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Abstract. The semantics expressed intuitively as 'execute as much as possible in parallel' is 
formally defined and analysed. The relation between such a maximally concurrent semantics and 
'normal' concurrent semantics is developed. Necessary and sufficient criteria for the equivalence 
of these semantics are formulated. As an abstract model of nonseqnential systems the COSY path 
expression formalism is used. 

1. Introduction 

Among various semantics of executions in nonsequential systems (see discussion 
in [4]) we can distinguish two widely accepted approaches. The first one, standard 
in the Petri net approach (cf. [3, p. 528]), may intuitively be expressed as: 'execute 
as possible'; this encompasses the whole range of (possibly) concurrent evolutions; 
from the sequential ones to the maximally concurrent ones through all the intermedi- 
ate cases, any possible execution is allowed. Vector firing sequence semantics for 
the COSY path expressions described in [19, 28] is another good example of this 
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approach. Interleaving semantics of Milner [23] and Hoare [9] have also their roots 
in the intuition 'execute as possible'. 

The second one is usually expressed as 'execute as much as possible in parallel' 
or 'execute as quick as possible'. In this case we require that processes should not 
be lazy, and at each step of the computation, the set of instructions must be a 
maximal non-conflict set. The first semantics is more general but in practice the 
second one is sometimes more natural and easier to implement (compare [2, 5, 27]). 

The computational power of the second semantics was studied by Burkhard [5] 
in the case of Petri nets, while Enjalbert and Michel [7] have analysed this approach 
in terms of temporal logic. 

In this paper we try to answer the question: "When is the semantics 'execute as 
much as possible in parallel' equivalent to the semantics 'as possible' ?". 

Concurrent systems may exhibit extremely complicated behaviours and informal 
reasoning is not reliable enough to establish their properties, so we must use an 
abstract formal model. As a formal model we shall use the COSY path expression 
formalism [15, 19, 20], which is sufficiently wide. It has been developed to a great 
level of sophistication and provides a respectable number of analytic criteria which 
are also efficiently mechanisable. 

Furthermore, a computer based environment, called BCS and based on the COSY 
formalism, was recently implemented (cf. [8, 16, 17]). BCS permits, among other 
things, the analysis of a COSY system specification by concurrent simulation. In 
the process of using this simulator, it became obvious that systems for which the 
maximally concurrent behaviour determines the full behaviour are much more easy 
to analyse. 

In this paper we shall recall the classical formal description of the semantics 
'execute as possible' and we shall define a similar formal description of the semantics 
'execute as much as possible in parallel'. Necessary and sufficient criteria for the 
equivalence of both semantics are then formulated and proved. 

Although the results of the paper are formulated in terms of the COSY path 
expressions theory, they may be translated into other related formalisms. For 
instance, all results may immediately be transformed into the language of Petri nets. 

In spite of  the above-mentioned twenty years of intensive research, in practice, 
when we analyse the dynamic properties of the Petri net specification of a real 
concurrent system, we are frequently forced to analyse the reachability graph of the 
net (if it is safe) or its reachability tree (if it is unsafe, see [25]). This is usually a 
very long and uphill task, often impossible without the assistance of Computer- 
Aided-Design Tools (like those in [13, 16, 24]), and even though we have such an 
assistance the task is still uneasy. 

The reachability graph defined by maximally concurrent behaviour is much smaller 
than the one defined by the full behaviour. When a safe system contains a dozen 
of concurrent actions, it may be smaller--according to practical experiences of the 
two first authors with BCS by a factor of ten (or even more) times. This means 
that the systems for which the maximally concurrent behaviour determines the full 
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behaviour are much more easy to analyse, particularly when we cannot use any 
theorem (because of the generality and/or  complexity of the system to be specified). 

Some results of the paper have been announced at the 4th European Workshop 
on Application and Theory of Petri Nets, Toulouse, 1983, and the International 
Seminar on Concurrency, Carnegie-Mellon University, 1984. 

As a general remark, we may also mention that some of our results may be 
connected to the general theory of partial orders; in order to be more selfcontained, 
to better support intuition, and to get more constructive proofs, we shall stick to 
our original context however. 

2. Basic COSY syntax and its standard semantics 

COSY (COncurrent SYstem) is a formalism intended to simplify the study of 
synchronic aspects of concurrent systems, by abstracting from all aspects of systems 
except those which have to do with synchronisation. 

A basic COSY path program is a collection of paths enclosed in program and 
endprogram parentheses. Essentially, a path is a regular expression enclosed by path 
and end, as, for instance, 

P0 = program 
P l: path a; b, c end 
P2: path (d; e)*; b end 
endprogram. 

In every regular expression like the above program, the semicolon denotes sequence 
(concatenation) and the comma denotes mutually exclusive choice. The comma 
binds more strongly than the semicolon, so that the expression "a;  b, c" means 'first 
a, then either b or c'. An expression may be enclosed in conventional parentheses 
with Kleene star appended, as, for instance, "(d;  e)*" which means that the enclosed 
expression may be executed zero or more times. The expression appearing between 
path and end is implicitly 'starred', so that a path describes a cyclic sequential 
subsystem. The formal description of the COSY syntax may be found, for instance, 
in [15, 19, 20, 28]. The papers [15, 19, 20] contain various examples of using COSY 
to specify real systems. The semantics of path programs can be described by means 
of vectors of  strings (an approach initiated by Shields [28]). 

With every path P = path body end, we associate its set of  events Ev(P). In the 
case of example P0, the events are: Ev(P1) = {a, b, c}, Ev(P2) = {b, d, e}, which also 
indicates how events are distributed into subsystems. As it was pointed out above, 
'body' may be treated as an ordinary regular expression. The only difference is 
replacing " u "  by ",", using ";"  to denote concatenation, and assuming that a 
mutually exclusive choice binds more strongly than concatenation (in traditional 
notation the opposite convention is used). Thus, for instance, "a ;  b, c" is equivalent 
to "a (b  u c)'" according to traditional notation. 
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For every regular expression E, let ]E I denote the regular language described by 
E. For every path P = path body end the language Ibodyl is called the set of cycles 

of P and denoted by Cyc(P),  i.e., Cyc(P) = Ibodyl. 
For example, for P0 we obtain C y c ( P 1 ) = { a b ,  ac},  C y c ( P 2 ) = { d e } * { b } ;  they 

represent the periods of the inherently periodic sequential subsystems, namely the 
single paths. 

From the set Cyc(P) we construct the set o f  f i r ing  s equences  of P, denoted FS(P), 
as follows: 

FS(P) = Pref(Cyc(P)*) = Cyc(P)*Pref(Cyc(P)) ,  

where, for every alphabet A and every language L_c A*, 

Pref(L) = {xl (3y  ~ A * ) x y s  L}.  

The set FS(P) is the set of finite sequences of event occurrences specified by the 
path P. For example, for P0, we obtain 

FS(P1)={ab, ac}*{e,a}, 
where e denotes the empty string. 

Let us now consider a path program P = program P1 . . .  Pn endprogram (or simply 
P = P~. . .  Pn), where the Pi's are single paths. To model the nonsequential behaviour 
of P, partial orders of occurrences of events will be constructed which are represented 
by vectors of strings. 

A vector (x~ , . . . ,  x~) is a possible behaviour of P =  P1 . . .  Pn if each x~ (for 
i = 1 , . . . ,  n) is a possible firing sequence of Pi and, furthermore, if the x,'s agree 
about the number and order of occurrences of events they share. To formally define 
the set of possible behaviours or histories of P, vectors of strings are introduced 
together with a concatenation operation on them. 

Let us consider the set E v ( P ~ ) * x . . .  x Ev(P,)*. If  the vectors ( x b . . . ,  x,) and 
( y l , . . . ,  y~) belong to the above set, their concatenation is defined as 

(Xl ,  . . . , x ,  ) (Y l ,  . . . , Y , )  = ( x , Y b  . . . , x,o'n ). 

Let Ev(P) = Ev(P1) u -  - • u Ev(P~) and, for i = 1 , . . . ,  n, let hi: Ev(P)*--> Ev(P~)* be 
the erasing homomorphism (endomorphism and projection, in fact) defined from: 

( V a e E v ( P ) )  h i ( a ) = { :  otherwise.a~Ev(Pi)' 

Let _: Ev(P)*-~ Ev(P1)* x - -.  x Ev(P,)* be the mapping defined as follows: 

(Vx ~ Ev(P)*) _x = ( h i ( x ) , . . . ,  h n ( x ) ) .  

