
Information and Computation 253 (2017) 78–108
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Modeling concurrency with interval traces

Ryszard Janicki a,∗, Xiang Yin b

a Department of Computing and Software, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
b IBM Canada, Markham, Ontario, L6G 1C7, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 September 2014
Received in revised form 14 December 2015
Available online 2 January 2017

Interval order structures are useful tools to model abstract concurrent histories, i.e. sets of
equivalent system runs, when system runs are modeled with interval orders. This paper
shows how interval order structures can be modeled by partially commutative monoids,
called interval traces. The model is then used to provide a semantics of Petri nets with
inhibitor arcs, both in terms of interval traces and in terms of interval order structures.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Most observational1 semantics of concurrent systems are defined either in terms of sequences (i.e. total orders) or
step-sequences (i.e. stratified orders). When concurrent histories2 are fully described by causality relations, i.e. partial orders,
Mazurkiewicz traces [10,33,34] allow a representation of the entire partial order by a single sequence (plus independency
relation), which provides a simple and elegant connection between observational and process semantics (i.e. the semantics
in terms of concurrent histories) of concurrent systems with static concurrency structure, i.e. if two actions are independent,
they are always independent. In such case, all other relevant observations can be derived as just stratified or interval
extensions of appropriate partial orders.

It has been observed a long time ago that if priority and concurrency are mixed, it may happen that for two actions
a and b, a sequence a followed by b, and a simultaneous execution of a and b are allowed, and they can be considered
as equivalent, but the sequence b followed by a is disallowed [16,30,43]. Such situation is often called “not later than”
relationship (cf. [17,28]) as a may not follow b (but the opposite order and simultaneity are allowed).

When we want to model both causality and the “not later than” relationship, we have to use stratified order structures
[14,20,22], when all observations are step-sequences, or interval order structures [23,20,31], when all observations are interval
orders.

Comtraces [22] allow a representation of stratified order structures by single step-sequences (with appropriate simultane-
ity and serializability relations).

It was argued by Wiener in 1914 [51] (and later more formally in [21]) that any execution that can be observed by a
single observer must be an interval order. It implies that the most precise observational semantics is defined in terms of

* Corresponding author.
E-mail addresses: janicki@mcmaster.ca (R. Janicki), yinxiang@ca.ibm.com (X. Yin).

1 ‘Observational semantics’ is not a generally agreed concept, in this paper this will be just a collection of all system runs (i.e. executions, observations)
[5,21,28,49]. A different meaning is used in for example [7].

2 In this paper a ‘concurrent history’ is a set of equivalent system runs (executions, observations), represented uniquely by some partial order or order
structure, and differs formally (although it is intuitively close) to these of for instance [8,26]. The concept used in this paper was introduced in [21] and is
close to that of [34].
http://dx.doi.org/10.1016/j.ic.2016.12.009
0890-5401/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2016.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:janicki@mcmaster.ca
mailto:yinxiang@ca.ibm.com
http://dx.doi.org/10.1016/j.ic.2016.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2016.12.009&domain=pdf

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 79
interval orders. However generating interval orders directly is problematic for most models of concurrency. Unfortunately,
the only feasible sequence representation of interval order is by using sequences of beginnings and endings of events involved
[11,21].

The goal of this paper is to provide a monoid based model that allows a single sequence of beginnings and endings
(enriched with appropriate simultaneity and serializability relations) to represent the entire stratified order structures as well
as all equivalent interval order observations. This will be done by introducing and developing the concept of interval traces,
a mixture of ideas from both Mazurkiewicz traces [10] and representations of interval orders [12], and proving that each
interval trace uniquely determines an interval order structure. The interval traces considered in this paper are highly revised,
modified and extended version of the concept originally proposed in [25].

We will also show how interval traces can define interval order semantics of elementary nets with inhibitor arcs.
Modeling observational semantics with sequence and concurrent histories with Mazurkiewicz traces (cf. [10]) as well as

modeling observational semantics with step sequence and concurrent histories with comtraces (or similar models, cf. [5,19,
22,24,28,32,49]) is well developed and relatively well known. Recently published [19] provides a general model that covers
most others as special cases, including these from [5,22,24,49]). For the case where the system runs or observations are rep-
resented by intervals or interval orders, the situation is much less impressive [21,25,40,45–49]. Conceptually closest to our
approach are models based on the concept of ST-traces (sequences of transition beginnings and ends) and ST-bisimulation
[45–49]. We will briefly discuss some relationships of ST-traces to our model in Section 10.5. The beginnings and ends are
also used in [40], but the outcome is only step sequence semantics. The paper [21] provides some general abstract results
and [25] defines an initial version of interval traces and some preliminary results.

