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Most existing classification algorithms either consider all features as equally important (equal
weights), or do not analyze the consistency of weights assigned to features. When features are not
equally important, assigning consistent weights is not an obvious task. In general, we have two cases.
The first case assumes that a given sample of data does not contain any clues about the importance
of features, so the weights are provided by a pool of experts and they are usually inconsistent. The
second case assumes that the given sample contains some information about feature importance,
hence we can derive the weights directly from the sample. In this paper, we deal with both cases.
Pairwise comparisons and weighted support vector machines (SVMs) are used for the first case.
For the second case, a new approach based on the observation that the feature importance could be
determined by the discrimination power of features has been proposed. For the first case, we start with
pairwise comparisons to rank the importance of features, then we use distance-based inconsistency
reduction to refine the weight assessment and make the comparisons more precise. Next, we calculate
the weights through the fully consistent or almost consistent pairwise comparison tables. For the
second case, a novel concept of feature domain overlappings has been introduced. It can measure the
feature discrimination power. This model is based on the assumption that less overlapping means
more discriminatory ability, and this can be used to calculate weights characterizing the importance
of particular features. For both cases, weighted SVMs are used to classify the data. Both methods
have been tested using two benchmark datasets, Iris and Vertebral. The results were especially

superior to those obtained without weights.
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1. INTRODUCTION

Classification of multifeature objects has many practical
applications, and there are many well-known classification
methods. Some methods assume that all features are equally
important, other assign some weights to features.

Support vector machines (SVMs) were introduced by
Vapnik in 1995 [1], and provide a framework for many efficient
classification techniques. In principle, SVMs are supervised
learning models [2] with associated learning algorithms that
analyze data and recognize patterns, used for classification
and regression analysis. They can work with small training

sets, non-linear, high dimension learning problems and provide
stable classifiers with high accuracy. When feature weights are
added, we have weighted SVMs that have been proposed by
Suykens et al. 2002 [3] and later used extensively [4–6]. The
weights usually improve accuracy, especially for small training
sets [5].

When features are not equally important, assigning consis-
tent weights is not an obvious task. Weight assignment is a data
preprocessing task for classification and its importance should
not be underestimated [7]. In general, we have two cases. The
first case assumes that a given sample of data does not contain
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any clue about the importance of features, so the weights are
provided by a pool of experts and they are usually inconsistent.
The second case assumes that the given sample contains some
information about feature importance, hence we can derive the
weights directly from the sample.

In this paper, we deal with both cases. For the first case, we
will use pairwise comparisons paradigm.

The pairwise comparisons method is based on the
observation that it is much easier to rank the importance
of two objects than it is to rank the importance of several
objects. This very old idea goes back to Ramon Llull in
the end of XIII century. Its modern version is due to the
influential 1785 paper by Marquis de Condorcet, where he
used this method in an election process where voters rank
candidates based on their preferences, and the 1860 paper by
Fechner. However, it was Thurstone in 1927 and Saaty in 1977
who provided the mathematical foundations that allowed this
method to be effectively used in multicriteria decision making
and analysis (see [8–10] for detailed references). Moreover,
pairwise comparisons allow one to tackle the problem of
inconsistent weights which has been so far neglected in SVM-
based models.

In this paper, we start with pairwise comparisons to rank
the importance of the features, then we use distance-based
inconsistency reduction to refine the weight assessment and
make the comparisons more precise. As the next step, we
calculate the weights through the fully consistent or almost
consistent pairwise comparison tables.

The proposed solution to the second case is based on the
observation that feature importance could be determined by the
discriminatory power of features.

This solution starts with the introduction of the novel
concept of feature domain overlappings. This concept, also
influenced by pairwise comparisons, allows one to measure the
discriminatory power of a feature.

The basic idea is based on the observation that less over-
lapping means more discriminatory power and consequently
bigger weights. The technical problem is how to measure
this discriminatory power and how to derive the weight val-
ues from it. Our approach uses the pairwise comparisons
paradigm and fundamental properties of geometric and arith-
metic means [11–16].

When the weights have been calculated, either by pairwise
comparisons or feature domain overlappings, weighted SVMs
were used to classify the data. Both methods have been tested
using two benchmark datasets, Iris [17] and Vertebral [18].
The results were especially superior to these obtained without
weights.

This paper is a substantially extended and refined version
of [19]. In many parts, it is based on the results of Soudkhah’s
Master Thesis [20], however, it also contains entirely new
results that are neither in [20] nor [19], especially in Section 6.

The paper is structured as follows. In the next section,
we briefly discuss the basic ideas and techniques of

pairwise comparisons. SVMs and weighted SVMs are
presented in Section 3. Section 4 contains the results of the
weight assignment for the Iris and Vertebral datasets using
pairwise comparisons, while Section 5 shows the results of
classifications when the results from Section 4 were used.
Section 6 contains the main contribution of this paper, a novel
method of calculating weights by measuring the overlappings
of feature values. The classification results with weights
provided by overlappings are given and analyzed in Section 7.
Section 8 contains final comments.

2. PAIRWISE COMPARISONS METHOD

Let C1, . . . , Cn be a finite set of objects to be judged
and/or analyzed. These objects are usually called criteria,
alternatives, attributes, etc. In this paper, we will call
them features. The first step in pairwise comparisons is to
establish the relative preference or relationship of two features.
This relationship may be qualitative (relational) [8, 13] or
quantitative (numerical) [14, 21].

2.1. Quantitative model

A quantitative relationship between features Ci and C j is
represented by the number ai j . We assume ai j > 0 and
ai j = 1/a ji , for i, j = 1, . . . , n (which implies aii = 1
for all i). If ai j > 1, then Ci is more important (preferred,
better, etc.) than C j and ai j is a measure of this relationship
(bigger ai j implies bigger difference), if ai j = 1, then Ci

and C j are indifferent. The matrix of such relative comparison
coefficients, A = [ai j ]n×n , is called a pairwise comparison
matrix.

Since the features C1, . . . , Cn are not random (on the
contrary, they are usually carefully chosen and interrelated)
the values of ai j are not random, and they should be somehow
consistent.

A pairwise comparison matrix A = [ai j ]n×n is consis-
tent [21] if and only if

ai j a jk = aik, (1)

for i, j, k = 1, . . . , n. Saaty’s Theorem [21] states that a
pairwise comparison matrix A is consistent if and only if there
exist positive numbers w1, . . . , wn such that ai j = wi/w j ,
i, j = 1, . . . , n. The values wi are unique up to a multiplicative
constant. They are called weights, interpreted as a measure of
importance and often scaled to w1 + · · · + wn = 1 (or 100%).

In practice, the values ai j are very seldom consistent, so
some measurements of inconsistency are needed. Saaty [21]
proposed an inconsistency index based on the value of the
largest eigenvalue of A. However, this method does not give
any clue where most inconsistent values of A are located
[8, 14, 22], so we will not use it.

In [14], Koczkodaj provided an inconsistency index based
on the analysis of all triads ai j , a jk and aik from A = [ai j ]n×n .
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It is now called distance-based inconsistency and it is defined
as follows:

cm A = max
(i, j,k)

(
min

(∣∣∣∣1 − ai j

aikak j

∣∣∣∣ ,
∣∣∣∣1 − aikak j

ai j

∣∣∣∣
))

. (2)

In this case, the most inconsistent triad is localized, which
helps in the process of inconsistency reduction [22]. We will
use this index for our purposes in this paper.

