Tz, Pl UPz),
(2) inf{N,, N.}=(P. P), where P=\J{P'|P < P,nP, & (P)=(P')}.

Proof. (1) Because left(P, u P,) =right(P,u P,)=T,u T,, thepair (U T,, P,uU
P,) is an s-net. Denote Ny, =(T,u T>, Pyu P,). Let M =sup{N,, N,}, and let N =
(T. P). Since obviously N,= N, for i=1,2, N= N,,. On the other hand, P,< P,
TI,<cTiori=1,2,s0 T,uT-< T, P,uP,c P; but this means that N;,,=N. Thus
N,-=N.

(2) Follows directly from the definition of the greatest lower bound. [J

Let us define the well-known lattice operations
NIUN2=SUp{N|,N3}, N]ﬂN3=inf{Nl, N2}1
{ N=sup{N|NeS}, (YN =inf{N|N e S}
N¢ S

N«s

Corollary 2.4. The algebra (SNETS, U, n) is a complete lattice with the greatest
lower bound (0, ).

Since SNETS is a lattice, we can introduce the notion of an atom. An s-net N is
said to be an atom iff

(i) N#(0,9),

(2) (N'eN) = (N'=NorN'=(0,0)).
In other words, the s-net N is an atom if it is an atom in the lattice SNETS.

For every s-net N, let atoms(N) denote the set of all atoms contained in N, i.e.,

atoms(N)={N'|N'=N & N'isan atom}.
An s-net N is said to be atomic iff

N= U N'.

NeatomsiN}
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Example 2.5. Let us consider the s-nets shown in Figs. 3 and 4.

We have: atoms(N)={N,} and N # N,, so N is not atomic; and atoms(N') =
{Ni, N3}, N =N, uN5, thus N' is atomic.

N

N=fa] [b]
Qg O
Fig. 3.
(N A2 O @
N'= BBI‘!BE - N=[a][blle]  Ny= €] [@]
Oa0 ® («)
Fig. 4.

An s-net N=(T, P) is said to be connected iff
Vi,ve TUP, (x,v)e(FyxuUFW\)*%

In other words, an s-net is said to be connected if its graph is connected in the
usual sense of this word.

Let us put Oy =(Fy U Fy for every s-net N. Note that Cy is an equivalence
relation on Tou P. Thus we can say that an s-net N:=(T, P) is connected iff
I'oPe(TuP)/ Cy e, if Tu P is an equivalence class of Ch.

l)*

Theorem 2.6. Every atom is connected.

Proof. Assume that an s-net N =(T.P) is disconnected. This means that |(Tu
Py Cs| > 1.

Let A (TUP)/Cy. Note that A#TUP,and Ny\=(AnT, A~ P)is an s-net!
But because A# To P then vV, N & Ny# N. Thus N is not an atom. [J

3 Elementary, quasielementary and proper s-nets

It is a well-known fact that sequential systems can be adequately modelled by
finite state machines (sce, for example, [3, 7]). In this section we define finite state
machines using the notation defined above and show that they are atoms of SNETS.

An s-net N =(T, P) is said to be quasielcmentary ift

VYac T, [a|=la’l=1.
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An s-net N =(T, P) is said to be elementary iff it is elementary and connected.

Elementary nets are equivalent with totally labelled connected finite state
machines, and will represent sequential systems or subsystems in our approach.
Quasielementary nets will represent disconnected sequential systems.

Example 3.1. The net defined in Fig. S is elementary.

Theorem 3.2. Every elementary s-net is an atom.

Proof. Suppose that N=(T. P) is an clementary net, and that there is an s-net
N,=(T,, P,) such that

0.0)#(T,,.P,)=(T, P).

We must consider two disjoint cases:

() ,=T& P, cP,

(2) T, T (of course, T, < T=>P, < P).

Case 1. Let P,=P—P,, and let pe P,.

Since N is elementary, there is a€ T, = T such that ‘a ={p} or a’={p}. But if
‘a={p} then agright(P,), and if a ' ={p}, then ag left(P,), in both cases (T, P,)
1s not an s-net. Thus, the assumption P,= P— P, # leads to the discreparicy.

Case 2. Here T'c T, P, .

Let Px=P—P,. T-=T—T,. Thes-net (T, P) isconnected because it is elementary.
But this means that there is a€ T, such that (‘auwa’)n P, #@. In other words:
Jac 1, 3pe P, pcaca.

Suppo e that pe “a. Since N i< elementary, it is equivalent to "a ={p}.

But "a ={p} implies a = right( p) < right( P,). Thus we have a ¢ right(P,) & a¢ T},
so T, # right(P,). Similerly, the assumption pe a’ implies T, # left(P.). But this
means that the pair (T, P,) is not an s-net—in spite of the assumption. [

It turns out that not every atom is an elementary s-net. For example the s-net
shown in Fig. 6 is an atom, but is not an elementary s-net.
Quasielementary s-nets are characterised by the following theorem.
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[#a,b)

O

Fig. 6.

Theorem 3.3. Let N be a quasielementary s-net. Then
{1) Ny= N= N, is quasielementary.
(2) Every connected component of N is an elementary s-net.

Proof. The proof of the theorem follows directly from the definition. [

For every s-net N, let elem(N) denote the set of all elementary nets included in
N, ie.,

clem(N)={N'

N'cN & N'isclementary}.

Of course, elem(N) c atoms(N), and generally this inclusion is a proper one.

The most important class of s-nets is the class of nets decomposable into sequential
state machines. These nets represent concurrent systems built by superposition of
sequential subsystems, and they are called proper in our approach.

An s-net N is said to be proper ift

N= U N.

Noclem N

Note that every proper net is atomic but not vice versa.

Example 3.4. Consider the three s-nets N, N,. N, shown in Fig. 7.

Note that elem(N)={N,, N}, N =N, U N.,so N is proper. Now consider the
next three s-nets: N, Ni, N5, shown in Fig. 8.

In this case: elem(N')={N.}catoms(N')={N|, N }. N =N, UN5 so N'is
not proper. although it is atemic.
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&) (&)

Fig. 8.

Corollary 3.5. An s-net N is proper iff there is a set {N,, ..., N,} of elementary nets
and

N=N|U"' UNm.

One may prove that the family of all proper nets is not closed under the
operation N .

4. Marked s-rets

We are now going to extend the present approach to marked nets. As was
mentioned above, unmarked nets represent the static aspects of dynamic systems,
while marked nets represent the dynamic aspects of these systems.

Let N=(T., P) be an s-net.

Let R1<2”x2" be the following relation:

(M,.M-)eRl & JaeT. M,—a=M,—a & acM, & ac M,.

The relation R is called the forward reachability in one step. It can easily be
extended to the forward concurrent reachability in one step CR1, namely let Chi <
2" x 2" be the relation defined as follows:

(M,,M-)eCRl1 & JAcT M- A=M,-A & AcM & A cM,.

