
Theoretical Computer Science 43 (1986) 213-238
North-Holland

213

C O N C U R R E N T A N D M A X I M A L L Y C O N C U R R E N T
E V O L U T I O N OF N O N S E Q U E N T I A L S Y S T E M S

Ryszard JANICKI *
Institute of Electronic Systems, Aalborg University Centre, DK-9000 Aalborg, Denmark

Peter E. LAUER
Department of Computer Science and Systems, McMaster University, Hamilton, Ontario L8S 4KI,
Canada

Maciej KOUTNY *
Computing Laboratory, The University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU,
United Kingdom

Raymond DEVILLERS
Laboratoire d'Informatique Th6orique, Universit6 Libre de BruxeUes, B-lOS0 Brussels, Belgium

Communicated by R. Milner
Received March 1985
Revised October 1985

Abstract. The semantics expressed intuitively as 'execute as much as possible in parallel' is
formally defined and analysed. The relation between such a maximally concurrent semantics and
'normal' concurrent semantics is developed. Necessary and sufficient criteria for the equivalence
of these semantics are formulated. As an abstract model of nonseqnential systems the COSY path
expression formalism is used.

1. Introduction

Among various semantics of executions in nonsequential systems (see discussion
in [4]) we can distinguish two widely accepted approaches. The first one, standard
in the Petri net approach (cf. [3, p. 528]), may intuitively be expressed as: 'execute
as possible'; this encompasses the whole range of (possibly) concurrent evolutions;
from the sequential ones to the maximally concurrent ones through all the intermedi-
ate cases, any possible execution is allowed. Vector firing sequence semantics for
the COSY path expressions described in [19, 28] is another good example of this

* On leave from the Institute of Mathematics, Warsaw Technical University, Warsaw, Poland. Present
affiliation: Department of Computer Science and Systems, McMaster University, Hamilton, Canada.

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

214 R. Janicki et al.

approach. Interleaving semantics of Milner [23] and Hoare [9] have also their roots
in the intuition 'execute as possible'.

The second one is usually expressed as 'execute as much as possible in parallel'
or 'execute as quick as possible'. In this case we require that processes should not
be lazy, and at each step of the computation, the set of instructions must be a
maximal non-conflict set. The first semantics is more general but in practice the
second one is sometimes more natural and easier to implement (compare [2, 5, 27]).

The computational power of the second semantics was studied by Burkhard [5]
in the case of Petri nets, while Enjalbert and Michel [7] have analysed this approach
in terms of temporal logic.

In this paper we try to answer the question: "When is the semantics 'execute as
much as possible in parallel' equivalent to the semantics 'as possible' ?".

Concurrent systems may exhibit extremely complicated behaviours and informal
reasoning is not reliable enough to establish their properties, so we must use an
abstract formal model. As a formal model we shall use the COSY path expression
formalism [15, 19, 20], which is sufficiently wide. It has been developed to a great
level of sophistication and provides a respectable number of analytic criteria which
are also efficiently mechanisable.

Furthermore, a computer based environment, called BCS and based on the COSY
formalism, was recently implemented (cf. [8, 16, 17]). BCS permits, among other
things, the analysis of a COSY system specification by concurrent simulation. In
the process of using this simulator, it became obvious that systems for which the
maximally concurrent behaviour determines the full behaviour are much more easy
to analyse.

In this paper we shall recall the classical formal description of the semantics
'execute as possible' and we shall define a similar formal description of the semantics
'execute as much as possible in parallel'. Necessary and sufficient criteria for the
equivalence of both semantics are then formulated and proved.

Although the results of the paper are formulated in terms of the COSY path
expressions theory, they may be translated into other related formalisms. For
instance, all results may immediately be transformed into the language of Petri nets.

In spite of the above-mentioned twenty years of intensive research, in practice,
when we analyse the dynamic properties of the Petri net specification of a real
concurrent system, we are frequently forced to analyse the reachability graph of the
net (if it is safe) or its reachability tree (if it is unsafe, see [25]). This is usually a
very long and uphill task, often impossible without the assistance of Computer-
Aided-Design Tools (like those in [13, 16, 24]), and even though we have such an
assistance the task is still uneasy.

The reachability graph defined by maximally concurrent behaviour is much smaller
than the one defined by the full behaviour. When a safe system contains a dozen
of concurrent actions, it may be smaller--according to practical experiences of the
two first authors with BCS by a factor of ten (or even more) times. This means
that the systems for which the maximally concurrent behaviour determines the full

Concurrent evolution of nonsequential systems 215

behaviour are much more easy to analyse, particularly when we cannot use any
theorem (because of the generality and/or complexity of the system to be specified).

Some results of the paper have been announced at the 4th European Workshop
on Application and Theory of Petri Nets, Toulouse, 1983, and the International
Seminar on Concurrency, Carnegie-Mellon University, 1984.

As a general remark, we may also mention that some of our results may be
connected to the general theory of partial orders; in order to be more selfcontained,
to better support intuition, and to get more constructive proofs, we shall stick to
our original context however.

2. Basic COSY syntax and its standard semantics

COSY (COncurrent SYstem) is a formalism intended to simplify the study of
synchronic aspects of concurrent systems, by abstracting from all aspects of systems
except those which have to do with synchronisation.

A basic COSY path program is a collection of paths enclosed in program and
endprogram parentheses. Essentially, a path is a regular expression enclosed by path
and end, as, for instance,

P0 = program
P l: path a; b, c end
P2: path (d; e)*; b end
endprogram.

In every regular expression like the above program, the semicolon denotes sequence
(concatenation) and the comma denotes mutually exclusive choice. The comma
binds more strongly than the semicolon, so that the expression "a; b, c" means 'first
a, then either b or c'. An expression may be enclosed in conventional parentheses
with Kleene star appended, as, for instance, "(d; e)*" which means that the enclosed
expression may be executed zero or more times. The expression appearing between
path and end is implicitly 'starred', so that a path describes a cyclic sequential
subsystem. The formal description of the COSY syntax may be found, for instance,
in [15, 19, 20, 28]. The papers [15, 19, 20] contain various examples of using COSY
to specify real systems. The semantics of path programs can be described by means
of vectors of strings (an approach initiated by Shields [28]).

With every path P = path body end, we associate its set of events Ev(P). In the
case of example P0, the events are: Ev(P1) = {a, b, c}, Ev(P2) = {b, d, e}, which also
indicates how events are distributed into subsystems. As it was pointed out above,
'body' may be treated as an ordinary regular expression. The only difference is
replacing " u " by ",", using ";" to denote concatenation, and assuming that a
mutually exclusive choice binds more strongly than concatenation (in traditional
notation the opposite convention is used). Thus, for instance, "a ; b, c" is equivalent
to "a (b u c)'" according to traditional notation.

216 IL Janicki et at

For every regular expression E, let]E I denote the regular language described by
E. For every path P = path body end the language Ibodyl is called the set of cycles

of P and denoted by Cyc(P), i.e., Cyc(P) = Ibodyl.
For example, for P0 we obtain C y c (P 1) = { a b , ac}, C y c (P 2) = { d e } * { b } ; they

represent the periods of the inherently periodic sequential subsystems, namely the
single paths.

From the set Cyc(P) we construct the set o f f i r ing s equences of P, denoted FS(P),
as follows:

FS(P) = Pref(Cyc(P)*) = Cyc(P)*Pref(Cyc(P)) ,

where, for every alphabet A and every language L_c A*,

Pref(L) = {xl (3y ~ A *) x y s L}.

The set FS(P) is the set of finite sequences of event occurrences specified by the
path P. For example, for P0, we obtain

FS(P1)={ab, ac}*{e,a},
where e denotes the empty string.

Let us now consider a path program P = program P1 . . . Pn endprogram (or simply
P = P~. . . Pn), where the Pi's are single paths. To model the nonsequential behaviour
of P, partial orders of occurrences of events will be constructed which are represented
by vectors of strings.

A vector (x~ , . . . , x~) is a possible behaviour of P = P1 . . . Pn if each x~ (for
i = 1 , . . . , n) is a possible firing sequence of Pi and, furthermore, if the x,'s agree
about the number and order of occurrences of events they share. To formally define
the set of possible behaviours or histories of P, vectors of strings are introduced
together with a concatenation operation on them.

Let us consider the set E v (P ~) * x . . . x Ev(P,)*. If the vectors (x b . . . , x,) and
(y l , . . . , y~) belong to the above set, their concatenation is defined as

(Xl , . . . , x ,) (Y l , . . . , Y ,) = (x , Y b . . . , x,o'n).