Acceptable levels of inconsistency depend on the incon-
sistency index definition and particular interpretation of
C1, . . . , Cn . The acceptable values for the inconsistency index
based on the value of the largest eigenvalue [21] are differ-
ent from those for the distance-based consistency index cm A

used in this paper. The value of cm A is based on triad anal-
ysis, so taking this into account and using heuristics similar
to those used in statistics to justify P-values, it was argued
in [9, 14] that a threshold of 0.3 is a reasonable assumption if
no other factors are known. The results of the random experi-
ments in [23] also support this threshold. It is highly doubtful
that any threshold can ever be ‘set in stone’ as it represents our
level of ignorance (or lack of the precise knowledge) and as
such depends on the particular application [10, 14, 22].

Removing inconsistencies or lowering them to an acceptable
level is a kind of art when the eigenvalue-based inconsistency
index is used. When distance-based inconsistency index
(Equation (2)) is used, since the biggest ‘troublemakers’ are
localized, we can improve consistency step by step, by small
changes of values of the triple that results in the maximal
inconsistency index. It was proved in [9] that this process
converges. In most cases, it converges very fast initially, and
since there is no practical reason to continue decreasing the
inconsistency indicator to zero, a matrix with acceptable level
of inconsistency or even full consistency, can be found in a
small number of steps by following common sense heuristics.

There are several approaches for deriving a suitable
value wi from an inconsistent, but with acceptable level of
inconsistency, matrix A. Most often the weights w1, . . . , wn

are either defined as the principal eigenvector of the matrix A
(proposed in [21]), or as the geometric means of columns (or
equivalently, rows) of the matrix A, i.e.

wi = n

√√√√ n∏
j=1

ai j , (3)

for i = 1, . . . , n (proposed in [24]). Geometric means are
used in this paper since they are easier to calculate and
more intuitive in our opinion. For small values of cm A, the
differences between the two methods are negligible.

2.2. Qualitative pairwise comparisons

When mostly subjective judgment is involved, providing
quantitative relationships between two entities is usually

TABLE 1. Non-linear comparison scale proposed in [8].

Value and range of ai j Relation Definition of intensity or
Range Default value symbol Ri j importance (Ci vs. C j )

1.00–1.27 1 Ci ≈ C j Indifferent
1.28–1.94 1.6 Ci � C j Slightly in favor
1.95–3.17 2.6 Ci ⊃ C j In favor
3.18–6.14 4.7 Ci > C j Strongly better
6.15– 7.0 Ci � C j Extremely better

difficult and almost always controversial. It is not easy to
justify statements like ‘Ci is 1.5 times better than C j ’. It
is much more convincing and trustworthy just to provide a
qualitative assessment like ‘Ci is much better than C j ’ or ‘Ci

is only slightly better than C j ’, etc.
A comprehensive theory of qualitative pairwise comparisons

has been proposed in [13, 25]. Instead of numerical coefficients
ai j , the binary relations Ri j , denoted as ≈,�,⊂,< and ≺ and
are used. The interpretation of these relations is given in the
two right columns of Table 1.

The number of relations has been limited to five because
of the known restrictions of human mind1 when it comes to
subjective judgments [27, 28].

The relations ≈,�,⊂,<,≺,�,⊃,>,� are disjoint and
cover the all cases, i.e. for every Ci , C j we have Ci 	 C j

where 	 is one from ≈,�,⊂,<,≺,�,⊃,>,�. The relation
≈ is symmetric and includes identity. The relations �,⊃,>,�
are the inverses of �, ⊂,<,≺.

The model of [13, 25] considers two sets of such relations
Rd = {≈d ,�d ,⊂d ,<d ,≺d}, called ranking data, and Rs =
{≈s,�s,⊂s,<s,≺s}, called ranking system.

The ranking data Rd is created from expert reports, so no
reasonable consistency in any sense is expected, for example,
the case Ci < C j < Ck < Ci might happen. For Rd , the only
requirements are covering the whole space, disjointedness and
symmetry of ≈.

For the ranking system Rs, it is additionally assumed that
the relations2 ≺̂s =≺s, <̂s =≺s ∪ <s, ⊂̂s =≺s ∪ <s ∪ ⊂s

and �̂s =≺s ∪ <s ∪ ⊂s ∪ �s are partial orders, i.e.
irreflexive and transitive relations (cf. [29]). Quite often it is
also required the relation ≈s to be an equivalence relation, i.e.
�̂s is a weak order (see [13, 25, 29] for details).

Consistency in pairwise comparison-based models means
that the relationships of Ci vs. C j and C j vs. Ck influence
the relationship of Ci vs. Ck . For quantitative pairwise
comparisons, it is given by the formula ai j · a jk = aik .

For the qualitative ranking system Rs , the qualitative
consistency is defined by a set of axioms it must satisfy. The

1There are also some mathematical results supporting smaller scales [26].
2These relations are interpreted as follows: �̂s means at least slightly in

favor, ⊂̂s—at least in favor, etc.
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number of axioms is substantial (45 in the version of [25]) as
all combinations of all relational compositions must be taken
care of. We will not present these axioms in this paper, the full
set can easily be found in [8, 25], however, the idea on which
all those axioms are constructed is very simple:

composition of relations should be relatively continuous and must
not change preferences in a drastic way.

Consider the following composition of preferences:
a ≈ b ∧ b � c. What relationships between a and c are

consistent? Intuitively, a ≈ c and a � c are for sure consistent,
a ⊂ c is debatable, while a < c and a ≺ c are definitively
inconsistent. This reasoning leads to [25, Axiom 2.1]:

2.1 (a ≈ b∧b � c)∨ (a � b∧b ≈ c) =⇒ (a ≈ c∨a �
c ∨ a ⊂ c).

There are two efficient algorithms that start with arbitrary
ranking data Rd and derive consistent ranking systems
Rs [25].

2.3. ‘Mixed’ pairwise comparisons

In reality, when subjective judgments are involved, all pairwise
comparisons start with some qualitative judgments, however,
in most cases, this is not considered formally as a separate
step (cf. [10, 14, 21]). In this paper, we will explicitly consider
qualitative comparisons as a separate steps.

The following natural seven steps process has been used:

(1) Experts provide qualitative judgments using relations
from two right columns of Table 1 (see Table 2 as an
example).

(2) The results are verified for qualitative consistency. If
they are qualitatively inconsistent, they are corrected
(using an algorithm from [25], or just common sense)
and sent back to the experts.

(3) If the results are qualitatively consistent, the qualitative
judgments are transformed into quantitative values.

(4) If the pairwise comparisons matrix constructed in
Step (3) has an inconsistency index cm A that is too
large (Equation (2)), it is transformed into one with an
acceptable inconsistency index.

(5) The pairwise comparisons matrix is next transformed
into the qualitative matrix.

(6) Both the final qualitative and quantitative matrix are
sent back to the experts for an analysis.

(7) If the experts accept both matrices from Step (6),
the weights are calculated using geometric means
(Equation (3), otherwise we return to Step (1)).