This paper is organized as follows. Section 2 recalls some concepts and results on partial orders, sequences, and their
mutual relationship. In Section 3, Mazurkiewicz traces and their basic properties are briefly discussed. Interval traces, the
main concept introduced in this paper, are discussed in Section 4. Section 5 is devoted to interval order structures and
their partial order representations. The relationship between interval traces and interval order structures, one of the main
contributions of this paper, is discussed in Section 6, and the relationship between interval traces and comtraces in Section 7.
The concept of concurrent histories and how they relate to interval traces is analyzed in Section 8. In Section 9, it is shown
how interval traces can describe various behavioral properties of concurrent systems, and a small example is analyzed in
detail. In Section 10 we show how interval traces can be used to provide an adequate semantics of elementary Petri nets
with inhibitor arcs. The relationship to the model of [49] is also discussed at the end of Section 10. Section 11 contains
some final comments. Technical proofs of two results are given in Appendix A.

2. Partial orders and sequences

In this section, we recall some, often well-known, concepts, notations and results regarding partial orders [12], sequences
and representations of partial orders by appropriate sequences [13,18,22,24].

2.1. Partial orders

Partial orders are one of the basic tools used in this paper. They will be used as a full representation of systems runs (or
observations) and as a partial representation of concurrent histories.

Definition 1. A relation <⊆ X × X is a (strict) partial order iff it is irreflexive and transitive, i.e. for all a, c, b ∈ X , a �< a and
a < b < c =⇒ a < c. We also define:

a �< b
df⇐⇒ ¬(a < b) ∧ ¬(b < a) ∧ a �= b,

a <� b
df⇐⇒ a < b ∨ a �< b.

Note that a �< b means a and b are incomparable (w.r.t. <) elements of X . �

Let < be a partial order on a set X . Then:

1. < is total if �<= ∅. In other words, for all a, b ∈ X , a < b ∨ b < a ∨ a = b. For clarity, we will reserve the symbol � to
denote total orders;

2. < is stratified if a �< b �< c =⇒ a �< c ∨ a = c, i.e., the relation �< ∪ idX is an equivalence relation on X ;
3. < is interval if for all a, b, c, d ∈ X , a < c ∧ b < d =⇒ a < d ∨ b < c.

It is clear from these definitions that every total order is stratified and every stratified order is interval. An interval order
is strict if it is not stratified. In this paper, most partial orders will be represented by Hasse diagrams [12]. The following
simple concept will often be used in this paper.

Definition 2. For a relation R ⊆ X × X , any relation Q ⊆ X × X is an extension of R if R ⊆ Q . �

80 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Fig. 1. Various types of partial orders (represented as Hasse diagrams). The partial order <1 is an extension of <2, <2 is an extension of <3, and <3 is
and extension of <4. Note that order <1, being total, is uniquely represented by a sequence abcd, the stratified order <2 is uniquely represented by a step
sequence {a}{b, c}{d}, and the interval order <3 is (not uniquely) represented by a sequence that represents �3, i.e. B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

For convenience, we define Total(<) df= {� ⊆ X × X | � is a total order and < ⊆ �}.
In other words, the set Total(<) consists of all the total order extensions of <.
By Szpilrajn’s Theorem [44], we know that every partial order < is uniquely represented by the set Total(<). Szpilrajn’s

Theorem can be stated as follows:

Theorem 3 (Szpilrajn [44]). For every partial order <,

< =
⋂

�∈Total(<)

�,

i.e. each partial order is the intersection of all its total extensions. �

Stratified orders are often defined in an alternative way, namely, a partial order < on X is stratified if and only if there
exists a total order � on some T and a mapping S : X → T such that ∀x, y ∈ X . x < y ⇐⇒ S(x) � S(y). Usually S(x) is
interpreted as a strata. This definition is illustrated in Fig. 1, where S(a) = {a}, S(b) = S(c) = {b, c}, S(d) = {d}. Note that
for all x, y ∈ {a, b, c, d} we have x <2 y ⇐⇒ S(x) �2 S(y), where the total order �2 can be concisely represented by a step
sequence {a}{b, c}{d}. As a consequence, stratified orders and step sequences can uniquely represent each other (cf. [13,22]).

For the interval orders, the name and intuition follow from Fishburn’s Theorem:

Theorem 4 (Fishburn [11]). A partial order < on countable3 set X is interval iff there exists a total order � on some T and two injective
mappings with disjoint codomains B, E : X → T such that for all x, y ∈ X,

1. B(x) � E(x),
2. x < y ⇐⇒ E(x) � B(y). �

Usually B(x) is interpreted as the beginning and E(x) as the end of an interval x. The intuition of Fishburn’s theorem is
illustrated in Fig. 1 with <3 and �3. For all x, y ∈ {a, b, c, d}, we have B(x) �3 E(x) and x <3 y ⇐⇒ E(x) �3 B(y). For better
readability in the future we will write Bx and Ex instead of B(x) and E(x).