Let Ev(P) = Ev(P1) u - - • u Ev(P~) and, for i = 1 , . . . , n, let hi: Ev(P)*--> Ev(P~)* be
the erasing homomorphism (endomorphism and projection, in fact) defined from:

(V a e E v (P)) h i (a) = { : otherwise.a~Ev(Pi)'

Let _: Ev(P)*-~ Ev(P1)* x - -. x Ev(P,)* be the mapping defined as follows:

(Vx ~ Ev(P)*) _x = (h i (x) , . . . , h n (x)) .

Conventionally we shall write x instead of _x in every place where this does not lead
to ambiguity. Clearly, we may have x # y and x = y. The set Vev(P) = { a l a ~ Ev(P)}
is called the set of vec tor even ts of P. Note that Ev(P)* = Vev(P)*.

For example, for P0, the vector events are

Vev(PO) = {a, b, c, d, e } = { (a , e) , (b, b) , (c, e), (e, d), (e, e)},

Concurrent evolution of nonsequential systems 217

or, indicated by distribution into subsystems and " e " replaced by blank:

' <-- Ev(P2)"

Essentially, the vector events indicate distribution of events to subsystems and
the sharing of events ('handshake' synchronisation) by subsystems.

For i = 1 , . . . , n, let t~ : Ev(PI)* x" • • X Ev(P,)* --> Ev(P~)* be a projection defined
standardly as: (xa,. • . , x~, . . . , x,)li = xi. Note that (Vx e Ev(P)*)(Vi = 1 , . . . , n) xli =
hi(x) and

(V (x l , . . . , x ,) e Vev(P)*)(3x e E v (P) *) (x l , . . . , x ,) =

It turns out that vectors of sequences belonging to Vev(P)* can be interpreted as
partial orders of event occurrences, so that they may be used to model the concurrent
behaviours of P.

Let oc t (P) = Ev(P) x { 1, 2, 3, . . .}. Elements of occ(P) are called event occurrences.
Every string x ~ Ev(P)* generates a natural total order Tx _ oc t (P) x oct(P). For
instance, if x=abacba, then Tx=(a, 1)~(b , 1)->(a, 2)->(c, 1)-*(b, 2)-*(a, 3). A
formal (easy) definition of Tx is left to the reader (see [10]). The partial order
px c_ oct (P) x occ(P) generated by x ~ Vev(P)* can be defined as follows (the idea
follows from Szpilrajn-Marczewski [31]):

P , = ('] T r
yEEv(P)*&y=x

More details on this subject may be found in [10, 29].
For example, in P0, adbead E Vev(P0)* and the partial order P.a~.a is shown in

Fig. 1.

The set of all possible behaviours or histories of P, the vector firing sequences of
P, denoted by VFS(P), is defined by

VFS(P) = (FS(P,) x . . . x FS(P.)) c~ Vev(P)*.

The set FS(P1) x . • • x FS(P.) in the definition of VFS(P) guarantees that each string
component x, of a history x = (x l , . . . , x.) ¢ VFS(P) is a firing sequence of the path

Fig. 1.

218 R. Janicki et at

Pi, and the set Vev(P)* guarantees that all these firing sequences agree on the
number and order of occurrences of events they share.

The set VFS(P) can be treated as a formal description of the execution semantics:
'execute as possible'; this will be further consolidated by some of the following
discussions (see, for instance, Theorem 3.3).

Let r: Ev(P)-~ 2 ~1'2''''''~ be the function given by

(Va ~ Ev(P)) r (a) = {i[a ~ Ev(Pi)}

(note that r is a well-defined 'resource association function', according to [11]) and
let ind_ E v (P) x Ev(P) be the following relation:

(Va, b ~ Ev(P)) (a, b) ~ ind :¢:> r(a) n r (b) = ~).

The relation ind is called the independency relation. Note that (a, b)eind¢:~
(a ~ b & ab = ba)C~>((Vi)al, ~ e bl, = e)¢~>((Vi)a~ Ev(P,) or b~ Ev(P~)).

Since the paths correspond to the sequential subsystems of the whole system, two
independent events have no common sequential constraint, so that independency
may be viewed as a potential concurrency relation: only independent events may
occur concurrently. However, independent events may not always occur concur-
rently; it may even happen that they may never occur concurrently at all: they have
to be simultaneously 'enabled' at some point, this will be developed in Section 3.

The formal model of behaviour allows us to speak formally of dynamic properties
of systems specified by a path program P = P1 . . . pn.

We say that P = P~ . . . Pn is deadlock-free if and only if

(Vx ~ VFS(P))(:Ia ~ Ev(P)) xa ~ VFS(P),

that is, every history x may be continued.
We say that P = P~. . . Pn is adequate if and only if

(Vx ~ VFS(P))(Va ~ Ev(P)) (3y ~ Vev(P)*)xya ~ VFS(P),

that is, every history x of P may be continued, eventually enabling every event in
P. Adequacy is a property akin to the absence of partial system deadlock. More
details can be found in [15, 19, 28].

The semantics of COSY path programs may also be expressed in terms of labelled
Petri nets (cf. [3, p. 295]). The current net semantics of path programs is obtained
by translating each sequential path component into a labelled state machine represen-
ted as a net, i.e., representing transitions by boxes. For example, the paths

P~: path a; b; a end, P2: path a, c; d end

would individually give rise to the nets shown in Fig. 2. Once the nets corresponding
to the individual paths have been obtained, for example, two nets called N~ and
N2, one applies a composition rule denoted by " ~) " to the two nets, written N~ ~) N2,
constructed from N~ and N2 by the identification of transitions with the same label.

We may now give the construction of N~ ~9 N2 from nets N1 and N2 and illustrate
it with the two example paths above:

Concurrent evolution of nonsequential systems 219

(a)

a

(b)

Fig. 2. (a). Net of Pl (two transitions have the same label). (b) Net of/)2.

(1) The set of places of N I ~ N2 is the set-theoretic union of the sets of places
of NI and N2 (they are supposed disjoint!) with inherited markings.

(2) Suppose t is a transition in either NI or N2 such that no transition in the
other net is labelled with the label of t, then M E) N 2 contains a transition (t), with
the same label as t, whose input and output places are the same as those of t (recall

(1)).
(3) Suppose tl and t2 are transitions of N~ and N2 respectively, with the same

label, then M E) N2 contains a transition (t~, t2) with the same label as t~ and t2 and
whose set of input (respectively output) places is the union of the sets of input
(respectively output) places of tl and t2.

The operation ~ may be shown to be commutative and associative (up to
isomorphism).

I f P = PI . . . P, and Ni is the marked labelled state machine net associated with
Pi, then the net associated with P is defined to be N~ ~ • • • ~ N,.

The result of applying these rules to P = P~P2, where/ '1 and P2 are our example
paths, then is the net shown in Fig. 3.

!
P l

a b P3 a ~']

tl,ti

Fig. 3. N -- (net of P1)(~(net of P2) corresponding to the path P = path a; b; a end path a, c; d end.

220 R. Janicki et al.

More details about the formal correspondence between path programs and Petri

nets may be found in [1, 18].

One may also prove that the algebra of vector events is equivalent to the algebra

of Mazurkiewicz traces (a model of concurrent behaviours generated by Petri nets,

see [14, 21, 22]) in the sense that the partial orders defined by a vector x and a trace

[x]i,d are exactly the same and the vector events monoid and trace monoid are

isomorphic (see, for instance, [29]).

3. The problem of maximally concurrent evolution

Let us start with the following example (see [15]):

P = path a, c; d end
path b; c, d end.

At the beginning we are able to perform actions a and b; as they are independent,

we may not only initially execute a or b, but also both of them concurrently in one

'step'. In the latter case, after the concurrent performance of a and b, only action

d is enabled; after its performance we are again in the initial situation. Note that

in this way, if we always choose to do a and b concurrently, we are never able to

perform the action c. On the other hand, we may start with the performance of the

action b only and then we are able to perform c next. This example shows that

doing two independent and simultaneously enabled actions in one step is not the

same as doing them in either order but sequentially, that is, in two steps.

This example shows that the semantics 'execute as much as possible in parallel '

may not be equivalent to the semantics 'execute as possible'. Let us analyse this
problem formally. First of all, we must formally define the semantics 'execute as
much as possible in parallel'.

Let P = PI . . . Pn be a path program, and let Ind(P) ~_ 2 ~v<P) -{~} be the following
family of sets of events:

A ~ Ind(P) :<:> ((Va, b e A) a = b or (a, b) e ind) & A # 0.

In other words, elements of Ind (P) are sets of pairwise independent events. I f

A = { a l , . . . , ak} ~ Ind(P) , then a ~ . . . ak = a i ~ . . , a~ k for any permutation i ~ , . . . , ik SO

that we may write A = a~ . . . ak and x A = xa~ . . . ak. ~

For every x e VFS(P), an event a ~ Ev(P) is said to be e n a b l e d at x if and only if

(Vi = 1 , . . . , n) a ~ E v (P i) ~ x l , a e FS(P~).