Conventionally we shall write x instead of _x in every place where this does not lead 
to ambiguity. Clearly, we may have x # y and x = y. The set Vev(P) = { a l a  ~ Ev(P)} 
is called the set of vec tor  even ts  of P. Note that Ev(P)* = Vev(P)*. 

For example, for P0, the vector events are 

Vev(PO) = {a, b, c, d, e } = { ( a ,  e ) ,  (b, b ) ,  (c, e), (e, d),  (e, e)}, 
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or, indicated by distribution into subsystems and " e "  replaced by blank: 

' <-- Ev(P2)" 

Essentially, the vector events indicate distribution of events to subsystems and 
the sharing of events ( 'handshake' synchronisation) by subsystems. 

For i = 1 , . . . ,  n, let t~ : Ev(PI)* x" • • X Ev(P,)* --> Ev(P~)* be a projection defined 
standardly as: (xa,. • . ,  x~, . . . ,  x,)li = xi. Note that (Vx e Ev(P)*)(Vi = 1 , . . . ,  n) xli = 
hi(x) and 

( V ( x l , . . . ,  x , )  e Vev(P)*)(3x e E v ( P ) * ) ( x l , . . . ,  x , ) =  

It turns out that vectors of sequences belonging to Vev(P)* can be interpreted as 
partial orders of  event occurrences, so that they may be used to model the concurrent 
behaviours of  P. 

Let oc t (P)  = Ev(P) x { 1, 2, 3, . . .}.  Elements of occ(P) are called event occurrences. 
Every string x ~ Ev(P)* generates a natural total order Tx _ oc t (P)  x oct(P).  For 
instance, if x=abacba, then Tx=(a, 1)~(b ,  1)->(a, 2)->(c, 1)-*(b, 2)-*(a, 3). A 
formal (easy) definition of Tx is left to the reader (see [10]). The partial order 
px c_ oct (P)  x occ(P) generated by x ~ Vev(P)* can be defined as follows (the idea 
follows from Szpilrajn-Marczewski [31]): 

P , =  ('] T r 
yEEv(P)*&y=x 

More details on this subject may be found in [10, 29]. 
For example, in P0, adbead E Vev(P0)* and the partial order P.a~.a is shown in 

Fig. 1. 

The set of all possible behaviours or histories of P, the vector firing sequences of 
P, denoted by VFS(P), is defined by 

VFS(P) = (FS(P,)  x . . .  x FS(P.))  c~ Vev(P)*. 

The set FS(P1) x .  • • x FS(P.)  in the definition of VFS(P) guarantees that each string 
component x, of a history x = ( x l , . . . ,  x.) ¢ VFS(P) is a firing sequence of the path 

Fig. 1. 
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Pi, and the set Vev(P)* guarantees that all these firing sequences agree on the 
number and order of occurrences of events they share. 

The set VFS(P) can be treated as a formal description of the execution semantics: 
'execute as possible'; this will be further consolidated by some of the following 
discussions (see, for instance, Theorem 3.3). 

Let r: Ev(P)-~ 2 ~1'2''''''~ be the function given by 

(Va ~ Ev(P)) r ( a ) =  {i[ a ~ Ev(Pi)} 

(note that r is a well-defined 'resource association function', according to [ 11]) and 
let ind_  E v ( P ) x  Ev(P) be the following relation: 

(Va, b ~ Ev(P)) (a, b) ~ ind :¢:> r(a)  n r (b)  = ~). 

The relation ind is called the independency relation. Note that (a, b)eind¢:~ 
(a ~ b & ab = ba)C~>((Vi)al, ~ e bl, = e)¢~>((Vi)a~ Ev(P,) or b~ Ev(P~)). 

Since the paths correspond to the sequential subsystems of the whole system, two 
independent events have no common sequential constraint, so that independency 
may be viewed as a potential concurrency relation: only independent events may 
occur concurrently. However, independent events may not always occur concur- 
rently; it may even happen that they may never occur concurrently at all: they have 
to be simultaneously 'enabled' at some point, this will be developed in Section 3. 

The formal model of behaviour allows us to speak formally of dynamic properties 
of systems specified by a path program P = P1 . . .  pn. 

We say that P = P~ . . .  Pn is deadlock-free if and only if 

(Vx ~ VFS(P))( :Ia  ~ Ev(P)) xa ~ VFS(P), 

that is, every history x may be continued. 
We say that P = P~. . .  Pn is adequate if and only if 

(Vx ~ VFS(P))(Va ~ Ev(P)) (3y ~ Vev(P)*)xya ~ VFS(P), 

that is, every history x of P may be continued, eventually enabling every event in 
P. Adequacy is a property akin to the absence of partial system deadlock. More 
details can be found in [15, 19, 28]. 

The semantics of COSY path programs may also be expressed in terms of labelled 
Petri nets (cf. [3, p. 295]). The current net semantics of path programs is obtained 
by translating each sequential path component into a labelled state machine represen- 
ted as a net, i.e., representing transitions by boxes. For example, the paths 

P~: path a; b; a end, P2: path a, c; d end 

would individually give rise to the nets shown in Fig. 2. Once the nets corresponding 
to the individual paths have been obtained, for example, two nets called N~ and 
N2, one applies a composition rule denoted by " ~ ) "  to the two nets, written N~ ~) N2, 
constructed from N~ and N2 by the identification of transitions with the same label. 

We may now give the construction of N~ ~9 N2 from nets N1 and N2 and illustrate 
it with the two example paths above: 
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(a) 

a 

(b) 

Fig. 2. (a). Net of Pl (two transitions have the same label). (b) Net of/)2. 

(1) The set of places of  N I ~  N2 is the set-theoretic union of the sets of places 
of  NI and N2 (they are supposed disjoint!) with inherited markings. 

(2) Suppose t is a transition in either NI or N2 such that no transition in the 
other net is labelled with the label of  t, then M E ) N 2  contains a transition (t),  with 
the same label as t, whose input and output  places are the same as those of  t (recall 

(1)). 
(3) Suppose tl and t2 are transitions of  N~ and N2 respectively, with the same 

label, then M E )  N2 contains a transition (t~, t2) with the same label as t~ and t2 and 
whose set of  input (respectively output) places is the union of the sets of  input 
(respectively output) places of  tl and t2. 

The operation ~ may be shown to be commutative and associative (up to 
isomorphism). 

I f  P = PI . . .  P,  and Ni is the marked labelled state machine net associated with 
Pi, then the net associated with P is defined to be N~ ~ • • • ~ N,.  

The result of applying these rules to P = P~P2, where/ '1  and P2 are our example 
paths, then is the net shown in Fig. 3. 

! 
P l  

a b P3 a ~'] 

tl,ti  

Fig. 3. N -- (net of P1)(~(net of  P2) corresponding to the path P = path a; b; a end path a, c; d end. 
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More details about the formal correspondence between path programs and Petri 

nets may be found in [1, 18]. 

One may also prove that the algebra of vector events is equivalent to the algebra 

of Mazurkiewicz traces (a model of  concurrent behaviours generated by Petri nets, 

see [14, 21, 22]) in the sense that the partial orders defined by a vector x and a trace 

[x]i,d are exactly the same and the vector events monoid and trace monoid are 

isomorphic (see, for instance, [29]). 

3. The problem of maximally concurrent evolution 

Let us start with the following example (see [15]): 

P = path a, c; d end 
path b; c, d end. 

At the beginning we are able to perform actions a and b; as they are independent,  

we may not only initially execute a or b, but also both of them concurrently in one 

'step'. In the latter case, after the concurrent performance of a and b, only action 

d is enabled; after its performance we are again in the initial situation. Note that 

in this way, if we always choose to do a and b concurrently, we are never able to 

perform the action c. On the other hand,  we may start with the performance of the 

action b only and then we are able to perform c next. This example shows that 

doing two independent  and simultaneously enabled actions in one step is not the 

same as doing them in either order but sequentially, that is, in two steps. 

This example shows that  the semantics 'execute as much as possible in parallel '  

may not be equivalent to the semantics 'execute as possible'. Let us analyse this 
problem formally. First of  all, we must formally define the semantics 'execute as 
much as possible in parallel'. 