Steps (3) and (5) are the most problematic, and likely they
will always be the most problematic. Our idea of qualitative–
quantitative relationship is based on the assumption that any
transformation in either way should preserve consistency.
The mutual relationship between quantitative and qualitative

TABLE 2. Iris dataset: initial qualitative judgments of mutual
relationship provided by experts.

Sepal Sepal Petal Petal
length width length width

Sepal length ≈ � < <

Sepal width � ≈ < ≺
Petal length > > ≈ �
Petal width > � � ≈
The relational symbols from Table 1 were used.

pairwise comparisons has been analyzed in [8], which provides
the following result.

Proposition 2.1 [8]. If the matrix [ai j ]n× is consistent and
each ai j is transformed into Ri j by using ranges from far
left column of Table 1, then the resulting set of relations is
consistent with respect to qualitative consistency of [25].

Proposition 2.1 can immediately be used in Step (5). A dual
theoretical result, that could immediately be used in Step (3)
does not exist yet, however, random tests have shown that
when the numbers from the two left columns of Table 1 are
used, a qualitatively consistent ranking system is transformed
into a pairwise comparisons matrix with an often acceptable
consistency index.

The default values in first four rows of Table 1 are middle
points of appropriate ranges, while the default value in the fifth
row is an educated guess. The default values are to be used
when no other data or information or ‘feelings’ are available.

3. SVMs AND WEIGHTED FEATURE SVMs

In principle, the SVMs method [1] separates data points via
hyperplanes for classification problems. Intuitively, a good
separation is achieved by the hyperplane that has the largest
distance to the nearest training data point of any class (so-
called functional margin), since in general the larger the margin
the lower the generalization error of the classifier.

Formally, we start with a two-class training set T =
{(x1, y1), . . . , (xk, yk)}, such that each xi ∈ R

n , where R

denotes real numbers, and each yi ∈ {−1,+1}. Each xi =
(xi1, . . . , xin) ∈ R

n is a vector of values of n different features.
We want to find the maximum-margin hyperplane, either linear
or non-linear, that divides the points having yi = −1 from
those having yi = +1. For all mathematical details regarding
these linear and non-linear optimization problems, we refer the
reader to [1, 6].

In the standard SVM method, it is assumed all the features
of training samples have equal contributions to construct the
optimal separating hyperplane. However, for certain real-world
data sets, some features may be more relevant than others. Such
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relevance is often modeled by adding appropriate weights and
assuming that bigger weight means bigger relevance. SVMs
with weighted features, or weighted feature SVMs (WFSVM)
have been proposed in [3] and analyzed, among others, in [5,
6]. In principle, given a dataset, the feature weighting methods
assign real-valued numbers to each feature of the dataset. The
bigger the number is, the more relevance its corresponding
feature possesses.

Let w = (w1, . . . , wn) be a vector of feature weights, each
wi is an indicator of the relative importance of the feature i for
the classification, i = 1, . . . , n.

The fundamental difference between SVMs and WFSVMs
is that in the latter case we use the vectors

yi = (w1xi1, . . . , wn xin) = diag(w) · xi ,

instead of the vectors xi alone, in all appropriate optimization
formulas (up to some slightly different but equivalent
formulations of optimization problem, see [5, 6, 30] for
details).

There are several methods that can be used to calculate the
weights vector (w1, . . . , wn). The most known are based on
the concepts of: values of deviations [5], degrees of standard
deviation [31] and Shannon’s information theory [6].

The problem with these methods is that they assume some
objective, unrelated to human judgment, relationships between
features that can be objectively measured (but perhaps with
errors). However, in many cases the importance of features
is based mainly on subjective judgments. For such cases,
the use of pairwise comparisons paradigm as described in
the previous section is probably more justified. This will be the
first approach discussed in this paper. The second one is
based on the observation that not all features have the same
discrimnatory power. We can measure this by analyzing feature
domain overlappings, and propose weights on the basis of such
analysis.

It is often assumed that all wi ≥ 0, and
∑n

i=1 wi = 1.
While scaling sum of weights to one (or 100%) displays
the importance of features in a very intuitive manner, it is
not always the best input for WFSVM algorithms. Due to
computation errors, too small and too big weights may result
in loss of accuracy. The optimal range of weights depends on
the nature of a problem and is often found by experiments and
heuristics (cf. [30]). Hence, two equivalent sets of weights are
often used, one scaled for the results presentation and another,
unscaled, for calculations.

Both SVMs and WFSVMs were originally designed for
binary classification. How to effectively extend them for
multiclass classification is still an on-going research issue. The
most popular methods are called one-against-all, one-against-
one and DAGSVM (cf. [32, 33]).

For all our calculations, we used the non-linear LibSVM
algorithm from [30] which uses one-against-one approach for
multiclass problem. In principle, the one-against-one approach

consists in constructing one SVM for each pair of classes.3

Thus, for a problem with n classes, n(n − 1)/2 SVMs are
trained to distinguish the samples of one class from the samples
of another class. The classification is then done according to
the maximum voting, where each SVM votes for one class
(see [32, 33] for details).

4. ASSIGNING WEIGHTS TO THE IRIS AND
VERTEBRAL DATASETS BY PAIRWISE
COMPARISONS

Two datasets Iris [17] and Vertebral [18] are used in this paper.
The Iris4 dataset consists of 150 samples belonging to

three classes : Setosa, 50 samples, Versicolor, 50 samples and
Virginica, 50 samples. The Setosa class is linearly separable
from the other two; the Versicolor and Virginica classes are not
linearly separable from each other.

Each sample has four features: Sepal width in cm, Sepal
length in cm, Petal width in cm and Petal length in cm.

The Vertebral5 is a biomedical dataset that consists of
310 samples. Each sample represents a patient by six
biomechanical attributes that were derived from the shape and
orientation of the pelvis, and lumbar spine: pelvic incidence
(PI), pelvic tilt (PT), lumbar lordosis angle (LLA), sacral
slope (SS), pelvic radius (PR) and grade of spondylolisthesis
(GOS).

Each sample belongs to one of the following three classes:
Disk Hernia, 60 samples, Spondylolisthesis, 150 samples and
Normal, 100 samples.

Tables 2–5 contain the numerical judgments for the mutual
relationship of Iris features and the weights derived from
those judgments, while Tables 6 and 7 contain the numerical
judgments for the mutual relationship of Vertebral features
and the weights derived from those judgments. In both cases,
we start with the initial judgments assigned by experts, who
have expertise in botany (for the Iris dataset), and medicine
and anatomy (for the Vertebral dataset). The experts followed
the suggestions given in Table 1. They started with qualitative
judgment (Table 2 for the Iris dataset and Table 8 for the
Vertebral dataset), then translated it into numerical scale using
the scale from Table 1 (Table 3 for Iris dataset and Table 6 for
Vertebral dataset).

In both cases, the initial judgments resulted in inconsistency
levels that were slightly too larger, larger than the traditional
acceptance level which is 0.3 (see Section 2.1). Then we
modified the elements of the appropriate pairwise comparisons
matrices to lower the inconsistency indexes cm A. In all cases,

3The one-against-one approach could also be seen as another instance of
the pairwise comparison paradigm.

4The Iris dataset, created by Fisher in 1936 [17], is the most famous dataset
to be found in the pattern recognition literature.