For every x ~ V F S (P) , a set of independent events A ~ Ind(P) is said to be

c o n c u r r e n t l y e n a b l e d at x i f and only if every a ~ A is enabled at x.

i Note that not always the convention A instead of A can be used. If, for instance, A = {a, b, c} ~ Ind (P) ,
B = {c, d} ~ I n d (P) , (e, c), (e, d) ~ ind, we m a y write AdB, but we must write {a, b, c}d{~ d} and AB u { e}!
In the sequel we shall use boldfaced types where possible and underl ining where necessary.

Concurrent evolution of nonsequential systems 221

Corollary 3.1. For every x ~ VFS(P),
(1) a e Ev(P) is enabled at xC~xa ~ VFS(P),
(2) A~ Ind(P) is enabled at x<:C, xA ~ VFS(P).

For every x e VFS(P), let enabled(x) denote the family of all concurrently enabled
sets of events at ~ Assume also that for x ~ VFS(P), enabled(x) = I~.

Any concurrently enabled set at x, A e enabled(x), is said to be maximally concur-

rent if and only if it may not be extended, i.e., iff (VB e enabled(x)) A c_ B o A = B.

For every x~ VFS(P), let maxenabled(x) denote the family of all maximally
concurrent sets enabled at x~ Of course, maxenabled(x) ___ enabled(x).

Corollary 3.2. For every path program P the following properties are equivalent:
(1) P is deadlock-free,
(2) (Vx ~ VFS(P)) enabled(x) ~ ~,

(3) (Vx e VFS(P)) maxenabled(x) ~ ~.

Let S, C, M ~ Vev(P)* x Vev(P)* be the following relations:

xSy :¢:> (3a ~ Ev(P)) {a}~ enabled(x) & y = xa,

xCy :¢~ (3 A ~ enabled(x)) y = xA,

x M y :¢:> (3 A ~ maxenabled(x)) y = xA.

The relations S, C, M are called respectively: the sequential teachability in one step,

the concurrent reachability in one step, and the maximally concurrent reachability in
one step.

Theorem 3.3

V F S (P) = {x l kS*x} = {x l eC*x}.

ProoL By the definition, we have S* = C*; then {x l eS*x} = { x l e C * x }. Furthermore,
VFS(P) = (FS(P,) x- • • x FS(P,)) n Vev(P)* and from the definition of S we obtain

(1) e ~{xleS*x}c~(FS(P,)x... x FS(P.)) n Vev(P)*,

(2) i f y ~ { x l e S * x } n (F S (P 1) x . . - x FS(P.)) n Vev(P)*, then

ya ~ {xl eS*x } ¢~ ya ~ (FS(P~) x . . . x FS(P,)) n Vev(P)*.

Thus {xl eS*x}= (F S (P I) × " " × FS(P,)) nVev(P)* , which ends the proof. []

The above result states that VFS is fully characterisable by the relation C (as
well as by the relation S) so that VFS(P) with C indeed models the concurrent
evolution of the system 'execute as possible'.

222 R. Janicki et aL

It may also be noticed that S* = C* is exactly the partial order on VFS(P) defined
by the prefix relation: if x, y ~ VFS(P),

xC*y ¢:~ ((3z ~ Vev(P)*) y = xz) <=~ ((Vi)(3z e Ev(Pi)*) Yli = xl~z)
(compare [29]).

The relation M is that mathematical object which represents the maximally
concurrent evolution, i.e., one step under the rules of the semantics 'execute as
much as possible in parallel ' . Let us define V M F S (P) = {x I eM*x}. The set VMFS(P)
represents all histories that may be reached by a maximally concurrent evolution
of the system (the vector maximalfiring sequences), so it may be treated as a formal
description of the execution semantics: 'execute as much as possible in parallel'.

For every V c Vev(P)*, let Pref(V) = {x[(3y ~ Vev(P)*) xy ~ V}.

Corollary 3.4

Pref(VMFS(P)) ___ VFS(P).

We will say that P is completely characterised by maximally concurrent evolution if
and only if

VFS(P) = Pref(VMFS(P)) .

This equality is a formal expression of the fact that the semantics 'execute as much
a s possible in parallel' and the semantics 'execute as possible' are equivalent, as
will be shown later.

4. Some properties of vector maximal firing sequences

We are now going to elucidate the structure of Pref (VMFS(P)) and to prove
formally that the above concept of complete characterisation by maximally concur-
rent evolution is justified and well-defined. We prove that VMFS(P) is a tree and
that if VFS(P) = Pref(VMFS(P)) , the notions of deadlock-freeness and adequacy
may be described in terms of VMFS only.

Lemma 4.1

(Vx s VFS(P))(Vy, z VMFS(P)) (yC*x & zC*x) (yM*z orzM*y).

Proof. Define prefM(y, z) = {vl v ~ VMFS(P) & vM*y} n {w[w ~ VMFS(P) & wM*z},
of course, e ~pre fM(y ,z) . If the property is not true, y ~ p r e f M (y , z) and
z ~ prefM(y, z). Let tbe a minimal element ofprefM(y, z). Then (3y ' # z ' .VMFSiP) -
prefM(y, z)) such that one has the pattern

tMy'M*yC*x and tMz 'M*zC*x

(one may have y ' =y an d /o r z = z'), where y '= tA, z '= tB, and A • B. Assume that
a ~ A - B. As x = ta . . . tB . . . , a must occur after B in the second expression, i.e.,

Concurrent evolution of nonsequential systems 223

x - ta = tBc~ . . . Cka. •. and a must commute with each ci and each b in B. But

then B is no longer maximally concurrent at y since one may add {a} to it, hence,

the lemma. []

As an almost immediate consequence of Lemma 4.1 we obtain the following

corollary.

Corollary 4.2. (1) VFMS(P) with the M relation is a tree (VFS(P) with.the C relation

is not!).

(2) Each x ~ VFS(P) has a unique greatest prefix in VMFS(P).

(3) For every x ~ Pref(VMFS(P)), i f y is its greatest prefix in VMFS(P) and i f y '

is any o f its least extensions in VMFS(P) (i.e., i f x is a prefix o f y', y ' c V M F S (P) ,
and for all y" ~ VMFS(P): (xC*y" & y"C*y ') ~ y " = y'), then yM*y ' .

About Corollary 4.2(3), we may mention that, to the contrary of Corollary
4.2(2), if x in VMFS(P), it may happen that there is no unique extension of x in

VMFS(P). For:

P = path b, c end

path a end

and for x =a , there are two least VMFS extensions: ab and ac. More details on

these kind of properties may be found in [6].
A path program P is said to be M-deadlock-free if and only if:

(Vx ~ VMFS(P)) (3y ~ Vev(P)*) y ~ e & xy ~ VMFS(P).

Corollary 4.3

P is M-deadlock-free ¢:> (Vx ~ VMFS(P)) maxenabled(x) # ~.

Theorem 4.4. I f VFS(P) = Pref(VMFS(P)), then

P is deadlock-free ¢:~ P is M-deadlock-free.

Proof. (=:>): A consequence of Corollaries 3.2 and 4.3.
(~) : Let x e V F S (P) . Since VFS(P)=Pre f (VMFS(P)) , we have (3 z) x z e

VMFS(P). Of course xz ~ VFS(P), so if z ~ e, then P is not deadlocked at x. If
z = e, then x ~ VMFS(P) and there is y # e such that xy e VMFS(P) ~ VFS(P); thus,

P is also not deadlocked at x. []

A path program P is said to be M-adequate if and only if

(Vx e VMFS(P))(Va ~ Ev(P)) (3y e Vev(P)*) xya ~ VMFS(P).

224 R. Janicki et aL

Theorem 4.5. I f VFS(P) = Pref(VMFS(P)), then

P is adequate ¢=~ P is M-adequate.

Proof. (~) : Let xeVMFS(P) and aeEv(p) . Since P is adequate, (=lye

Vev(P)*) xya e VFS(P), and since VFS(P) = Pref(VMFS(P)), (=lz e Vev(P)*) xyaz e
VMFS(P). If xya e VMFS(P), we have our result; if it is not true, we have a pattern

such as the following:

M

Yh+l ~ Yh+2

M* S+
Yo = x) Yh) xya

M
)

o o •

S+

M

> Yk--1

M*
>Yk > xyaz

where for i = 1 , . . . , k, Yi =yHA~ e VMFS(P). Because a belongs to one of the A~,

we may write yi =y~_~ . . . a, where y~_l is an extension of x in VMFS(P).
(~) : Let x e VFS(P), a ~ Ev(P). Since VFS(P) = Pref(VMFS(P)), we have (3z e

Vev(P)*)xz e VMFS(P). Since P is M-adequate, it holds that (3y)xzya e VMFS(P)

VFS(P), and P is adequate. []

The above two theorems, showing that deadlock-freeness and adequacy may be
defined from VMFS only, can be regarded as a justification of our definition of

complete characterisation by maximally concurrent evolution.