2.2. Sequences, enumerated sequences, sequences of beginnings and ends, and their relationship to partial orders

Sequences are the most obvious and popular tool to define an observational semantics of both sequential and concurrent
systems, and they can also conveniently represent finite total, stratified, and interval orders (cf. [13,18,22,24]).

Let � be a finite set (of events) and P(�) its power set. The elements of �∗ are called sequences while the elements of
(P(�) \ ∅)∗ are called step sequences.

While interpreting sequences as partial orders and vice versa is well-known and established fact, a standard notation has
not been set up yet. Below we will define the notation that will be used in this paper.

For each sequence x ∈ �∗ or each step sequence x ∈ (P(�) \ ∅)∗ , and each a ∈ �, let #a(x) denote the num-
ber or quantity of a in x. For example #a(abbaa) = 3, #b(abbaa) = 2 and #c(abbaa) = 0; #a({a, b}{b, c}{a, b, c}) = 2,
#b({a, b}{b, c}{a, b, c}) = 3, #c({a, b}{b, c}{a, b, c}) = 2 and #d({a, b}{b, c}{a, b, c}) = 0.

The formal relationship between sequences and total orders, and between step sequences and stratified orders can be
defined as follows.

3 For uncountable X it is additionally required that the equivalence relation ∼< defined as a ∼< b ⇐⇒ ∀c ∈ X .(c < a ⇔ c < b) ∧ (a < c ⇔ b < c) has
countably many equivalence classes [11]. But in this paper we need only a simpler version for countable X , cf. [21].

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 81
Definition 5.
1. For each set of events �, let �̂ = {a(i) | a ∈ �, i = 1, 2, ...}. The elements of �̂ are called enumerated events. The operator

‘̂ ’ is idempotent, i.e. ̂̂� = �̂.
2. For each sequence x ∈ �∗ , its enumerated representation x̂ ∈ �̂∗ , is defined as follows:

• x = ε =⇒ x̂ = ε, and x = a =⇒ x̂ = a(1) ,
• x = ya =⇒ x̂ = ŷa(i) , where i = #a(y) + 1.
We also assume ̂̂x = x̂.

3. For each step sequence x ∈ (P(�) \ ∅)∗ , its enumerated representation x̂ ∈ �̂∗ , is defined as follows:
• x = ε =⇒ x̂ = ε, and x = {a1, ..., ak} =⇒ x̂ = {a(1)

1 , ..., a(1)

k },
• x = y A =⇒ x̂ = ŷ Â, where Â = {a(i) | a ∈ A ∧ i = #a(y) + 1}.
Again we assume ̂̂x = x̂.

4. For each sequence x ∈ �∗ , or step sequence x ∈ (P(�) \ ∅)∗ , �x denotes the set of all elements of � that occur in x,
and �̂x denotes the set of all enumerated events of ̂x.

5. For each sequence x ∈ �∗ , we define the following total order �x on �̂x:

a(i) �x b(j) ⇐⇒ x̂ = ua(i)vb(j)w,

where u, v, w ∈ (�̂x)
∗ .

6. For each step sequence x ∈ (P(�) \ ∅)∗ , we define the following stratified order �x on �̂x:

a(i) �x b(j) ⇐⇒ x̂ = u Av B w,

where a(i) ∈ A ⊆ �̂x , b(j) ∈ B ⊆ �̂x and u, v, w ∈ (�̂x)
∗ . �

For example, if x = abbaa then ̂x = a(1)b(1)b(2)a(2)a(3) , �x = {a, b} and
�̂x = {a(1), a(2), a(3), b(1), b(2)}. If x = {a, b}{b, c}{a, b, c}, then
x̂ = {a(1), b(1)}{b(2), c(1)}{a(2), b(3), c(2)}, �x = {a, b, c} and
�̂x = {a(1), a(2), b(1), b(2), b(3), c(1), c(2)}.

The sequence x = abbaa represents a total order:

�x = a(1) → b(1) → b(2) → a(2) → a(3),

while the step sequence x = {a, b}{b, c}{a, b, c} represents the stratified order (represented as total order of equivalence
classes):

�x = {a(1),b(1)} → {b(2), c(1)} → {a(3),b(2), c(2)}.
If �̂x ⊆ {a(1) | a ∈ �}, then we will identify x with ̂x. More details can be found for example in [22,18,24].
We will now show how interval orders can be represented by sequences of beginnings and ends. We adapt conventions

from Definition 5 and also use Theorem 4.
For a given �, let E� = {Ba | a ∈ �} ∪ {Ea | a ∈ �}, or just E , be the set of all beginnings and ends of events in �.
Let D ⊆ E and let s ∈ E ∗ . We define the projection of s onto D standardly as:

πD (ε)
df= ε, πD (sα)

df=
{
πD (s)α if α ∈ D,

πD (s) if α /∈ D .