Directly from the definition we have the following lemma.
Lemma 4.1. (R1UR1 ")*=(CR1UCRI "*

Let us define R=(R1UR1 "H*.

The relation R is called the forward and backward reachability of N. If the net
N is not fixed we shall write Ry, R1x or CR1y, respectively.

In fact we are interested in properties of R, and the representation of R in the
form R=(R1u R17Y)* is more convenient for proofs ihan the representation by
CR1. On the other hand, because we admit the possibility of concurrent execution,
we have to define the relation CRI1.
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Note that R is an equivalence relation. For every M € 2P, let [M ] denote the
equivalence class of R containing M.
By a marked simple net (abbr. ms-net) we mean any triple

MN =(T, P.Mar),
where N =(7, P) is an s-net, Mar< 2" is a set of markings of MN, and

Mar= | [M]g,.

A+ Mar
An ms-net MN = (T, P, Mar) is called compact ift
VM eMar, Mar=[M]g..

In other words, an ms-net is compact if its marking class is the equivalence class of
reachability relation. Most authors dealing with nets, restrict their attention to
compact nets. Petri [21] has assumed that his Condition-Event-System is compact
in the sense defined above. Equivalence classes of Ry may be interpreted as dynamic
realisations of a system. An ms-net is compact if a system has only one dynamic
realisation.

A transition a < T is called fireable iff

IM, M.eMar, acM, & a <M.

An ms-net is said to be locally fireable if all its transitions are fireable, and it is
fireable if it is compact and locally fircable.
An ms-net MN = (T, P, Mar) is said to be safe if VA< P Vae T,

(am A= & FIMcMar. au Ac M)
anA=¢p & IMeMar,a vATM').

Safeness is asually defined differently, starting wi' n the concepts of so-called token
capacity of places. and a little different definition of reachability relation. Usually,
a marked Petri net is said to be k-safe if it never has more than k tokens in a place
in any marking reachable from its initial marking (see [3]).

The definition given above follows from [17] and it is equivalent with bilateral
I-safeness.

It turns out ihat in the case of marked elementary nets. ic.. such ms-nets
(1. P.Mar), where (T, P) 1s an clementary s-net, safeness  sncs a very regular
marking class.

Lemmad.2. Let MN = (T, P. Mar) be an ms-net, and let N = (T. P) be an elementary
net. Then:

MN issafe < Mar={{pllpe P} = MN iscompact and fircable.

Proof. Trivial.
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In the general case, properties of marked nets are more complicated, and in order
to express them we will use the concept of concurrency relation.

Example 4.3. Consider the ms-net MN = (T, P, Mar) (see Fig. 9), where N =(T. P),
Mar={{1, 2}, {4, 5}, {6}, {3}}.

This ms-net is compact, safe, but the transition b is not fireable, so it is not locally
fireable.

Example 4.4. Consider the ms-net MN = (T, P, Mar) (see Fig. 10), where N =
(T, F), Mar ={{1}, {2, 3}, {1, 2}}.
This ms-net is compact, fireable, but it is not safe.

N= [a] [b]
OO
Fig. 10.

Example 4.5. Consider the ms-net MN = (T, P, Mar) (see Fig. 11), where N=
(T, P), Mar={{1, 3}, {2, 3}, {1, 4}, {2, 4}}.

This ms-net is safe, locally fireable, but it is not compact because ({1, 3}, {1,4}) ¢
Rx. In this case Mar consists of two equivalence classes of Ry:{{1, 3}, {2, 4}} and

{{1.4}, {2.3}}.

Fig. 11.
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Example 4.6. Consider the following triple (7, P, Mar) (see Fig. 12), where N =
(T, P), Mar={{1. 2}, {3, 4}}.

This triple is not an ms-net because Mar is not a set-theoretic union of equivalence
classes of Rn.

Example 4.7. Consider the triple (T, P, Mar), where N = (T, P) as in Example 4.6,
but Mar=1{{1.2}. {3, 4}. {2, 3}, {1, 4}}.
This triple is a safe, compact and fireable ms-net.

5. Concurrency relation and sequential components

The concept of concurrency relation originates from Petri {19], who has shown
that a sufliciently comprehensive theory of parallel processes can be established on
the basis of that relation. When we deal with concurrent processes, i.e., with partially
ordered sets of event occurrences, the concurrency relation can be defined as the
complement of the partial order relation. Then many properties of one follows from
the well-known theory of partial orders. In particular, the most interesting results
of Best [1] and Petri [19, 20] follow from that fact.

A generalisation of the concurrency relation concept was considered in [11].
Unfortunately, {11] contains errors.

In ¢his section we recall and modify for our purposes some results from [11].

Our approach is based on the notion of a symmetric and irreflexive relation
defined by a fixed covering of a set. Elements of the covering will represent sequential
components of a system.

Let X be a set, and let id< X X X be the idertity relation on X.

A relation C < X X X is said to be a sir-relatior (from symmetric and irreflexivz)
iff

Va.he X (a, b)eC & (ba)eC = a#l

Let T be a sir-relation, and let kens(C), kens(C') be tac following families of
subsets of X'

kens(C)={A|Va,bec A, (a,b)e Cuid & Yce¢ A3ac A,(a,c)gC},
kenstC)={A|Va,.bc A (a. )2 C & Ycz AJace A, (a.c)eC).
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It should be pointed out that kens(C), kens(C) are coverings of X. It is obvious
when the set X is finite, in general it follows from the well-known Kuratowski-Zorn
Lemma.

From the viewpoint of graph theory, the set kens(C) is the set of all cliques of
the indirect graph representing C, while the set kens{C) is the set of all cliques of
the indirect graph representing X X X — C.

Note that C uid is an equivalence relation if and only if kens(C) is a partition
of X. Then kens(C) = X/(C vid). Similarly, X X X — C is an equivalence relation
iff kens(C) is a partition of X, and then kens(C)= X/(X x X —C). Therefore
sir-relations can be treated as a kind of generalisation of equivalence relations.
Every equivalence relation describes the partition of a set, while every sir-relation
describes the family of set coverings.

We are now going to show how coverings can define sir-relations.

Let cov be a covering of X.

Let sir(cov) € X X X be the relation defined as follows:

Va,be X (a, b)esir(cov) & a#b & VAecov,ag Aor beg A,

Corollary 5.1. If cov is a partition of X, then X X X —sir(cov) is an equivalence
relation and cov =kens(sir(cov)).

Corollary 5.2. For every covering cov of X:

V A € cov 3B e kens(sir(cov)), Ac B.

In our approach, a covering cov will represent an arbitrary set of sequential
system components, and the rclation sir(cov) will represent the concurrency relation
defined by this set of components.

Let Mar< 2~ be a family of subsets of X satisfying the following properties:

(1) Mar< kens(sir(cov)),

(2) Maris a covering of X.