5The Vertebral dataset has been built by H. da Mota during a medical
residence period in the Group of Applied Research in Orthopaedics of the
Centre Médico-Chirurgical de Réadaptation des Massues, Lyon, France [18].
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TABLE 3. Iris dataset: initial quantitative judgments of mutual
relationship provided by experts when the initial values from
Table 1, and qualitative judgments from Table 2 were used.

Sepal Sepal Petal Petal
length width length width

Sepal length 1.0 1.6 1/4.7 1/4.7
Sepal width 1/1.6 1.0 1/4.7 1/7
Petal length 4.7 4.7 1.0 1/1.6
Petal width 4.7 7.0 1.6 1.0

Feature weights 0.5188 0.3713 1.9276 2.6936
Scaled weights 9.4% 6.7% 35.0% 48.9%

Inconsistency coefficient cm A = 0.38, >0.3

TABLE 4. Iris dataset: consistent matrix of pairwise
comparisons derived from Table 3.

Sepal Sepal Petal Petal
length width length width

Sepal length 1.0 1.61 1/2.9 1/4.65
Sepal width 1/1.61 1.0 1/4.65 1/7.5
Petal length 2.9 4.65 1.0 1/1.61
Petal width 4.65 7.5 1.61 1.0

Feature weights 0.5878 0.3653 1.7012 2.7174
Scaled weights 10.9% 6.8% 31.6% 50.8%

Inconsistency coefficient cm A = 0.0, i.e. matrix is consistent

TABLE 5. Iris dataset: final qualitative judgments of mutual
relationship derived from Table 4 using ranges from Table 1.

Sepal Sepal Petal Petal
length width length width

Sepal length ≈ � ⊂ <

Sepal width � ≈ < ≺
Petal length ⊃ > ≈ �
Petal width > � � ≈
The gray color indicates the difference from Table 2.

we used Equation (2) to calculate cm A and in all cases we
ended with cm A = 0, i.e. full consistency. The weights were
then calculated using the geometric means.

For the Iris dataset, the final matrix of qualitative judgments
(Table 5) differs from the initial one (Table 2). Our experts
were contacted and they accepted the final qualitative
judgments. In Table tab5, the ratio of Petal length to Sepal
length is 2.9, close to the border between the relation ⊃ and
the relation > according to Table 1, but the values in Table 1
are not set in stone, they should only be considered as reliable
suggestions.

TABLE 6. Vertebral dataset: initial quantitative judgments of
mutual relationship provided by experts when the initial values
from Table 1, and qualitative judgments from Table 8 were used.

PI PT LLA SS PR GOS

PI 1 1/2.6 1/2.6 1/4.7 1/4.7 1/7
PT 2.6 1 1 1/1.6 1/1.6 1/4.7
LLA 2.6 1 1 1/1.6 1/1.6 1/4.7
SS 4.7 1.6 1.6 1 1 1/2.6
PR 4.7 1.6 1.6 1 1 1/2.6
GOS 7 4.7 4.7 2.6 2.6 1

Feature weights 0.3139 0.7747 0.7747 1.2909 1.2909 3.1857
Scaled weights 3.5% 9.9% 9.6% 16.2% 16.4% 44.4%

Inconsistency coefficient cm A = 0.43, >0.3

TABLE 7. Vertebral dataset: consistent matrix of pairwise compar-
isons derived from Table 6.

PI PT LLA SS PR GOS

PI 1 1/2.8 1/2.8 1/4.76 1/4.33 1/13.45
PT 2.8 1 1 1/1.7 1/1.55 1/4.8
LLA 2.8 1 1 1/1.7 1/1.55 1/4.8
SS 4.76 1.7 1.7 1 1 1.1/2.82
PR 4.33 1.55 1.55 1/1.1 1 1/3.1
GOS 13.45 4.8 4.8 2.82 3.1 1

Feature
weights

0.2678 0.8304 0.7558 1.2857 1.2857 3.5991

Scaled
weights

3.3% 10.3% 9.4% 16.0% 16.0% 44.9%

Inconsistency coefficient cm A = 0, i.e. matrix is fully consistent

The table of qualitative judgments derived from this table is exactly
the same as Table 8.

5. CLASSIFICATION OF IRIS AND VERTEBRAL
DATASETS WITH WEIGHTS OBTAINED BY
PAIRWISE COMPARISONS

The results of applying both SVM and WFSVM procedures
(non-linear LibSVM algorithm from [30]) for the Iris and
Vertebral Datasets are presented in Tables 9 and 10. All tables
have the same structure. We start with a small set of training
samples to evaluate abilities of learning with small training
sets. The division of samples into training and testing sets
was always done randomly. All test samples were completely
independent of training sets. Number of support vectors (SVs)
indicates the classification complexity, as it is proportional to
the number of SVs.

The accuracy is defined as ncc/nts where ncc is the number
of correct classifications while nts is the total number of test
samples.

For both the Iris and Vertebral datasets, weights significantly
decreased the number of SVs, for training sets of all sizes.
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Pairwise Comparisons, SVMs and Feature Domain Overlapping 7

For the Iris dataset, the weights also substantially increased the
accuracy but only for small training sets, while for the Vertebral
dataset the accuracy was increased for all sizes of training
sets. For both datasets, there was not much difference between
fully consistent weights and weights with an inconsistency

TABLE 8. Vertebral dataset: initial qualitative judgments of mutual
relationship provided by experts.

PI PT LLA SS PR GOS

Pelvic incidence = PI ≈ ⊂ ⊂ < < ≺
Pelvic tilt = PT ⊃ ≈ ≈ � � <

Lumbar lordosis angle = LLA ⊃ ≈ ≈ � � <

Sacral slope = SS > � � ≈ ≈ ⊂
Pelvic radius = PR > � � ≈ ≈ ⊂
Grade of spondylolisthesis = GOS � > > ⊃ ⊃ ≈
The relational symbols from Table 1 were used.

index that was slightly too large. This could be due to the fact
that the threshold for this index is not set in stone. We used
0.3, as recommended in [9, 14, 23] for cases where no other
information is given, however, there are known cases where
even 0.5 may give reasonable results, and in our case the initial
inconsistency indexes were 0.38 for the Iris dataset and 0.43
for the Vertebral dataset, so the similarity of results was not
entirely unexpected.

Summing up, using the weights provided by pairwise
comparisons has improved accuracy, especially for small
training sets, and decreased the number of SVs.

6. CALCULATING WEIGHTS WITH OVERLAPPING
OF FEATURE VALUES

In this section, we will present a new method for assigning
weights to features, by analyzing and measuring their
discriminatory power. The method will employ the ideas

TABLE 9. Classification results for Iris dataset.

Weights from Weights from
Samples Without weights Table 3, cm A = 0.38 Table 4, cm A = 0

Train. Test. No. SV Acc. % No. SV Acc. % No. SV Acc. %

15 135 14 94.1 9 96.3 9 95.6
30 120 17 94.2 16 96.7 16 97.5
45 105 24 96.2 19 97.1 18 97.1
60 90 26 94.4 21 95.6 23 95.6
75 75 31 93.3 25 96.0 24 96.0
90 60 34 98.3 26 96.7 26 96.7

105 45 39 97.8 27 97.8 28 97.8
120 30 42 96.7 30 96.7 31 96.7
135 15 44 100.0 31 100.0 36 100.0

Averages 30.1 96.1 22.7 97.0 23.4 97.0

Gray cells indicate significantly better results (weights vs. no weights).