Let P = PI . . .  Pn be a path program, and let Ind(P)  ~_ 2 ~v<P) -{~} be the following 
family of sets of events: 

A ~ Ind(P)  :<:> ((Va, b e A) a = b or (a, b) e ind) & A # 0. 

In other words, elements of Ind (P)  are sets of pairwise independent  events. I f  

A = { a l , . . . ,  ak}  ~ Ind(P) ,  then a ~ . . .  ak = a i ~ . . ,  a~ k for any permutation i ~ , . . . ,  ik SO 

that we may write A = a~ . . .  ak and x A  = xa~ . . .  ak. ~ 

For every x e VFS(P),  an event a ~ Ev(P)  is said to be e n a b l e d  at x if and only if  

(Vi = 1 , . . . ,  n )  a ~ E v ( P i ) ~ x l , a  e FS(P~). 

For every x ~ V F S ( P ) ,  a set of independent  events A ~  Ind(P)  is said to be 

c o n c u r r e n t l y  e n a b l e d  at x i f  and only if  every a ~ A is enabled at x. 

i Note  that  not always the convention A instead of  A can be used. If, for  instance, A = {a, b, c} ~ Ind (P ) ,  
B = {c, d} ~ I n d ( P ) ,  (e, c), (e, d)  ~ ind, we m a y  write AdB, but we must write {a, b, c}d{~ d} and AB u { e}! 
In the sequel we shall use boldfaced types where  possible and underl ining where necessary. 
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Corollary 3.1. For every x ~ VFS(P), 
(1) a e Ev(P)  is enabled at xC~xa ~ VFS(P), 
(2) A~ Ind(P)  is enabled at x<:C, xA ~ VFS(P). 

For every x e VFS(P),  let enabled(x) denote the family of all concurrently enabled 
sets of events at ~ Assume also that for x ~ VFS(P), enabled(x) = I~. 

Any concurrently enabled set at x, A e enabled(x), is said to be maximally concur- 

rent if and only if it may not be extended, i.e., iff (VB e enabled(x)) A c_ B o A  = B. 

For every x~ VFS(P), let maxenabled(x) denote the family of all maximally 
concurrent sets enabled at x~ Of course, maxenabled(x) ___ enabled(x). 

Corollary 3.2. For every path program P the following properties are equivalent: 
(1) P is deadlock-free, 
(2) (Vx ~ VFS(P))  enabled(x) ~ ~, 

(3) (Vx e VFS(P))  maxenabled(x) ~ ~. 

Let S, C, M ~ Vev(P)* x Vev(P)* be the following relations: 

xSy :¢:> ( 3a  ~ Ev(P)) {a}~ enabled(x) & y = xa, 

xCy :¢~ ( 3 A  ~ enabled(x)) y = xA, 

x M y  :¢:> ( 3 A  ~ maxenabled(x)) y = xA. 

The relations S, C, M are called respectively: the sequential teachability in one step, 

the concurrent reachability in one step, and the maximally concurrent reachability in 
one step. 

Theorem 3.3 

V F S ( P )  = {x l  kS*x} = {x l  eC*x}. 

ProoL By the definition, we have S* = C*; then {x l eS*x}  = { x l e C * x  }. Furthermore, 
VFS(P) = (FS(P,)  x-  • • x FS(P,))  n Vev(P)* and from the definition of S we obtain 

(1) e ~{xleS*x}c~(FS(P,)x... x FS(P.))  n Vev(P)*, 

(2) i f y ~ { x l e S * x } n ( F S ( P 1 ) x . .  - x FS(P.))  n Vev(P)*, then 

ya ~ {xl eS*x  } ¢~ ya ~ (FS(P~) x . . .  x FS(P,))  n Vev(P)*. 

Thus {xl eS*x}= ( F S ( P I ) × " "  × FS(P,))  nVev(P)* ,  which ends the proof. [] 

The above result states that VFS is fully characterisable by the relation C (as 
well as by the relation S) so that VFS(P) with C indeed models the concurrent 
evolution of  the system 'execute as possible'. 
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It may also be noticed that S* = C* is exactly the partial order on VFS(P)  defined 
by the prefix relation: if x, y ~ VFS(P),  

xC*y ¢:~ ((3z ~ Vev(P)*) y = xz) <=~ ((Vi)(3z e Ev(Pi)*) Yli = xl~z) 
(compare [29]). 

The relation M is that mathematical object which represents the maximally 
concurrent evolution, i.e., one step under  the rules of  the semantics 'execute as 
much as possible in parallel ' .  Let us define V M F S ( P )  = {x I eM*x}. The set VMFS(P)  
represents all histories that may be reached by a maximally concurrent evolution 
of  the system (the vector maximalfiring sequences), so it may be treated as a formal 
description of the execution semantics: 'execute as much as possible in parallel'. 

For  every V c Vev(P)*,  let Pref(V) = {x[ (3y  ~ Vev(P)*) xy ~ V}. 

Corollary 3.4 

Pref(VMFS( P )) ___ VFS(P ). 

We will say that P is completely characterised by maximally concurrent evolution if 
and only if 

VFS(P)  = Pref(VMFS(P)) .  

This equality is a formal expression of the fact that the semantics 'execute as much 
a s  possible in parallel'  and the semantics 'execute as possible' are equivalent, as 
will be shown later. 

4. Some properties of vector maximal firing sequences 

We are now going to elucidate the structure of Pref (VMFS(P))  and to prove 
formally that the above concept of complete characterisation by maximally concur- 
rent evolution is justified and well-defined. We prove that VMFS(P)  is a tree and 
that  if VFS(P)  = Pref(VMFS(P)) ,  the notions of deadlock-freeness and adequacy 
may be described in terms of  VMFS only. 

Lemma 4.1 

(Vx s VFS(P))(Vy, z VMFS(P)) (yC*x & zC*x) (yM*z orzM*y). 

Proof. Define prefM(y, z) = {vl v ~ VMFS(P)  & vM*y} n {w[ w ~ VMFS(P)  & wM*z}, 
of  course, e ~pre fM(y ,z ) .  If  the property is not true, y ~ p r e f M ( y , z )  and 
z ~ prefM(y, z). Let tbe  a minimal element ofprefM(y,  z). Then (3y '  # z ' .VMFSiP) - 
prefM(y, z)) such that one has the pattern 

tMy'M*yC*x and tMz 'M*zC*x 

(one may have y '  =y an d /o r  z = z'), where y '=  tA, z '= tB, and A • B. Assume that 
a ~ A -  B. As x = ta . . .  tB . . . ,  a must occur after B in the second expression, i.e., 



Concurrent evolution of nonsequential systems 223 

x - ta = . . . .  tBc~ . . .  Cka. •. and a must commute with each ci and each b in B. But 

then B is no longer maximally concurrent at y since one may add {a} to it, hence, 

the lemma. [] 

As an almost immediate consequence of  Lemma 4.1 we obtain the following 

corollary. 

Corollary 4.2. (1) VFMS(P)  with the M relation is a tree (VFS(P) with.the C relation 

is not!). 

(2) Each x ~ VFS(P) has a unique greatest prefix in VMFS(P). 

(3) For every x ~  Pref(VMFS(P)),  i f  y is its greatest prefix in VMFS(P) and i f  y '  

is any o f  its least extensions in VMFS(P) (i.e., i f  x is a prefix o f  y', y ' c V M F S ( P ) ,  
and for  all y" ~ VMFS(P):  (xC*y"  & y"C*y ' )  ~ y "  = y'),  then yM*y ' .  

About Corollary 4.2(3), we may mention that, to the contrary of Corollary 
4.2(2), if x in VMFS(P),  it may happen that there  is no unique extension of x in 

VMFS(P).  For: 

P = path b, c end 

path a end 

and for x =a ,  there are two least VMFS extensions: ab and ac. More details on 

these kind of properties may be found in [6]. 
A path program P is said to be M-deadlock-free if and only if: 

(Vx ~ VMFS(P)) (3y  ~ Vev(P)*) y ~ e & xy ~ VMFS(P). 

Corollary 4.3 

P is M-deadlock-free ¢:> (Vx  ~ VMFS(P))  maxenabled(x) # ~. 

Theorem 4.4. I f  VFS(P) = Pref(VMFS(P)), then 

P is deadlock-free ¢:~ P is M-deadlock-free. 