5. Interlace decomposition

In this section we shall further develop the structure of Vev(P)*. It turns out that

every x e Vev(P)* can be uniquely decomposed in a special manner and that this

decomposition is a convenient tool to define necessary and sufficient conditions for
the equality VFS(P)= Pref(VMFS(P)), as will be shown in Section 6.

Let P = P1 . . . Pn be a path program. For every a e Ev(P) and A c_ Ev(P), we shall

write (a, A) e ind iff ('¢beA) (a, b) eind. Note that, if A e Ind(P):

(a , A) e i n d <=~ a ~ A & A u { a } e I n d (P) .

For every x e V e v (P) * - { e } , a sequence of sets (A 1 , . . . , Ak), k >~ 1, is said to be
an interlace decomposition (abbreviated il.decomposition) of x iff the following

conditions are satisfied:

(1) (V i = l , . . . , k) Aie Ind (P) ,
(2) x=A1.. .Ak,
(3) if k > 1, then ('Ca e A~) (a, A H) ~ ind for i = 2 , . . . , k:

The last condition expresses the fact that the decomposition is 'left maximal', in
the sense that. no event may be pushed to the left, from one A~ to another, while

Concurrent evolution of nonsequential systems 225

preserving the first two conditions, or else that, for any i, A~ is a maximal independent

prefix of A~A~+~ . . . Ak. It will be shown later (see Theorem 6.1) that problems arise
precisely when, in an il-decomposition, some A~ but the last one is not in maxen-
abled(A~ . . . Ai_l) while the other ones are.

If (A ~ , . . . , Ak) is an i l-decomposition of x, we shall write

x = ° A 1 . . . Ak.

For instance, with the path program P described at the beginning of Section 3:

a b a c = ° { a , b } { a } { c } , ~

but not

abac = ° {a}{b, a}{c}.

We want to prove that every x e V e v (P) * - { e } has exactly one il-decomposition.
Let us first notice that, from the definition, U" X = ° A ~ . . . Ak, y = ° B ~ . . . Bm and
(Vb ~ B~) (b, Ak) ~ ind, then xy =DA~ . . . AkBI . . . B,,. Conversely, if x =DA~ . . . Ak,

then (Vi) A~ . . . A~ =°A~ . . . A, and A , . . . Ak =DA~. . . Ak. Now, we may show that

in an i l-decomposition the first set is uniquely determined by the considered vector.

Lemma 5.1. I f x = ° A 1 . . . Ak, then

A~ = {a ~ Ev(e)] (Vi ~ r (a)) (3 y ~ Ev(Pi)*) xli = ay}

= { a e Ev(P) I (=ly e Vev(P)*) x = ay}.

Proof. Let A = {a e Ev(P)[(Vi e r (a)) (3 y ~ Ev(Pi)*) xli = ay}. Suppose that a c Al.

Since x = A l x ' and At e Ind(P) , we have x = az. Hence, a ~ A and A~ __ A. If A~ # A,

let a e A - A ~ and let j be the index of the first Ai containing a, i.e., a ~ Aj and

a ~ Ai for i = 1 , . . . , j - 1 (2 ~<j ~< k). This means that there exists b ~ Aj_~, b ~ a and
(a , b) ~ i n d . Therefore, if i e r (a) n r (b) , then x l i=ybaw, where we Ev(Pi)* and

y ~ (Ev(P~)-{a})*, a contradiction. Thus, A - A t = ~, which is now equivalent to
A = A1. The second equality is a simple consequence of the first one. []

Our existence and unicity result may now be proved by induction on the ' length'
of the considered vector. Let us define the length function l :Vev(P)*-* {0, 1, 2 , . . . }
by l(e) = O, and if y = a l . . . am, where (Vi) ai ~ Ev(P), then l (y) = m.

Theorem 5.2. Each x ~ Vev(P)* - { e } has exactly one il-decomposition.

Proof. The theorem is proved by induction on l(x). Let x e Vev(P)* - {e }. If l(x) = 1,

then, of course, it has exactly one il-decomposition {a}. Assume that l (x)I>2 and

that each y ~ Vev(P)* such that 1 <~ l(y) < l(x) has exactly one il-decomposition. We

226 K Janicki et al.

first want to prove that x has at least one il-decomposition. Let A =

{a s Ev(P) I (=ly ~ Vev(P)*) x = ay}. Clearly, A ~ Ind(P) and x = Ay. Since l(y) < l (x) ,

by the induct ion assumption, we have y = e or y =DB~ . . . Bk.

Case 1: y = e. Then x =DA.

Case 2: y # e. Let b ~ B~. Suppose that (Va ~ A) (a, b) ~ ind. Then x = bz for some
z ~ Vev(P)* and b ~ A, a contradiction. Consequently, we have X = DABI . . . Bk. We

still have to prove that the decomposition is unique. Suppose that x = D A t . . . Ap

and x =°B~. . . Bin. By Lemma 5.1, we have A~ = Bt. If p = 1, this ends the proof.

Otherwise, let y = A 2 . . . A n; thus, y = O A E . . . A n , y = V B 2 . . . Bm and, since l (y) <

l(x) , by the induct ion assumption, we obtain Ai = B~ for i = 2 , . . . , p and p = m. []

We are now going to present some additional properties of il-decomposition.

Those properties will show the connections with some other notions of our approach.

First, the prefix relation corresponds to an inclusion property.

Theorem 5.3. I f x, y, z ~ Vev(P)*, y = xz, x = P A l . . . Ak and y = B~ . . . Bin, then k <~ m

and Ai c_ B~ for i = 1 , . . . , k. Moreover, i f x, y ~ VFS(P) and Ak E

maxenabled(A1 . . . Ak_~), then A~ = B~for i - 1 , . . . , k (with AI . . . Ak-~ = e i f k = 1).

ProoL Let us first consider the simple case where y = xa for some a ~ Ev(P). We
have to consider three cases.

Case 1: (a ,A~)~ ind for i = l , . . . , k Then y = D B 1 . . . B k , where B l = A ~ u { a }

and Bi = Ai for i ~ 1.

Case 2: (a, As) e ind and (a, Aj)~ ind for s o m e j < k L e t j be the last such index,
i.e., (a, A j) ~ i n d and (a, A i) ~ i n d for i = j + l , . . . , I c Then y = D B I . . . B k , where
B j + ~ = A j + t u { a } and B , = A , for i # j + l .

Case 3: (a, Ak)~ind . Then y = A 1 . . . Ak{a}.

The general case y = xz = xz~.. , z,, where ('¢i) zi e Ev(P), results from r successive

applications of the simple case. Moreover, if x, y e V F S (P) and Ak
maxenabled(A1. . .Ak_~), let z = D C ~ . . . C ~ ; ('¢c~C~) (C, Ak)~ind , so that y =

x z = D A 1 . . . A k C 1 . . . C1. []

The il-decomposition is connected to the maxenabled property.

Theorem 5.4. Let x = A~ . . . A k ~ V F S (P) - { e } , and

(1) Ak e Ind(P) ,

(2) k >~ 2=~(V i = 1 , . . . , k - 1) Aie maxenabled(A~. . . Ai-~), where A~ . . . Ai_I = e

/ f i = 1.
Then x = D A 1 . . . As.

Proof. Clearly, (Vy) maxenabled(y) _c Ind(P) . Suppose that for some j ~ { 2 , . . . , k}
and a e Aj we have (a, Aj_I) e ind. Thus, Aj_I u {a} e enab led(A~. . . Aj_2), a contra-
diction. []

Concurrent evolution o f nonsequential systems 227

The property is even stronger in VMFS(P).

Theorem 5.5. Let x = P A l . . . Ak ~ VMFS(P) - {e}.
(A~ . . . A~-I) for i = 2 , . . . , k, and A~ ~ maxenabled(e).

Then A~ ~ maxenabled

Proof. Since x ~ VMFS(P) , let e = xoMB~ = x~MxlB2 = x2M. . . M x m _ l B m --- Xm : X.

By definition, B~ ~ maxenabled(B~.. . B~_I) for i = 1 , . . . , m. From Theorem 5.4 it
follows that x = ° B ~ . . . Bm, and by Theorem 5.2, A~ = B~ for i = 1 , . . . , k and k =
m. []

Finally, we may connect the il-decomposition to the VMFS-prefixes.