TABLE 10. Classification results for Vertebral dataset.

Weights from Weights from
Samples Without weights Table 3, cm A = 0.43 Table 4, cm A = 0.0

Train. Test. No. SV Acc. % No. SV Acc. % No. SV Acc. %

30 280 28 67.5 28 75.7 28 75.4
60 250 51 71.2 47 80.0 47 79.2
90 220 72 76.8 61 82.7 61 82.7

120 190 92 80.0 79 84.2 79 85.3
150 160 107 78.8 89 86.3 89 86.3
180 130 130 75.4 102 80.8 102 81.5
210 100 139 85.0 112 91.0 112 93.0
240 70 153 88.6 120 92.9 120 92.3
270 40 162 85.0 126 92.5 126 92.5

Averages 103.8 78.7 84.9 85.1 84.9 85.4

Gray cells indicate significantly better results (weights vs. no weights).
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8 R. Janicki and M.H. Soudkhah

of pairwise comparisons [13] and fundamental properties of
modeling with arithmetic and geometric means [11, 12, 15, 16].

In what follows, we will use the following notation. By R,

we will denote the set of all real numbers, by N the set of all
natural numbers and by |A| the cardinality of a set A. We will
write 〈i1, . . . , im〉 to denote the set {i1, . . . , im} ⊆ N, such that
is ≤ ir ⇐⇒ s ≤ r for all is, ir ∈ {i1, . . . , im}.

We will also write

〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jl〉
if {i1, . . . , im} ⊆ { j1, . . . , jl}, is ≤ ir ⇐⇒ s ≤ r for
all is, ir ∈ {i1, . . . , im}, and js ≤ jr ⇐⇒ s ≤ r for all
js, ir ∈ { j1, . . . , jm}.

For example, 〈2, 4, 6〉 ⊆ 〈1, 2, 3, 4, 5, 6〉, 〈3, 5〉 ⊆
〈2, 3, 5, 8〉, etc.

For every p ∈ N, the Cartesian product R
p can be written as

R
p = R1 × · · · × Rp, where Ri = R for i = 1, . . . , p. Such

notation allows us to state explicitly that a value x belongs
to the i th dimension of R

p, just by writing x ∈ Ri . It also
allows us to describe precisely any particular subproduct of
R

p, namely for every 〈i1, . . . , im〉 ⊆ 〈1, . . . , p〉 we will define
R

〈i1,...,im 〉 as

R
〈i1,...,im 〉 = Ri1 × · · · × Rim ,

where Ri j = R for j = 1, . . . , m.
We can now define the standard projection on the set of

dimensions 〈i1, . . . , im〉 ⊆ 〈1, . . . , p〉 as a mapping πi1i2,...,im :
R

p → R
〈i1,...,im 〉 such that for any z = (z1, . . . , z p) ∈ R

p:

πi1,...,im ((z1, . . . , z p)) = (zi1 , . . . , zim ) ∈ R
〈i1,...,im 〉.

Suppose that we have a sample of n vectors S =
{x1, . . . , xn}, p features F1, . . . , Fp (so xi ∈ R

p for each i =
1, . . . , n), and k groups G1, . . . , Gk such that S = G1∪· · ·∪Gk

and Gi ∩ G j = ∅ if i �= j .
The main motivation for the approach presented in this

section is the observation that not all the features play
the same role in the partition of S into G1, . . . , Gk ,
some features have more discriminatory power than others.
The more discriminatory power a feature has the more
important this feature is. If, for example, there is a
feature Fi0 such that πi0(Gr ) ∩ πi0(Gt ) = ∅ if r �=
t , then the feature Fi0 alone is sufficient to construct
the partition G1, . . . , Gk of S. For example, if S =
{(1, 2, 2), (1, 2, 3), (3, 2, 3), (2, 2, 3), (2, 2, 4)} ∈ R

3, G1 =
{(1, 2, 2), (1, 2, 3)} and G2 = {(3, 2, 3), (2, 2, 3), (2, 2, 4)},
the feature F1 provides enough information to divide S into G1
and G2. We have here π1(G1) = {1} and π1(G2) = {2, 3}, so if
π1(x) = 1, then x ∈ G1, and if π1(x) ∈ {2, 3}, then x ∈ G2. A
less abstract and more realistic example is given in the bottom
part of Fig. 1 where we can see very little overlapping for
feature Petal in the Iris dataset.

Nevertheless having plenty of overlapping for each partic-
ular dimension does not necessarily imply huge overlapping

when two (or more) dimensions are considered together. This
is illustrated in Fig. 2 where each dimension has almost 100%
overlapping, but the 2D overlapping is rather very small.

We will provide some measures of feature importance based
on their discriminatory power.

One problem with projections is that often for different x
and y we have πi1,...,im (x) = πi1,...,im (y), but we still want to
remember that these identical projections came from different
sources.

Let Fi1 , . . . , Fim be a subset of features F1, . . . , Fp. For
every x = (xi1 , . . . , xim ) ∈ R

〈i1,...,im 〉 and every A ⊆ R
n ,

define a set Ci1,...,im (x, A) and an index ci1,...,im (x, A) as

Ci1,...,im (x, A) = {y ∈ A | πik (y) = xik , k = 1, . . . , m}, (4)

ci1,...,im (x, A) = |Ci1,...,im (x, A)|. (5)

The set Ci1,...,im (x, A) is the set of all x in A with their
i j th coordinate equal to xi j , while the index ci1,...,im (x, A)

simply states how many x in A has the i j th coordinate equal
to xi j . For example, for A = {(1, 2, 2), (1, 2, 3), (3, 2, 3),

(2, 2, 3), (2, 2, 4)} ⊂ R
3, we have C1,2((1, 2), A) = {(1, 2, 2),

(1, 2, 3)} so c1,2((1, 2), A) = 2, while C2,3((1, 2), A) =
{(1, 2, 3), (3, 2, 3), (2, 2, 3)} so c2,3((2, 3), A) = 3.

The below result shows expected monotonicity of the index
ci1,...,im (x, A).

Fact 6.1. If 〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jl〉 and x ∈ R
p, then

ci1,...,im (πi1,...,im (x), A) ≥ c j1,..., jl (π j1,..., jl (x), A).

Proof. Since C j1,..., jl (x, A) ⊆ Ci1,...,im (x, A).

We extend the index ci1,...,im to sets as follows, for each
B ⊆ R

〈i1,...,im 〉:

ci1,...,im (B, A) =
∑
x∈B

ci1,...,im (x, A).

