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1. Introduction

A motivation for this kind of work has been clearly described in [12]:

“Consider the following problem: we have a set of data that have been obtained in an empirical manner. From the 
nature of the problem we know that the set should be partially ordered, but because the data are empirical it is not. In 
a general case, this relation may be arbitrary. What is the ‘best’ partially ordered approximation of an arbitrary relation 
and how this approximation can be computed?”

Areas of immediate applications of any ‘best’ partial order approximation algorithm include group ranking, social choice, 
pairwise comparisons based non-numerical ranking, analysis of subjective judgments, etc. [8,11,15,17].

Defining what is the ‘best’ partially ordered approximation is itself a problematic task. It could be approached in at least 
two ways.

One approach is just to propose some similarity metrics for binary relations and then just choose a partial order that is 
closest to a given arbitrary relation. This is the main subject of this paper. The first question is how these similarity metrics 
should be defined. Should we look for some generic similarity measure between arbitrary relations, or should we take into 
account that one of the relations is always a partial order and include this fact into the definition of similarity? Partial 
ordering means acyclity and transitivity, should our similarity measures also make this distinction? From the application 
point of view, the roles of acyclity and transitivity are different. Lack of transitivity may not be an error at all, it could 
just be a fact that a given data set is of minimum (or optimal, sufficient) size (as Hasse diagrams, directed acyclic graphs 
or dags [24], or direct causality graphs [20], etc.). Acyclity on the other hand is usually an indication of some errors. 
Moreover, the relation that we are going to approximate is not absolutely arbitrary. It represents, with perhaps some errors 
or incompleteness, some real data or phenomena. If its partially ordered approximation is chosen only on the basis of some 
numerical calculations, some structural properties of the original relation might be lost or wrongly changed.
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The other orthogonal approach is not to use quantitative metrics at all. This approach is called property-driven and is 
based on the assumption that partial order approximations must satisfy certain properties. It stems from the 1895 paper by 
Schröder [25]. As partial orders, the approximations must be acyclic and transitive, but they also should satisfy some other 
properties. In [12] property-driven partial order approximations of an arbitrary binary relation were provided and discussed 
in both the classical algebraic model and the Rough Sets settings [23]. No quantitative metrics were used in [12].

In this paper we propose two simple metrics for measuring similarity and difference between relations, and a definition 
of optimal approximation. We also provide some justification of both metrics and the definition. One metric is just a simple 
adaptation of a metric used for sets, the other is a special modification designed specially for relations. We show that, at 
least for approximations by partial orders, both metrics lead to identical results.

In [12] and [13], a special attention is paid to two partially ordered approximations of R , denoted by (R•)+ and (R+)•
for a given relation R . Using graph terminology, R• is derived from R by erasing all arcs from all strongly connected 
components (or equivalently, removing all arcs from all cycles). The relation R+ is a transitive closure of R . The relation 
(R+)• is a classical approximation, first proposed by Schröder in 1895 [25], which is often regarded as ‘the’ partially ordered 
approximation. We will show that with respect to our metrics, (R•)+ is a better approximation of R than the well known 
Schröder’s (R+)• .

We will also show that finding quantitative optimal approximation, with respect to simple metrics proposed in this 
paper, is NP-hard.

Finally, we will argue that while an arbitrary quantitative optimal approximation (with any reasonable metrics) might 
somehow be inconsistent with property-driven approximations of [12,13], our model satisfies most properties required from 
property-driven approximations.

We will also show how the presented model relates to the Rough Sets approach for specialized relational approximations.
This paper is a substantially extended, revised and corrected version of the conference paper [14].
The paper is organized as follows. In Section 2 we recall the basic notions of the theory of relations, directed graphs 

and partial orders. The basic concepts of similarity and distance for relations that are used in this paper, are presented in 
Section 3. The problems encountered when trying to define the concept of optimal approximation are discussed in Sec-
tion 4, while Section 5 is devoted to the property-driven partial orders approximations of [12,13]. Quantitative properties 
of property-driven partial order approximations (R•)+ and (R+)• are presented in Section 6. Some intuitions and prop-
erties that led to our concept of optimal partial order approximation are analyzed in Section 7. The main result of this 
paper, namely introduction and discussion of partial order approximations based on absolute similarity and distance, are 
presented in Section 8. Another version of a distance for relations is proposed and its properties are discussed in Section 9. 
In Section 10 the main results of the paper are presented in Rough Sets setting, and Section 11 contains final comments.

2. Relations, directed graphs and partial orders

In this section we recall some fairly known concepts and results that will be used later in this paper [3,7,24].
Let X be a set. We assume all sets considered in this paper are finite. Note that every relation R ⊆ X × X can be interpreted 

as a directed graph G R = (V , E) where V = X is the set of vertices and E = R is the set of edges (cf. [3]).
A relation < ∈ X × X is a (sharp) partial order if it is irreflexive and transitive, i.e. if ¬(a < a) and a < b < c =⇒ a < c, 

for all a, b, c ∈ X .
We write a ∼< b if ¬(a < b) ∧¬(b < a), that is if a and b are either distinctly incomparable (w.r.t. <) or identical elements. 

We also write

a ≡< b ⇐⇒ ({x | a < x} = {x | b < x} ∧ {x | x < a} = {x | x < b}).
The relation ≡< is an equivalence relation (i.e. it is reflexive, symmetric and transitive) and it is called the equivalence 
with respect to <, since if a ≡< b, there is nothing in < that can distinguish between a and b (cf. [7]). We always have 
a ≡< b =⇒ a ∼< b.

• Let PO(X) denote the set on all partial orders included in X × X .

For every relation R ⊆ X × X , we define R0 = IdX = {(a, a) | a ∈ X}, the identity relation on X , and Ri+1 = Ri R for all 

i ≥ 0. Furthermore the relation R+ =
∞⋃

i=1

Ri is called the transitive closure of R , the relation R−1 = {(b, a) | (a, b) ∈ R} is called 

the inverse of R , and a relation R is acyclic if and only if ¬xR+x for all x ∈ X . In graph terminology, if R is acyclic then G R
is DAG (Directed Acyclic Graph), while if for all x ∈ X we have xR+x then the graph G R is strongly connected. Also for a given 
relation R and a ∈ X , we define: aR = {x | aRx} and Ra = {x | xRa}.

For every relation R we can define the relations Rcyc , R• and ≡R as follows

• aRcycb ⇐⇒ aR+b ∧ bR+a,
• aR•b ⇐⇒ aRb ∧ ¬(aRcycb), i.e. R• = R \ Rcyc ,
• a ≡R b ⇐⇒ aR = bR ∧ Ra = Rb.
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In [12,13], the relation R• is called an acyclic refinement of R . In graph terminology, if aRcycb then a and b are strongly 
connected in G R , and the graph G R• = (X, R•) has been derived from G R = (X, R) by deleting all edges from all strongly 
connected components of G R . The relation ≡R is an extension of ≡< for an arbitrary relation R and it was proposed in [12]. 
In principle, similarly as for partial orders, if a ≡R b, then there is nothing in R that can distinguish between a and b (with 
respect to R).

Lemma 1.

1. R ⊆ R+ .
2. R• ⊆ R, R• is acyclic (i.e. also irreflexive), and aR•b ⇐⇒ aRb ∧ ¬(bR+a).
3. If R is a partial order then R = R+ = R• .
4. ≡R ⊆ ≡R+ and ≡R ⊆ ≡R• .

Proof. (1), (2) and (3) From their definitions.
(4) From Lemma 5 of [12]. �
The above corollary presents basic hints for property-driven partial order approximations as proposed in [12,13] and 

discussed later in Section 5. R+ is a kind of an upper approximation of R , R• is a kind of lower approximations, and each 
partial order is acyclic and transitive.

Let |X | = n. Given R , the complexity of calculating R+ is O (n3) (Floyd–Warshall Algorithm). Calculating R• comprises 
of finding all strongly connected components of G R (Tarjan Algorithm can be used) and then deleting all edges from all 
strongly connected components so the time complexity is O (|X | + |R|) = O (n2) (cf. [3,26]).

3. Absolute similarity and distance for relations

Let R and S be two relations on X and G R = (X, R), G S = (X, S) their appropriate graph representations. Without losing 
any generality we may assume that both R and S are irreflexive, i.e. (a, a) /∈ R ∪ S for any a ∈ X . How can we measure a 
difference or similarity between R and S? One possibility is just to count common edges of the graphs G R and G S , which 
leads to

sim(R, S) = |R ∩ S|.
We will call sim(R, S) an absolute similarity between relations R and S . We added absolute to distinguish it from similarity
as formally defined for instance in [16,28].

The other possibility is to count the edges that were removed from R and the edges that were added to R to get S . In 
this case we can define:

dist(R, S) = |(R \ S) ∪ (S \ R)| = |R \ S| + |S \ R| = |R ∪ S| − |R ∩ S|.
We will call dist(R, S) an absolute distance between relations R and S . Note that dist(R, S), which is just a cardinality of 
symmetric difference [24], is a proper metric, i.e. the ‘triangle property’: dist(R, S) ≤ dist(R, T ) + dist(T , S) is satisfied for all 
relations R, S, T (cf. [4]).

We will later argue that if R is an arbitrary relation and S is a partial order, i.e. S is acyclic and transitive; sim(R, S)

better measures the relationship between R and S with respect to acyclity, while dist(R, S) measures this relationship better 
with respect to transitivity, and we cannot replace one by another.

In our case, R and S are relations, but the symmetric difference is defined for general sets. It is often called Fréchet–
Nikodym–Aronszyan distance [22] if arguments are general sets, or Kemeny distance [19] if arguments are relations, as in 
our case (cf. [4]), and the symmetric difference between two sets is often considered a measure of how “far apart” they 
are [4]. In particular dist(R, ∅) = |R|.