The family Mar will represent the set of global system states (marking class).

‘Let us put DC = (cov, Mar). The pair DC, called double covering of X, represents
the most general information about a system; it describes system sequential com-
ponents but without information about control flow inside each of the components,
and it describes global system states, 2lso without details about commuaication
antong them.

Summing up. we have the following interpreta*ions:

sir(cov): the concurrency reiation,
cov: the set of sequential system components,
Mar: the set of global system states,
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kens(sir(cov)): the family of all maximal locally dependent sets,
where by a locally dependent set we mean any set
A c X, such that Ya, be A, (a, b) £sir(cov),

kens(sir(cov)): the family of all maximal locally concurrent sets,
where by a locally concurrent set we mean any set
A c X, such that Va, be A, (a, b) sir(cov).

The family kens(sir(cov)) is only a set of sequential system components if cov =
kens(sir(cov)), and the family kens(sir(cov)) is only a set of global system states if
Mar = kens(sir(cov)). That is the main difference between Petri’s approach and ours.
Petri assumes that kens(C), and kens(C) represent sequential components and
global states respectively. This assumption is only valid on the process level, and it
is usually false on the system level.

A sir-relation sir(cov) is said to be consistent ift

cov = kenssir(cov)).
A sir-relation sir(cov) is said to be semiconsistent iff
cov & kens(sir(cov)).

‘The consistency property means that the concurrency relation describes precisely
the set of scquential components, while the semi-consistency property means only
that every sequential component is defined by the concurrency relation.

In fact, the above properties are rather properties of the covering ccv than the
relation sir(cov), because many coverings can define the same relation.

Nevertheless. in further considerations the covering will usually be fixed, whereas
speaking about consistency and semiconsistercy as the relation properiies enable
us more uniform considérations. The same remark concerns notions of KM-, CM-
and C-density introduced below.

Considering nets of occurrences, Petri [19] has postulated that for every real
process the following condirion is fulfilled: every sequential component and every
“case” (global state) have one clement in common. This is a generalisation of the
well-known postulate of physics that every time sequence and every space must
have one common element. or, equivalently: there is no space outside the time.
Petri has called this property by K-density.

Although K-density was formally defined as a property of the concurrency relation
fsee [19.20], in reality, as it was justly noticed by Best [1]. 7. is a property of
accurrence net.

K-density is formally defined as follows: a sir-relation ¢ -~ X > X is said to be
K-dense

VA: kenstCYVYBekens(C), An B#(.

In the case of occurrence nets, the notion of K-density is consistent with its
mterpretation {119, 207 but in our approach it has a good interpretation only if
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cov =Kkens(sir(cov)) and Mar = kens(sir(cov)). Therefore we have to replace it by
more adequate notions.

Let DC =(cov, Mar) be an arbitrary double covering of X.

A sir-relation sir(cov) € X X X is said to be KM-dense iff

VA ekens(sir(cov)) VAeMar, AnB#4.

A sir-relation sir(cov) c X X X is said to be CM-dense ift
VAecovV¥BeMar, AnB#.

A sir-relation sir(cov) € X X X is said to be C-dense iff

VA ecovVBekens(sir(cov)), AnB#%.

Coroliary 5.3
(1 Mar = kens(sir(cov)) = (KM-density & K-density
& CM-density & C-density).

(2)  cov=kensisir(cov)) = (K-density <& C-density
& KM-density & CM-density).

(3)  covckens(sit(cov)) = (K-density = C-density
& KM-density = CM-density).

The property of CM-density describes Petri’s postulate on a common clement
for every sequential subsystem and every global system state. KM-density means
that the above property concerns not only real sequential system components but
all locally dependunt sets as well.

The following two theorems characterise the notions considered above.

Theorem 5.4. Let X be a set, and let DC = (cov, Mar) be a double covering of X. Then:

sir(cov) is CM-dense = cov < kens(sir(cov)).

Proof. Assume that cov-Kens{sir(cov)) # §.

Let Aeccov and AZkens(sir(cov)). From Coroliary 5.2 we have 3Be
kens(sir(cov)), A< B.

Let pe B— A. Since Mar is a covering of X, there is a D € Mar such that pe D.

Since sir(cov) is CM-dense, 3ge DN A. But Dn A< DB, so qe .0 B. Thus
we have {p. g} < D~ B, so by definitions of kens and kens: p=gq. But on the other
hand, ne B— A, ge A, then p#q. U

A covering cov of X is called ninimal iff VA e cov, cov-{A} 1s not a covering
of X.
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Theorem 5.5. Let C < X X X be a sir-relation. If kens(C) is a minimal covering,
then C is K-dense.

Proof. Assume that A € kens(C), Bekens(C) and A B={. From the definition
of kens(C) it follows that Vae A 3be B, (a, b) ¢ C.
This means that

Vac A 3be B 3Q,,€kens(R), {a, b}< O,

Obviously, for every pair {a, b} the set Q,, differs from A (because A B={ by
the assumption).

Since Ya< A, a€ Q,,, then AclJ,. 4 Q. Thus
U o= U 0=X

€ henst €y A} Q- kenst )

in spitc of the assumption that kens(C) is a minimal covering. [l

Detailed analysis of K-density and C-density properties can be found in [22].

6. Seminaterally marked s-nets

In this section we shall deal with the relationship between a static net structure
(i.c.. the pair (T, P)) and properties of the marking class (i.e., the set Mar). We
restrict our attention to proper s-nets only.

Let N =(T. P) be an arbitrary proper s-net, and let C={N,,..., N, }celem(N)
be a set of clementary nets, suchthbat N=N,u « - - UN,,. Assume that N,=(T,, P,)
fori=1,2,....m

Fvery set C of the above form is said to be an elementary covering of N (abbr.
e-covering).

Let us define: cove ={P,...., P,}. Note that cov¢ is a covering of P.

Let coexe- < PX P be the following relation:

coex, =sir(cov, ).
in other words:
(p.glccoex, & p#q & VP ecove,pe P orgeP.

The relation coex,- is said to be the coexistency defined b\ the e-covering C.

An ms-net MN = (T, P, Mar) is said to be seminaturaily marked with respect to
an ¢-covering C iff:

(1 Cis an e-covering of N=(T.P).

12} Mar < kens(coex ).

(3 MN is locally fireable.
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Corollary 6.1. Let MN = (T, P,Mar) be seminaturally marked with respect to C.
Then the pair (covc, Mar) is a double covering of P.

Let MN = (T, P, Mar) be a fixed seminaturally marked s-net with respect to an
e-covering C. Let also N=(T, P).

Lemma 6.2

Vae T VP, ccove, Pn'a#Z0 < Pna #4.

Proof. Assume that se Pn'a and P,na =@. This means that aeright{sic
right(P,) and ag left( P,))—in spitc of the assumptions that (T}, P;) is an elementary
net. O

Theorem 6.3. MN is safe.