For example π{Ba,Ea}(BbBaEbBaEaEc) = BaBaEa, π{Ba,Ea,Bc,Ec}(BbBaEbBaEaEc) = BaBaEaEc.

Definition 6.
1. A string x ∈ E ∗ is an interval sequence iff ∀a ∈ �. π{Ba,Ea}(x) ∈ (BaEa)∗ .

We use InSeq(E ∗) to denote the set of all interval sequences of E ∗ .
2. For every x ∈ E ∗

� , we define �̂E
x ⊆ �̂∗ as follows:

�̂E
x = {a(i) | Ba(i) ∈ Êx} ∪ {a(i) | Ea(i) ∈ Êx},

3. Let x ∈ InSeq(E ∗
�), and let �x be a relation on Ê �

x , defined by

a(i) �x b(j) ⇐⇒ Ea(i) �x Bb(j).

By Theorem 4, the relation �x is an interval order, and it will be called the interval order defined by the sequence x of
beginnings and ends. �

Since the operator ‘̂’ is idempotent in all cases, Definitions 5(5,6) and 6(3) imply the following simple but useful result.

82 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Corollary 7. For every sequence x ∈ �∗ , step sequence y ∈ (P(�) \ ∅)∗ , and interval sequence z ∈ E ∗ , we have:

�x = �x̂, �y = � ŷ and �z=�ẑ . �

Note that if x ∈ InSeq(E ∗), then �̂E
x = {a(i) | Ba(i) ∈ Êx} = {a(i) | Ea(i) ∈ Êx}. For example a sequence x = BaBbEbEaBcBaBb

EcEbEaBaEa is in InSeq(E ∗
�) for � = {a, b, c}, but sequences EaBbEbBa or BbEbBaEc are not. For this x, we have

�̂E
x = {a(1), a(2), a(3), b(1), b(2), c(1)}. For x = BaEaBbBcEbBdEcEd, the interval order �x is the same as <3 of Fig. 1 with

a(1), b(1), c(1) , and d(1) represented by a, b, c, and d, and for y = BaEaBbBaEbBbEaEb, the interval order �y is also the
same as <3 of Fig. 1 with a(1) represented by a, b(1) represented by b, a(2) by c, and b(2) by d.

3. Mazurkiewicz traces

Interval traces, the main contribution of this paper, stemmed from Mazurkiewicz traces (cf. [10,33]), a kind of equational
monoids over sequences [24,38]. The theory of traces has been utilized to tackle problems from quite diverse areas including
combinatorics, graph theory, algebra, logic, and especially concurrency theory [10,33]. Applications of traces in concurrency
theory are originated from the fact that traces are sequence representation of partial orders, which gives traces the ability to
model “true concurrency” semantics.

Definition 8 (Of Mazurkiewicz trace [10,33,34]).
1. Let � be a finite set of events and let the relation ind ⊆ � × � be an irreflexive and symmetric relation (called

independency). The pair (�, ind) is called a trace alphabet.
2. Let ≈ ⊆ �∗ × �∗ be a relation defined as follows:

x ≈ y ⇐⇒ ∃x1, x1 ∈ �∗.∃(a,b) ∈ ind. x = x1abx2 ∧ y = x1bax2

3. Let ≡ind be the reflexive and transitive closure of ≈, i.e.

≡ind=≈∗=
∞⋃

i=0

≈i .

Since ≈ is symmetric, the relation ≡ind is clearly an equivalence relation.
4. For every x ∈ �∗ , the equivalence class [x]≡ind is called a Mazurkiewicz trace, or just a trace. �

We will omit the subscripts ind and ≡ind from trace description, if it causes no ambiguity, and often write [x]ind , or
just [x], instead of [x]≡ind .

One may show that [x][y] = [x] ◦ [y] = [xy], where ◦ is a concatenation of sets of sequences, a symbol that is usually
omitted [10,34].

Formally, an algebra of Mazurkiewicz traces is a quotient equational monoid over sequences [10,24,38], however we do not
need the full theory of traces as equational monoids in this paper.

Example 9. Consider the trace alphabet (�, ind), where � = {a, b, c} and ind = {(b, c), (c, b)}. Given three sequences x =
abcbca, x1 = abc and x2 = bca, we can generate the traces [x] = {abcbca, abccba, acbbca, acbcba, abbcca, accbba}, [x1] =
{abc, acb} and [x2] = {bca, cba}. Note that [x] = [x1] ∗ [x2] since [abcbca] = [abc] ∗ [bca] = [abc ∗ bca]. �

Note for each trace [x] its set of all enumerated events can be defined as �̂[x] = �̂x . For the trace [x] from Example 9, we
have �̂[x] = {

a(1), b(1), c(1), b(2), c(2), a(2)
}

.