When we scale both sim and dist to [0, 1], we get well known and popular Jaccard similarity and Jaccard distance [10]: 
sim J (R, S) = |R∩S|

|R∪S| and dist J (R, S) = |R∪S|−|R∩S|
|R∪S| = 1 − sim J (R, S). The function dist J (R, S) is also in general defined for 

arbitrary sets and it is also a proper metric (cf. [4,22]). However in this paper we will use unscaled measures sim and dist
instead of Jaccard indexes. If R ∩ S = ∅ then dist J (R, S) = 1, for all R and S , which would be some oversimplification in our 
approach. In the Jaccard model, similarity uniquely defines distance and vice versa, but we do not want this relationship 
in our model. In our approach the relation S is a partial order and we will show that, if S is a partial order, sim(R, S)

measures different aspects of approximation than dist(R, S). Moreover, both Jaccard indexes are meaningless when S = ∅, 
and ∅, i.e. the empty set, is a valid and useful partial order.

If S is interpreted as some approximation of R , we may use:

distsim(R, S) = |R| − sim(R, S) = |R| − |R ∩ S| = |R \ S|
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Fig. 1. An example of a relation R and its all potential partial order approximations (up to isomorphism). Dashed edges are added, dotted lines represent 
incomparability. For example R\ <R

1 = {(c, a)} and <R
1 \R = {(a, c)}, so dist(R, <R

1 ) = 2.

as a measure of closeness of S to R . If R = S then distsim(R, S) = 0. As opposed to sim(R, S) and dist(R, S), distsim(R, S) is 
asymmetric, and it is assumed that S is an approximation of R .

The following result provides simple properties of sim and dist for some specialized relations.

Lemma 2. Let R, S, Q be relations on X.

1. If R ⊆ S then: dist(R, S) = |S| − |R| = |S| − sim(R, S) = distsim(S, R).
2. If sim(R, S) = sim(R, Q ) and S ⊆ Q then:

(a) dist(R, S) ≤ dist(R, Q ),
(b) dist(R, S) = dist(R, Q ) ⇐⇒ S = Q .

3. If Rcyc = ∅ then

dist(R, R+) = min{dist(R,<) |< ∈ PO(R)} = max{sim(R,<) |< ∈ PO(R)},
where PO(R) = { < | R ⊆< ∧ < ∈ PO(X)}.

Proof. (1) Since in this case R ∪ S = S and R ∩ S = R .
(2a) sim(R, S) = sim(R, Q ) means |R ∩ S| = |R ∩ Q |. Hence we have dist(R, S) = |R ∪ S| − |R ∩ S| = |R ∪ S| − |R ∩ Q | ⊆

|R ∪ Q | − |R ∩ Q | = dist(R, Q ).
(2b) Only =⇒ needs to be shown. dist(R, S) = dist(R, Q ) means |R ∪ S| = |R ∪ Q |. Since S ⊆ Q this implies S = Q .
(3) Since R+ ∈ PO(X) and for every < ∈ PO(X) such that R ⊆ <, R+ ⊆ < (cf. [7,24]), so dist(R, R+) = |R+| − |R| ≤

dist(R, <) = | < | − |R|. Since R ⊆ R+ , by (1) of this lemma, dist(R, R+) = |R+| − sim(R, R+). �
Lemma 2(1) simply states that if R ⊆ S then minimal dist(R, S) corresponds to maximal sim(R, S) and vice versa. The 

case (2) says that when one argument is fixed, the function dist(R, x) is strictly monotone. The third case characterizes 
transitive closures of acyclic relations. It states that in this case the transitive closure is the optimal approximation with 
respect to both dist and sim.

4. Problems with optimal approximation

Let R ⊆ X × X be an arbitrary relation. It is tempting to say that a partial order <R on X is the best partial order 
approximation of R if sim(R, <R) is maximal for all partial orders on X , and/or if dist(R, <R) is minimal for all partial 
orders on X . However such straightforward approach may lead to unexpected and maybe undesired results.

Consider the relation R from Fig. 1. There are five non-isomorphic partial orders on the three element set {a, b, c}, 
and they are named <R

i , i = 1, . . . , 5, in Fig. 1. If only values of sim and dist are taken into account, a partial order <R
1

(or any order isomorphic to it) is an optimal or best approximation, as for all partial orders < on {a, b, c}, sim(R, <) ≤ 2, 
dist(R, <) ≥ 2, and sim(R, <R

1 ) = 2, dist(R, <R
1 ) = 2. The order <R

1 had been obtained by ‘flipping’ edge (c, a) of G R , two 
additional isomorphic orders can be obtained by ‘flipping’ edges (a, b) and (b, c) respectively. In all three cases the values 
of sim and dist are the same as for <R

1 . But why have we chosen ‘flipping’ (c, a)? Why not (a, b) or (b, c)? Are we allowed 
to flip at all without seriously alternating input data, especially if choice of what to flip appears to be random?

In decision and ranking theories, where outcomes are expected to be weak (stratified) partial orders, cycles in input 
relation R are usually interpreted as indifference or incomparability [8,11]. With this interpretation, <R

5 would be considered 
as the only acceptable partially ordered approximation of R , but sim(R, <R

5 ) = 0 and dist(R, <R
5 ) = 3, so according to the 

values of sim and dist , the partial order <R is the worst partial order approximation.
5
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Fig. 2. A relation Q and its two potential partial order approximation. Note that Q ⊂ = Q cyc = ∅ and Q • = Q . The picture describing Q is not a Hasse 
diagram, it describes the full relation Q , so Q is not a partial order!

Fig. 3. A relation R , one of its optimal acyclic approximation R̂ , and its two potential partial order approximations: (R•)+ and (R̂)+ .

Consider now the relation Q from Fig. 2, which is acyclic but not a partial order. It can be shown by inspection that for 
all partial orders over the set {a, b, c, d} the value dist(Q , <Q

1 ) = 1 is minimal. The partial order <Q
1 resulted from deleting 

the edge (b, c) from the graph G Q . But why should we delete (a, b), i.e. make a and b incomparable (recall that Q represents 
empirical data but the nature of problem demands that Q should be a partial order)? The relation Q is acyclic but it lacks 
transitivity, which most likely results from the fact that the empirical data represented by Q are incomplete, or because 
providing explicit transitivity was considered unneeded. In this case the most natural and proper way to transform Q into 
an appropriate partial order is to compute Q + , the transitive closure of Q . We have dist(Q , <Q

2 ) = 3 > 1 = dist(Q , <Q
1 ), 

but on the other hand sim(Q , <Q
2 ) = 3 > 2 = sim(Q , <Q

1 ) and additionally distsim(Q , <Q
2 ) = 0. So, which approximation is 

better, <Q
1 or <Q

2 ?
The situation that, for some S1 and S2, sim(R, S1) > sim(R, S2), so S1 is a better approximation of R with respect to 

sim(. . .), and dist(R, S2) < dist(R, S1), so S2 is a better approximation of R with respect to dist(. . .), occurs quite often. 
Consider the relation R from Fig. 3. The graph G R is strongly connected and R̂ is one of the optimal acyclic approximations 
of R , while (R•)+ and (R̂)+ are two partial orders that can be regarded as partial order approximations of R . We have 
sim(R, (R̂)+) > sim(R, (R•)+) while dist(R, (R•)+) < dist(R, (R̂)+). The relation (R̂)+ has the same problem as the relation 
<R

1 of Fig. 1, R̂ is one of six different optimal acyclic approximations, it resulted by removing the edge ( f , a). But why this 
edge, not any other?

Consider Q = R̂ , where both R and R̂ are these from Fig. 3. In this case Q • = Q , Q + = (Q •)+ = (Q +)• and Q + = (R̂)+ . 
Moreover, sim(Q , Q +) = 5, distsim(Q , Q +) = 0 and dist(Q , Q +) = 9. Since distsim(Q , Q +) = 0, Q + is the best partial order 
approximation of Q with respect to measure sim(. . .).

These results indicate that using only sim(R, S) and/or dist(R, S) (or any particular numerical measure in fact) may 
not be sufficient when we are looking for a proper optimal approximation. We also have to preserve properties that all 
partial orders posses. An approach where we manipulate rather a given relation R to get desirable properties instead of just 
measuring differences is called property-driven approximation [13].

5. Property-driven partial order approximations

In [12] the definitions of property driven partial order approximation and weak partial order approximation were pre-
sented and discussed. Ranking process, pairwise comparisons paradigm [11,17] and the results of [27,30] provided the main 
motivation for interpretation of partial orders in these definitions. The definition below is a slightly modified and rephrased 
version of definitions proposed in [12] and used in [13].

Definition 1 ([12]). A partial order <⊆ X × X is a (property-driven) partial order approximation of a relation R ⊆ X × X if it 
satisfies the following four conditions:

1. a < b =⇒ aR+b,
2. aR•b =⇒ a < b,
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3. a ≡R b =⇒ a ≡< b,
4. a < b =⇒ ¬aRcycb (or, equivalently a < b =⇒ ¬bR+a). �

The conditions of Definition 1 were motivated by the following intuitions [13]. Since R+ is the smallest transitive rela-
tion containing R , and due to informational noise, imprecision, randomness, etc., some parts of R might be missing, it is 
reasonable to assume that R+ is the upper bound of <, so condition (1). Condition (2) defines the lower bound. The great-
est partial order included in R usually does not exist, but when R is interpreted as an estimation of a ranking, R• appears 
to be a reasonable lower bound (cf. [13]). Condition (3) ensures preservation of the equivalence with respect to R . Condi-
tion (4) says that if aRcycb then usually a and b are incomparable. If R is interpreted as an estimation of a ranking, then in 
most cases from aRcycb it is interpreted that a and b are indifferent [8]. Similar interpretations take place in concurrency 
theory [20].