For A as above and B = {(1, 2), (2, 2)} ⊆ R
(1,2), we have

c1,2(B, A) = 4, as c1,2((1, 2), A) = 2 and c1,2((2, 2), A) = 2.
For two different groups Gr and Gt , we define

c(r t)r
i1,...,im

= ci1,...,im (πi1,...,im (Gr ) ∩ πi1,...,im (Gt ), Gr ), (6)

c(r t)t
i1,...,im

= ci1,...,im (πi1,...,im (Gr ) ∩ πi1,...,im (Gt ), Gt ). (7)

The index c(r t)r
i1,...,im

indicates how many elements of the group

Gr have exactly the same values in R
〈i1,...,im 〉 as the elements of

the group Gt . Similarly, for the index c(r t)t
i1,...,im

. For example, if
G1 = {(1, 2, 1), (1, 2, 2), (1, 2, 3), (2, 2, 4), (1, 3, 2), (2, 3, 4)}
and G2 = {(1, 2, 4), (1, 3, 5), (2, 2, 3), (2, 2, 4), (1, 4, 3)},
then we have π(1,2)(Gr ) ∩ π(1,2)(Gt ) = {(1, 2), (2, 2)} and

c(1,2)1
(1,2) = 4, c(1,2)2

(1,2) = 3.
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Pairwise Comparisons, SVMs and Feature Domain Overlapping 9

FIGURE 1. Distributions of Sepal width (top) and Petal width (bottom) datasets. Plenty of overlapping for Sepal and little for Petal. Distributions
for Sepal and Petal lengths are structurally similar.

The basic properties of c(r t)r
i1,...,im

are the following.

Proposition 6.1. (1) If 〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jl〉, then
c(r t)r

i1,...,im
≥ c(r t)r

j1,..., jl
.

(2) c(r t)r
i1,...,im

= 0 ⇐⇒ c(r t)t
i1,...,im

= 0.

Proof. (1) Directly from Fact 6.1.
(2) If πi1,...,im (Gr ) ∩ πi1,...,im (Gt ) = ∅, then clearly

c(r t)r
i1,...,im

= c(r t)t
i1,...,im

= 0. Suppose that x ∈
πi1,...,im (Gr ) ∩ πi1,...,im (Gt ). From Equations (6)
and (7), we immediately have c(r t)r

i1,...,im
≥ 1 and

c(r t)t
i1,...,im

≥ 1.

If c(r t)r
i1,...,im

�= 0, then there is no relationship between the

values of c(r t)r
i1,...,im

and c(r t)t
i1,...,im

, and the difference between them
can be arbitrary.

The mutual overlapping of Gr and Gt over the subdomain
R

〈i1,...,im 〉 is defined as

overlapr t
i1,...,im

=
√

c(r t)r
i1,...,im

|Gr | · c(r t)t
i1,...,im

|Gt | . (8)

The above equation, which is a geometric mean, is based on
the pairwise comparisons paradigm. It measures the mutual
overlapping of the groups Gr and Gt , over the space R

(i1,...,im ),
and is used as a base for other calculations. For the G1 and G2

above, overlap1,2
(1,2) =

√
4
6 · 3

5 = 0.6325.

Why geometric mean? Mainly because we want the smaller
of c(r t)r

i1,...,im
/|Gr | and c(r t)s

i1,...,im
/|Gt | to be the dominant factor.

In particular, we want the value of overlapr t
i1,...,im

to be close

to zero if either of c(r t)r
i1,...,im

/|Gr | and c(r t)s
i1,...,im

/|Gt | is close to
zero. The below result shows that the geometric mean has this
property.
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10 R. Janicki and M.H. Soudkhah

FIGURE 2. Example of overlapping in two dimensions. Both
dimensions have almost 100% overlapping, but 2D overlapping is
small.

Proposition 6.2. If 0 < ε < a ≤ b, then

√
ab −

√
(a − ε)b >

√
a(b + ε) −

√
ab.

Proof. First note that ab + √
ab(a − ε)(b + ε) > 0 while

(a − b)ε ≤ 0. Hence,

2ab + 2
√

ab(a − ε)(b + ε) > aε − bε ⇐⇒
2
√

ab >
√

a(b + ε) −
√

(a − ε)b ⇐⇒√
ab −

√
(a − ε)b >

√
a(b + ε) −

√
ab.

Proposition 6.2 simply states that decrementing the smaller
value changes the geometric mean more than the same
increment to the bigger value (see also [11, 12, 16] for more
arguments).

Note also that 0 ≤ overlapr t
i1,...,im

≤ 1 and overlapr t
1,...,p = 0

for all distinct Gr and Gt.
The value of overlapr t

i1,...,im
is some measure of overlapping

between a pair Gr and Gt . In the spirit of the pairwise
comparisons paradigm, we will derive a measure of the
mutual overlappings for the features Fi1, . . . , Fim , denoted by
overlapi1,...,im

, from overlapr t
i1,...,im

for all pairs r and t . Since
the value of overlapi1,...,im

is a measure of central tendency of
all overlapr t

i1,...,im
, we will use the arithmetic mean to measure

it (cf. [11, 12] and especially [15]).

Formally, we define overlapi1,...,im
as

overlapi1,...,im
= 1(p

2

) r,t=1,...,p∑
r>t

overlapr t
i1,...,im

. (9)

We always have 0 ≤ overlapi1,...,im
≤ 1 and the smaller

the value of overlapi1,...,im
is the more important the subset

Fi1, . . . , Fim of features is.
The proposition below shows that overlapi1,...,im

is
monotone with respect to 〈i1, . . . , im〉.

Proposition 6.3. If 〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jl〉, then

overlapi1,...,im
≥ overlap j1,..., jl .

Proof. From Proposition 6.1(1), we have c(r t)r
i1,...,im

≥ c(r t)r
j1,..., jl

for all r, t , so consequently overlapr t
i1,...,im

≥ overlapr t
j1,..., jl ,

and overlapi1,...,im
≥ overlap j1,..., jl .

From Proposition 6.3, it follows that if overlapi1,...,im
= 0,

then for each 〈 j1, . . . , jl〉, if 〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jl〉, then
overlap j1,..., jl = 0.

For a given feature Fi , the measure of its complete m-
dimensional overlapping is again a measure of central tendency
of all different overlapi1,...,im

such that i ∈ {i1, . . . , im}, so it
is defined as the following arithmetic mean:

overlap(m)
i = 1( p−1

m−1

) 〈i1,...,im 〉⊆〈1,...,p〉∑
i∈{i1,...,im }

overlapi1,...,im
. (10)

Since overlapr t
1···p = 0, if r �= t , we have overlap(p)

i = 0 for
all i = 1, . . . , p.

Moreover, overlap(m)
i is also monotone with respect to the

number of dimensions m.

Proposition 6.4. For all i = 1, . . . , p and m, m′ =
1, . . . , n − 1, if m′ > m, then:

overlap(m)
i ≥ overlap(m′)

i .

Proof. Due to the transitivity of the relation ≥ and the fact
that m, m′ ∈ N, it suffices to show that overlap(m)

i ≥
overlap(m+1)

i , for m ≥ 1. First note that if i ∈ {i1, . . . , im}
and 〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jm, jm+1〉 ⊆ 〈1, . . . , p〉, then:
|{〈 j1, . . . , jm+1〉 | 〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jm+1〉}| = p − m,
and |{〈i1, . . . , im〉 | 〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jm+1〉}| = m.
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Pairwise Comparisons, SVMs and Feature Domain Overlapping 11

Define

SUM (i)
〈i1,...,im 〉 =

〈i1,...,im 〉⊆〈1,...,p〉∑
i∈{i1,...,im }

overlapi1,...,im

and

SUM (i)
〈 j1,..., jm+1〉 =

〈 j1,..., jm+1〉⊆〈1,...,p〉∑
i∈{ j1,..., jm+1}

overlap j1,..., jm+1
.