Proof. Let aeT. Ae2”. anA=0 & ‘auAc M e Marc kens(coex.). First we
prove that (M — a)~a =0. ;

Assume that se M —'a & s€ a’. Assume also that se P,

By Lemma 6 2 we obtain 31€ P,n "a. Since 'a < M, we have t € M. But this means
that {s,t}e M N P,

Since M < kens(coex-), we have [M n P|<1, i.e.,, s=1 On the other hand: if
t< a. se M—"a. then s# t. Thus. the assumption that (M —'a)na =@ leads tv a
Jiscrepancy.

Hence (M —"a)na =0.

Define M'=(M—-"a)ua’. Since (M—"a)mna =@, we have (M,M")e R1 and
M'€[M]g. Of course, M € Mar; then by the definition of Mar we obtain [M]g c
Mar, thus M’ € Mar.

Since anA=0& auAc M. we have AcM~"a=M'—a’. Thus Anae =
W& a U Ac M' € Mar.

In this way we prove that

Vae TVA<CP,
(fanA=¢9 & IMecMar, avAM)=>
=(anA=0 & 3IM'ecMar,a wAc M)
The implication < can be proved similarly. []
Note that notions KM-density and CM-density can be expressed in the terms
used in this section only, namely, the relation coexc is said to be KM-dense iff
VY AecMar VBekens(coex.-}. AnB#{, and coex- is said to be CM-dense iff

VAeMar VBecov.. AnB#(.
As a consequence of Theorem 5.4 we have the following.
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Corollary 6.4

coex is CM-dense = coex- < kens(coexc).

Thus CM-density of coex implies its semiconsistency.

We are now going to formulate the main theorem characterising the strength of
KM-density.

‘Theorem 6.5. If coex. is KM-dense, then for every set A< kens(coexc) the pair
N.,= (A, A) is a quasielementary s-net.

Proof. Note that "A =left( A). First we prove that ("A, A) isans-net. Let a €Jeft(A).
This mezns that 3p, € A, a € 'p,. Because MN is locally fireable 3M € Mar, ‘a<c M.
Since coex, is KM-dense, M n A #(.

From Theorem 6.3 we have that MN = (T, P, Mar) is safe.

Define M'=(M—"a)ua’. Since MN is safe, (M, M')e R1, and consequently
M’'e[M]c Mar.Notethat M'n A={p,}. Thus{p,}=a "M'nA=M'nA=an
A. But this means that (M'—a’)n A =.

Because (M. M')e R1, we have M'—a =M —"a; thus we can write (M —"a)n
A =¢. The relation coex - is KM-dense, so MnA#0. Let pe M n A. From the
facts (M —"arnA=0and pe M n A, it follows that pe "a. But pe "a & a eright(p).
Of course. right( p) < right(A), so a € right(A). Hence left(A) < right(A).

In a similar way we can prove that right{ A) < left(A). Thus the pair (T., A),
where T, =lefttA)=right(A)="A= A", is an s-net.

Now we prove that N,y =(T,. A) is quasiclementary. Let a< T,. We want to
prove that [(Ca)y |=]'an A|=1. Of course an A< a.

Let M, € Mar be such marking that 'ac M,. We have: ‘an A< ac M, € Mar.

Assume that {p,g}<'an A and p#gq. This means that {p,q}c M,eMarc
kens(ceiex, ). so (p.q)ccoexq-. But (p, g)ecoex.-=>VA'ekens(coex.). pg A" or
G¥ A'=>pZ an A or g¢ an A—a discrepancy. Thus Vae T, lan Al =1.

In a similar way we can prove that Vae T.. la n A|=1. [0

Of course, by the construction we have that every element for cov, . describes an
clemeniary s-net, but we do not know anvthing about elements < «cns(coex,-).

Note that. in general. we do not assume the property cc, < kens(coex).
Theorem 6.5 states that if coex- is KM-dense, then every element of kens(coex-).
Lo, every maximal locally dependent set, creates a sequential finite state machine
(not necessarily connected). '

We consider now two examples illustrating idcas and results formulated above,
and proving that the reciprocal of Theorem 6.5 is not true as well as that the word
“quasiclementary’ cannot be replaced by “elementary’.

Letcoex, =(PXFP-coex, )—id,. Of cours kens(coex ) = kens(coox ).
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Example 6.6. Let N=(T, P), N,=(T,, P, for i=1,...,5 be the s-nets, given in
Fig. 13. Note that N =N, UN,uU - -- UNs, and elem(N) ={N,,...,Ns}. Let C=
{Ni,..., Ns}. The net fumily C is obviously an e-covering of N. Graphs of coex
and coex are shown in Fig. 14.

Fig. 14.

Here we have
kens(coex. ) ={{1, 3}, {1, 6}.{1, 7}, {2. 4}.{2, 5}, {3, 5}, {4, 6}. {4, 7}}.
kens(coex ) ={{1.2}.{3.4}.{1.4,5},{5.6,7}.{2. 3,4, 7}}.

cove = kens{coex, ).

Let Mar=1{{1.3}, {2, 4}, {3, 5}, {4, 6}, {4, 7}} < kens(voex ). Note that the wriple
MN = (T, P,Mar) is a seminaturally marked s-net with respect to the set C=
{N...., Ns}. The ms-net MN is «afe, locally fireable, but not compact because, for
example, ({1, 3}, {3. 5} £ Rx. Since cov - =kens(coex. ). KM-density is equivalent
to CM-density. The relation coex is not CM-dense because, for example, {1, 3}
{S, 6, 7} = 0. Note that all elements of kens(coex ) define elementary s-nets, although
coex,- is not KM-dense, thus the reciprocal of Theorem 6.5 is false.

Example 6.7. Let N=(T.P), N,=(T,.P,) for i=1,...,6 be the s-nets, given in
Fig. 15. Note that :\l= Nyu -+ U N;.
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Fig. 15.
Letus put C={N,,..., Nu}. Of course C is an e-covering of N, and C # elem(N).

In this case elem(N) = C U{N,, N4}, where N; = ({q, b}, {3,4}), N.=({a, b}, {7, 8}).
Graphs of relations coex. and coex. are shown in Fig. 16.

G

COOXC

Fig. 16.
We have here
kens(coex.) ={{1.3.7}.{2. 4.8}, {3.6.8}.{4,5,7},{3, 4. 7. 8}},
kens(coex ) ={{1,2.5,6},{2,3.5},{1.5, 8}:.{2. 7. 6}.{1. 4, 6}}.
cov, ={{1,2}.{5,6}.{2. 2.5}, {1,5, 8},{2. 7. 6}.{1, 4. 6}}.

Thus, the relation coex- is not semiconsistent.