The following result characterizing property-driven partial order approximations has been proven in [12] (they hold for 
new version of Definition 1 too).

Theorem 1 ([12]).

1. The relations (R•)+ and (R+)• are (property-driven) partial order approximations of R.
2. (R•)+ ⊆ (R+)• . �

Unfortunately, the strong but well justified conditions for approximations by partial orders employed in Definition 1 do 
not always play well with quantitative similarity and distance measures proposed in Section 3.

Only the condition (1) of Definition 1 is satisfied by all examples from Figs. 1–4. The partial orders <R
i , i = 1, . . . , 4

of Fig. 1 do not satisfy the condition (4) of Definition 1. For example b <R
1 a and bR+a. From Fig. 1, only <R

5 satisfies 
the condition (4) of Definition 1. The condition (2) implies that if R is acyclic, i.e. G R is DAG, then R ⊆<. The partial order 
<

Q
1 from Fig. 2 does not satisfy the condition (2), as (b, c) ∈ Q = Q • but (b, c) /∈<

Q
1 . On the other hand, the partial order <

Q
2

from Fig. 2 satisfies all four conditions of Definition 1.
All these examples indicate that strict property-driven partial order approximations in the style of [12,13] do not fit 

well to numerical estimations given by the functions sim(. . .) and dist(. . .) proposed in the previous section. To implement 
quantitative approximations and make them somehow consistent with property-driven approximations we have to weaken 
the required conditions that dealt with preserving appropriate properties.

However, we may use quantitative estimations for established property-driven approximations as (R•)+ and (R+)• .

6. Quantitative properties of (R•)+ and (R+)•

In this section we will apply measures sim(. . .), dist(. . .) and Jaccard index sim J (. . .) to well established property-driven 
approximations (R•)+ and (R+)• . We will start with characterization of their intersections with a given relation R .

Lemma 3. For every relation R ⊆ X × X, we have: R ∩ (R•)+ = R ∩ (R+)• = R• .

Proof. Since (R•)+ ⊆ (R+)• , then R ∩ (R•)+ ⊆ R ∩ (R+)• . Assume (a, b) ∈ R ∩ (R+)• . From the definition of acyclic refine-
ment ‘• ’, we have

(a,b) ∈ (R+)• ⇐⇒ (a,b) ∈ R+ ∧ (b,a) /∈ R+.

Hence: (a, b) ∈ R ∩ (R+)• ⇐⇒ (a, b) ∈ R ∧ (a, b) ∈ R+ ∧ (b, a) /∈ R+ ⇐⇒ (a, b) ∈ R ∧ (b, a) /∈ R+ ⇐⇒ (a, b) ∈ R• . Hence 
R ∩ (R•)+ ⊆ R ∩ (R+)• = R• . On the other hand R• ⊆ R and obviously R• ⊆ (R•)+ , so R ∩ (R•)+ = R ∩ (R+)• = R• . �

We may now formulate the main result of this section.

Proposition 1. For every relation R, we have:

1. sim(R, (R•)+) = sim(R, (R+)•) = |R•|,
2. dist(R, (R•)+) ≤ dist(R, (R+)•),
3. sim J (R, (R•)+) ≥ sim J (R, (R+)•).

Proof. (1) A consequence of Lemma 3.
(2) Since (R•)+ ⊆ (R+)• , then |R ∪ (R•)+| ≤ |R ∪ (R+)•|. By 3, |R ∩ (R•)+| = |R ∩ (R+)•|. Hence dist(R, (R•)+) = |R ∪

(R•)+| − |R•| ≤ |R ∪ (R+)•| − |R•| = dist(R, (R+)•).
(3) Since |R ∩ (R•)+| = |R ∩ (R+)•| and (R•)+ ⊆ (R+)• , then sim J (R, (R•)+) = |R∩(R•)+|

• + ≥ |R∩(R+)•|
+ • = sim J (R, (R+)•). �
|R∪(R ) | |R∪(R ) |
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Fig. 4. The relations ̂R1 and ̂R2 are examples of two different optimal acyclic approximations of the relation R , and R̂+ is an optimal acyclic approximation 
of R+ . The relation (R̂2)+ can be regarded as an optimal partial order approximation of R , but (R̂1)

+ can not.

It appears that with respect to numerical similarity and distance measures, including the Jaccard index (and all indexes 
consistent with Jaccard index, as defined in [16]), the relation (R•)+ seems to be a better approximation than the classical 
Schröder’s approximation (R+)• .

While the time complexity of calculating (R•)+ and (R+)• is O (n3) for both relations (as calculating transitive closure is 
a dominating factor in both cases), practical time complexity is always smaller for (R•)+ as |R•| ≤ |R|.

7. Towards optimal approximations

Property-driven approximations of [12,13] are based on an observation that complex properties, as partial orders, are 
seldom enforced by ‘natural’ well defined, but structurally complex, operators (cf. [13,30]). On the other hand, many ‘simple’ 
or ‘elementary’ properties such as acyclity, symmetry, transitivity, etc., can easily be enforced by using kernels and closures 
(cf. [1]), or specialized lower and upper approximations [11,13,30]. In particular, (R•)+ is the result of applying acyclic 
refinement (which is a lower approximation or a kernel) first, and transitive closure (i.e. upper approximation) later; while 
for (R+)• we proceed in the opposite order.

The above reasoning, supported by Theorem 1 and Lemma 2(3), suggests the following approach for finding optimal 
partial order approximation. For a given arbitrary relation R first find its optimal acyclic approximation R̂ and then construct 
its transitive closure1 R̂+ . This would be mimicking the property-driven partial order approximation (R•)+ . Orthogonally, 
we can calculate the transitive closure R+ first then find an optimal acyclic approximation of R+ , i.e. R̂+ . This would be 
mimicking the pattern for the property-driven partial order approximation (R+)• .

An optimal acyclic approximation can be defined as follows. A relation R̂ is an optimal acyclic approximation of R if and 
only if R̂ ⊆ R , R̂cyc = ∅ and sim(R, ̂R) is maximal, or equivalently, since R̂ ⊆ R , if dist(R, ̂R) is minimal. An optimal acyclic 
approximation is usually not unique. For the relation R from Fig. 1 deleting an arbitrary arc result in an optimal acyclic 
approximation, so in this case we have three optimal acyclic approximations of R .

Fig. 4 illustrates both procedures described above. Both R̂1 and R̂2 are two different optimal acyclic approximations 
of R . There are actually six different optimal cyclic approximations of R , R̂3: obtained from R by deleting arcs (c, b)

and (d, e), R̂4: obtained by deleting arcs (c, b) and (c, d), R̂5: by deleting (e, c) and (e, a), and R̂6: by deleting (e, c)
and (a, c). It can be shown that (R̂2)

+ , (R̂4)
+ and (R̂5)

+ are better partial order approximations with respect to dist
than (R̂1)

+ , (R̂3)
+ and (R̂6)

+ . We have dist(R, (R̂ i)
+) = 5 for i = 2, 4, 5, dist(R, (R̂3)

+) = 6 and dist(R, (R̂ i)
+) = 7 for 

i = 1, 3.
For the orthogonal procedure, i.e., calculating the transitive closure first, for the relation R from Fig. 4, we have R+ =

X × X , where X = {a, b, c, d, e}. It can be shown that any total order on X is an optimal acyclic approximation of X × X , 
so for example R̂+ from Fig. 4 is such an approximation. In this case dist(R, (R̂2)

+) < dist(R, ̂R+). We will show later 
that this relationship, with ‘<’ replaced with ‘≤’ is a general rule, i.e. starting with finding optimal acyclic approximation 
and applying transitive closure next leads to better results than starting with transitive closure and finding optimal acyclic 
approximation of this closure next.

1 There is only one transitive closure so it is already ‘optimal’.
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8. Approximations based on absolute similarity and distance

In Section 4 we have discussed problems related to quantitative optimal approximation. In this section a solution, based 
on analysis from previous sections, is proposed. This section also contains the main results of this paper. We start with a 
definition of an optimal simple partial order approximation of a given relation R . A relation is a partial order when it is acyclic 
and transitive and in our approach we will use different quantitative penalties for not having these properties.

Definition 2. For every relation R on X , a partial order R⊕ on X is an optimal simple partial order approximation of R if and 
only if the following conditions are satisfied:

1. R• ⊆ R⊕ ,
2. sim(R, R⊕) = max{sim(R, <) |< ∈ PO(X)},
3. dist(R, R⊕) = min{dist(R, <) | sim(R, <) = sim(R, R⊕)}.

Let POA(R) denote the set of all optimal simple partial order approximations of R . �
The condition (1) above defines a lower bound. The relation R• is R with all cycles removed and is considered as an 

absolutely necessary part of R⊕ .
Lack of acyclicity is considered a bigger problem than lack of transitivity. The latter could be intensional (cf. Hasse 

diagrams, dependency graphs, etc. [5,8,20]), the former is usually a serious error [8,11]. The conditions (2) and (3) of Defi-
nition 2 capture this asymmetry by making absolute similarity the dominant measure and absolute distance the secondary 
measure.

Definition 2 does not explicitly provide any requirements for the upper bound of R⊕ . However we will show later that 
the conditions (1) and (2) imply the following intuitive upper bound, namely: R⊕ ⊆ R+ .

We call this approximation ‘simple’ as most of the properties from Definition 1 are no longer required. They are just too 
restrictive for quantitative optimization.

We will consider two distinct cases:

Case 1. R is acyclic, i.e. Rcyc = ∅.
Case 2. R contains a cycle, i.e. Rcyc �= ∅.

Deciding between these two cases can be done in O (n) time, where n = |X |, by using depth first traversal on the graph 
G R = (X, R) [3].

The case 1 is simple, one just has to use transitive closure.