Theorem 5.6. I f x ~ VMFS(P), xC*y and y = P A l . . . Ak, then x =DA~ . . . Aj for some
j<~k.

Proof. Let y = x z , x = ° A ~ . . . A i and z = D B I . . . B k • By Theorem 5.5, Aie
maxenabled(A~.. . A~_~) sothat (Vb e B~) (b, Aj) ~ ind andy = P A l . . . AjB~.. . Bk. []

6. Necessary and sufficient conditions for complete characterisation by maximally
concurrent evolution

On the basis of the results from our previous sections we can fully characterise
the class of path programs possessing the property VFS(P) = Pref(VMFS(P)).

Let P = P~ . . . P, be an arbitrary path program. Let us define a function
m:Vev(P)*->{0 ,1 ,2 , . . . } , by m(e)=O, and (Vx~Vev(P)* -{e}) m (x) = k iff
x =DA~ . . . Ak. From Theorem 5.2 it follows that re(x) is weU-defined.

Theorem 6.1. The following properties are equivalent:
(1) VFS(P) ~ Pref(VMFS(P)).
(2) (3 x e V F S (P)) x=OA1 . . . A k & k>~2 & A k _ ~ m a x e n a b l e d (A l . . .Ak -2) &

As e maxenabled(Al . . . Ak-1) (where A1. . . A k - 2 = £ / fk = 2).

Proof. (2 0 1) : Suppose V F S (P) = P r e f (V M F S (P)) and x is as in (2). Then xC*y

for some y e VMFS(P). Let y =DB 1 . . . Bin. From Theorem 5.3, we have m >~ k and
A i = B i for i= 1 , . . . , / 6 On the other hand, by Theorem 5.5, we have Bk-i

maxenabled(B1. . . Bk-2), a contradiction.
(1 0 2) : Let k be a number such that

Z = {x lx ~ VFS(P) - Pref(VMFS(P)) & m(x) = k} ~ O.

Clearly, (Vy e Z)l(y)~< card(Ev(P)) k. Let Xo be a member of Z with maximum
length, i.e., x o e Z and (VyeZ)l(xo)>~l(y) . Let X o = D A 1 . . . A s and suppose that
Ak ~ maxenabled(A1. . . Ak-O. Thus, for some a ~ Ev(P), we have (a, As) e ind and

228 R. Janicki et al.

y = A t . . . Aka e VFS(P). Since y e Z (see the proof of Theorem 5.3, Cases 1 and 2)
and l (xo)<l(y) , we get a contradiction so that, necessarily, Ak~maxenabled
(A t . . . Ak_,). Because Xo~ VMFS(P), we have As~ maxenabled(At . . . Ai_a) for
some l~< i<k . Thus, ki>2 and there exists a j < k such that A s
maxenabled(At . . . As_t) and Aj+t ~ maxenabled(Al . . . Aj). Hence, x = A t . . . As+t
satisfies the conditions of (2). []

In the example at the beginning of Section 3, for instance, x = bc, At = {b}, A2 = {c}

satisfy the conditions of Theorem 6.1(2). We have here: bc=°{b}{c} , At ={b}~

maxenabled(e) = {{a, b}}, A2 e maxenabled({b}) = maxenabled(b) = {{a}, {c}}.
Theorem 6.1 characterises the inequality VFS(P) # Pref(VMFS(P)) by properties

of some x ~ VFS(P). We shall now formulate a stronger theorem which characterises
this inequality by an element of VMFS(P). First, we may charactedse the greatest
VMFS-prefix.

Lemma 6.2. Let x ~ V F S (P) - P r e f (V M F S (P)) and y be the greatest prefix o f x in

VMFS(P). Then (= ~ A 1 , . . . , A k e I n d (P)) x = y A t . . . Ak & A 1 . . . A k = D A t . . . A k &
k>~2.

Proof. Let x = ° B t . . . B,,. Suppose that y # e and y = D C t . . . Cp. By Theorem 5.6
we have p>~ m and Bi= Ci for i = 1 , . . . , p . Let us set k = m - p (if y = e, we set
k = m and p = 0) and A~=Cp+~ for i = l , . . . , k : Thus, x = y A t . . . A k ,
At . . . Ak = P A t . . . Ak. Because x ~ V M F S (P) , we have k>~ 1. Suppose k = 1. Then
x = y A h A t ~ I n d (P) and y e V M F S (P) . But this means that Ale
enabled(y) - maxenabled(y), and there is a B ~ maxenabled(y) such that A1 ~ B and
y B e V M F S (P) . Of course, yA1 is a prefix of yB, so x = y A l s P r e f (V M F S (P)) ,
contradiction. []

Now, for the least VMFS-extensions, we get the following lemma.

Lemma 6.3. Let x ~ Pref(VMFS(P)) - VMFS(P), y is its greatest prefix in VMFS(P),
and y' is one o f its least extensions in VMFS(P). Then

(1) y ' = y A 1 . . . Ak & A I . . . Ak = ° A t . . . Ak & k >>- 1,
(2) x =yB~... Bk & B, . . . Bk =DB,. . . Bk,
(3) y' = xC1. . . Ck,

(4) A, = B, u Ci for i = 1 , . . . , k,
(5) c ~ o ,
(6) (V i = l, . . . , k) (V j = i, . . . , k) Bsu C ~ Ind(P).

Proof. Of course, there is a sequence A t , . . . , Ak such that y' =yAt . . . , Ak, A1
maxenabled(y) and A ~ e m a x e n a b l e d (y A t . . . A H) for i = 2 , . . . , k . Note thal
A t , . . . , Ak satisfies (1) (see Theorem 5.4).

If k = 1, the lemma simply expresses that y ~ x ~ y' and that we have yMy' , yCxCy'.

Concurrent evolution of nonsequential systems 229

For k i> 2, let x =yZo, .V ' = xw. For every x~ Vev(P)*, let Ev(x) denote the set of
all events occurring in x. Let B ~ , . . . , Bk, C 1 , . . . , Ck be the sets constructed by

(1) B~=A~nEv(zo) , C ~ = A I - B 1 ,

(2) for i = 1, . . . , k - 1, zi is constructed from zi_~ by dropping the first occurrence
of each operation in B~ and Bi+l = A~+~ m Ev(zi), C~+~ = A~+1 - Bi+t.

From the fact that y ' = y Z o W = X W = y A ~ . . . A k and the above construction, it
follows: A~ = Bi w Ci, x = y B ~ . . . Bk, y' = x C ~ . . . Ck, i.e., the points (3), (4), and the
first half of (2) are satisfied. Property (5) results f rom the fact that if C1 = 0, then
yB~ =yA~ would be a greater VMFS prefix of x than y. Property (6) results from
the fact that since y '=yA~ . . . Ak = y B ~ . . . BkC1 . . . Ck, each operation c ~ C~ has to
commute with all the operations in B 2 , . . . , Bk; moreover, if c - - b ~ Bj, from the
construction of B~, c would belong to B1 and not to C1 since that means that
c~ Ev(zj_l) and thus, c~ Ev(zo); the same argument may then be resumed for
C 2 , . . . , Ck in that order. To prove that B~ . . . Bk = ° B ~ . . . Bk we have to show that

(i) (V i = l , . . . , k) B,#~),

(ii) (Vb ~ B,) (b, B~_I) ~ ind for i = 2 , . . . , k
Property (i) results from the facts that:

(1) if Bk =~, then y A x . . . Ak-~ would be an extension of x in V M F S (P) smaller
than y';

(2) let us suppose that i is the least index in { 1 , . . . , k - 1} such that B~ = 0; from
(6) we know that each c e C~--A~ is independent of each operation in B~+x(# ~);
but then Ai would not be maximally concurrent at yA~ . . . Ak -1 since we may add
B~+~ to it.

Property (ii) results from an argument similar to the ones used above, namely, if
(:ti e { 2 , . . . , k})(:lb ~ B,)(Vb' ~ B~-I) (b, b') e ind (since from (6) (Vc ~ Ci_l) (b, c)
ind), then A~_~ = B~_~ w Ci_~ would not be maximally concurrent at yA~ . . . A i - 2 since
one may add b to it. []

Now, we are able to prove our main result.

Theorem 6.4. The following properties are equivalent:

(1) VFS(P) ~ Pref (VMFS(P)) ;
(2) there are x ~ VMFS(P) and nonempty event sets A 1 , . . . , Ak ~ Ind (P) , where

k >~ 2, such that

(a) y = x A 1 . . . A k ~ V F S (P) ,
(b) ('Ca e Ev(P)) ya e V F S (P) ~ (a , Ak-1 u Ak) ~ ind,

(c) i f z = A1. . . Ak, then z =DAI . . . Ak,
(d) (Va ~ Ak) (3b ~ Ev(P)) xb e VFS(P) & (b, A1 u . . . u Ak-1 • (Ak -- {a}))

ind.