By Proposition 6.4, overlapi1,...,im
≥ overlap j1,..., jm+1

, so

(p − m)overlapi1,...,im
≥

∑
seqi ⊆seq j

overlap j1,..., jm+1
,

where seqi = 〈i1, . . . , im〉 and seq j = 〈 j1, . . . , jm+1〉 and

(p − m) · SUM (i)
〈i1,...,im 〉 ≥ m · SUM (i)

〈 j1,..., jm+1〉.

Hence,

1( p−1
m−1

)SUM (i)
〈i1,...,im 〉 ≥ m( p−1

m−1

)
(p − m)

SUM (i)
〈 j1,..., jm+1〉.

But m
( p−1

m−1)(p−m)
= 1

(p−1
m )

, so

1( p−1
m−1

)SUM (i)
〈i1,...,im 〉 ≥ 1(p−1

m

)SUM (i)
〈 j1,..., jm+1〉,

which is equivalent to overlap(m)
i ≥ overlap(m+1)

i .

One consequence of Proposition 6.4 is that if overlap(m)
i =

0 for some m, then overlap(m′)
i = 0 for all m′ > m. Quite often

overlap(1)
i � 1.0 for some i , and usually overlap(m)

i � 0.0 for
bigger m. The latter is expected also due to Proposition 6.4.

The total measure of the overlapping of the feature Fi over
all subdomains of R

p is given by the following formula:

OVERLAPi =
p−1∑
j=1

overlap( j)
i

j
. (11)

The value of OVERLAPi is the weighted sum of all overlap( j)
i ,

and the j th weight is equal to 1/j .

The motivation for this value is the following. Assume that
〈i1, . . . , im〉 ⊆ 〈 j1, . . . , jl〉 and x, y ∈ R

n . If for all r =
1, . . . , l, π jr (x) = π jr (y), then clearly πis (x) = πis (y) for
all s = 1, . . . , m. Formally, this is expressed by the property
C j1,..., jl (x, A) ⊆ Ci1,...,im (x, A) that was used in the proof
of Fact 6.1. It also means that if m < j , the values of
overlap(m)

i and overlap( j)
i are not independent, the elements

that are used to calculate the value of overlap(m)
i are also used

to calculate the value of overlap( j)
i . Moreover, bigger values of

overlap(m)
i imply bigger values of overlap( j)

i , for all j > m.
This phenomenon is illustrated in Fig. 2 where all points of 2D
overlapping are also the points of both 1D overlappings. This
kind of redundancy can be avoided, for example, by defining

Ĉseq(x, A) = Cseq(x, A) \
⋃

seq⊆seq ′
Cseq ′(x, A),

for every seq = 〈i1, . . . , im〉, and then using Ĉseq(x, A)

instead of Cseq(x, A) in the definition of cseq(x, A) (Equation
(5)). However, such an approach assumes that overlapping (or
rather lack of it) over m dimensions has the same importance as
overlapping over k, where k < m, dimensions; including k = 1
and k = 2. Our general assumptions are just the opposite, a low
number of dimensions overlapping is more important as lack of
overlap (or a small amount) makes considering bigger numbers
unnecessary.

Summing up, allowing this kind of redundancy and then
compensating for it seems to be a better approach. The weight
1/j is used to compensate for this redundancy. It takes into
account Proposition 6.3 and an observation that in most cases
the 1D overlappings are the most influential. The weights
1/j are an estimation based on heuristics and experiments.
We believe a possible generic formula can be formulated as
follows:

OVERLAPi =
p−1∑
j=1

φ( j) · overlap( j)
i , (12)

where φ( j) ∈ 〈0, 1〉, φ(1) = 1 and φ( j) is decreasing,
however, the exact formulas for φ( j) are unknown and it

TABLE 11. Weights of features for Iris dataset calculated with overlapping method.

Sepal Sepal Sepal Petal Petal Petal
length width L. + W. length width L. + W.

Experts (initial) 9.4% 6.7% 16.1% 35% 48.9% 83.9%
Pairwise comparisons 10.9% 6.8% 17.7% 31.6% 50.8% 82.4%
Overlapping (1D) 9.1% 6.5% 15.6% 42.7% 41.7% 84.4%
Overlapping (1D and 2D) 9.7% 7.1% 16.8% 41.4% 41.7% 83.1%
Overlapping (1D, 2D and 3D) 10.0% 7.4% 17.4% 40.5% 42.1% 82.6%
Overlapping unscaled 1.5802 1.1636 2.7438 6.4129 6.6590 13.0719
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12 R. Janicki and M.H. Soudkhah

TABLE 12. Iris dataset: final qualitative judgments of mutual
relationship derived from the bottom raw of Table 11 using ranges
from Table 1.

Sepal length Sepal width Petal length Petal width

Sepal length ≈ � < (⊂) <

Sepal width � ≈ < ≺
Petal length > (⊃) > ≈ ≈ (�)

Petal width > � ≈ (�) ≈
The gray color indicates a difference from Table 5, and values from
Table 5 are in parenthesis.

is not obvious how they could be derived. Since usually
overlap( j)

i � 0.0 for bigger j , only the first few values
of α j are important and the values of φ( j) are irrelevant
for bigger j . One very simple heuristic is that the elements
used to calculate overlap(m)

i have also been used to calculate

overlap(1)
i , . . . , overlap(m−1)

i . We do not have any formal
proof that this relationship can be approximated by a linear
formula, but an analysis of more than one hundred random
examples has shown that φ( j) = 1/j is a reasonably good
estimation of overlapping redundancy.6

Note also that if overlap(1)
i = 0, then OVERLAPi = 0 too,

for all i = 1, . . . , p.
The smaller OVERLAPi the more discrimination ability the

feature Fi has. Moreover, if OVERLAPi = 0, then the feature
Fi alone defines the partition G1, . . . , Gk of S.

Hence, the formula for weights should emphasize the
importance of small values of OVERLAPi and it also should
treat separately the case of OVERLAPi = 0.

Taking all the above arguments into account, we define the
weight wi , the measure the importance of Fi as

wi = 1

OVERLAPi
(13)

if overlapi
(1) > ε, for all i = 1, . . . , p − 1, where ε > 0 is

some approximation of zero.
If there is i0 such that overlapi0

(1) ≤ ε, which is interpreted
as overlapi0

(1) = 0, then the feature Fi0 alone defines the
partition G1, . . . , Gk of S. Hence, wi0 = 1 and wi = 0
otherwise. If there is more than one such i0, we pick one
randomly, as it does not matter which one we choose for
separation calculations.

We may not always want to use all subdomains of R
p, so it

is useful to define

OVERLAPi
(l) =

l∑
j=1

overlap( j)
i

j
, (14)

6The fact that
∑∞

i=1 1/ i = ∞ is not a problem as the number of features,
i.e. p, is relatively small.
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w
(l)
i = 1

OVERLAPi
(l)

, (15)

for all l = 1, . . . , p − 1. In most cases, we expect
OVERLAPi

(l)
� OVERLAPi = OVERLAPi

(p−1) for bigger
l, so in such cases we can stop calculations earlier.