Proposition 2. If R is acyclic, then R⊕ = R+ .

Proof. For any partial order < containing R the condition (2) of Definition 2 is satisfied as then distsim(R, <) = 0 and 
sim(R, <) = |R|. Since R+ is the smallest partial order containing R (cf. [7]), then, by Lemma 2(3), the condition (3) of 
Definition 2 is satisfied too. �

The second case involves removing cycles and it is much more complex.
For every relation R ⊆ X × X , let

MDAG(R) = {R̂ | sim(R, R̂) = max{sim(R, S) | S ⊆ R ∧ Scyc = ∅}}.
The elements of MDAG(R) are maximal (with respect to number of arcs) directed acyclic graphs included in R .
We will now recall the concept of feedback edge set for directed graphs. Let G = (V , E) be a directed graph.

• A feedback edge set is a subset F ⊆ E such that every cycle of G contains a vertex in F [3].

Theorem 2 (Karp 1972 [18]). Minimum feedback edge set problem is NP-complete. �
It turns out the minimum feedback edge problem is involved in effectively finding the elements of MDAG(R).

Lemma 4.

1. For every S ∈ MDAG(R), the relation R \ S, interpreted as a set edges, is a minimum feedback edge set of the graph G R = (X, R).
2. Constructing an element of MDAG(R) is NP-complete.
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Fig. 5. An example of R , where R̂, ̃R ∈ MDAG(R), and R̂+ = R⊕ but R̃+ �= R⊕ . Also an example that calculating R+ first and then taking any R� ∈
MDAG(R+) is worse approximation than R⊕ .

Proof. (1) Since for every S ∈ MDAG(R), G S = (X, S) is a maximal acyclic subgraph included in G R .
(2) From (1) and Theorem 2. �
The next theorem is the main result of this section and provides a solution to the case when R contains a cycle.

Theorem 3. If R contains a cycle, i.e. Rcyc �= ∅ then:

1. R⊕ = R̂+ , where ̂R is some relation from MDAG(R).
2. Finding an optimal simple partial order approximation R⊕ is NP-complete.
3. There are R such that for some R̃ ∈ MDAG(R), R̃+ �= R⊕ .

Proof. (1) Since X is finite clearly R⊕ exists. Define R̂ = R ∩ R⊕ . Clearly R̂ ⊆ R , R̂cyc = ∅ and R̂+ is a partial order. Moreover 
R̂ ⊆ R ∩ R̂+ . Assume (a, b) ∈ R ∩ R̂+ and (a, b) /∈ R̂ = R ∩ R⊕ . But this means that sim(R, ̂R+) > sim(R, R⊕), a contradic-
tion as sim(R, R⊕) = max{sim(R, <) |< ∈ PO(X)}. Hence R ∩ R⊕ = R ∩ R̂+ , i.e. sim(R, R⊕) = sim(R, ̂R+). We also have 
R̂ = R ∩ R⊕ ⊆ R⊕ , so R̂+ ⊆ (R⊕)+ = R⊕ . By Lemma 2(2a) this means that dist(R, ̂R+) ≤ sim(R, R⊕). However by the defini-
tion dist(R, R⊕) = min{dist(R, <) | sim(R, <) = sim(R, R⊕)}, so dist(R, ̂R+) = sim(R, R⊕). This, by Lemma 2(2b), means that 
R⊕ = R̂+ .

We will now show that R̂ ∈ MDAG(R). Suppose that R̂ /∈ MDAG(R). This means there is (a, b) ∈ R \ R̂ such that R̂ ∪
{(a, b)} ⊆ R and (R̂ ∪ {(a, b)})cyc = ∅. Clearly (R̂ ∪ {(a, b)})+ is a partial order and, since (a, b) /∈ R̂ , we additionally have 
sim(R, (R̂ ∪ {(a, b)})+) = |R ∩ (R̂ ∪ {(a, b)})+| > |R̂| = sim(R, R⊕). But this means that sim(R, R⊕) < max{sim(R, <) |< ∈
PO(X)}, a contradiction, i.e. R̂ ∈ MDAG(R).

In general R⊕ and corresponding R̂ might not be unique. Note that we only have proven that there is some R̂ ∈
MDAG(R) such that R⊕ = R̂+ . It does not have to be true for all members of MDAG(R).

(2) Suppose R⊕ is known. We can derive R̂ = R ∩ R⊕ from R and R⊕ in O (n2) where n = |X |, which means that 
constructing R̂ is polynomially reduced to constructing R⊕ . By (1) above, R̂ ∈ MDAG(R), and by Lemma 4(2) constructing 
the elements of MDAG(R) is NP-complete. Hence constructing R⊕ is NP-complete.

(3) Consider R , R̂ and R̃ from Fig. 5. We have R̂, R̃ ∈MDAG(R), R̂+ = R⊕ but R̃+ �= R⊕ . �
If Rcyc �= ∅, feasible construction of R⊕ is problematic. Not only finding any element of MDAG(R) is NP-complete, but 

only for some R̂ ∈ MDAG(R) we have R⊕ = R̂+ .
However, if some suboptimal solution is acceptable, there are many efficient approximation, heuristic algorithms, or 

exact, but feasible ones, that can be used for R̃ ∈ MDAG(R) [2,6,9,26], and then we can calculate R̃+ in O (|X |3) time. We 
may then consider R̃+ as an approximation of R⊕ .

For our case studies, we have: in Fig. 1: R⊕ =<R
1 ; in Fig. 2: Q ⊕ =<

Q
2 , in Fig. 3: R⊕ = R̂+ , and in Fig. 5 R⊕ is R̂+ .

Most known approximation algorithms have some substantial overhead time. The following simple randomized algorithm 
provides an approximation or exact value of R⊕ in polynomial time and it has very little overhead time.
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Fig. 6. Transforming Q into Q ab
cd in the proof of Proposition 4(4).

Algorithm 1 (Constructs R� – some partial order approximation of R).
Let R ⊆ X × X and |X | = n.

1. Calculate R• . Set R̄ = R• .
2. Set R� = R̄ .
3. Pick randomly (a, b) ∈ R \ R̄ and add (a, b) to R̄ , i.e. R̄ := R̄ ∪ {(a, b)}.
4. If R̄ is acyclic, i.e. (R̄)cyc = ∅, go to (2).
5. Return R� . �

A detailed analysis of complexity and accuracy of the above algorithm is an open problem, however some limited random 
tests for not so big examples indicated that it usually works quite well. In most times the value of R� differs from any R⊕
but it is very close.

Two propositions below show the relationship between R⊕ and property-driven partial order approximations. Because 
our constriction of R⊕ was guided by the fact that partial ordering is a conjunction of acyclicity and transitivity, three out of 
four conditions required from property-driven partial order approximations, are alway satisfied; and one is never satisfied. 
The properties of R⊕ corresponding to the conditions (1), (2) and (4) of Definition 1 are rather expected and easy to prove.

Proposition 3.

1. R⊕ ⊆ R+ , so the condition (1) of Definition 1 is always satisfied.
2. (R•)+ ⊆ R⊕ and R• ⊆ R⊕ , so the condition (2) of Definition 1 is always satisfied.
3. If Rcyc �= ∅ and (R•)+ �= R⊕ then: R⊕ ∩ Rcyc �= ∅, so the condition (4) of Definition 1 is never satisfied.

Proof. (1) From Proposition 2 and Theorem 3(1).
(2) Since R• ⊆ R̂ for each R̂ ∈ MDAG(R).
(3) R̂ ∩ Rcyc �= ∅ for each R̂ ∈MDAG(R) different from R• , so R̂+ ∩ Rcyc �= ∅, and R⊕ = R̂+ . �
On the other hand the result about R⊕ and the condition (3) of Definition 1 is not necessarily expected and its proof 

is rather complicated. As Fig. 4 shows, the elements of MDAG(R) may or may not satisfy the equivalence of condition (3), 
the relation R̂2 satisfies it but R̂1 does not. Similarly a partial order approximation of R , the relation (R̂2)

+ satisfies the 
condition (3) of Definition 1, but a partial order approximation (R̂1)

+ does not.

Proposition 4. For all a, b ∈ X, a ≡R b =⇒ a ≡R⊕ b, so the condition (3) of Definition 1 is always satisfied.

Proof. As R̂1 in Fig. 4 indicates, it might happen that a ≡R b but ¬(a ≡Q b) for some Q ∈ MDAG(R). We will show that 
there is always some R̂ ∈ MDAG such that for all a, b ∈ X a ≡R b =⇒ a ≡R̂ b. Recall that a ≡R b ⇐⇒ aR = bR ∧ Ra = Rb. 
The case c ∈ Ra = Rb and d ∈ aR = bR is illustrated in Fig. 6.

Suppose a ≡R b and ¬(a ≡Q b) for some Q ∈ MDAG(R). This means Ra = Rb and aR = bR , but Q a �= Q b or aQ �= bQ . 
Suppose c ∈ Ra \ Rb. This means that the (c, b) ∈ R and (c, b) /∈ Q . Since Q ∈ MDAG(R), the only reason for deleting (c, b)

is that dR+c. But erasing only (c, b) does not break the cycle cR+dR+c. We have to additionally delete either (c, a) or 
(a, d). But deleting (c, a) implies c /∈ Ra, contradicting our assumption c ∈ R . So we have to delete (a, d) instead. Analysis of 
remaining cases c ∈ Rb \ Ra, d ∈ aR \ bR , and d ∈ bR \ aR is the same. The removal of these two arcs from R was needed to 
break the cycle cR+dR+c in R . Suppose the arcs (c, b) and (a, d) do not belong to Q , as for Q in Fig. 6. We can also break 
the cycle cR+dR+c in R by deleting arcs (c, a) and (c, b) instead. Let denote this new relations as Q ab

cd . Clearly |Q | = |Q ab
cd |

and Q ∈ MDAG(R) implies Q ab
cd ∈MDAG(R).