Proof. (=:>): A consequence of Corollaries 3.2 and 4.3. 
( ~ ) :  Let x e V F S ( P ) .  Since VFS(P)=Pre f (VMFS(P) ) ,  we have ( 3 z ) x z e  

VMFS(P).  Of course xz ~ VFS(P), so if z ~ e, then P is not deadlocked at x. If 
z = e, then x ~ VMFS(P) and there is y # e such that xy e VMFS(P) ~ VFS(P); thus, 

P is also not deadlocked at x. [] 

A path program P is said to be M-adequate  if and only if 

(Vx e VMFS(P))(Va ~ Ev(P)) (3y e Vev(P)*) xya ~ VMFS(P). 
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Theorem 4.5. I f  VFS(P) = Pref(VMFS(P)), then 

P is adequate ¢=~ P is M-adequate. 

Proof. ( ~ ) :  Let xeVMFS(P)  and aeEv(p ) .  Since P is adequate, (=lye 

Vev(P)*) xya e VFS(P), and since VFS(P) = Pref(VMFS(P)), (=lz e Vev(P)*) xyaz e 
VMFS(P). If xya e VMFS(P), we have our result; if it is not true, we have a pattern 

such as the following: 

M 

Yh+l ~ Yh+2 

M* S+ 
Yo = x ) Yh ) xya 

M 
) 

o o • 

S+ 

M 

> Yk--1 

M* 
>Yk > xyaz 

where for i = 1 , . . . ,  k, Yi =yHA~ e VMFS(P). Because a belongs to one of the A~, 

we may write yi =y~_~ . . .  a, where y~_l is an extension of x in VMFS(P). 
( ~ ) :  Let x e VFS(P), a ~ Ev(P). Since VFS(P) = Pref(VMFS(P)), we have (3z e 

Vev(P)*)xz e VMFS(P). Since P is M-adequate, it holds that (3y)xzya e VMFS(P) 

VFS(P), and P is adequate. [] 

The above two theorems, showing that deadlock-freeness and adequacy may be 
defined from VMFS only, can be regarded as a justification of our definition of 

complete characterisation by maximally concurrent evolution. 

5. Interlace decomposition 

In this section we shall further develop the structure of Vev(P)*. It turns out that 

every x e Vev(P)* can be uniquely decomposed in a special manner and that this 

decomposition is a convenient tool to define necessary and sufficient conditions for 
the equality VFS(P)= Pref(VMFS(P)), as will be shown in Section 6. 

Let P = P1 . . .  Pn be a path program. For every a e Ev(P) and A c_ Ev(P), we shall 

write (a, A) e ind  iff ( '¢beA)  (a, b) eind.  Note that, if A e  Ind(P): 

( a , A ) e i n d  <=~ a ~ A & A u { a } e I n d ( P ) .  

For every x e V e v ( P ) * - { e } ,  a sequence of sets ( A 1 , . . . ,  Ak), k >~ 1, is said to be 
an interlace decomposition (abbreviated il.decomposition) of x iff the following 

conditions are satisfied: 

(1) ( V i = l , . . . , k )  Aie Ind (P ) ,  
(2) x=A1.. .Ak,  
(3) if k > 1, then ('Ca e A~) (a, A H )  ~ ind for i = 2 , . . . ,  k: 

The last condition expresses the fact that the decomposition is 'left maximal', in 
the sense that. no event may be pushed to the left, from one A~ to another, while 
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preserving the first two conditions, or else that,  for any i, A~ is a maximal independent 

prefix of  A~A~+~ . . .  Ak. It will be shown later (see Theorem 6.1) that problems arise 
precisely when,  in an il-decomposition, some A~ but the last one is not in maxen- 
abled(A~ . . .  Ai_l) while the other ones are. 

If ( A ~ , . . . ,  Ak)  is an i l-decomposition of  x, we shall write 

x = ° A  1 . . .  Ak. 

For instance, with the path program P described at the beginning of  Section 3: 

a b a c = ° { a , b } { a } { c } ,  ~ 

but not 

abac = °  {a}{b, a}{c}. 

We want to prove that every x e V e v ( P ) * - { e }  has exactly one il-decomposition. 
Let us first notice that, from the definition, U" X = ° A ~ . . .  Ak, y = ° B ~ . . .  Bm and 
(Vb ~ B~) ( b, Ak)  ~ ind, then xy =DA~ . . . AkBI . . . B,,. Conversely, if x =DA~ . . . Ak, 

then (Vi) A~ . . .  A~ =°A~ . . .  A, and A , . . .  Ak =DA~. . .  Ak. Now, we may show that 

in an i l-decomposition the first set is uniquely determined by the considered vector. 

Lemma 5.1. I f  x = ° A 1 . . .  Ak, then 

A~ = {a ~ Ev(e)  ] (Vi ~ r ( a ) ) ( 3 y  ~ Ev(Pi)*) xli = ay} 

= { a e Ev(P) I (=ly e Vev(P)*) x = ay}. 

Proof. Let A = {a e Ev(P)[ (Vi e r ( a ) ) ( 3 y  ~ Ev(Pi)*) xli = ay}. Suppose that a c Al. 

Since x = A l x '  and At e Ind(P) ,  we have x = az. Hence, a ~ A and A~ __ A. If A~ # A, 

let a e A - A ~  and let j be the index of  the first Ai containing a, i.e., a ~ Aj and 

a ~ Ai for i = 1 , . . .  , j  - 1 (2 ~<j ~< k). This means that there exists b ~ Aj_~, b ~ a and 
( a , b ) ~ i n d .  Therefore, if i e r ( a ) n r ( b ) ,  then x l i=ybaw,  where we  Ev(Pi)* and 

y ~ (Ev(P~)-{a})*,  a contradiction. Thus, A - A t  = ~, which is now equivalent to 
A = A1. The second equality is a simple consequence of  the first one. [] 

Our existence and unicity result may now be proved by induction on the ' length' 
of  the considered vector. Let us define the length function l :Vev(P)*-* {0, 1, 2 , . . .  } 
by l(e)  = O, and if y = a l . . .  am, where (Vi) ai ~ Ev(P),  then l (y)  = m. 

Theorem 5.2. Each x ~ Vev(  P)* - { e } has exactly one il-decomposition. 

Proof. The theorem is proved by induction on l(x). Let  x e Vev(P)* - {e }. If l(x) = 1, 

then, of  course, it has exactly one il-decomposition {a}. Assume that l (x)I>2 and 

that each y ~ Vev(P)* such that  1 <~ l(y) < l(x)  has exactly one il-decomposition. We 
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first want to prove that  x has at least one il-decomposition. Let A =  

{a s Ev(P) I (=ly ~ Vev(P)*) x = ay}. Clearly, A ~ Ind(P)  and x = Ay. Since l(y) < l (x) ,  

by the induct ion assumption, we have y = e or y =DB~ . . .  Bk. 

Case 1: y = e. Then x =DA.  

Case 2: y # e. Let b ~ B~. Suppose that (Va ~ A) (a, b) ~ ind. Then x = bz for some 
z ~ Vev(P)* and b ~ A, a contradiction. Consequently, we have X = DABI . . .  Bk. We 

still have to prove that the decomposition is unique. Suppose that x = D A t . . .  Ap 

and x =°B~. . .  Bin. By Lemma 5.1, we have A~ = Bt. If  p = 1, this ends the proof. 

Otherwise, let y = A 2 . . .  A n; thus, y = O A E . . . A n ,  y = V B 2 . . .  Bm and, since l ( y ) <  

l(x) ,  by the induct ion assumption, we obtain Ai = B~ for i = 2 , . . . ,  p and p = m. [] 

We are now going to present some additional properties of  il-decomposition. 

Those properties will show the connections with some other notions of our approach. 

First, the prefix relation corresponds to an inclusion property. 

Theorem 5.3. I f  x, y, z ~ Vev(P)*, y = xz, x = P A l . . .  Ak and y = B~ . . . Bin, then k <~ m 

and Ai c_ B~ for  i = 1 , . . . ,  k. Moreover, i f  x, y ~ VFS(P) and Ak E 

maxenabled(A1 . . .  Ak_~), then A~ = B~for i - 1 , . . . ,  k (with AI  . . .  Ak-~ = e i f k  = 1). 

ProoL Let us first consider the simple case where y = xa for some a ~ Ev(P). We 
have to consider three cases. 