Definition 10. For every trace [x], let �[x] ⊆ �̂[x] × �̂[x] be a partial order defined as:

�[x] =
⋂

t∈[x]
�t .

The partial order �[x] is called generated by the trace [x]. �

Theorem 11 (Follows from [33,34], also Theorem 6.31 in [18]). For every trace [x], Total(�[x]) = {�t | t ∈ [x]}. �

The partial order defined by the trace [s] from Example 9 is presented in Fig. 2. By Theorems 3 and 11 each trace [x]
uniquely determines the partial order �[s] , that corresponds to an occurrence graph from [34], and vice versa.

In this model, simultaneity is defined implicitly. Traces are sets of sequences but it is assumed that if a and b are inde-
pendent, i.e. (a, b) ∈ ind, they can not only commute, but could be executed simultaneously as well [10,34]. In classification
from [21], the paradigm π8, (commutation implies simultaneity and vice versa) is assumed for Mazurkiewicz traces. For

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 83
Fig. 2. The partial order �[s]defined by the trace [x] where x = abcbca and ind = {(b, c), (c,b)}.

each trace [x], the step sequences that are considered equivalent to sequences from [x] are just step sequence representa-
tions of stratified extensions of the partial order �[x] . They are not part of [x], so the model is simpler, but they can be
derived from [x], if needed.

4. Interval traces

Interval traces stem from Mazurkiewicz traces and Fishburn’s Theorem (Theorem 4). Traces utilize Szpirlajn’s Theorem
(Theorem 3) and the fact that finite total orders can be represented by sequences, Fishburn’s Theorem allows us to represent
interval orders by sequences of beginnings and ends, but not all sequences of beginnings and ends represent interval orders,
so some ideas from the previous section must be modified and adapted.

Let � be a set of events, E = {Ba | a ∈ �} ∪ {Ea | a ∈ �}, and InSeq(E ∗) be the set of all sequences over E that define
interval orders (see Definition 6(1)).

Definition 12 (Interval Independency and Interval Trace Alphabet). Let ind ⊆ E ×E be a symmetric and irreflexive relation such
that for all a, b ∈ �

1. (Ba, Ea) /∈ ind and (Ea, Ba) /∈ ind,
2. (Ba, Bb) ∈ ind and (Ea, Eb) ∈ ind.

Any relation ind that satisfies the properties (1) and (2) above, will be called an interval independency, and the pair (E , ind)

will be called an interval trace alphabet. �

The condition (1) above follows from the fact that in any representation of any order, the beginning of an event always
precedes the end so they cannot commute. The condition (2) follows from the generalization of the observation that the
interval sequences BaBbEaEb, BbBaEaEb, BaBbEbEa, and BbBaEbEa represent the same fact, namely that a and b are
simultaneous.

Definition 12 differs substantially from the original definition of interval trace independency proposed in [25]. It is
simpler and more general, so the definition from [25] can be considered as a special case of Definition 12. The motivations
behind these two definitions were also different. Since interval orders can be regarded as a generalization of stratified orders
(incomparability may not be an equivalence relation), the definition from [25] treated interval traces as partially stemming
from comtraces of [22] (an extension of Mazurkiewicz traces for stratified orders), so it used the relations sim and ser that
are part of comtrace model. In this paper we do not use comtraces as an inspiration, we just show later that our model is
equivalent to the comtrace model, if restricted to stratified orders.

Note that (E , ind) is also a standard trace alphabet, so we can apply the standard theory of Mazurkiewicz traces. One of the
problems is that not all sequences from E ∗ can be interpreted as trace elements. They have to represent interval orders, so
only sequences from InSeq(E ∗) can be used.

Lemma 13. Let (E , ind) be an interval trace alphabet.

1. For each x, y ∈ E ∗ , if x ∈ InSeq(E ∗) and y ∈ InSeq(E ∗) then xy ∈ InSeq(E ∗).
2. For each s ∈ E ∗ , we have: s ∈ InSeq(E ∗) ⇐⇒ ∀x ∈ [s]ind. x ∈ InSeq(E ∗).
3. For each x, y ∈ E ∗ ,

if [x]ind ⊆ InSeq(E ∗) and [y]ind ⊆ InSeq(E ∗), then [x]ind ∗ [y]ind = [xy]ind ⊆ InSeq(E ∗).

Proof. (1) Since for each a ∈ �, (BaEa)∗(BaEa)∗ = (BaEa)∗ .
(2) (⇐) Obvious as s ∈ [s]ind .
(⇒) From Definition 12(1) we know that Ba and Ea cannot commute for any a ∈ �. Hence, if π{Ba,Ea}(s) ∈ (BaEa)∗ then

also π{Ba,Ea}(x) ∈ (BaEa)∗ for each x ∈ [s]ind .
(3) A consequence of (1) and (2). �
The interval sequence representation of interval orders is not unique, but completeness of the relation ≡ind requires that

all such representations are equivalent, which is given by the following result.