We may repeat the same process for all remaining elements of aR = bR and Ra = Rb and name the outcome relation as 
Q ab . Now we have a ≡Q ab b. Moreover, if Q ∈MDAG(R) then Q ab ∈ MDAG(R) too. Now we may repeat the same process 
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Fig. 7. An idea of the proof that |Q +| = |PX\{a,b}| + 2κ + 1 and |(Q ab
cd )+| = |PX\{a,b}| + 2κ , where κ = |V〈d,c〉| (from the proof of Proposition 4(4)).

for all x, y such that x ≡R y and ¬(x ≡Q y). Let us give the name Q ′ to the outcome of all these transformations. Clearly if 
Q ∈MDAG(R) then Q ′ ∈MDAG(R) as well.

We will show that dist(R, Q +) > dist(R, (Q ′)+). It suffices to show that dist(R, Q +) > dist(R, (Q ab
cd )+) and we will 

actually show that dist(R, Q +) = dist(R, (Q ab
cd )+) + 1. This part of the proof is illustrated in Fig. 7.

First note that Q + ∩ (X \ {a, b}) × (X \ {a, b}) = (Q ab
cd )+ ∩ (X \ {a, b}) × (X \ {a, b}), and define PX\{a,b} = Q + ∩ (X \

{a, b}) × (X \ {a, b}). Moreover we have {x | c Q +xQ +d} = {x | c(Q ab
cd )+x(Q ab

cd )+d}. Define V〈d,c〉 = {x | c Q +xQ +d}, and let 
κ = |V〈d,c〉|. We now have Q + = PX\{a,b} ∪ {(b, x) | x ∈ V〈d,c〉} ∪ {(x, a) | x ∈ V〈d,c〉} ∪ {(b, a)}. Hence |Q +| = |PX\{a,b}| + 2κ + 1. 
On the other hand (Q ab

cd )+ = PX\{a,b} ∪ {(a, x) | x ∈ V〈d,c〉} ∪ {(b, x) | x ∈ V〈d,c〉}, i.e. |(Q ab
cd )+| = |PX\{a,b}| + 2κ . By the definition 

dist(R, Q +) = |R ∪ Q +| −|R ∩ Q +| and dist(R, (Q ab
cd )+) = |R ∪ (Q ab

cd )+| −|R ∩ (Q ab
cd )+|. Since R ∩ Q + = Q , R ∩ (Q ab

cd )+ = Q ab
cd

and |Q | = |Q ab
cd |, then dist(R, Q +) −dist(R, (Q ab

cd )+) = |R ∪ Q +| −|R ∪ (Q ab
cd )+| = |Q +| −|Q ab

cd )+| = 1. Hence, dist(R, Q +) =
dist(R, (Q ab

cd )+) + 1.
This means that for every Q ∈ MDAG(R) such that ¬(≡R⊆≡Q ), there exist Q ′ ∈ MDAG(R) such that ≡R⊆≡Q ′ and 

additionally dist(R, Q +) > dist(R, (Q ′)+).
By Lemma 1(4), ≡Q ′⊆≡(Q ′)+ , so ≡R⊆≡(Q ′)+ as well. Since R⊕ = R̂+ where dist(R, R⊕) = min{dist(R, Q +) | Q ∈

MDAG(R)}, then for all a, b ∈ X , a ≡R b =⇒ a ≡R⊕ b. �
The statement ‘if Q ∈ MDAG(R) and for all a, b, a ≡R b =⇒ a ≡Q + b then Q + = R⊕ ’ is false. For example Q = R̃ , 

where R̃ is the relation from Fig. 5, satisfies it, but R̃+ �= R⊕ .
The optimal simple partial order approximation, described in Definition 2, is based on the schema used for defining the 

relation (R•)+ . In the similar way we may follow the pattern (R+)• . We may define a relation R� as follows.

• For a given R ⊆ X × X , the relation R� is any element of MDAG(R+).

Any R� can be interpreted as some partial order approximation of R , however it is never a better approximation than R⊕ . 
We will now prove a slightly generalized equivalence of Proposition 1.

Proposition 5. For every relation R ⊆ X × X and every ̂R ∈MDAG(R):

1. sim(R, ̂R+) ≥ sim(R, R�), i.e. sim(R, R⊕) ≥ sim(R, R�).
2. dist(R, ̂R+) ≤ dist(R, R�), i.e. dist(R, R⊕) ≤ dist(R, R�).

Proof. (1) Consider Q R = R ∩ R� . Clearly Q R ⊆ R , and since R� is a partial order, Q cyc
R = ∅. Since MDAG(R) is the set of 

all maximal acyclic relations included in R , then |Q R | ≤ |R̂|. Hence sim(R, ̂R+) ≥ sim(R, R�).
An example when sim(R, ̂R+) �= sim(R, R�) is provided in Fig. 5, where sim(R, R⊕) = 3 and sim(R, R�) = 2, and by 

definition, R⊕ = R̂+ for some R̂ ∈MDAG(R).
(2) Since R̂ ⊆ R , then R̂+ ⊆ R+ . Moreover (R̂+)cyc = ∅ so there is S ∈ MDAG(R) such that R̂+ ⊆ S . This means |R̂+| ≤

|R�|. Clearly R ∩ R̂+ = R̂ and from the proof of (1) above we have |R̂| ≥ |R ∩ R�|, i.e. |R ∩ R̂+| ≥ |R ∩ R�|. Hence:

dist(R, R̂+) = |(R \ R̂+) ∪ (R̂+ \ R)| = |R| + |R̂+| − 2|R ∩ R̂+|,
dist(R, R�) = |(R \ R�) ∪ (R� \ R)| = |R| + |R�| − 2|R ∩ R�|.

Since |R̂+| ≤ |R�| and |R ∩ R̂+| ≥ |R ∩ R�|, then dist(R, ̂R+) ≤ dist(R, R�).
An example when dist(R, ̂R+) �= dist(R, R�) is provided in Fig. 5, where dist(R, R⊕) = 2 and dist(R, R�) = 4. �
The computational complexity of finding R� is an open research problem. Calculating R+ is O (n3), but a polynomial 

algorithm for constructing MDAG(R+) is unknown. The latter problem can be reduced to minimum feedback problem but 
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for transitive relations. Unfortunately the minimum feedback problem but for transitive relations is an open problem too (at 
least it was at the time this paper was written).

9. Another similarity and distance

In the approach taken so far in this paper, for every relation R and its approximation S , we consider three distinct cases:

1. (a, b) ∈ R but (a, b) /∈ S ∧ (b, a) /∈ S . In this case, to transform R into S , we just remove (a, b), and the cost of this 
operation is assumed to be one.

2. (a, b) /∈ R ∧ (b, a) /∈ R but (a, b) ∈ S . In this case, to transform R into S , we just add (a, b), and the cost of this operation 
is again one.

3. (a, b) /∈ R ∧ (b, a) ∈ R but (a, b) ∈ S ∧ (b, a) /∈ R . Now, to transform R into S , we add (a, b) and remove (b, a), so the cost 
of this operation is two.

Such an approach makes formulas for sim(. . .) and dist(. . .) very simple and easy to handle. However, some may argue that 
for the case (3), which is often called ‘flipping’, the cost also should be one not two.

How would the results change if we assume that the cost of ‘flipping’ is one, instead of two? This will be the subject of 
this section.

Assume that the cost of flipping is also one, so we can treat flippings, additions and removals of edges as ‘atomic changes’ 
with the same cost.

Let R and S again be two irreflexive relations on X and let G R = (X, R), G S = (X, S) be their appropriate graph rep-
resentations. In this case we may define sim f 1(R, S) and dist f 1(R, S), where the subscript ‘ f 1’ indicates that the cost of 
flipping is one, not two, as follows. Since similarity just means counting common elements, the cost of flipping does not 
matter, so

sim f 1(R, S) = sim(R, S) = |R ∩ S|.
The flipping, i.e. the case 3 above, involves the case when (a, b) ∈ S \ R and (b, a) ∈ R \ S , so in the formula dist(R, S) =
|R \ R| +|S \ R|, the cost of replacing (b, a) with (a, b) equals 2. If (a, b) ∈ S \ R and (b, a) ∈ R \ S then (b, a) ∈ (S \ R) ∩(R \ S)−1

and (a, b) ∈ (R \ S) ∩ (S \ R)−1, and clearly

|(S \ R) ∩ (R \ S)−1| = |(R \ S) ∩ (S \ R)−1|.
Hence, we may define dist f 1(R, S) as follows:

dist f 1(R, S) = |(R \ S)| + |(S \ R)| − |(S \ R) ∩ (R \ S)−1|.
Clearly dist f 1(R, S) ≤ dist(R, S) for all R, S . We will show that dist f 1 is also a proper metric.

While in dist(R, S), the argument R and S might be just arbitrary sets, in dist f 1(R, S), R and S must be binary relations.

Lemma 5. For all relations R, S ⊆ X × X, the function dist f 1(R, S) is a proper metric.

Proof. Clearly, by the definition:

– dist f 1(R, S) ≥ 0,
– dist f 1(R, S) = dist f 1(S, R).

We need to show that

1. dist f 1(R, S) = 0 ⇐⇒ R = S ,
2. dist f 1(R, S) ≤ dist f 1(R, T ) + dist f 1(T , S).