Let us define: Mar={{1, 3,7}, {2,4, 8}, {3.6,8}, {4,5,7}} < kens(coex.-). Note
that the triple MN = (T, P, Mar) is a seminaturally marked s-net. This net is safe,
locally fireable, but not compact, because, for instance, ({1, 3, 7}, {3, 6, 7}) £ Rn.

The relation coex. is not CM-dense, because {I,2}n{3.6,7}=¢, but it is
KM-dense.

The statement VA € kens(coex ). ('A, A) is an elementdry s-net is 10t true,
because the set {1, 2. 5, 6} defines a disconnected quasielementarv -net. The state-
ment VA € kens(coex-). ('A, A) is a quasielementary s-net is ob ,usly true. Thus,
in Theorem 6.5, the word ‘quasielementary’ cannot be replaced by ‘elementary’.

Compactness is the property, which is frequently required from concurrent
systems. Most alternate models of concurrent systems assume the property like
compactness defined above. Among others, Petri's condition/event systems and
nets equivalent to path expressions [16, 21] are compact.

Compact seminaturally marked s-nets are ciracterised by the following three
theorems.
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Theor2m 6.8

MN is compact = coexcis CM-dense.

Proof. Epr every Ae€Mar, let a,={P;|P,ecovc & P, A=:0}. From Lemma 6.2
it follows that

(A.B)e R1URI™' = a,=ap.

Since MN is compact, VA € Mar, Mar=[A]g. Thus VA, BeMar, as = ap.
Assume that 3A € Mar 3P, € cove, An P;=0. Of course this means that P, € a,4.
But we have shown that VA, B € Mar, a,, = ag, then VB e Mar, P, € ag.
Thus VB e Mar, P,~ B=4, or equivaleatly, P, pcya B=0, or P, P=0.
But this is a discrepancy because P; € cov, then P; < P. Thus VA € Mar VP, € cov.,
AnP#9. O

Theorem 6.8 states that if a seminaturally marked s-net is compact, then every
sequential subsystemn and every global system state have one element in common.
From Theorems 5.4 and 6.8 we immediately obtain the following.

Corollary 6.9

MN is compact = cov¢ < kens(coex,).

This means that in the case of compact seminaturally marked s-nets, every
sequential subsystem is described as a clique of the relation coex.. The reciprocals
of Theorem 6.8 and Corollary 6.9 are not true. To prove this fact let us consider
the ms-net MN = (T, P, Mar) from Example 4.5. This net is a seminaturally markec
s-net with respect to the set C ={N,, N>}, where N, = ({a, b, c},{1,2}), N.=({a, b, c},
{3,4}). In this case the relation coex. is K-, C-, KM-, CM-dense and cov - =
kens(coex.:), but MN is not compact.

If we assume that MN is compact then the result of Theorem 6.5 can be
strengthened.

Theorem 6.10. If MN is compact and coex. is KM-dense, then for every set
A kens(coex) the pair Ny =('A, A) is an elementary s-net.

Proof. By Theorem 6.5 we have that N, is quasielementary. Let p, g€ A. Since
MN is fireable 3M, M’ € Mar, pe M, g M'. Since MN is also compact, (M, M') €
Ex=(RIxUR1* Let M,,..., M, be a sequence of markings satisfying the -
following conditions:

() My=M, M, =M",

(2) (M, M., )eRIyURIY fori=1,...,n—1.
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Since coex- is KM-dense, Vi=1,...,n, AnM;#{. Let p,, ..., p, be the following
sequence of places:

ip}=AnM, fori=1,...,n

NotethatVi=1,...,n,({p},{p+:}) € R1n, U R13},. But this means that ({ p}, {q}) €
R~ ,, and, as a consequence, that N, is connected. [

Of course, if MN is compact then cov¢ < kens(coexc) (by Corollary 6.9) and
cvery element of cov- generates, by the definition, an elementary s-net. Theorem
6.10 states that elements of kens(coex-)—cov also generate elementary s-nets.
Example 6.6 shows that the reciprocal is false. The ms-net from this example is
neither compact nor KM-dense, but every element of kens(coexc) defines an
clementary s-net.

It terns out that if C =elem(N), then compactness implies the equivalence of
KM-density and consistency.

Theorem 6.11. Let C =elem(N). Then

MN is compact = (coex( is KM-dense < cov. =Kkens(coexc)).

Proof. Assume that MN is compact and coex.- is KM-dense. By Coroilary 6.9 we
have cov, < kens(coex ). By Theorem 6.10 we have

kens(coex ) < U A=Cov,.
AL Clemi N

Thus.
MN is compact & coex, is E.M-dense = cov - = kens(coex,:).

Assume that MN is compact & cov.- =kens(coex, ). By Theorem 6.8 and
Corollary 5.3 we have that coex. is KM-dense. [

Seminaturally inarked s-nets seem 1o be a very interesting class of marked s-nets.
On the ene hand this class is wide (for instance. it contains nets s2nerated by
GE*-path.[16'). on the other hand. it has very convenient regular pre perties. These
nets are composed from finite state machines and their markin - classes are strictly
connected with this composition. Furthermore. in Section 9 =« show that if any
compact ms-net satisfies that mentioned in the previous scciion, Petri's postulate
about a common element. then this net can be treated ox seminaturally marked.

Ending this section we consider below two examples characterising the approach
presented above,

Example 6.12. Lt N=(T.P).N,=(T.P 101 7=1,....5 be the same nets as in
the case of Example 6.6.
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Let us put C={N,,N,,N;,N;}gelem(N)=CU{Ns}. Of course, N=
_IX]_\;J *++ UNy, so C is an e-covering of N. In this case the relations coex.- and
coexc are of the form shown in Fig. 17. Thus,

kens(coexc) ={{1, 3, 7},{1, 3, 6},{2, 4, 6},{2, 4, 7}, {2, 3, 5}, {2, 3, 6}, {2, 3, 7}},
kens(coexc) ={{1, 2},{3, 4}, {5, 6, 7},{1, 4, 5}},

cove =kens(coex).

Fig. 17.

Let us put

Mar ={{1, 3, 7},{1, 3, 6},{2, 4, 6},{2. 4, 7},{2, 3. 5}} < kens(coex).

Note that the triple MN == (T, P, Mar) is a seminaturally marked s-net with respect
to the set C ={N,, ..., N,}. This ms-net is safe, compact, fireable, the relation coex,
is KM-dense and CM-dense.

Example 6.13. Let N=(T,P), N;=(T, P) for i=1,2,3 be the s-nets, given in
Fig. 18.