Case 1: (a ,A~)~ ind  for i = l , . . . , k  Then y = D B 1 . . . B k ,  where B l = A ~ u { a }  

and Bi = Ai for i ~ 1. 

Case 2: (a, As) e ind and (a, Aj)~ ind for s o m e j  < k L e t j  be the last such index, 
i.e., (a, A j ) ~ i n d  and (a, A i ) ~ i n d  for i = j + l , . . . , I c  Then y = D B I . . . B k ,  where 
B j + ~ = A j + t u { a }  and B , = A ,  for i # j +  l .  

Case 3: (a, Ak)~ind .  Then y = A 1 . . .  Ak{a}.  

The general case y = xz = xz~.. ,  z,, where ('¢i) zi e Ev(P),  results from r successive 

applications of  the simple case. Moreover, if x, y e V F S ( P )  and Ak 
maxenabled(A1. . .Ak_~),  let z = D C ~ . . . C ~ ;  ( '¢c~C~) (C, Ak)~ind ,  so that y =  

x z = D A 1 . . . A k C 1 . . .  C1. [] 

The il-decomposition is connected to the maxenabled property. 

Theorem 5.4. Let  x =  A~ . . . A k ~ V F S ( P ) - { e } ,  and 

(1) Ak e Ind(P) ,  

(2) k >~ 2=~(V i  = 1 , . . . ,  k - 1 )  Aie  maxenabled(A~. . .  Ai-~),  where A~ . . . Ai_I = e 

/ f i =  1. 
Then x = D A 1 .  . . As.  

Proof. Clearly,  (Vy) maxenabled(y )  _c Ind(P) .  Suppose that  for some j ~ { 2 , . . . ,  k} 
and a e Aj we have (a, Aj_I) e ind. Thus, Aj_I u {a} e enab led(A~. . .  Aj_2), a contra- 
diction. [] 
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The property is even stronger in VMFS(P).  

Theorem 5.5. Let x = P A l . . .  Ak ~ VMFS(P) - {e}. 
(A~ . . .  A~-I) for  i = 2 , . . . ,  k, and A~ ~ maxenabled(e).  

Then A~ ~ maxenabled 

Proof. Since x ~ VMFS(P) ,  let e = xoMB~ = x~MxlB2 = x2M. . . M x m _ l B m  --- Xm : X. 

By definition, B~ ~ maxenabled(B~.. .  B~_I) for i = 1 , . . . ,  m. From Theorem 5.4 it 
follows that x = ° B ~ . . .  Bm, and by Theorem 5.2, A~ = B~ for i = 1 , . . . ,  k and k = 
m. [] 

Finally, we may connect the il-decomposition to the VMFS-prefixes. 

Theorem 5.6. I f  x ~ VMFS(P),  xC*y  and y = P A l . . .  Ak, then x =DA~ . . . Aj for  some 
j<~k. 

Proof. Let y = x z ,  x = ° A ~ . . . A i  and z = D B I . . . B k  • By Theorem 5.5, Aie 
maxenabled(A~.. .  A~_~) sothat (Vb e B~) (b, Aj) ~ ind andy = P A l . . .  AjB~.. .  Bk. [] 

6. Necessary and sufficient conditions for complete characterisation by maximally 
concurrent evolution 

On the basis of the results from our previous sections we can fully characterise 
the class of path programs possessing the property VFS(P) = Pref(VMFS(P)). 

Let P =  P~ . . .  P,  be an arbitrary path program. Let us define a function 
m:Vev(P)*->{0 ,1 ,2 , . . . } ,  by m(e )=O,  and (Vx~Vev(P)* -{e} )  m ( x ) = k  iff 
x =DA~ . . .  Ak. From Theorem 5.2 it follows that re(x) is weU-defined. 

Theorem 6.1. The following properties are equivalent: 
(1) VFS(P) ~ Pref(VMFS(P)). 
(2) ( 3 x e V F S ( P ) )  x=OA1 . . . A k  & k>~2 & A k _ ~ m a x e n a b l e d ( A l  . . .Ak -2 )  & 

As e maxenabled(Al . . .  Ak-1) (where A1. . .  A k - 2  = £ / fk  = 2). 

Proof. ( 2 0 1 ) :  Suppose V F S ( P ) = P r e f ( V M F S ( P ) )  and x is as in (2). Then xC*y 

for some y e VMFS(P).  Let y =DB 1 . . .  Bin. From Theorem 5.3, we have m >~ k and 
A i = B i  for i= 1 , . . . , / 6  On the other hand, by Theorem 5.5, we have Bk-i 

maxenabled(B1. . .  Bk-2), a contradiction. 
( 1 0 2 ) :  Let k be a number such that 

Z = {x lx  ~ VFS(P) - Pref(VMFS(P)) & m(x)  = k} ~ O. 

Clearly, (Vy e Z)l(y)~< card(Ev(P)) k. Let Xo be a member of Z with maximum 
length, i.e., x o e Z  and (VyeZ)l(xo)>~l(y) .  Let X o = D A 1 . . . A s  and suppose that 
Ak ~ maxenabled(A1. . .  Ak-O. Thus, for some a ~ Ev(P),  we have (a, As) e ind and 
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y = A t . . .  Aka e VFS(P). Since y e Z (see the proof of Theorem 5.3, Cases 1 and 2) 
and l (xo)<l(y) ,  we get a contradiction so that, necessarily, Ak~maxenabled 
( A t . . .  Ak_,). Because Xo~ VMFS(P),  we have As~ maxenabled(At . . .  Ai_a) for 
some l~< i<k .  Thus, ki>2 and there exists a j < k  such that A s 
maxenabled(At . . .  As_t) and Aj+t ~ maxenabled(Al . . .  Aj). Hence, x = A t . . .  As+t 
satisfies the conditions of (2). [] 

In the example at the beginning of Section 3, for instance, x = bc, At  = {b}, A2 = {c} 

satisfy the conditions of Theorem 6.1(2). We have here: bc=°{b}{c} ,  At  ={b}~ 

maxenabled(e) = {{a, b}}, A2 e maxenabled({b}) = maxenabled(b) = {{a}, {c}}. 
Theorem 6.1 characterises the inequality VFS(P) # Pref(VMFS(P)) by properties 

of some x ~ VFS(P). We shall now formulate a stronger theorem which characterises 
this inequality by an element of VMFS(P).  First, we may charactedse the greatest 
VMFS-prefix. 

Lemma 6.2. Let x ~  V F S ( P ) - P r e f ( V M F S ( P ) )  and y be the greatest prefix o f  x in 

VMFS(P).  Then ( = ~ A 1 , . . . , A k e I n d ( P ) )  x = y A t . . .  Ak & A 1 . . .  A k = D A t . . . A k  & 
k>~2. 

Proof. Let x = ° B  t . . .  B,,. Suppose that y # e and y = D C t . . .  Cp. By Theorem 5.6 
we have p>~ m and Bi= Ci for i =  1 , . . . , p .  Let us set k =  m - p  (if y =  e, we set 
k = m  and p = 0 )  and A~=Cp+~ for i = l , . . . , k :  Thus, x = y A t . . . A k ,  
At . . .  Ak = P A t . . .  Ak. Because x ~ V M F S ( P ) ,  we have k>~ 1. Suppose k = 1. Then 
x = y A h  A t ~ I n d ( P )  and y e V M F S ( P ) .  But this means that Ale  
enabled(y) - maxenabled(y), and there is a B ~ maxenabled(y) such that A1 ~ B and 
y B e V M F S ( P ) .  Of course, yA1 is a prefix of yB, so x = y A l s P r e f ( V M F S ( P ) ) ,  
contradiction. [] 

Now, for the least VMFS-extensions, we get the following lemma. 

Lemma 6.3. Let x ~ Pref(VMFS(P)) - VMFS(P),  y is its greatest prefix in VMFS(P), 
and y' is one o f  its least extensions in VMFS(P).  Then 

(1) y ' = y A 1 . . .  Ak & A I . . .  Ak = ° A t . . .  Ak & k >>- 1, 
(2) x =yB~... Bk & B, . . .  Bk =DB,. . .  Bk, 
(3) y' = xC1. . . Ck, 

(4) A, = B, u Ci for  i = 1 , . . . ,  k, 
(5) c ~ o ,  
(6) ( V i =  l, . . . , k ) ( V j =  i, . . . , k) Bsu  C ~  Ind(P  ). 