84 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Fig. 3. An interval independency relation ind and interval orders generated by an interval trace [BaEaBbEbBcEcBdEd]ind . The default part of the relation
ind given by Definition 12(2) is represented by dotted lines.

Proposition 14. Let (E , ind) be an interval trace alphabet, and x ∈ InSeq(E ∗), then for each y ∈ InSeq(E ∗)

�x=�y =⇒ x ≡ind y. �

The proof of the above proposition is in Appendix A as it requires plenty specific results about interval orders, that are
not much relevant to the theory of interval traces.

The opposite implication x ≡ind y =⇒ �x=�y usually does not hold. It holds when the relation ind is entirely defined by
point (2) of Definition 12, i.e. when

(α, β) ∈ ind ⇐⇒ ∃a, b ∈ �.(α = Ba ∧β = Bb) ∨ (α = Ea ∧β = Eb). However if there are a, b ∈ � such that (Ea, Bb) ∈ ind,
then x ≡ind y =⇒ �x=�y may not hold. Consider x = BaEaBbEb, y = BaBbEaEb and (Ea, Bb) ∈ ind. Then clearly x ≡ind y,
but �x= � ��a b differs from �y= � �a b .

We can now define interval trace as follows:

Definition 15 (Interval Trace). A trace [x]ind over the interval trace alphabet (E , ind) is called an interval trace if [x]ind ⊆
InSeq(E ∗). �

Example 16. Let � = {a, b, c, d} and ind be the relation from Fig. 3. Then the set of interval sequences

x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
BaEaBbEbBcEcBdEd, BaEaBbEbBdEdBcEc, BaEaBbBcEbEcBdEd,

BaEaBcBbEbEcBdEd, BaEaBcBbEcEbBdEd, BaEaBbBcEcEbBdEd,

BaEaBbEbBcBdEcEd, BaEaBbEbBdBcEcEd, BaEaBbEbBdBcEdEc,
BaEaBbEbBcBdEdEc, BaEaBbBcEbBdEcEd, BaEaBbBcEbBdEdEc,
BaEaBcBbEbBdEdEc, BaEaBcBbEbBdEcEd

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

is an interval trace, x = [x]ind for any x ∈ x, for example x = BaEaBbEbBcEcBdEd (underlined above), so x = [BaEaBb
EbBcEcBdEd]ind . �

Since every element of every interval trace is an interval sequence, by Theorem 4, every element of the trace defines a
unique interval order. However interval orders that are not total are represented by more than one sequence from the trace.

Definition 17. For every interval trace x = [x]ind , let

Interv(x) = {�t | t ∈ x}
denote the set of all interval orders defined by the elements of x (see Definition 6(3) for �t). �

For the interval trace x from Example 16, Interv(x) = {<1, <2, <3, <4, <5}, where <1, <2, <3, <4, and <5 are partial
orders from Fig. 3, with a(1), b(1), c(1) , d(1) represented just by a, b, c, d. In this case

• BaEaBbEbBcEcBdEd represents a total order <1,
• BaEaBbEbBdEdBcEc represents a total order <2,
• each of the sequences BaEaBbBcEbEcBdEd, BaEaBcBbEbEcBdEd, BaEaBcBbEcEbBdEd, and BaEaBbBcEcEbBdEd, rep-

resents a stratified order <3,
• each of the sequences BaEaBbEbBcBdEcEd, BaEaBbEbBdBcEcEd, BaEaBbEbBdBcEdEc, and BaEaBbEbBcBdEdEc rep-

resents a stratified order <4,
• and each of the sequences BaEaBbBcEbBdEcEd, BaEaBbBcEbBdEdEc, BaEaBcBbEbBdEdEc, and BaEaBcBbEbBdEcEd

represents the strict interval order <5.

Mazurkiewicz traces are sets of sequences, i.e. sets of total orders, representing equivalent sequential observations. Theo-
rem 11 allows interpreting each trace [x] as a partial order �[x] , cf. Fig. 2, that could be interpreted as a concurrent history
when a ‘true concurrency’ model is used [10,34].

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 85
Interval traces are sets of interval sequences, i.e. sets of interval orders, that also represent equivalent observations, but
are modeled with interval orders instead. We will show that, in this case, each interval trace uniquely defines an interval
order structure, i.e. a pair of relations, that also can be interpreted as a representation of some concurrent history [18,23].

5. Interval order structures and their partial order representations

While partial orders can adequately model ‘earlier–later’ relationship, to model ‘not later than’ relationship we need
more sophisticated tools, especially when system runs/observations are represented by interval orders.

Interval order structures provide a more general formalism for analysis of concurrent systems than partial orders and
stratified order structures, as discussed in [17,23].