Note that N=N,UN>-UN,, and elem(N)={N,, N,, N;}. Let us put C=
{N,.N., N;}. Of course C is the e-covering of N. Note that in this case there is
only one e-covering of N. Graphs of coex - and coex,- are shown in Fig. 19. In this
case we have

kens(coex. ) ={{1, 3},{2, 3, 4}.{2. 6}, {4, 5}}.
kens(coex. ) ={{1,2,5}1{1,4,6},1{3,5,6},{1,5.6}},
cove-={{1, 2, 5},{1, 4, 6},{3.5,6}},
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Fig. 19.

thus
cov, < kens(coex-)=covuil, 5, 6}

Note that MN = (T, P, Mar) is a seminaturally marked s-net with respect to the set
O =1N,.N>.N,}. Thé ms-net MN is safe, compact and fireable. The relation coex
1s (' M-<ense, but it is not KM-dense, because {1, 5, 6} ~{2, 3, 4} = . The statement
VA« kens(coex ), (A, A) is a quasielementary s-net is not tiue, because the set
I1.5, 6}« kens(coex,) does not define any s-net. Since Mar =kens(coex-), KM-
density is equivalent with K-density and CM-density with C-density.

7. Y«aturally marked s-nets

Considering seminaturally marked s-nets representing real systems. one can
observe that there is frequently the case: Mar = kens(coex ).

Thus one can ask if kens(coex,-) is always a correctly defined marking class. The
answer is UYes”T and this kind of net will be called ‘naturally markec!'.

We shall deal with that kind of net in this section. At first we prove that for every
e-covering (. the triple (7, P, kens(coex ) is really an ms-net.

Let N=(T, P)beafixed propernet,andlet C ={N,,.... N,.}.where N, =(T,, P,
fori=1..... n. be an e-covering of C. Let cove, coex - be identically defined ¢s in
the previons sections.

Lemma 7.1

VA kensteoex ), (A, BYe RE = B ckens(coex ),

(B.A)e R1 = Bckens(coex ).

Proof. l.¢ct tA. B)c R1, so
Ju:T. A—-a=B-a & 'acA&a<B.

Assume that By kens(coex ).
We must consider two cases:

¢ty 3p.g. BIP ccove. p.geP, & p7q.
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(2) VpqgeB, (pq)ecoexc & It BVYpe B, (t, p) € coex.

Case 1. Becausep#qandp, g P,wehavep,q¢a’,sop,qe B—a . ButB—a =
A-"a,so{p,q}c AnP.

But if Aekens(coexc) & P; € cove, then |An Pj|< 1—a discrepancy.

Case 2. In this case we have

Vp,qe B(VP,ecove, pg Piorqe P;) & (3t BVpe B
VP,' €COoV¢, tEI), or pE 1),)-

Since a'< B, t#¢a’, and by Lemma 6.2 we have t€ ‘a. Because A—'a=B—a’, we
have Vpe A—"a, (t, p) e coex. By Lemma 6.2 we also obtain that

Vpea',(p t)ecoexe) = (Vp'e’a, (p',t)ecoexc).
From the above considerations we have
Vpe B, (t p)ecoexe =
= VpeB—a',(t,p)ecoex. & Vpea’, (1, p)e€coexc
= Vpe A—"a, (t,p)ecoexc & VYpe a, (1, p)€coexc.

Since ‘a< A, we have A=(A—-"a)u a

So we can write Vpe A, (1, p) € coex. On the other hand we have shown that
tz A—"a and !¢ ’'a. But this means that t¢ A & Vpe A, (1 p)ecoex., thus
A¢ kens(coex - )—in spite of our assumption.

In this way we have proved that (A, B) e R1=> Bekens(coexn) For (B, A)e Rl
we proceed similarly. O

Theorem 7.2. The triple (T. P, kens(coex)) is a safe, locally fireable ms-net.

Proof. From Lemma 7.1 it follows that
VM e kens(coexc), [M]k, < kens(coex).
Thus,
U [M]g. < kens(coex().

Mo kensteoex)

On the other hand: Y]/ € kens(coex), M € [M],, so

kens(coex() € U [M]g..

Me kenstroexe)

Thus the triple MN = (T, P, keiis(coex)) is a marked s-net. From Lemma 7.1 we
have that MN is locally fireable. Thus MN is seminaturally marked with respect to
the covering C, so by Theorem 6.3 we get that it is safe. []
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Theorem 7.2 makes correct the following definition. If C is an e-covering of
(T, P), then the triple MN = (T, P, kens(coexc)) is said to be a naturally marked s-net.

Note thai every e-covering describes exactly one naturally marked s-net. Of
course, every naturally marked s-net is also seminaturally marked. Since in this case
Mar =kens(coex.-), KM-density is equivalent to K-density, and CM-density is
equivalent to C-density.

The basic difference between naturally and seminaturally marked s-nets is that
in the case of first ones the marking class is fully described by the e-covering C.
Other properties are very similar.

Applying results of Section 6 to the class of naturally marked s-nets we obtain
the following theorem.

Theorem 7.3. Let MN = (T, P, kens(coex.-)) be a naturally marked s-net with respect
1o the e-cocering C. Then:

(1y  coex, is K-dense
= [VA e kens(coex(-), No=('A, A) is a quasielementary s-net].
(2) MN is compact = coexc is C-dense = cov - < kens{coex-).
(3)  MNiscompact & coex is K-dense =
= [VAckens(coex-), Na=('A, A) isan elementary s-net].
4y C=clem(N) & MN is compact

= (coex, is K-dense & cove- =kens(coex )).

8. Concurrency relation and global system states

It Section 5 we have started with a given in advance set of sequential component.
and next, on the basis of that set, we have constructed the concurrency relation of
a4 system. )

We are now going to present the opposite point of view. We shall start with «
given in advance set of global system states. and then we shall trv to describe the
concurrency relation. The set of global system states is also a covering of a set af
svstem local states. so the procedure will be similar to that from Sectien 5.

Let X be aset.and let cove 2% be a covering of X, Let sir(cov’ X X X be the
relation defined as follows:

Ya. b X, ta.b)csar(covio a#zb& I3Accov,ac A& be A.

Note that siricov) is also a sir-relation. Relationships beiween sir(cov) and sir(cov)
are deseribed by the corollary below,
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Corollary 8.i
(1) sir(cov) usir(cov) uidy = X X X; sir(cov) M sir(cov) = .
(2)  kens(sir(cov)) =kens(sir(cov));  kens(sir(cov)) = kens(sir(cov)).
(3)  cov isa partition of X & sir(cov) uidy is an equivalence re.’angon.

(4)  sir(cov) uidy is an equivalence relation => cov = kens(sir(cov)).

In the approach presented here, a covering cov is interpreted as an arbitrary set
of coexisting system states, and the relation sir(cov) is interpreted as the concurrency
relation defined by that set.

As opposed to Section 5, we shall assume that the family kens(sir(cov)) repsesent
the set of sequential components of a system. The full list of interpretations is the
following:

cov: the set of all global system states,
sir(cov): the concurrency relation defined by the set of
global system states,

kens(sir(cov)): the family of all maximal locally concurrent sets,

kens(sir(cov)): the set of all sequential components of & system.