Proof. Of course, there is a sequence A t , . . . ,  Ak such that y' =yAt  . . . ,  Ak, A1 
maxenabled(y) and A ~ e m a x e n a b l e d ( y A t . . . A H )  for i = 2 , . . . , k .  Note thal 
A t , . . . ,  Ak satisfies (1) (see Theorem 5.4). 

If  k = 1, the lemma simply expresses that y ~ x ~ y' and that we have yMy' ,  yCxCy'. 
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For k i> 2, let x =yZo, .V ' =  xw. For every x~  Vev(P)*,  let Ev(x) denote the set of  
all events occurring in x. Let B ~ , . . . ,  Bk, C 1 , . . . ,  Ck be the sets constructed by 

(1) B~=A~nEv(zo) ,  C ~ = A I - B 1 ,  

(2) for i = 1, . . . ,  k - 1, zi is constructed from zi_~ by dropping the first occurrence 
of each operation in B~ and Bi+l = A~+~ m Ev(zi), C~+~ = A~+1 - Bi+t. 

From the fact that y ' = y Z o W = X W = y A ~ . . . A k  and the above construction, it 
follows: A~ = Bi w Ci, x = y B ~ . . .  Bk, y' = x C ~ . . .  Ck, i.e., the points (3), (4), and the 
first half  of  (2) are satisfied. Property (5) results f rom the fact that if C1 = 0, then 
yB~ =yA~ would be a greater VMFS prefix of x than y. Property (6) results from 
the fact that  since y '=yA~ . . .  Ak = y B ~ . . .  BkC1 . . .  Ck, each operation c ~ C~ has to 
commute with all the operations in B 2 , . . . ,  Bk; moreover, if c - - b  ~ Bj, from the 
construction of B~, c would belong to B1 and not to C1 since that means that 
c~ Ev(zj_l) and thus, c~ Ev(zo); the same argument  may then be resumed for 
C 2 , . . . ,  Ck in that order. To prove that B~ . . .  Bk = ° B ~ . . .  Bk we have to show that 

(i) ( V i =  l , . . . , k )  B,#~), 

(ii) (Vb ~ B,) (b, B~_I) ~ ind for i = 2 , . . . ,  k 
Property (i) results from the facts that: 

(1) if Bk =~,  then y A x . . .  Ak-~ would be an extension of x in V M F S ( P )  smaller 
than y';  

(2) let us suppose that i is the least index in { 1 , . . . ,  k -  1} such that  B~ = 0; from 
(6) we know that each c e C~--A~ is independent of  each operation in B~+x(# ~); 
but then Ai would not be maximally concurrent at yA~ . . .  Ak -1  since we may add 
B~+~ to it. 

Property (ii) results from an argument similar to the ones used above, namely, if 
(:ti e { 2 , . . . ,  k})(:lb ~ B,)(Vb' ~ B~-I) (b, b') e ind (since from (6) (Vc ~ Ci_l) (b, c) 
ind), then A~_~ = B~_~ w Ci_~ would not be maximally concurrent at yA~ . . .  A i - 2  since 
one may add b to it. [] 

Now, we are able to prove our main result. 

Theorem 6.4. The following properties are equivalent: 

(1) VFS(P)  ~ Pref (VMFS(P)) ;  
(2) there are x ~ VMFS(P)  and nonempty event sets A 1 , . . . ,  Ak ~ Ind (P) ,  where 

k >~ 2, such that 

(a) y = x A 1 . . . A k ~ V F S ( P ) ,  
(b) ('Ca e Ev(P))  ya e V F S ( P ) ~ ( a ,  Ak-1 u Ak) ~ ind, 

(c) i f  z = A1. . . Ak, then z =DAI . . . Ak, 
(d) (Va ~ Ak) (3b  ~ Ev(P))  xb e VFS(P)  & (b, A1 u .  . . u Ak-1 • (Ak -- {a})) 

ind. 

Proof. ( 1 ~ 2): For every x e VFS(P) ,  let gp(x) denote its greatest prefix in VMFS(P) .  
We shall also denote d(x)= re(x)-m(gp(x)) and T = V F S ( P ) - P r e f ( V M F S ( P ) ) .  
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Let V = {x ~ T[ (Vy ~ T) d(x)  <~ d(y)}. Note that (Vx, y ~ V) d(x) = d(y). Let k = 
d(x), where x ~ V. From Lemma 6.2 we have k i> 2. Let x e V. We have m = m(x) - k = 
m(gp(x))  I>0 and x has the following il-decomposition: x =DB1.. .  BmA1...  Ak (it 
may happen  that m = 0). Let f ,  g :  V-> {0, 1, 2 , . . . }  be functions defined as follows: 
if x = D B t . . .  BmA~... Ak, then f ( x ) =  l(Ak), g ( x ) = l ( A ~ . . .  Ak-1). Let us define 
U = { x ~  V [ ( V y s  V) f(x)<~f(y)}, W = { u ~  UI (Vye  U) g(u)~g(y)} .  We may 
notice that  since (Vx ~ V) g(x) <~ (k - 1) x c a r d ( E v ( P ) ) ,  W is a nonempty set (in 
fact, we have strict inequality, as A~ may not be in maxenabled(B~. . .  Bin)). Since 
y~V ,  x = B ~ . . . B m = g p ( y )  and A 1 . . . A k = D A 1 . . . A k ,  i.e., (2)(a), (2)(c) are 

satisfied. 
Suppose now that ya ~ VFS(P)  for some a e Ev(P).  Note that ya ~ T (since 

D 
y a s P r e f ( V M F S ( P ) ) ~ y s P r e f ( V M F S ( P ) ) .  By Theorem 5.3 we have ya= 
B~.. .  BmC~ . . .  C v, where p i> k, Ai ~ Ci for i = 1 , . . . ,  k: Two cases may happen:  
A,=C~ for i = l , . . . , k  & p = k + l  & Cp=(a}; and: (3j!)  l < ~ j < k &  C j = A j u { a }  

& Ci=A~ for i ~ j  & k=p.  
Now, suppose that (a, Ak_~UAk)~ind.  In the first case, since B ~ , . . . ,  Bin, 

C ~ , . . . ,  C v is the il-decomposition, we have (3b e Cp_~ = Ak) (a, b)~ ind, a contra- 
diction! Let us consider the second case. Note that gp(y) is a prefix of gp(ya) ,  thus, 
d(ya)<~ d(y)  = k, but this means that ya e V. Next, j <  k andf(ya)  = f ( y ) ,  so ya ~ U. 
But g(ya)= 1 +g (y ) ,  a contradiction since y e W! Therefore, we have (a, Ak_IU 
Ak) ~ ind, and condition (2)(b) is satisfied. 

To prove (2)(d), let us suppose that a e Ak and A = Ak - - { a } .  We have to consider 

two cases. 
Case 1: A=O. From the definition of V we have z = x A ~ . . . A k _ ~  

Pref(VMFS(P)) .  
Case 2: A ~ O .  Suppose that z = x A ~ . . . A k _ ~ A e T .  Note that xA~.. .Ak_~ =D 

B~.. .  B~A~. . .  Ak-~; hence, z = ° B ~ . . .  BmA~...  Ak_~A. This means that z e  V, but 
f ( z ) = f ( y ) - l ,  a contradiction because y e U !  Thus, in both cases, z= 
xA~.. .  Ak_~A ~ P r e f ( V M F S ( P ) ) - V M F S ( P )  (we setB = e). By Lemma 6.3 we have 
(3C~ _~ Ev(P) )  C~ ~ ~, zC~ ~ VFS(P) ,  A~ ~ C~ ~ maxenabled(x) & (Vb ~ C~) (b, A~ 

• • • ~ Ak-~ ~ A) ~ ind, so that any b ~ C~ satisfies (2)(d). 
( 2 ~ 1 ) :  Let x = ° B ~ . . .  Bm. Then, from (2)(c) and from the fact that, by Theorem 

5.5, B,,, e maxenab led(B~. . .  Bm_~), we have y =DB~.. .  BmA~... Ak. Since Ak ~ ~, 
there is at least one b e Ev(P)  which satisfies (2)(d). Thus, b s enabled(xA~ . . .  Ak-~) 
and (b, Ak_~)~ind. Hence, A ~ _ ~  maxenabled(xA~ . . .  Ak-2). Let A be such that 

A w Ak ~ maxenabled(xA~. . .  Ak-x). By (2)(b) we have 

z = xA1. . . Ak-IAkA ~ z =DB1. . . B,,A1. . . Ak-IA~ ~ A. 