(1) By the definition again we have R = S =⇒ dist f 1(R, S) = 0. Assume that |(S \ R) ∩ (R \ S)−1| = k > 0, i.e. (S \ R) ∩
(R \ S)−1 = {(a1, b1), . . . , (ak, bk)}. Hence {(a1, b1), . . . , (ak, bk)} ⊆ S \ R , so |S \ R| ≥ k, and {(b1, a1), . . . , (bk, ak)} ⊆ R \ S , so 
|R \ S| ≥ k. This means that dist f 1(R, S) = 0 implies |(S \ R) ∩ (R \ S)−1| = 0, i.e. dist f 1(R, S) = |R \ S| + |S \ R| = 0, which 
occurs only if R = S . Thus dist f 1(R, S) = 0 =⇒ R = S , i.e. dist f 1(R, S) = 0 ⇐⇒ R = S .

(2) We set Left = 0, Right = 0, and P = R ∪ S ∪ T . Then we pick up an arbitrary (a, b) ∈ P, analyze it with respect to 
its relationship with R and S , and either add zero or one to Left. Next we analyze (a, b) with respect to it relationship 
with R, T and T , S and either add zero, or one or two to Right. Then we subtract {(a, b)} from P, i.e. now P := P \ {(a, b)}, 
pick up another (a′, b′) ∈ P and repeat the whole process again. We stop when P = ∅. We will show that at the end 
Left = dist f 1(R, S), Right = dist f 1(R, T ) + dist f 1(T , S) and in the entire process, we never add one to Left and zero to Right
for the same (a, b). Hence Left ≤ Right.
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Fig. 8. An example of inconsistency of dist and dist f 1. We have dist(R, Q ) = 4 > 3 = dist(R, S) and dist f 1(R, Q ) = 2 < 3 = dist f 1(R, S).

Let (a, b) ∈ P. Its relationship to R and S can be divided into the following cases:

1. (a, b) ∈ R ∩ S or (a, b) /∈ R ∪ S , we add zero to Left,
2. (a, b) ∈ R , (a, b) /∈ S and (b, a) /∈ S , we add one to Left,
3. (a, b) ∈ S , (a, b) /∈ R and (b, a) /∈ R , we add one to Left,
4. (a, b) ∈ R , (a, b) /∈ S and (b, a) ∈ S , we add one to Left (we would add two if computing dist(R, S) instead of 

dist f 1(R, S)),
5. (a, b) ∈ S , (a, b) /∈ R and (b, a) ∈ R , we add one to Left (we would add two if computing dist(R, S) instead of 

dist f 1(R, S)).

Repeating this process until P = ∅, we clearly get Left = dist f 1(R, S).
For the same (a, b) ∈ P, its relationship with R, T is given by points (1)–(5) above when replacing S with T , and its 

relationship with T , S is also given by points (1)–(5) above, but when replacing R with T . Hence Right = dist f 1(R, T ) +
dist f 1(T , S).

Initially Left = Right = 0, so to show that always we have Left ≤ Right, it suffices to show that there is no such (a, b) ∈
X × X such that its processing results in adding one to Left and zero to Right. Adding one to Left means that either 
(a, b) ∈ R \ S or (a, b) ∈ S \ R .

Consider the case (a, b) ∈ R \ S . If (a, b) ∈ R \ T then (a, b) /∈ T ∪ S , so we add one to Right as well. Suppose now that 
(a, b) ∈ R \ S and (a, b) ∈ T . Hence (a, b) ∈ R ∩ S and (a, b) ∈ T \ S , so we add one to Right again. For the case (a, b) ∈ S \ R , 
reasoning is the same. Hence we never add one to Left and zero to Right.

This means that we always have Left ≤ Right, i.e. dist f 1(R, S) ≤ dist f 1(R, T ) + dist f 1(T , S).
It does not mean that always Left = Right. When for example (a, b) /∈ R ∪ S but (a, b) ∈ T , we add zero to Left and two 

to Right. �
In [16] the concepts of consistent similarity and distance measures for sets has been proposed. Since relations are sets 

we can easily adapt these concepts to our purposes. Because sim f 1(R, S) = sim(R, S) we need the concept of consistency 
for distances only.

• We will say that two distances dist1 and dist2 are consistent if for each three relations R, Q , S ⊆ X × X :

dist1(R, Q ) ≤ dist1(R, S) ⇐⇒ dist2(R, Q ) ≤ dist2(R, S).

Consistent distances share many important properties, as proofs for one distance measure can often be extended to all 
consistent distances. It was shown in [16] that many popular distances are consistent with a rather general Marczewski–
Steinhaus index [4,16,22]. Unfortunately the distances dist and dist f 1 are not consistent. A simple counterexample is pre-
sented in Fig. 8.

However if one relation is included in another then dist and dist f 1 are identical.

Proposition 6. If R ⊆ S then dist(R, S) = dist f 1(R, S).

Proof. R ⊆ S =⇒ R \ S = ∅ =⇒ |(S \ R) ∩ (R \ S)−1| = 0. �
Despite the fact that dist and dist f 1 are inconsistent, all the results of Section 6 and Section 8 hold for sim f 1 and dist f 1

as well. First we show that an equivalent of Lemma 2 always holds.

Lemma 6. Let R, S, Q be relations on X.

1. If R ⊆ S then: dist f 1(R, S) = |S| − |R| = |S| − sim f 1(R, S).
2. If sim f 1(R, S) = sim f 1(R, Q ) and S ⊆ Q then:

(a) dist f 1(R, S) ≤ dist f 1(R, Q ),
(b) dist f 1(R, S) = dist f 1(R, Q ) ⇐⇒ S = Q .
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3. If Rcyc = ∅ then

dist f 1(R, R+) = min{dist f 1(R,<) |< ∈ PO(R)} = max{sim f 1(R,<) |< ∈ PO(R)},
where PO(R) = { < | R ⊆< ∧ < ∈ PO(X)}.

Proof. (1) From Proposition 6 and Lemma 2(1).
(2) We have:

dist f 1(R, S) = |R ∪ S| − |R ∩ S| − |(S \ R) ∩ (R \ S)−1| and

dist f 1(R, Q ) = |R ∪ Q | − |R ∩ Q | − |(Q \ R) ∩ (R \ Q )−1|.
If sim f 1(R, S) = sim f 1(R, Q ) then |R ∩ S| = |R ∩ Q |. If S ⊆ Q then R ∩ S ⊆ R ∩ Q , so |R ∩ S| = |R ∩ Q | means R ∩ S = R ∩ Q . 
Now we have R \ S = R \ (R ∩ S) = R \ (R ∩ Q ) = R \ Q . But this means that (S \ R) ∩ (R \ S)−1 = (Q \ R) ∩ (R \ Q )−1. Hence

dist f 1(R, Q ) − dist f 1(R, S) = |R ∪ Q | − |R ∪ Q | ≥ 0.

(3) From Proposition 6 and Lemma 2(1). �
Moreover, the quantitative relationship between (R•)+ and (R+)• also remains the same.

Proposition 7. For every relation R, we have:

1. sim(R, (R•)+) = sim f 1(R, (R+)•) = |R•|,
2. dist f 1(R, (R•)+) ≤ dist f 1(R, (R+)•).

Proof. (1) A consequence of Lemma 3.
(2) By Theorem 1(3) we have (R•)+ ⊆ (R+)• . We will show a little bit more general result. Let Q be any relation such 

that (R•)+ ⊆ Q ⊆ (R+)• .
We will prove that:

dist f 1(R, (R•)+) ≤ dist f 1(R, Q ).

First recall that by the definition:

dist f 1(R, Q ) = |R ∪ Q | − |R ∩ Q | − |(Q \ R) ∩ (R \ Q )−1|.
We will prove our assertion by induction on the size of |Q |. This clearly holds for Q = (R•)+ . Assume for some Q such that 
(R•)+ ⊆ Q ⊂ (R+)• , we have: dist f 1(R, (R•)+) ≤ dist f 1(R, Q ). Let (a, b) ∈ (R+)• \ Q , and let Q ′ = Q ∪ {(a, b)}. We have to 
consider three cases: (a, b) ∈ R , (a, b) /∈ R ∧ (b, a) ∈ R \ Q ′ and (a, b) /∈ R ∧ (b, a) /∈ R \ Q ′ .

Case 1. (a, b) ∈ R . In this case we have: R ∪ Q ′ = R ∪ Q , R ∩ Q ′ = R ∩ Q , Q ′ \ R = Q \ R and R \ Q ′ = R \ Q . Hence 
dist f 1(R, Q ′) = dist f 1(R, Q ), i.e. dist f 1(R, (R•)+) ≤ dist f 1(R, Q ′).

Case 2. (a, b) /∈ R ∧ (b, a) ∈ R \ Q ′ . Now we have: |R ∪ Q ′| = |R ∪ Q | + 1, R ∩ Q ′ = R ∩ Q and |(Q ′ \ R) ∩ (R \ Q ′)−1| =
|(Q \ R) ∩ (R \ Q )−1| + 1, hence again dist f 1(R, Q ′) = dist f 1(R, Q ), i.e. dist f 1(R, (R•)+) ≤ dist f 1(R, Q ′). Note that in this 
case dist(R, Q ′) = dist(R, Q ) + 1.

Case 3. (a, b) /∈ R ∧ (b, a) /∈ R \ Q ′ . In this case we have |R ∪ Q ′| = |R ∪ Q | +1, R ∩ Q ′ = R ∩ Q and |(Q ′ \ R) ∩ (R \ Q ′)−1| =
|(Q \ R) ∩ (R \ Q )−1|, hence dist f 1(R, Q ′) = dist f 1(R, Q ) + 1, i.e. dist f 1(R, (R•)+) ≤ dist f 1(R, Q ′). �

We will now replace sim and dist with sim f 1 and dist f 1 in the definition of optimal simple partial order approximation 
of a given relation R .

Definition 3. For every relation R on X , a partial order R⊕ f 1 on X is a flip1-optimal simple partial order approximation of R if 
the following conditions are satisfied:

1. R• ⊆ R⊕ f 1,
2. sim f 1(R, R⊕ f 1) = max{sim f 1(R, <) |< ∈ PO(X)},
3. dist f 1(R, R⊕ f 1) = min{dist f 1(R, <) | sim f 1(R, <) = sim f 1(R, R⊕ f 1)}.