Here the family kens(sir(cov)) is a set of all global system states only if cov=
kens(sir(cov)). Notions of consistency and semiconsistency are defined, in this case,
in a somewhat different way.

A relation sir(cov) is said to be consistent iff cov=kens(sir(cov)), and it is said
to be semiconsistent iff cov< kens(sir(cov)).

The property of consistency means in this case that the set of global system stz tes
and the set of locally concurrent sets are identical. In other words, if (a, b)(b, c)(c, a)
belong to the concurrency relation then the statement *(a, b, ¢) are all concurrent’
is sensible. This fact means that the concurrency, which by the definition is only a
binary relation, can be extensible to more complex structures such as cliques. The
property of semiconsistency means in this case that the set of all global system states
is defined by the concurrency relation, which is only partially extensible to more
complex structures. In fact, in the case of the approach from Section 5 we have
also assumed that the set of all system states is included in the set of cliques defined
by the concurrency relation.

Note that in order to describe Petri’s postulate on a common element, we have
to introduce a new kind of density, because densities defined in Section 5 are
inadequate.

A relation sir(cov) is said to be M-dense iff

VA ecovVBekens(sir(cov)), An B#0.

Jsually, X is a set of net places and cov is a set of net markings, hence the name:
M-density (from marking).
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Corollary 8.2
(1)  sir(cov) is M-dense & sir(cov) is C-dense.

(2)  cov=kens(sir(cov)) = (M-density & K-density).

(3)  covc kens(siricov)) = (K-density = M-density).

From Theorem 5.4 and Corollary 8.2(1) it follows that M-density implies semi-
consistency. o more formally

Corollary 8.3

sir(cov) is M-dense = cov < kens(sir(cov)).

9. Analysis of ms-nets by means of concurrency relation

In previous sections we dealt with a special kind of net, namely we started with
a proper s-net and then we described a marking class on the basis of a given
e-covering. And so the considerations were restricted to nets decomposable into
sequential finite state machines.

In this scction we start with an arbitrary ms-net MN = (1] P, Mar), and we shall
try to design the concurrency relation and its properties on the basis of that triple.
We shall use results of Section 8 and prove that the acceptance of Petri’s postulate

about 4 common element reduces considerations back to nets decomposable into
sequential finite state machines.

Let MN=(T, P.Mar) be an arbitrary, fixed for the rest of the section, ms-net.
Let coexyy,, € PX P be the following relation:

COCXyy,, = sir(Mar).
In other words.
Vp.g< P, (pg)ecoexy, ©@ p#q& IMeMar,pe M & ge M.

‘The relation coexyy,, is called the coexistency defined by markings.

Cosollary 9.1

COCxag,, 15 M-dense = Mar < kens{coexyy,,).

Thus. if coexy,, is M-dense, then every marking is a clique defined by the
coexistency relation.

We now show that M-density connected with safeness und local fireability forms
4 very strong property of a net.
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Theorem 9.2. If an ms-net MN = (T, P, Mar) is safe, locally fireable and the relation
CO€Xpar IS M-dense, then for every set A ekens(coexyy,,) the pair (A, A) is a
quasielementary s-net.

Proof. The way of proving is similar to that of Theorem 6.5. Of course "A =left(A).
At first we prove that (‘A, A) is an s-net. To this end it is enough to prove that
left(A) =right(A). Let a €left(A). This means that 3p,€ P, acp,.

Because MN is locally fireable, 3M € Mar, ‘a € M. Because coexyy,, is M-dense,
MnA#Q.

Define M'=(M—-"a)ua’. Since MN is safe, we have (M, M')e R1y, where
N=(T,P). Since (N,M')e R1y & M eMar, M'eMar. Note also that {p,}=
M'n A.

Let pe M A. Since ae'p,, a' < M’, p,€ A, then (M'—a’)n A=¢. Note that
M'—-a =M-"a,so p¢ M—"a. But pe M, so pe ‘a. On the other hand: pe ‘a&ac
right(p) < right(A), hence left(A) < right(A).

In a similar way we can prove that right(A) c left(A). Thus N, =(Ta4, A), where
T.,=left(A) ="A,is an s-net. Let a € T,,. We shall prove that |'a n A| = 1. Of course
‘an Ac a. Let M, e Mar such that ‘a =< M,. Then ‘a n A < M, € Mar. Assume that
{p,q}< an A & p # q. This means that {p, g} = M, € Mar, so

(p, q) € coexyy,, = VB e kens(coexy,,), p€ Borqé B
> pfanAorqé anA

—a discrepancy.
Thus Vae T. |(a)n|=|anAl=1.
For a’ we proceed similarly. Thus N, is a quasielemeritary s-net. []

As an immediate consequence of Theorem 9.2 we obtain that if MN = (T, P, Mar)
is safe, locally fireable and coexy,, is M-dense, then MN is decomposable intc
sequential finite state machines (but not necessarily connected).

The reciprocal theorem is false. To prove that we recall Example 6.6. Let us
consider the ms-net MN' = (T, P, Mar’), where Mar’ = kens(coex-). In this case we
have coexay,. =coexc. and every element of kens(coexy,,) is an elementary s-net;
but coexyy,, is not M-dense because {1, 3}~ {5, 6, 7} =0, and {1, 3} e Mar’, {5, 6, 7} €
kens(coeXa.,)-

Examples 9.5, 9.6 and 9.7 show that the assumptions of Theorem 9.2 cannot be
weakened. Example 9.8 shows that the word ‘quasielementary’ cannot be replaced
by ‘elementary’.

Local fireability and safeness are rather obvious properties demanded irom nets
representing correctly defined systems. The first property means that every transition
has a possibility to be fired, so there is no useless transition, the second one may
be interpreted as: ‘any action cannot disturb other actions’ (see [17]). Adding the
property of M-density, we obtain a very regular static (or ‘topological’ in the common
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sense of this word) structure of a net. This betokens the fact that M-density is a
strong property of an ms-net.

As was mentioned above, in most approaches it is assumed that systems are
compact in our sense. It turns out that in the case of compact ms-nets, the property
of M-density is still stronger.

Theorem 9.3. Jf MN = (T, P, Mar) is compact, safe, fireable and coexyy,, is M-dense,
then for every set A € kens(coexy,,) the pair (A, A) is an elementary s-net.

Proof. Similarly as the proof of Theorem 6.10, using Theorem 9.2 instead of

m

Theorem 6.5. T

Theorem 9.4. Let MN = (T, P,Mar) be a compact and fireable ms-net. Then the
following are equivalent:
(1)  MNissafe and M-dense,
(2)  Marc kens(coexa,,) and for every A €kens(coexm,,) the pair (A, A) is
an elementary s-net.

Proof. (1)=>(2) This is a consequence of Corollary 9.1 and Theorem 9.3.
(2)=>(1) Let us put

C={N,IN,=(A, A) & Aekens(coexy)}.