Thus, by Theorem 6.1, VFS(P)  ~ Pref(VMFS(P)) .  [] 

The conditions of  the previous theorem may, in fact, be strengthened. Indeed,  

we have the following l e m m a .  
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Lemma 6.5. Let x~VMFS(P) and let A b . . . ,  Ak~Ind(P) ,  where k~>2, be those 
from Theorem 6.4(2). Then, 

(a) A~ ~ maxenabled(x), 
(b) ( V j < k )  A jnAk=~) ,  
(c) (::lb ~ Ev(P)) xA~. . .  Ak_ib ~ VFS(P) & (b, A~_I) ~ ind. 

Proof. (a) Let b~Ev(P)  satisfy Theorem 6.4(2)(d). Then b~enabled(x) and 
(b, A~) e ind, hence, A1 ~ maxenabled(x). 

(b) Let a ~ Aj C~Ak, where j <  k. From Theorem 6.4(2)(d), it follows that (:lb 
Ev(P)) xb~VFS(P)  & (b, A l u . . . U A k _ l W A ) e i n d ,  where A k = A U { a } .  Since 
a s Aj and j < k, we have (b, A~ u .  • • u Ak-~ u Ak) ~ ind. But this means that yb 
VFS(P), and by Theorem 6.4(2)(b), (b, Ak-~ u Ak) ~ ind, a contradiction. 

(c) From Theorem 6.4(2)(d) we have (=ib ~ Ev(P)) xb e VFS(P) & (b, A1 u .  • • u 
Ak-~) ~ ind. But this means that xAl . . .  A k _ l b  E VFS(P) and (b, Ak-~) ~ ind. [] 

Consequently, we obtain the following theorem. 

Theorem 6.6. The following properties are equivalent: 
(1) VFS(P) # Pref(VMFS(P)); 
(2) there are x e  VMFS(P) and nonempty event sets A ~ , . . . ,  Ak ~ Ind(P), where 

k 1> 2, such that 

(a) y=xA1 . . .Ak~VFS(P) ,  
(b) (Va s Ev(P)) ya ~ V F S ( P ) ~ ( a ,  Ak-i u Ak) ~ ind, 
(c) i f  z = A ~ . . . A k ,  then z = ° ' A ~ . . . A k ,  
(d) (3b~Ev(P))  xA~...Ak_1bEVFS(P) & (b, Ak_~)~ind. 

Proof. (1 ~ 2 ) :  This follows from Theorem 6.4 and Lemma 6.5(c). 
(201) :  Let x = ° B ~ . . .  Bin. From (2)(c) and from the fact that, by Theorem 5.5, 

Bm~ maxenabled(Bl. . .  Bin_l), we have y =OBj... BmA~... Ak. By (2)(d) we have 
Ak_~ ~ maxenabled(xA1... Ak-2). Let A be such that A u Ak ~ maxenabled 
(xA1. . .  Ak-1). By (2)(b) we have 

Z = xA1 . . .  A k - I A k A  ~ Z = D B 1 . . .  BmA1 . . .  A k - l A k  U A .  

Thus, by Theorem 6.1, VFS(P) # Pref(VMFS(P)). [] 

In the case of the example at the beginning of Section 3, for example, x = abd, 
A1 = {b}, A2 = {c} satisfy condition (2) of Theorems 6.4, 6.6, and Lemma 6.5. Here 
we have y = abdbc e VFS(P) (condition (2)(a) of Theorems 6.4, 6.6); A1 c~ A2=O 
(Lemma 6.5(b)); A1 = {b} ~ maxenabled(x) = {{a, b}} (Lemma 6.5(a)); enabled(y) = 
{{d}}, thus, 

yet e VFS(P) & a e Ev(P) ~ a = d, 
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and (d ,{b ,c})~ind (condition (2)(b) of Theorems 6.4 and 6.6); AIA2 = 
bc=°{b}{c}=AiA2  (condition (2)(c) of Theorems 6.4 and 6.6); xaeVFS(P)  and 
(a, A1 u (A2-  {c})) = (a, b) e ind (condition (2)(d) of Theorem 6.4); xAla = abdba 
VFS(P) and (a, A1)= (a, b )e  ind (condition (2)(d) of Theorem 6.4 and Lemma 
6.5(c)). 

7. Simpler sufficient conditions 

Theorems 6.1, 6.4, and 6.6 give us both necessary and sufficient conditions for 
the equivalence of the semantics 'execute as possible' and 'execute as much as 
possible in parallel'. In practice we are often satisfied by sufficient conditions for 
the equality VFS(P) = Pref(VMFS(P)) (i.e., necessary conditions for the inequality 
VFS(P)#  Pref(VMFS(P))), but we need the conditions to be relatively easy to 
verify. In particular, it would be useful to exhibit structural criteria (i.e., depending 
on the static system description) instead of dynamic ones (i.e., depending on the 
existence of some type of history). 

In this section we shall prove some nice, but rather wide (for practical applica- 
tions), sufficient conditions. 

Theorem 7.1. I fVFS(P)  ~ Pref(VMFS(P)), then there arex ~ VFS(P), a, b, c ~ Ev(P) 
satisfying 

(1) xab ~ VFS(P), x a c  ~ VFS(P); 
(2) a ~ b, (a, b )~ ind ,  (b, c)~ind,  (a, c) ~ind. 

Proof. Let us take x, A I , . . . , A k  from the proof of Theorem 6.4. Since 
A t . . .  Ak =°A1 . . .  Ak, if we take a ~ Ak-~ and b ~ Ak (from Lemma 6.5(b) it follows 
that Ak-~ n Ak = 0), we have (a, b) ~ ind. From the proof of Theorem 6.4, we also 
have xA~. . .  Ak_~Ak-{b}ePref (VMFS(P))  (provided 1)= e), so that, by Lemma 
6.3, there exists a C___ Ev(P) such that C ~ O, x A l . . .  Ak_~Ak-{b}C ~ VFS(P), 
A~uC~maxenab led(x ) ,  (Vc~C)  (C, A k - { b } ) ~ i n d ,  and ( V i = l , . . . , k - 1 )  
(Vc ~ C) (c, At) e ind. Let c ~ C. Suppose that (b, c) ~ ind. In such a case (c, Ak-~ w 
Ak) e ind and xA~. . .  Ak_~c ~ VFS(P), which contradicts Theorem 6.4(2)(b). Thus, 
(b, c) ~ ind. Of course, (a, c) e ind since a e Ak-1. Let z = xA~. . .  Ak-2Ak-1 -{a};  we 
have zab~VFS(P) and zac~VFS(P).  [] 

It may be noticed that the conditions of Theorem 7.1 correspond, in fact, in the 
context of Petri nets, to a situation of asymmetric confusion (see [3, p. 526]) and 
confusion is known to be connected to awkward problems (see [30]). 

Various conditions formulated in [6, 12, 17] are now simple consequences of 
Theorem 7.1. 
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Corollary 7.2 ([6, 12]) 

VFS(P)  # Pref(VMFS(P)  ) 

(3x E VFS(P) ) (3a ,  b, c E Ev(P) )  xab E VFS(P)  & xac E VFS(P)  & a 

# b& b # c & (a, c) E ind & (b, c) ~ ind. 

Proof. Let x, a, b, c be as in Theorem 7.1. Note that (a, b)~  ind and (a, c)E ind 
i m p l y b ~ c .  [] 

Corollary 7.3 
satisfying: 

(1) 
(2) 
(3) 

([17]). 2 I f  VFS(P)  # Pref (VMFS(P)) ,  then there are a, b, c E Ev(P)  

a # b & ( : l i ) ( : lx  E FS(Pi)) xab E FS(P~), 
b ~ c & (=lj)(:iy E FS(Pj)) yb E FS(Pj) & ycE FS(Pj), 
(a, c) E ind & (::lz E VFS(P))  zacE VFS(P) .  

Proof. The triple a, b, c from Theorem 7.1 satisfies (1), (2), (3). []  

In the case of the example at the beginning of  Section 3 e, b, c, a (in this order) 
satisfy the fight-hand side of  the implication in Theorem 7.1 (and Corollaries 7.2, 
7.3, as well). The reverse of  Theorem 7.1 (and Corollaries 7.2, 7.3) is not true. To 
prove this, let us consider the following example:  

P = path a; b; d end 
path c, (b; d)  end 
path c, e; d end. 