Definition 18 ([20,23,31]). An interval order structure is a relational structure S = (X, ≺, �), such that for all a, b, c, d ∈ X :

I1: a �� a I4: a ≺ b � c ∨ a � b ≺ c =⇒ a � c

I2: a ≺ b =⇒ a � b I5: a ≺ b � c ≺ d =⇒ a ≺ d

I3: a ≺ b ≺ c =⇒ a ≺ c I6: a � b ≺ c � d =⇒ a � d ∨ a = d.

The relation ≺ is called causality and the relation � is called weak causality. �

The above definition comes from [23] and was derived from its earlier versions of [31] and [20]. Many properties of
interval order structures have been presented in [23], yet their theory is not as well-developed and much less often applied
than for instance simpler stratified order structures (cf. [17,22,27,32]), not to mention just plain partial orders.

In this model the causality relation ≺ represents the “earlier than’ relationship, and the weak causality relation � repre-
sents the “not later than”. We also assume that the system runs are interval orders.The relation ≺ is always a partial order,
while the relation � may not be.

From Definition 18 we can get immediately that, if < is an interval order on X , then (X, <, <�) is an interval order
structure, i.e. interval orders can be interpreted as simple instances of interval order structures.

Definition 19 ([23]).
1. An interval order < on X is an interval extension of an interval order structure S = (X, ≺, �) if ≺ ⊆ < and � ⊆ <� , i.e.

if < is an extension of ≺ and <� is an extension of �.
2. The set of all interval extensions of S will be denoted by Interv(S). �

Theorem 3 (Szpilrajn Theorem) states that each partial order is uniquely represented by its set of total extensions. We
have a similar relationship between interval order structures and interval orders.

Theorem 20 ([23]). For each interval order structure S = (X, ≺, �), we have

S =
(

X,
⋂

<∈Interv(S)

<,
⋂

<∈Interv(S)

<�
)
,

i.e. S is entirely defined by the set of all its extensions. �

The above theorem is a generalization of Szpilrajn’s Theorem to interval order structures. It shows that if the system’s
operational semantics is fully described in terms of interval orders, then the interval order structures uniquely represent
sets of equivalent system runs (see [17,23] for details).

An example of a simple interval order structure which illustrates the main ideas behind this concept is shown in Fig. 4.
The orders <1 and <2 are total, <3 and <4 are stratified, and <5 is interval but not stratified. In the present case ≺ equals
<5, as there are not so many partial orders over the four elements set, but the interpretations of <5 and ≺ are different.
The incomparability in <5 is interpreted as simultaneity while in ≺ as having no causal relationship.

It turns out that every interval order structure can be represented by an appropriate partial order of beginnings and
ends. We will later use this result to construct a relationship between interval traces and interval order structures.

Theorem 21 ([1]). A triple S = (X, ≺, �), with countable X, is an interval order structure if and only if there exists a partial order <
on some Y and two mappings B, E : X → Y such that B(X) ∩ E(X) = ∅ and for each x, y ∈ X:

1. B(x) < E(x),
2. x ≺ y ⇐⇒ E(x) < B(y),
3. x � y ⇐⇒ B(x) < E(y) ∧ x �= y. �

86 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Fig. 4. An example of a simple interval order structure S = (X, ≺, �), with X = {a, b, c, d}. Its set of all interval extensions Interv(S) equals to {<1, <2, <3

, <4, <5}. Partial orders <1 and <2 represent the interval order structure S via Theorem 21. The partial order <1 is also the minimal partial order for S
that satisfies Theorem 21.

Theorem 21 can be seen as a generalization of Theorem 4 (Fisburn’s Theorem) from interval orders to interval order
structures. It will play a crucial role in the next section.

The partial order from Theorem 21 is not unique (see Fig. 4), but the least partial order that satisfies Theorem 21 clearly
does exist. It is just an intersection of all partial orders satisfying Theorem 21. Moreover one can show that the original
construction from [1] is such least partial order.

6. Interval traces and interval order structures

We will now show the exact relationship between interval traces and interval order structures. We expect this rela-
tionship to be similar to the relationships between Mazurkiewicz traces and partial orders, and, as explained in Section 7,
between comtraces and stratified order structures of [22]. This section is the main result of this paper.

First we recall how one can construct a partial order of beginnings and ends from an interval trace. Assume that a finite
set of events � and an interval trace alphabet (E , ind) are given. Recall that for each sequence x ∈ E ∗ , Êx is the set of
all elements of x̂, the enumerated version of x, �x ⊆ Êx × Êx is the total order that is equivalent to the sequence x (see
Definition 5(5)), and �[x] ⊆ Êx × Êx is the partial order that is equivalent to the trace [x] (see Definition 10).

We are now ready to define an interval order structure induced by a single sequence x ∈ E ∗ .