Note that C is a correctly defined e-covering of N, and cov =Kens(coeXa,,).

But this means that sir(cov..) =coexyy,,, and, consequently, coexXyy, =coeXc.
kens(coex, ) = kens(coeXa,).

Since MN is fireable and Mar < kens(ccex.-}, the ms-net MN is seminaturally
marked with respect to the e-covering C.

By Theorem 6.3 we obtain that MN is safe, and by Theorem 6.8 that coex,- is
CM-dense. But coex - = coexyy,, and cove = kens(coexy,,), so CM-density of coex,-
is equivalent to M-density of coexyy,,. O

The ms-net MN' considered after Theorem 9.2 also proves the untruth of the
reciprocal of Theorem 9.3. Examples 9.5-9.8 considered below show thac the
assumptions of Theorem 9.3 cannot be weakened, and Examples 9.6 1nd 9.8 show
that the assumptions of Theorem 9.4 cannot be weakened.

In all examples below we have that coexyy,, = (P X P—coexy; '--idp.

Example 9.5. Let MN = (T. P, Mar) be the ms-net given in i-ig. 20; Mar={{1, 2},
{1.3}.{2. 3}. {4}}.

Graphs of relations coexy,,, coexyy,, are shown in Fig. 21. In this case we have
kens(coexy,.) ={{1, 2, 3}, {4}} 2 Mar,
kens(coexay,,) ={{1,4}.{2.4}.{3. 4}}.
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© 08
F—Q

coexMar

Fig. 21.

The relation coexy,, is K-dense, but it is not M-dense, because {2, 3} n{1,4} =0,
and it is not semiconsistent. The nis-net MN is compact, safe and fireable, but the
s-net N = (T, P) is not proper, thus the assumption: coexy,,, is M-dense cannot be
removed from Theorems 9.2 and 9.3.

Example 9.6. Let MN = (T, P, Mar) be the net defined in Example 4.3. Graphs of
relations coexyy, . coexyy,, are of the form shown in Fig. 22. Here we have

kens(coexyy,,) =Mar ={{1, 2}, {3, 4}, {5}, {6}},

kens(coexy,,) ={{1, 3.5, 6},{1,4, 5, 6}.{2,3,5,6},{2,4, 5, 6}}.
O-@

® ®
® @

coex,

Mar
Fig. 22.

The relation coexy,,, is K-dense, M-dense and consistent. The- ms-net MN is safe
and compact but it is not locally fireable. The >-net ( T, P) is not proper. This proves

that the assumption of local fireability cannot be removed from Theorems 9.2, 9.3
and 9.4.

Example 9.7. Let MN =(T, P, Mar) be the ms-net, as shown in Fig. 23; Mar=
{1, 21
0

a]
@

N=(T,P)
Fig. 23.
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Here graphs of coexy,, and coexyy,, are as shown in Fig. 24.

® @ @
F&i—xm’ coex,, .
Fig. 24.

Note that kens(coexy,,) = Mar, kens(coexy,,) ={{1}, {2}}, the relation coexy,, is
consistent, M-dense and K-dense, the ms-net MN is fireable and compact, but not
safe. The s-net N = (T, P) is proper indeed, but elements of kens(coexyy,,), i.€., sets
{1}.{2}, do not define any s-net. Thus the assumption of safeness cannot be removed
from Theorems 9.2 and 9.3.

Example 9.8. Let MN = (T, P, Mar) be the ms-net shown in Fig. 25; Mar={{1, 3},
{2,4}.{4.5}. {3, 6}}.

E’E
OAOAO
N=(T,P)
Fig. 25.
, Graphs of coexyy,, and coexy,,, are shown in Fig. 26. In this case,
kens(coexay,,) = Mar,
kens(coexa,,) ={{1,2.5,6},{2.3.5}.{1.4,6}.{3,4}}.
The relation coexyy,, 18 concistent, M-dense and K-dense.
&L
o /W
8 &

coex

Mar
Fig. 26.

The ms-net MN is safe and locally fireable, but not compac ¢« “cause for instance,
(1.3}, {3.6})¢ Ry. The family of quasielementary s-nets deimed by the set
kens{coexay,,) consists of the s-nets shown in Fig. 27.

Of course, N=(T. P) is proper and N=N,u - uN,. This example proves
that in Theorem 9.2 the word *quasielementary’ cannot be replaced by ‘e ementary’.
as well as that the assumption of compactness cannot be removed from ™ heorem 9.4,
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0.0 (3 ONO (3)
Nelal[b] N Exﬂ N=la] [b] n=[a] [b]
8l0 0 0 @ G
Fig. 27.

Now we consider a very regular case.

Example 9.9. Let MN=(T, P, MarA) be the following ms-net: the pair N = (T, P)
is the same as in Example 9.8, and Mar ={{1, 3, 5}, {2, 4, 5}, {2, 3, 5}}.
Now graphs of coexy,. and coexy,, are shown in Fig. Z8. In this case,

kens(coexn,,) =Maru{{2, 3, 5}},
kens(coexy,,) ={{1, 2}, {3, 4}.{5,6}.{1, 4, 6}}.

O Q oS0
|/</|\

E—O RIS

DE® =0

coexM&’ CWKMar

Fig. 28.
The relation coexyy,, is M-dense and semiconsistent, but it is not K-dense. The

ms-net is safe, compact and fireable, the s-net (T, P) is proper. The family
kens(coexyy,, ) describes the elementary nets shown in Fig. 29.

®
N,= |a N,= b] N
®

Fig. 29.

Notethat N=N,u --- U N;and{N,, N,, Ny, N,} ¢ elem(N). Note also that MN
is seminaturally marked with respect to the covering C ={N,,..., N;}.

In this approach the notion of M-density expresses Petri’s postulate that every
sequential component and every global system state must have one element in
common. From the above considerations it follows that such a postulate implics the
reduction of considerations to nets decomposable into sequential finite state
machines only.

Besides the M-density implies semiconsistency, i.e., it makes it possible to talk
about maximal sets of independent places.
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From the results of this section, it follows that on the system level Petri’s postulate

is equivalent to the opinion proclaxmed by Lauer and others [16] that concurrency
is a non-interleaving synchronisation of sequential subsystems.

10. Final comment

We wish to point out the importance of Petri’s postulate that every sequential
component and every global system state has to have one element in common, in
the approach presented in this paper. It turns out that nets which do not satisfy this
postulate have usually irregular remaining properties. This postulate is not, in the
general case, described by the well-known property of K-density introduced by
Petri. According to the need. this postulate is described by CM-density, C-density,
or M-density. Only in particular cases is it described by K-density.

In accordance with our intuition, properties: safeness, local fireability and M-
density of coexyy,, can be treated as necessary conditions for ‘well-defined’ concur-
rent svstems. But this means that such a ‘well-defined’ concurrent system is always
a net decomposable into sequential finite statc machines.
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