Proof. (1 ~ 2): For every x e VFS(P) , let gp(x) denote its greatest prefix in VMFS(P) .
We shall also denote d(x)= re(x)-m(gp(x)) and T = V F S (P) - P r e f (V M F S (P)) .

230 R. Janicki et al.

Let V = {x ~ T[(Vy ~ T) d(x) <~ d(y)}. Note that (Vx, y ~ V) d(x) = d(y). Let k =
d(x), where x ~ V. From Lemma 6.2 we have k i> 2. Let x e V. We have m = m(x) - k =
m(gp(x)) I>0 and x has the following il-decomposition: x =DB1.. . BmA1... Ak (it
may happen that m = 0). Let f , g : V-> {0, 1, 2 , . . . } be functions defined as follows:
if x = D B t . . . BmA~... Ak, then f (x) = l(Ak), g (x) = l (A ~ . . . Ak-1). Let us define
U = { x ~ V [(V y s V) f(x)<~f(y)}, W = { u ~ UI (Vye U) g(u)~g(y)} . We may
notice that since (Vx ~ V) g(x) <~ (k - 1) x c a r d (E v (P)) , W is a nonempty set (in
fact, we have strict inequality, as A~ may not be in maxenabled(B~. . . Bin)). Since
y~V , x = B ~ . . . B m = g p (y) and A 1 . . . A k = D A 1 . . . A k , i.e., (2)(a), (2)(c) are

satisfied.
Suppose now that ya ~ VFS(P) for some a e Ev(P). Note that ya ~ T (since

D
y a s P r e f (V M F S (P)) ~ y s P r e f (V M F S (P)) . By Theorem 5.3 we have ya=
B~.. . BmC~ . . . C v, where p i> k, Ai ~ Ci for i = 1 , . . . , k: Two cases may happen:
A,=C~ for i = l , . . . , k & p = k + l & Cp=(a}; and: (3j!) l < ~ j < k & C j = A j u { a }

& Ci=A~ for i ~ j & k=p.
Now, suppose that (a, Ak_~UAk)~ind. In the first case, since B ~ , . . . , Bin,

C ~ , . . . , C v is the il-decomposition, we have (3b e Cp_~ = Ak) (a, b)~ ind, a contra-
diction! Let us consider the second case. Note that gp(y) is a prefix of gp(ya) , thus,
d(ya)<~ d(y) = k, but this means that ya e V. Next, j < k andf(ya) = f (y) , so ya ~ U.
But g(ya)= 1 +g (y) , a contradiction since y e W! Therefore, we have (a, Ak_IU
Ak) ~ ind, and condition (2)(b) is satisfied.

To prove (2)(d), let us suppose that a e Ak and A = Ak - - { a } . We have to consider

two cases.
Case 1: A=O. From the definition of V we have z = x A ~ . . . A k _ ~

Pref(VMFS(P)) .
Case 2: A ~ O . Suppose that z = x A ~ . . . A k _ ~ A e T . Note that xA~.. .Ak_~ =D

B~.. . B~A~. . . Ak-~; hence, z = ° B ~ . . . BmA~... Ak_~A. This means that z e V, but
f (z) = f (y) - l , a contradiction because y e U ! Thus, in both cases, z=
xA~.. . Ak_~A ~ P r e f (V M F S (P)) - V M F S (P) (we setB = e). By Lemma 6.3 we have
(3C~ _~ Ev(P)) C~ ~ ~, zC~ ~ VFS(P) , A~ ~ C~ ~ maxenabled(x) & (Vb ~ C~) (b, A~

• • • ~ Ak-~ ~ A) ~ ind, so that any b ~ C~ satisfies (2)(d).
(2 ~ 1) : Let x = ° B ~ . . . Bm. Then, from (2)(c) and from the fact that, by Theorem

5.5, B,,, e maxenab led(B~. . . Bm_~), we have y =DB~.. . BmA~... Ak. Since Ak ~ ~,
there is at least one b e Ev(P) which satisfies (2)(d). Thus, b s enabled(xA~ . . . Ak-~)
and (b, Ak_~)~ind. Hence, A ~ _ ~ maxenabled(xA~ . . . Ak-2). Let A be such that

A w Ak ~ maxenabled(xA~. . . Ak-x). By (2)(b) we have

z = xA1. . . Ak-IAkA ~ z =DB1. . . B,,A1. . . Ak-IA~ ~ A.

Thus, by Theorem 6.1, VFS(P) ~ Pref(VMFS(P)) . []

The conditions of the previous theorem may, in fact, be strengthened. Indeed,

we have the following l e m m a .

Concurrent evolution of nonsequential systems 231

Lemma 6.5. Let x~VMFS(P) and let A b . . . , Ak~Ind(P) , where k~>2, be those
from Theorem 6.4(2). Then,

(a) A~ ~ maxenabled(x),
(b) (V j < k) A jnAk=~) ,
(c) (::lb ~ Ev(P)) xA~. . . Ak_ib ~ VFS(P) & (b, A~_I) ~ ind.

Proof. (a) Let b~Ev(P) satisfy Theorem 6.4(2)(d). Then b~enabled(x) and
(b, A~) e ind, hence, A1 ~ maxenabled(x).

(b) Let a ~ Aj C~Ak, where j < k. From Theorem 6.4(2)(d), it follows that (:lb
Ev(P)) xb~VFS(P) & (b, A l u . . . U A k _ l W A) e i n d , where A k = A U { a } . Since
a s Aj and j < k, we have (b, A~ u . • • u Ak-~ u Ak) ~ ind. But this means that yb
VFS(P), and by Theorem 6.4(2)(b), (b, Ak-~ u Ak) ~ ind, a contradiction.

(c) From Theorem 6.4(2)(d) we have (=ib ~ Ev(P)) xb e VFS(P) & (b, A1 u . • • u
Ak-~) ~ ind. But this means that xAl . . . A k _ l b E VFS(P) and (b, Ak-~) ~ ind. []

Consequently, we obtain the following theorem.

Theorem 6.6. The following properties are equivalent:
(1) VFS(P) # Pref(VMFS(P));
(2) there are x e VMFS(P) and nonempty event sets A ~ , . . . , Ak ~ Ind(P), where

k 1> 2, such that

(a) y=xA1 . . .Ak~VFS(P) ,
(b) (Va s Ev(P)) ya ~ V F S (P) ~ (a , Ak-i u Ak) ~ ind,
(c) i f z = A ~ . . . A k , then z = ° ' A ~ . . . A k ,
(d) (3b~Ev(P)) xA~...Ak_1bEVFS(P) & (b, Ak_~)~ind.

Proof. (1 ~ 2) : This follows from Theorem 6.4 and Lemma 6.5(c).
(201) : Let x = ° B ~ . . . Bin. From (2)(c) and from the fact that, by Theorem 5.5,

Bm~ maxenabled(Bl. . . Bin_l), we have y =OBj... BmA~... Ak. By (2)(d) we have
Ak_~ ~ maxenabled(xA1... Ak-2). Let A be such that A u Ak ~ maxenabled
(xA1. . . Ak-1). By (2)(b) we have

Z = xA1 . . . A k - I A k A ~ Z = D B 1 . . . BmA1 . . . A k - l A k U A .

Thus, by Theorem 6.1, VFS(P) # Pref(VMFS(P)). []

In the case of the example at the beginning of Section 3, for example, x = abd,
A1 = {b}, A2 = {c} satisfy condition (2) of Theorems 6.4, 6.6, and Lemma 6.5. Here
we have y = abdbc e VFS(P) (condition (2)(a) of Theorems 6.4, 6.6); A1 c~ A2=O
(Lemma 6.5(b)); A1 = {b} ~ maxenabled(x) = {{a, b}} (Lemma 6.5(a)); enabled(y) =
{{d}}, thus,

yet e VFS(P) & a e Ev(P) ~ a = d,

232 R. Janicki et aL

and (d ,{b ,c})~ind (condition (2)(b) of Theorems 6.4 and 6.6); AIA2 =
bc=°{b}{c}=AiA2 (condition (2)(c) of Theorems 6.4 and 6.6); xaeVFS(P) and
(a, A1 u (A2- {c})) = (a, b) e ind (condition (2)(d) of Theorem 6.4); xAla = abdba
VFS(P) and (a, A1)= (a, b)e ind (condition (2)(d) of Theorem 6.4 and Lemma
6.5(c)).