Let POA f 1(R) denote the set of all flip1-optimal simple partial order approximations of R . �
Proposition 8. For every relation R on X: POA(R) = POA f 1(R).
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Proof. Because sim = sim f 1 then MDAG(R) = MDAG f 1(R). We can now literally copy proofs of Proposition 2 and Theo-
rem 3 with replacing Lemma 2 by Lemma 6. �

Despite the fact that dist and dist f 1 are not consistent, in our approach to optimal partially ordered approximation they 
are equivalent, one can be replaced by another and the results remain the same. This is mainly because in our model sim
plays a stronger role than dist , and counting ‘flippings’ is not included in sim, i.e. sim = sim f 1. Nevertheless, dist f 1 is a 
new metric, it is not included in the recent encyclopedia of metrics [4], and may lead to different results than dist in other 
applications, especially those that do not use sim. However this topic is beyond the subject of this paper.

10. Relationship to Rough Sets model

Our approach is intuitively close to the ideas of Rough Sets [23]. The transitive closure can be interpreted as some 
upper approximation, and the cyclic refinement and maximal directed subgraphs can be interpreted as a kind of lower 
approximations. However, the formal relationship between our model and Rough sets is quite complex and it is based on 
the concepts and the results of [12,13] and [16].

The principles of Rough Sets [23] can be formulated as follows. Let U be a finite and nonempty universe of elements, and 
let E ⊆ U × U be an equivalence relation. The elements of U/E are called elementary sets and they are interpreted as basic 
observable or measurable sets. The pair (U , E) is referred to as a Pawlak approximation space. A set X ⊆ U is approximated 
by two subsets of U , A(X) – called the lower approximation of X , and A(X) – called the upper approximation of X , where:

A(X) =
⋃

{[x]E | x ∈ U ∧ [x]E ⊆ X}, A(X) =
⋃

{[x]E | x ∈ U ∧ [x]E ∩ X �= ∅}.
In [16] the concept of optimal approximation has been introduced. A set A ⊆ U is definable (or exact) [23] if it is a union of 
some equivalence classes of the equivalence relation E . Let D denote the family of all definable sets defined by the space 
(U , E), i.e. D = {A | A = ⋃

x∈A[x]E }. For every set X ⊆ U , a definable set O ∈ D is an optimal approximation of X (w.r.t. a given 
similarity measure sim) if and only if:

sim(X,O) = max
A∈D

(sim(X,A)),

and Optsim(X) denotes the set of all optimal approximations of X . An efficient polynomial algorithm that find an optimal 
approximation for any similarity consistent with fairly general Marczewski–Steinhaus index2 [22] (and that includes Jaccard 
similarity [10]) was also provided in [16]. Moreover the following result has been proven.

Proposition 9 ([16]). For every similarity measure that satisfies five simple axioms3 from [16], for every set X ⊆ U , and every O ∈
Optsim(X):

A(X) ⊆ O ⊆ A(X). �
Since every relation is a set of pairs, this approach can be used for relations as well [27]. Unfortunately, in such cases as 

ours we want approximations to have some specific properties like irreflexivity, transitivity etc., and most of those properties 
are not closed under the set union operator. As was pointed out in [30], in general one cannot expect approximations to 
have the desired properties (see [30] for details). It is also unclear how to define the relation E for cases such as ours.

However the Rough Sets can also be defined in an orthogonal (sometimes called ‘topological’) manner [23,27,29]. We 
may start with defining a space as (U , D) where D is a family of sets that contains ∅ and for each x ∈ U there is X ∈ D
such that x ∈ X (i.e. D is some covering of U [24]). We may now define ED as the equivalence relation generated by the set 
of all components (in the sense of [21]) defined by the covering D. If we set D = D, where D is the set of all definable sets 
of a classic approximation space (U , E), then ED = E . Hence both approaches can be considered as equivalent [23,27,30], 
however now for each X ⊆ U we have:

A(X) =
⋃

{Y | Y ⊆ X ∧ Y ∈ D}, A(X) =
⋂

{Y | X ⊆ Y ∧ Y ∈ D}.

2 Marczewski–Steinhaus index is defined as sim(X, Y ) = μ(X∩Y )
μ(X∪Y )

, where μ is a finite measure on U and X, Y ⊆ U [22].
3 Similarity axioms of [16] are the following, for all sets A, B , we have:

S1 (Maximum): sim(A, B) = 1 ⇐⇒ A = B,

S2 (Symmetry): sim(A, B) = sim(B, A),

S3 (Minimum): sim(A, B) = 0 ⇐⇒ A ∩ B = ∅,

S4 (Inclusion): if a ∈ B \ A then sim(A, B) < sim(A ∪ {a}, B),

S5 (Exclusion): if a /∈ A ∪ B and A ∩ B �= ∅ then sim(A, B) > sim(A ∪ {a}, B).

As explained in Sections 3 and 8, in this paper we use different, asymmetric, approach to similarity measures, so the axioms S1, S4 and S5 are not satisfied.
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We can now define Dα as a set of relations having the desired property α and then calculate A(R) and/or A(R) with respect 
to a given Dα . Such an approach was proposed and analyzed in [30], however it seems to have only limited applications. It 
assumes that the set Dα is closed under both union and intersection, and few properties of relations do this. For instance, 
transitivity is not closed under union and having a cycle is not closed under intersection. This and other problems have 
been discussed in details in [12,13], where a different approach has been proposed.

Let α be any predicate that describe some property of binary relations. As an example we can take

α = [∀a,b, c ∈ X . ¬(aRa) ∧ (aRbRc ⇒ aRc)]
i.e. a definition of (sharp) partial order.

Let X be a finite set and let

Relα = {R | R ⊆ X × X and R satisfies the property α }.
If α is a predicate defined above, then Relα is the set of all (sharp) partial orders on X .

Let Prop denote the set of predicates such that α ∈ Prop ⇒ Relα �= ∅ ∧ Relα �= {∅}.
Note that we allow the case α ∈ Prop and ∅ ∈ Relα . The restrictions of Prop are merely for technical reasons, to avoid 

considering pathological cases in each result and proof. For more details the reader is referred to [13].
Let R ⊆ X × X be a non-empty relation and α ∈ Prop. We say that:

• R has α-lower bound ⇐⇒ ∃Q ∈ Relα. Q ⊆ R ,
• R has α-upper bound ⇐⇒ ∃Q ∈ Relα. R ⊆ Q .

We also define

• lbα(R) = {Q | Q ∈ Relα ∧ Q ⊆ R}, the set of all α-lower bounds of R , and
• ubα(R) = {Q | Q ∈ Relα ∧ R ⊆ Q }, the set of all α-upper bounds of R .

Both lbα(R) and ubα(R) always exists but they may be empty sets.
For every family of sets F (relations are sets), let M I N(F) and M A X(F) be defined as follows:

• M I N(F) = {R | ∀Q ∈F . Q ⊆ R ⇒ R = Q }, the set of all minimal elements of F ,
• M A X(F) = {R | ∀Q ∈F . R ⊆ Q ⇒ R = Q }, the set of all maximal elements of F .

Assume that Relα is closed under intersection or union (could be both, but does not have to). We can now define the 
lower and upper approximations A α(R) and A α(R) as follows:

• If R has α-lower bound then we define its α-lower approximation as:

A α(R) =
⋂

{Q | Q ∈ M A X(lbα(R))}.
• If R has α-upper bound then we define its α-upper approximation as:

A α(R) =
⋃

{Q | Q ∈ M I N(ubα(R))}.

If R does not have α-lower bound (α-upper bound), then its α-lower approximation (α-upper approximation) does not exist.
Directly from the definitions it follows that A α(R) is well defined if Relα is closed under intersection and A α(R) is well 

defined if Relα is closed under union. The result below shows that both concepts are well defined if Relα is closed either 
under intersection or union (or both).

Proposition 10 ([12]).

1. If Relα is closed under union and R has α-lower bound, then

A α(R) =
⋃

{Q | Q ⊆ R ∧ Q ∈ Pα}.
2. If Relα is closed under intersection and R has α-upper bound, then

A α(R) =
⋂

{Q | R ⊆ Q ∧ Q ∈ Pα}. �
In Proposition 10, the formulas for A α(R) and A α(R) are practically the same as for standard lower and upper approxi-

mations for ‘topological case’ discussed above, with just Pα instead of D.
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In general the properties of A α(R) and A α(R) mimic those of A(R) and A(R), in particular, if A α(R) exists, then
A α(R) ⊆ R; and if A α(R) exists, then R ⊆ A α(R) (cf. [12,13]).

Let αtr, αac and αpo be the following properties:

• αtr
df= [∀a, b, c ∈ X . aRb ∧ bRa ⇒ aRc], i.e. αtr = transitivity,

• αac
df= [∀a, b ∈ X . ¬(aRcycb)], i.e. αac = acyclicity,

• αpo
df= [∀a, b, c ∈ X . ¬(aRa) ∧ (aRbRc ⇒ aRc)] i.e. αpo = partial ordering,

Clearly αac ∧αtr ⇐⇒ αpo . While the property αpo is not very useful as A αpo (R) usually does not exist and A αpo
(R) is often 

equal to empty set, since αpo ⇐⇒ αac ∧ αtr , we can use compositions of αac-approximation and αtr -approximation to rep-
resent approximations by partial orders It turns out the relations R+, R•, (R•)+ and (R+)• can be described as appropriate 
α-approximations or compositions of α-approximations, where α ∈ {αac, αtr}.

Proposition 11 ([12]).