Most of the SVM procedures, including LibSVM (cf. [30]),
cannot separate the points that are very close, so we have to
include this factor in our weight calculation. To tackle this
problem, for each dimension i , i = 1, . . . , p we introduce
a discriminator di , and for each x = (x1, . . . , x p) ∈ R

p,
we round each xi to the nearest value of l · di for some l.
Formally, we calculate x̂i = li

0 · di , where li
0 is such that

for each l, |li
0 · di | ≤ |l · di |. Then we just replace x by

x̂ = (x̂1, . . . , x̂ p). For the calculations made for this paper,
di was set as half of the mode of the distances of the values
of samples of the set S belonging to the dimension R

(i). We
did this only for calculating weights, not for segregation using
LibSVM procedures.

7. ANALYSIS OF IRIS AND VERTEBRAL DATASETS
WITH OVERLAPPINGS

The method described above was applied to both the Iris
and Vertebral datasets. The results for the Iris dataset are
presented in Tables 11–13. Table 11 gives weights calculated
by the three methods discussed in this paper, pure expert
judgments, expert judgments refined by pairwise comparisons
and measurements of overlapping—using one, two and finally
all three dimensions (as in this case p−1 = 3). Table 12 shows
qualitative judgments provided by overlappings.

While for Sepal the weights, i.e. external importance,
are close for all three methods, for Petal, even though its
total for both length and width is also close for all three
methods, the distribution between length and width is different
for overlapping than for pairwise comparisons. The experts
recommended Petal Length � Petal Width, the pairwise
comparison refinement preserved this relationship (slightly
enhancing the importance of width), but the overlapping
method produced the relationship Petal Length ≈ Petal Width.
Moreover, the experts initially recommended Petal Length >

Sepal Length, consistency analysis for pairwise comparisons

changed it to Petal Length ⊃ Sepal Length, but overlappings
suggest again Petal Length > Sepal Length.

Figure 1 illustrates overlapping of Sepal width and Petal
width. One can see plenty of overlapping for Sepal width and
very little for Petal width, which is reflected in the values of
weights calculated by overlapping (3D): 7.4% for Sepal width
and 42.1% for Petal width.

Table 13 gives the classification results. Assigning weights
by overlapping resulted in significantly better accuracy than
the remaining methods, while the number of SVs was similar
to that for pairwise comparisons. In this case, the values of
overlap(1)

i , i = 1, 2, 3, 4, are dominant. This could just be a
property of the Iris dataset, however, we expect the values of
overlap( j)

i to be often (but not always!) negligible for bigger j
(see Proposition 6.4).

The results for the Vertebral dataset are presented in
Tables 14–16. Table 14 gives weights calculated by the
three methods discussed in this paper, pure expert judgments,
expert judgments refined by pairwise comparisons and
measurements of overlapping—using one, two and finally all
three dimensions (again in this case p−1 = 3). Table 15 shows
qualitative judgments provided by overlappings.

As opposed to the Iris dataset case, where 1D overlapping
dominates the total overlapping, here using 2D and 3D overlap-
pings is necessary as 1D overlappings differ substantially from

TABLE 15. Vertebral dataset: initial qualitative judgments of
mutual relationship derived from overlappings.

PI PT LLA SS PR GOS

PI ≈ ⊂ < (⊂) < < ≺
PT ⊃ ≈ ≈ � � <

LLA > (⊃) ≈ ≈ � � <

SS > � � ≈ ≈ < (⊂)

PR > � � ≈ ≈ < (⊂)

GOS � > > > (⊃) > (⊃) ≈

The relational symbols from Table 1 were used. The gray color
indicates a difference from consistent pairwise comparisons
(Table 8), and values from Table 8 are in parenthesis.

TABLE 14. Weights of features for Vertebral dataset using overlap method.

PI PT LLA SS PR GOS

Experts (initial) 4.1% 10.2% 10.2% 16.9% 16.9% 41.7%
Pairwise comparison 3.43% 9.64% 9.64% 16.3% 14.88% 46.13%

Overlapping (1D) 16.76% 13.94% 14.76% 14.86% 14.34% 25.33%
Overlapping (1D and 2D) 5.48% 10.55% 11.21% 13.57% 14.33% 46.86%
Overlapping (1D, 2D and 3D) 2.93% 8.62% 9.66% 13.55% 13.99% 51.26%
Overlapping unscaled 0.7304 2.15 2.41 3.38 3.49 12.79
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total overlappings. One-dimensional overlappings are roughly
identical for PI, PT, LLA, SS and PR, appropriate total overlap-
pings (i.e. when all three dimensions are used) are very differ-
ent, the total overlapping for PI (1/0.7304 = 1.3691) is almost
five times bigger that for PR (1/3.49 = 0.2865).

While in general the weights calculated by overlappings are
closed to the weights derived by pairwise comparisons there
are some important differences. The experts recommended
LLA ⊃ PI, GOS ⊃ SS and GOS ⊃ PR, and pairwise
comparison refinement preserved this relationship, but the
overlapping method produced the relationship LLA > PI,
GOS > SS and GOS > PR.

The differences between the weights produced by overlap-
pings and the weights produced by pairwise comparisons, for
both the Iris dataset and Vertebral dataset, may mean that either
experts made misjudgments, or the dataset is incomplete, or the
border values in Table 1 do no properly fit those cases (which
is most likely true), or all combinations of the above, however,
any analysis of this is beyond the scope of this paper.

Table 16 gives the classification results. While accuracy of
classification without weights is definitely the worst, accuracy
of overlapping restricted to one dimension is not much better.
This is because it provides almost identical weights for PI, PT,
LLA, SS and PR. Overlapping when one dimension and two
dimensions are used give significantly better accuracy, but still
worse than pairwise comparisons. Overlapping with all three
dimensions used provides the best accuracy. The results for
number of SVs are similar with one exception, the number of
SVs for overlapping with all three dimensions is similar to that
for pairwise comparisons.

8. FINAL COMMENT

It appears that adding proper weights improves classification
when SVM techniques are used. It both decreases the number
of SVM used and increases the accuracy, especially for smaller
training sets. Two methods of providing weights have been
proposed.

The first one assumes that a given sample of data does
not contain any clue about the importance of features. In this
case, domain experts and the pairwise comparison paradigm
are used. The experts provide measures of mutual relationship
between features, and the distance-based consistency is then
used to correct the value provided by experts. Then the weights
are calculated by techniques provided by pairwise comparisons
(geometric means in this paper). When the experts provided
measures with relatively small values of inconsistency index
(as it was in this case), the weights calculated on the basis of
their initial judgment are not much different than the weights
after decreasing inconsistency. Nevertheless, the possibility
of calculating and correcting inconsistency is a very useful
and important tool that increases the trustfulness of the
approach.
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The second method assumes that the given sample contains
information about feature importance, and that the feature
importance is determined by the discriminatory power of
features. The method has been tested on the Iris dataset and
better accuracy was achieved than for other methods. The
results were especially superior to these obtained without
weights. The method also uses the pairwise comparisons ideas.

Summing up, the contributions can be divided into two
categories: theory and application. The idea of feature domain
overlapping and the proposed method of weights calculation
based on this idea is a contribution to the theory of objects
classification. Merging pairwise comparisons methods with
weighted SVMs techniques, and testing both approaches on Iris
and Vertebral data sets belongs to applications category.
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