7. Simpler sufficient conditions

Theorems 6.1, 6.4, and 6.6 give us both necessary and sufficient conditions for
the equivalence of the semantics 'execute as possible' and 'execute as much as
possible in parallel'. In practice we are often satisfied by sufficient conditions for
the equality VFS(P) = Pref(VMFS(P)) (i.e., necessary conditions for the inequality
VFS(P)# Pref(VMFS(P))), but we need the conditions to be relatively easy to
verify. In particular, it would be useful to exhibit structural criteria (i.e., depending
on the static system description) instead of dynamic ones (i.e., depending on the
existence of some type of history).

In this section we shall prove some nice, but rather wide (for practical applica-
tions), sufficient conditions.

Theorem 7.1. I fVFS(P) ~ Pref(VMFS(P)), then there arex ~ VFS(P), a, b, c ~ Ev(P)
satisfying

(1) xab ~ VFS(P), x a c ~ VFS(P);
(2) a ~ b, (a, b)~ ind , (b, c)~ind, (a, c) ~ind.

Proof. Let us take x, A I , . . . , A k from the proof of Theorem 6.4. Since
A t . . . Ak =°A1 . . . Ak, if we take a ~ Ak-~ and b ~ Ak (from Lemma 6.5(b) it follows
that Ak-~ n Ak = 0), we have (a, b) ~ ind. From the proof of Theorem 6.4, we also
have xA~. . . Ak_~Ak-{b}ePref (VMFS(P)) (provided 1)= e), so that, by Lemma
6.3, there exists a C___ Ev(P) such that C ~ O, x A l . . . Ak_~Ak-{b}C ~ VFS(P),
A~uC~maxenab led(x) , (Vc~C) (C, A k - { b }) ~ i n d , and (V i = l , . . . , k - 1)
(Vc ~ C) (c, At) e ind. Let c ~ C. Suppose that (b, c) ~ ind. In such a case (c, Ak-~ w
Ak) e ind and xA~. . . Ak_~c ~ VFS(P), which contradicts Theorem 6.4(2)(b). Thus,
(b, c) ~ ind. Of course, (a, c) e ind since a e Ak-1. Let z = xA~. . . Ak-2Ak-1 -{a}; we
have zab~VFS(P) and zac~VFS(P). []

It may be noticed that the conditions of Theorem 7.1 correspond, in fact, in the
context of Petri nets, to a situation of asymmetric confusion (see [3, p. 526]) and
confusion is known to be connected to awkward problems (see [30]).

Various conditions formulated in [6, 12, 17] are now simple consequences of
Theorem 7.1.

Concurrent evolution of nonsequential systems 233

Corollary 7.2 ([6, 12])

VFS(P) # Pref(VMFS(P))

(3x E VFS(P)) (3a , b, c E Ev(P)) xab E VFS(P) & xac E VFS(P) & a

b& b # c & (a, c) E ind & (b, c) ~ ind.

Proof. Let x, a, b, c be as in Theorem 7.1. Note that (a, b)~ ind and (a, c)E ind
i m p l y b ~ c . []

Corollary 7.3
satisfying:

(1)
(2)
(3)

([17]). 2 I f VFS(P) # Pref (VMFS(P)) , then there are a, b, c E Ev(P)

a # b & (: l i) (: lx E FS(Pi)) xab E FS(P~),
b ~ c & (=lj)(:iy E FS(Pj)) yb E FS(Pj) & ycE FS(Pj),
(a, c) E ind & (::lz E VFS(P)) zacE VFS(P) .

Proof. The triple a, b, c from Theorem 7.1 satisfies (1), (2), (3). []

In the case of the example at the beginning of Section 3 e, b, c, a (in this order)
satisfy the fight-hand side of the implication in Theorem 7.1 (and Corollaries 7.2,
7.3, as well). The reverse of Theorem 7.1 (and Corollaries 7.2, 7.3) is not true. To
prove this, let us consider the following example:

P = path a; b; d end
path c, (b; d) end
path c, e; d end.

In this case, we have: V M F S (P) = (a c b d u a e b d) * , V F S (P) = (a c b d u a e b d) *
{e u a u a b u aebu c u a e u acbu e u ae}, so VFS(P) = Pref(VMFS(P)) , but e E

V M F S (P) , e a b E V F S (P) , eacEVFS(P) , (a, b) ~ i n d , (b, c)~ ind , (a, c) Eind, thus,
e, a, b, c satisfy the fight-hand side of the implication in Theorem 7.1.

From Theorem 7.1 it follows that i fVFS(P) # Pref(VMFS(P)) , then Ev(P) consists

of three elements at least. The simple example at the beginning of Section 3 has
Ev(P) = {a, b, c, d} and is not minimal. Here is probably the simplest one (Ev(P) =
{a,b,c}):

P = path a, b end
path c, b end.

Note that here, eb E VFS(P) - Pref(VMFS(P)) .
Let us now define the following relations on E v (P) x Ev(P):

• (a, b) E pre :<=~ (3 i) (3 x E FS(P,)) xab E FS(P~) & a # b;
• (a, b) E pre :¢~ a # b & (a, b) ~ ind & (3x E VFS(P)) xab E VFS(P) ;
• (a , b) E p r e l : ¢ ~ a # b & (a , b) ~ i n d & ((V i E r (a) n r (b)) (3 x E F S (P i)) xabE

FS(P,)) ;
• (a, b) E exc :¢:~ a # b & ((3 i) (3 x E FS(Pi) xa E FS(P~) & xb E FS(P~));

2 The proof in [17] of this corollary contains a serious error.

234 P,. Janicki et al.

• (a ,b)eexc :C~a#b & (a , b) ~ i n d & ((3 x e V F S (P)) xa~VFS(P) & xbe
VFS(P)) ;

• (a ,b)~exc l :C~a#b & (a , b) ~ i n d & ((Vi~r(a)c~r(b))(Vx~FS(Pi)) xa~
FS(P~) & xb~FS(Pi));

• (a, b) ~ con :¢:> (a, b) ~ ind & (Vx e VFS(P)) xab e VFS(P) .
In terms of Petri nets associated to P, the relations pre, pre, exc, exe and con

describe the simple situations shown in Fig. 4, where m denotes a marking reachable
from the initial marking and dashed lines denote context. Note that there are cases
where (a, b) e pre c~ exc (see the last example) !

Corollary 7.4
(1) prec_ prel _ pre.
(2) exc_c excl _ exc.
(3) con G ind.

Note that the relations: pre, prel , exc, excl , and ind can be described by analysing
P =/'1 . . . P~ on the syntax level only (i.e., by analysing express ions / ' 1 , . . . , P, treated
as strings of symbols or by analysing the graph of a Petri net associated to P).

Let PDTo(P), PDT1(P), PDT2(P), PDT3(P) ~ Ev(P) x Ev(P) x Ev(P) be the fol-
lowing relations: 3
* (a, b, c) e PDTo(P) :¢:> (a, b) e pre & (b, c) e exc & (a, c) s ind;
• (a, b, c) ~ PDT1(P) :¢* (a, b) ~ pre & (b, c) ~ exc & (a, c) ~ con;
• (a, b, c) e PDT2(P) :¢~ (a, b) e pre & (b, c) e exe & (a, c) ~ con;
• (a, b, c) ~ PDT3(P) :¢~ (a, b) e prel & (b, c) e excl & (a, c) e ind.
The name PDT is an abbreviation of Potentially Dangerous Triple.

Theorem 7.5

ff PDT (P)
PDTo(P) =O PDT2(P) =0 =:> VFS(P) = Pref(VMFS(P)).

PDT3(P) =0 '/7

Proof. The first four implications follows from Corollary 7.4. The last implication
is equivalent to Theorem 7.1, with the additional requirement that the same x may
be used for pre and con, and that xa may be used for x in exc. []

One may show that, in general, no implication from Theorem 7.5 may be replaced
by equivalence (although it may happen that for some subclasses we have some
equivalences). In particular, in the case of the example after Corollary 7.3, we have
(a, b, c) ~ PDT~(P), i = 0, 1, 2, 3 and VFS(P) = Pref (VMFS(P)) . Note that for i = 0
and i = 3 the verification of equality PDTi(P) = 0 can be done on the syntax level
only. Experiences of the first two authors show that the conditions PDT0(P)=0 ,

3 Because we now have stronger results, these PDTi, for i = 0, 1, 2, 3 differ slightly from the similar
concepts of [6, 12]. PDT1 defined above is equivalent to PDT of [17].

Concurrent evolution of nonsequential systems 235

(a,b)epre 4-~

(a,b)e2r ~ ~=~

(a,b)Eexc

(a, b) ~ ~x_?~

t i / #

m

! !

/

I I
I I

/

S
I !
I

m

(a,b)6con ~-~

....... o o m

/ X /

/ \ / \
,i \ I \

Fig. 4.

PDTI(P) =~, PDT3(P)=0 are sufficiently weak to have wide applications (for
instance, they may be applied to all examples from [15]).