In this case, we have: V M F S ( P ) = ( a c b d u a e b d ) * ,  V F S ( P ) = ( a c b d u a e b d ) *  
{e u a u a b u  aebu  c u  a e u  acbu e u  ae}, so VFS(P)  = Pref(VMFS(P)) ,  but e E 

V M F S ( P ) ,  e a b E V F S ( P ) ,  eacEVFS(P) ,  (a, b ) ~ i n d ,  (b, c )~ ind ,  (a, c) Eind, thus, 
e, a, b, c satisfy the fight-hand side of the implication in Theorem 7.1. 

From Theorem 7.1 it follows that i fVFS(P)  # Pref(VMFS(P)) ,  then Ev(P)  consists 

of  three elements at least. The simple example at the beginning of  Section 3 has 
Ev(P)  = {a, b, c, d} and is not minimal. Here is probably the simplest one (Ev(P)  = 
{a,b,c}):  

P = path a, b end 
path c, b end. 

Note that here, eb E VFS(P)  - Pref(VMFS(P)) .  
Let us now define the following relations on E v ( P ) x  Ev(P):  

• (a, b) E pre :<=~ ( 3 i ) ( 3 x  E FS(P,)) xab E FS(P~) & a # b; 
• (a, b) E pre :¢~ a # b & (a, b) ~ ind & (3x E VFS(P) )  xab E VFS(P) ;  
• ( a , b ) E p r e l : ¢ ~ a # b  & ( a , b ) ~ i n d  & ( ( V i E r ( a ) n r ( b ) ) ( 3 x E F S ( P i ) )  xabE 

FS(P,)) ;  
• (a, b) E exc :¢:~ a # b & ( ( 3 i ) ( 3 x  E FS(Pi) xa E FS(P~) & xb E FS(P~)); 

2 The proof  in [17] of  this corollary contains a serious error. 
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• (a ,b )eexc :C~a#b  & ( a , b ) ~ i n d  & ( ( 3 x e V F S ( P ) )  xa~VFS(P) & xbe 
VFS(P) ) ;  

• (a ,b )~exc l :C~a#b  & ( a , b ) ~ i n d  & ((Vi~r(a)c~r(b))(Vx~FS(Pi)) xa~ 
FS(P~) & xb~FS(Pi)); 

• (a, b) ~ con :¢:> (a, b) ~ ind & (Vx e VFS(P))  xab e VFS(P) .  
In terms of  Petri nets associated to P, the relations pre, pre, exc, exe and con 

describe the simple situations shown in Fig. 4, where m denotes a marking reachable 
from the initial marking and dashed lines denote context. Note that there are cases 
where (a, b) e pre c~ exc (see the last example) ! 

Corollary 7.4 
(1) prec_ prel  _ pre. 
(2) exc_c excl _ exc. 
(3) con G ind. 

Note that  the relations: pre, prel ,  exc, excl ,  and ind can be described by analysing 
P =/'1 . . .  P~ on the syntax level only (i.e., by analysing express ions / ' 1 , . . . ,  P,  treated 
as strings of  symbols or by analysing the graph of  a Petri net associated to P).  

Let PDTo(P),  PDT1(P),  PDT2(P),  PDT3(P) ~ Ev(P)  x Ev(P)  x Ev(P)  be the fol- 
lowing relations: 3 
* (a, b, c) e PDTo(P) :¢:> (a, b) e pre & (b, c) e exc & (a, c) s ind; 
• (a, b, c) ~ PDT1(P) :¢* (a, b) ~ pre & (b, c) ~ exc & (a, c) ~ con; 
• (a, b, c) e PDT2(P) :¢~ (a, b) e pre & (b, c) e exe & (a, c) ~ con; 
• (a, b, c) ~ PDT3(P) :¢~ (a, b) e prel  & (b, c) e excl  & (a, c) e ind. 
The name PDT is an abbreviation of  Potentially Dangerous Triple. 

Theorem 7.5 

ff PDT (P) 
PDTo(P) =O PDT2(P) =0  =:> VFS(P) = Pref(VMFS(P)). 

PDT3(P ) =0 '/7 

Proof. The first four implications follows from Corollary 7.4. The last implication 
is equivalent to Theorem 7.1, with the additional requirement that the same x may 
be used for pre and con, and that xa may be used for x in exc. []  

One may  show that, in general, no implication from Theorem 7.5 may be replaced 
by equivalence (although it may happen that  for some subclasses we have some 
equivalences). In particular, in the case of the example after Corollary 7.3, we have 
(a, b, c) ~ PDT~(P), i = 0, 1, 2, 3 and VFS(P)  = Pref (VMFS(P)) .  Note that for i = 0 
and i = 3 the verification of  equality PDTi(P)  = 0 can be done on the syntax level 
only. Experiences of the first two authors show that the conditions PDT0(P)=0 ,  

3 Because we now have stronger results, these PDTi, for i = 0, 1, 2, 3 differ slightly from the similar 
concepts of  [6, 12]. PDT1 defined above is equivalent to PDT of  [17]. 
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Fig. 4. 

PDTI(P) =~, PDT3(P)=0 are sufficiently weak to have wide applications (for 
instance, they may be applied to all examples from [15]). 

It turns out that some special forms of the relations exc, excl, exc also guarantee 
the equality VFS(P)= Pref(VMFS(P)). 

Theorem 7.6 

(1) [(Va, beEv(P))(a,b)~exc=:~r(a)=r(b)] ~ PDTo(P)=O. 

(2) [(Va, beEv(P))(a,b)eexcl~r(a)=r(b)]  ~ PDT3(P)=-O. 
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(3) [(Va, b e Ev(P))  (a, b) e exc=~r(a)  = r(b)]  :=> PDT2(P) = 0. 

P r o o f .  (1) Suppose (Va, b ~ E v ( P ) )  (a, b ) ~ e x c ~ r ( a )  = r(b) and (a, b, c ) e  
PDTo(P). This means that (a, b) ~ pre, (b, c) ~ exc, (a, c) ~ ind. But (a, b) ~ p r e ~  
r( a ) c~ r( b ) # 0, ( a, c ) e ind ==> r( a ) c~ r(c) = 0. On the other hand,  ( b, c ) s exc ~ r(c) = 
r(b), a contradiction. For (2) and (3), we proceed similarly. [] 

The full relationships among various conditions for the equality V F S ( P ) =  
Pref (VMFS(P))  are given by the corollary below. 

C o r o l l a r y  7.7 

[(a,  b) ~ e x c ~ r ( a )  = r(b)]  

[(a,  b ) ~ e x c l ~ r ( a )  = r(b)]  
# 

[(a,  b) ~ e x c ~ r ( a ) =  r(b)] 

the conditions ¢:> 
of  Theorem 6.1 

PDTo(P) = 0 

P D % ( P )  = 0 

P D % ( P )  = 0 

It 
the conditions 
of Theorem 7.1 

6 
VFS(P)  =  ef(VMFS(P)) 

the conditions 
of Theorem 6.6. 

PDT~ (P) = 0 

the conditions 
of Theorem 6.4 

8 .  C o n c l u s i o n  

The results presented here enlighten somewhat the mixed structure of VFS and 
VMFS and give some necessary and sufficient conditions for their equivalence. 
Those conditions may be interpreted as an answer to the question: "When are the 
two semantics of  concurrent systems: 'execute as possible' and 'execute as much as 
possible in parallel '  equivalent?". 

Many problems are left open, however. Some of them are: 
- Find fast algorithms to check if a couple of  operations belongs to pre, pre, pre l ,  

exg, eXC, e x c l ,  or  con. 

- Is it possible to refine the conditions in Theorems 6.1, 6.4, 6.6 and 7.17 
- How large is the class of  generalised paths where V F S ( P ) =  Pref (VMFS(P))?  
- If  x e VFS(P )  - Pref(VMFS(P)) ,  we may define VMFS(P,  x) = {ylxM*y}; what 

type of  results may be obtained from there? 



Concurrent evolution of nonsequential systems 237 

All results of  the paper may easily be translated into a language of  labelled Petri 
nets (instead of  vector firing sequences, we can use Mazurkiewicz traces [21, 22], 
occurrence nets [3, p. 527], or slightly modified subset languages [26]). 
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