1. R+ = A αtr (R),
2. R• = A αac

(R),

3. (R•)+ = A αtr (A αac
(R)),

4. (R+)• = A αac
(A αtr (R)). �

For more details on similar subjects the reader is referred to [12,13]. The compositions of α-approximations can also be 
used for approximations by the relations different than partial orders, more details in [13]. Optimal approximations in the 
sense of [16] are not considered in [12,13], but they can be defined in a relatively straightforward manner. Since similarity 
measures used in this paper are not scaled to [0, 1], we cannot literally copy appropriate definitions from [16].

For every relation R ⊆ X × X and every property α ∈ Prop, a relation O ∈ Relα is an optimal α-approximation of R ,

(a) w.r.t. similarity, iff O ∈ M I N(O), where O is the family of relations such that O′ ∈ O ⇐⇒ sim(R, O′) = max
Q∈Relα

(|R ∩ Q|),

(b) w.r.t. distance, iff dist(R, O) = min
Q∈Relα

(|R ∪ Q| − |R ∩ Q|).

We need ‘O ∈ M I N(O)’ in (a) since it may happen that R ∩ O = R ∩ O′ and O � O′ . The similarity measure max
Q∈Relα

(|R ∩ Q|) is 

different that all considered in [16]. It does not satisfy axioms S4 and S5 from Proposition 9. Hence we need ‘O ∈ M I N(O)’ 
in (a). On the other hand, the distance min

Q∈Relα
(|R ∪ Q| − |R ∩ Q|) is a proper measure, so it does not need any specialized 

modifications.

• The set of all optimal α-approximations of R w.r.t. similarity will be denoted by Optαsim(R), and
• the set of all optimal α-approximations of R w.r.t. distance will be denoted by Optαdist(R).

The sets Optαsim(R) and Optαdist(R) always exist, even if A α(R) or A α(R) do not. For example Opt
αpo

sim (R) exists while 
A αpo (R) does not if R contains a cycle (cf. [12,13]).

We can now formulate an equivalent of Proposition 9, but for α-approximations.

Proposition 12. For every α ∈ Prop, every relation R ⊆ X × X, and every O ∈ Optαsim(R), Q ∈ Optαdist(R), we have:

1. if A α(R) exists then A α(R) ⊆ O and A α(R) ⊆ Q,
2. if A α(R) exists then O ⊆ A α(R) and Q ⊆ A α(X).

Proof. (1) Suppose (a, b) ∈ A α(R) \ O. Since A α(R) ⊆ R then |(O ∪ {(a, b)}) ∩ R| = |O ∩ R| + 1, so O /∈ Optαsim(R). Suppose 
now (a, b) ∈ A α(R) \ Q. Since A α(R) ⊆ R then |R ∪ (Q ∪ {(a, b)})| − |R ∩ (Q ∪ {(a, b)})| = |R ∪ Q| − |R ∩ (Q ∪ {(a, b)})| =
|R ∪ Q| − |R ∩ Q| − 1, so Q /∈ Optαdist(R).

(2) Suppose (a, b) ∈ O \ A α(R). Since R ⊆ A α(R) then (a, b) /∈ R . Now we have |(O \ {(a, b)}) ∩ R| = |O ∩ R|, and O \
{(a,b)}� O, so O does not belong to M I N(O), which implies O /∈ Optαsim(R). Suppose now (a, b) ∈ Q \ A α(R). Again since 
R ⊆ A α(R) then (a, b) /∈ R . Hence |R ∪ (Q \ {(a, b)})| −|R ∩ (Q \ {(a, b)}) = |R ∪ (Q \ {(a, b)})| −|R ∩ Q| = |R ∪ Q| −|R ∩ Q| − 1, 
so Q /∈ Optα (R). �
dist
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The above result can be interpreted as some validation of the choice of definitions for sim(...) and dist(..) we have made, 
and suggest that they may be useful for other type of approximations, not only by partial orders. It may also happen that 
optimal α-approximations are just lower or upper α-approximations.

Corollary 1. For each relation R, we have: Optαtr
dist(R) = A αtr (R).

Proof. By Proposition 11(1), we have A αtr (R) = R+ and R+ is the smallest transitive relation that includes R . �
Now we may formulate some relevant results of this paper in terms of Rough Sets.

Proposition 13.

1. MDGAR(R) = Optαac
sim(R).

2. POA(R) = Optαtr
dist(Opt

αpo

sim (R)) = A αtr (Opt
αpo

sim (R)).

3. For each R⊕ ∈ POA(R), we have A αac
(R) ⊆ R⊕ .

4. POA(R) ⊆ Optαtr
dist(MDGAR(R)) = Optαtr

dist(Optαac
sim(R)) = A αtr (Optαac

sim(R)).

5. There is R such that POA(R) �= A αtr (Optαac
sim(R)).

Proof. (1) From appropriate definitions.
(2) From appropriate definitions and Corollary 1.
(3) From Proposition 11(2) and Definition 2(1).
(4) From appropriate definitions, Theorem 3(1) and Corollary 1.
(5) From Theorem 3(1) or Fig. 5. �
Proposition 13 does not provide any new algorithmic ideas on how to find R⊕ efficiently, however its Rough Sets based 

formulation provides additional structure to the relationship between MDGAR(R), POA(R) and R⊕ , the main features of 
our model. For example, this proposition gives a very natural explanation of why not every transitive closure of an element 
of MDGAR(R) is an optimal simple partial order approximation of R . Since αpo =⇒ αac , then Opt

αpo

sim (R)) ⊆ Optαac
sim(R)) and 

for some R , we have Opt
αpo

sim (R)) �= Optαac
sim(R)).

Propositions 12 and 13 also do hold if sim is replaced with sim f 1 and dist with dist f 1. The proofs are practically identical.

11. Final comment

In many applications of partial orders, full transitivity is never or seldom explicitly used. Quite often use of acyclic rela-
tions that uniquely represent partial orders, as Hasse diagrams, dependency graphs, etc., is sufficient and more efficient (cf. 
[5,8,20]). If (a, b) ∈ R, (b, c) ∈ R but (a, c) /∈ R, (c, a) /∈ R , and R is interpreted as partial ordering, then either the relationship 
between a and c was analyzed and declared that a and c are incomparable, and then we have some inconsistency; or the 
relationship between a and c was just not analyzed as transitivity of R was implicitly assumed. Cycles, on the other hand, 
are always a result of errors or data inconsistency. Even if the case (a, b) ∈ R, (b, c) ∈ R but (a, c) /∈ R, (c, a) /∈ R is the result 
of errors or inconsistencies, this case appears to be less serious problem than the case (a, b) ∈ R, (b, c) ∈ R and (c, a) ∈ R+ .

As one of the reviewers rightly pointed out, the lack of transitivity when R is interpreted as a partial order may be due 
at least to two different circumstances:

1. A pair of elements a and c are declared to be incomparable, while both (a, b) and (b, c) belong to R , so there is some 
inconsistency.

2. The relation between a and c is not analyzed.

The second case could correspond to a situation where transitivity is implicitly assumed, and therefore the pair (a, c) can 
be assumed to belong to R . In this paper both case are treated in the same way. First we made the relation R acyclic, and 
then we assume that for acyclic relations the transitive closure produces the closest partial order.

However, the above two situations may be treated differently. In the second case, a reasonable procedure seems to 
include the pair (a, c) in our approximation of R , while in the first case we do not know whether the conflict should be 
solved either by means of adding the pair (a, c) or contrarily by means of removing some of the pairs (a, b) or (b, c). This 
case is illustrated in Fig. 2 in Section 4 where the problems with defining optimal approximation are discussed. However 
this would require defining optimal partial order approximation of an acyclic relation R that is included in R , i.e. a lower 
approximation, and so far we do not have any feasible definition. On the other hand, from Lemma 2(3), it follows that the 
transitive closure is the optimal upper partial order approximation of any acyclic relation, with respect to both closeness 
measures used in this paper, namely: the similarity sim(R, S) = |R ∩ S| and distance dist(R, S) = |R ∩ S| − |R ∩ S|.
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In our model the measure sim punishes more for having cycles, while dist for not being transitive. Since we believe that 
cycles are more problematic than lack of transitivity (that might be intentional, just the result of specific procedure of an 
experiment), we emphasize sim in Definition 2, and do not use measures like Jaccard index [10] (or others used in [16]), 
where a differentiation between sim and dist is also impossible.

We have shown that the quantitative approach to partial order approximations of arbitrary relations is mostly consistent 
with the property-driven approach presented in [12,13], moreover when quantitative measures are applied to property-
driven approximations (R•)+ and (R+)• , the relation (R•)+ is a better approximation of R than (R+)• .

The main technical result of this paper is somewhat pessimistic as finding our optimal partially ordered approximation 
is NP-complete, so we have to look for some randomized and approximation algorithms.

When the classical symmetric difference is used as a measure of a distance between relations, the cost of arc flipping 
is two, while the costs of arc removal and addition are one. An alternative measure of distance, where all three costs are 
equal to one has been introduced and proved to be a metric. This new measure is inconsistent (in a sense of [16]) with 
symmetric difference, however as far as approximations by partial orders are concerned, it provides the same results as 
standard symmetric difference.

We also show how our model can be expressed in Rough Sets settings using α-approximations introduced in [12] and 
studied in [13]. Rough Sets setting enables additional validation of the similarity measures that are used in the paper, and 
also provides more intuition for our main result.

In [11,15,13] and many other papers, the relation (R+)• (classical Shröder’s approximation) was used as a partial order 
approximation for group ranking and pairwise comparisons non-numerical ranking. In the view of the results of this paper, 
it should be replaced by either (R•)+ , or any R� produced by Algorithm 1, or any R⊕ ∈ POA(R), as we have sim((R+)•, R) ≤
sim((R•)+, R) ≤ sim(R�, R) ≤ sim(R⊕, R).
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