It turns out that some special forms of the relations exc, excl, exc also guarantee
the equality VFS(P)= Pref(VMFS(P)).

Theorem 7.6

(1) [(Va, beEv(P))(a,b)~exc=:~r(a)=r(b)] ~ PDTo(P)=O.

(2) [(Va, beEv(P))(a,b)eexcl~r(a)=r(b)] ~ PDT3(P)=-O.

236 IL Janicki et aL

(3) [(Va, b e Ev(P)) (a, b) e exc=~r(a) = r(b)] :=> PDT2(P) = 0.

P r o o f . (1) Suppose (Va, b ~ E v (P)) (a, b) ~ e x c ~ r (a) = r(b) and (a, b, c) e
PDTo(P). This means that (a, b) ~ pre, (b, c) ~ exc, (a, c) ~ ind. But (a, b) ~ p r e ~
r(a) c~ r(b) # 0, (a, c) e ind ==> r(a) c~ r(c) = 0. On the other hand, (b, c) s exc ~ r(c) =
r(b), a contradiction. For (2) and (3), we proceed similarly. []

The full relationships among various conditions for the equality V F S (P) =
Pref (VMFS(P)) are given by the corollary below.

C o r o l l a r y 7.7

[(a, b) ~ e x c ~ r (a) = r(b)]

[(a, b) ~ e x c l ~ r (a) = r(b)]

[(a, b) ~ e x c ~ r (a) = r(b)]

the conditions ¢:>
of Theorem 6.1

PDTo(P) = 0

P D % (P) = 0

P D % (P) = 0

It
the conditions
of Theorem 7.1

6
VFS(P) = ef(VMFS(P))

the conditions
of Theorem 6.6.

PDT~ (P) = 0

the conditions
of Theorem 6.4

8 . C o n c l u s i o n

The results presented here enlighten somewhat the mixed structure of VFS and
VMFS and give some necessary and sufficient conditions for their equivalence.
Those conditions may be interpreted as an answer to the question: "When are the
two semantics of concurrent systems: 'execute as possible' and 'execute as much as
possible in parallel ' equivalent?".

Many problems are left open, however. Some of them are:
- Find fast algorithms to check if a couple of operations belongs to pre, pre, pre l ,

exg, eXC, e x c l , or con.

- Is it possible to refine the conditions in Theorems 6.1, 6.4, 6.6 and 7.17
- How large is the class of generalised paths where V F S (P) = Pref (VMFS(P))?
- If x e VFS(P) - Pref(VMFS(P)) , we may define VMFS(P, x) = {ylxM*y}; what

type of results may be obtained from there?

Concurrent evolution of nonsequential systems 237

All results of the paper may easily be translated into a language of labelled Petri
nets (instead of vector firing sequences, we can use Mazurkiewicz traces [21, 22],
occurrence nets [3, p. 527], or slightly modified subset languages [26]).

Acknowledgment

This work was begun when the authors (except M. Koutny) were in the Computing
Laboratory, University of Newcastle upon Tyne, United Kingdom. John Cotronis
contributed to the initial formulation of the problem considered. R. Janicki owes a
debt to Povl ViUumsen who organised his visit in Aalborg, which made it possible
to finish the paper. Finally, the authors would like to thank the anonymous referees
for his (or her) helpful comments.

References

[1] E. Best, Adequacy properties of path programs, Theoret. Comput. Sci. 18 (1982) 149-171.
[2] M. Blanchard et al., Le Grafcet, pour une repr6sentation normalis~e du cahier des charges d'un

automatisme logique, Automatique et Informatique lndustrielle 41-42 (1977).
[3] W. Brauer, ed., Applications and Theory of Petri Nets, Lecture Notes in Computer Science 84

(Spring.er, Berlin, 1980).
[4] W. Brauer, How to play the token game or difficulties in interpreting Place/Transition nets, Petri

Nets and Related System Models, Newsletter 16 (1984) 3-13.
[5] H.D. Burkhard, Ordered firing in Petri nets, Elektron. lnformationsverarb. Kybernet. 17(2, 3) (1981)

71-86.
[6] R. Devillers, On the maximally concurrent evolution of a COSY system, Rept. ASM/106, Computing

Laboratory, University of Newcastle upon Tyne, 1983.
[7] P. Enjalbert and M. Michel, Many-sorted temporal logic for multiprocesses systems, Lecture Notes

in Computer Science 176 (1984) 273-281.
[8] B.C. Hamshare, A computer based environment for the design and analysis of concurrent systems:

SIMULA implementation of the COSY notation, Proc. of the 11th Ann. Conf. of the Association of
Simula Users, Paris 1983.

[9] C.A.R. Hoare, Communicating Sequential Processes, in: R.H. McKeag and A.M. Macnaghten, eds.,
On the Construction of Programs (Cambridge University Press, London/New York, 1980) 229-254.

[10] R. Janicki, An equivalence notion for path expression systems, Elektron. lnformationsverarb. Kyber-
net. 21(6) (1985) 283-285.

[11] R. Janicki, Transforming sequential systems into concurrent systems, Theoret. Comput. Sci. 36 (1985)
27-58.

[12] R. Janicki, P.E. Lauer and R. Devillers, Maximally concurrent evolution of non-sequential systems,
Proc. 4th European Workshop on Applications and Theory of Petri Nets, Toulouse 1983, 188-202.

[13] K. Jensen et al., Petri net package: User's manual, Rept. DAIMI MD-46, Dept. of Computer
Science, Aarhus University, 1983.

[14] E. Knuth, Petri nets and trace languages, Proa 1st European Conf. on Parallel and Distributed
Processing, Pads 1979, 51-56.

[15] P.E. Lauer, Computer system dossiers, in: Y. Parker and J.P. Verjus, eds., Distributed Computing
Systems: Synchronisation, Control and Communication (Academic Press, New York/London, 1983)
109-148.

[16] P.E. Lauer, User's introduction to BCS, Rept. ASM/107, Computing Laboratory, University of
Newcastle upon Tyne, 1983.

238 R. Janicki et al.

[17] P.E. Lauer and R. Janicki, The role of maximally concurrent simulation in the computer based
analysis of distributed systems, Rept. ASM/96, Computing Laboratory, University of Newcastle
upon Tyne, 1982.

[18] P.E. Lauer, M.W. Shields and E. Best, Formal theory of the basic COSY notation, Tech. Rept.
TR-143, Computing Laboratory, University of Newcastle upon Tyne, 1979.

[19] P.E. Lauer, M.W. Shields and J.Y. Cotronis, Formal behavioural specifications of concurrent systems
without globality assumptions, Lecture Notes in Computer Science 107 (Springer, Berlin, 1981)
115-151.

[20] P.E. Lauer, P.R. Torrigiani and M.W. Shields, COSY: A system specification language based on
path expressions, Acta Inform. 12 (1979) 109-158.

[21] A. Mazurkiewicz, Concurrent Program Schemes and Their Interpretations, Rept. DAIMI PB-78,
Dept. of Computer Science, Aarhus University, 1977.

[22] A. Mazurkiewicz, Traces, histories, graphs: Instances of a process monoid, Lecture Notes in Computer
Science 176 (Springer, Berlin, 1984) 115-133.

[23] It. Milner, A Calculus for Communicating Systems, Lecture Notes in Computer Science 92 (Springer,
Berlin, 1980).

[24] B. Montel et al., OVIDE, a software package for the validation of systems represented by Petri Net
based models, Proc 4th European Workshop on Application and Theory of Petri Nets, Toulouse 1983,
229-308.

[25] J.L. Peterson, Petri nets, ACM Comput. Surveys 9(3) (1977) 223-252.
[26] G. Rozenberg and R. Verraedt, Subset languages of Petri nets, Informatik-Fachberichte 66 (Springer,

Berlin, 1983) 250-263.
[27] A. Salwicki and T. Mi~ldner, On algorithmic properties of concurrent programs, Lecture Notes in

Computer Science 125 (Springer, Berlin, 1981) 169-197.
[28] M.W. Shields, Adequate path expressions, Lecture Notes in Computer Science 70 (Springer, Berlin,

1979) 249-265.
[29] M.W. Shields, Non-sequential behaviour 1, Internal Rept. CSR-120-82, Dept. of Computer Science,

University of Edinburgh, 1982; short version in: Lecture Notes in Computer Science 167 (Springer,
Berlin, 1984) 229-239.

[30] M.W. Shields, On the non-sequential behaviour of systems possessing a generalised free-choice
property, Internal Rept. CSR-92-81, Dept. of Computer Science, University of Edinburgh, 1981.

[31] E. Szpilrajn, Sur l'extension de l'ordre partial, Fund. Math. 16 (1930) 386-389.