Definition 22. For each x ∈ E ∗ , let Sx = (�̂E
x , ≺x, �x), where ≺x and �x are relations on �̂E

x (see Definition 6(2)) defined
as follows, for all a, b ∈ �:

1. a(i) ≺x b(j) df⇐⇒ Ea(i) �[x] Bb(j) .

2. a(i) �x b(j) df⇐⇒ Ba(i) �[x] Eb(j) . �

The resemblance of Definition 22 to the points (2) and (3) of Theorem 21 is not a coincidence. The triple Sx = (�̂E
x , ≺x,�x), is indeed an interval order structure.

Proposition 23. If x ∈ InSeq(E ∗), then Sx = (�̂E
x , ≺x, �x) is an interval order structure.

Proof. Since x ∈ InSeq(E ∗), then the property (1) of Theorem 21 is satisfied. Definition 22 implies satisfying (2) and (3) of
Theorem 21. Hence, by Theorem 21, Sx is an interval order structure. �

We will call Sx = (�̂E
x , ≺x, �x) the interval order structure Sx induced by an interval sequence x. We will show that Sx plays

the same role in our model as a partial order derived from a single sequence plays in standard trace theory [34]. To do this

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 87
we need to show that x ≡ y ⇐⇒ Sx = S y , and that the set of interval orders Interv(Sx) is uniquely defined by the elements
of [x].

We need the following two lemmas to prove one of our main results. The first lemma is an easy technical one, but it
will be used often. It characterizes the relationships Ba(i) �[x] Bb(j) and Ea(i) �[x] Eb(j) . Because (Ba, Bb) and (Ea, Eb) are
in ind (Definition 12(2)), these relationships are not arbitrary.

Lemma 24. For every x ∈ InSeq(E ∗), and for all a(i), b(j) ∈ �̂E
x , we have:

1. Ba(i) �[x] Bb(j) ⇐⇒ ∃c(k) ∈ �̂E
x . Ba(i) �[x] Ec(k) �[x] Bb(j) ,

2. Ea(i) �[x] Eb(j) ⇐⇒ ∃c(k) ∈ �̂E
x . Ea(i) �[x] Bc(k) �[x] Eb(j) .

Proof. 1.(⇐) Obvious. (⇒) Since for all c, d ∈ �, (Bc, Bd) ∈ ind, so all beginnings can commute, there must be some Ec(k)

between Bai and Bb j , otherwise ¬(Ba(i) �[x] Bb(j)).
2. Dually, by exchanging B with E . �
The second lemma shows that the relationship between �[x] and Sx is a one-to-one correspondence.

Lemma 25. For all x, y ∈ InSeq(E ∗), �[x] = �[y] if and only if Sx = S y .

Proof. (⇒) From Definition 22, we clearly have Sx = S y .
(⇐) Suppose that �[x] �=�[y] . We may assume Êx = Êy , otherwise Sx �= S y . This means we have α�[x] β and ¬(α�[y] β),

for some α, β ∈ Êx . If α = Ea(i) and β = Bb(j) , then by Definition 22(1), ≺x �=≺y , if α = Ba(i) and β = Eb(j) , then by
Definition 22(2), �x �=�y ; so Sx �= S y in both cases. If α = Ba(i) and β = Bb(j) , then by Lemma 24(1) and Definition 22,
there is c(k) such that a(i) �x c(k) ≺x b(j) but ¬(a(i) �y c(k) ≺y b(j)), so Sx �= S y again. Similarly for α = Ea(i) and β = Eb(j) ,
but here we use Lemma 24(2). Hence �[x] �= �[y] =⇒ Sx �= S y , i.e. Sx = S y =⇒ �[x] =�[y] . �

We are now able to prove one of our main results, namely that every interval trace uniquely determines an interval order structure.

Theorem 26. For all x, y ∈ InSeq(E ∗), x ≡ y if and only if Sx = S y .

Proof. (⇒) If x ≡ y then [x] = [y], so �[x] = �[y] . Then by Lemma 25, Sx = S y .
(⇐) If Sx = S y then, by Lemma 25, we have �[x] = �[y] , and now by Theorem 11, {�t | t ∈ [x]} = {�t | t ∈ [y]}. From

Definition 5(5) it follows that t = u ⇐⇒ �t = �u , so [x] = [y], i.e. x ≡ y. �
The above theorem makes possible the following definition.

Definition 27. For each interval trace [x], the interval order structure S[x] induced by [x], in defined as S[x] = (�̂E
x , ≺[x], �[x])

= St = (�̂E
t , ≺t, �t), where t ∈ [x]. �

Theorem 26 alone is not enough to claim that interval traces can represent all the properties of interval order structures.
We also have to show that for any x ∈ InSeq(E ∗), Interv(Sx), the set of all interval order extensions of Sx (see Definition 19)
is equal to the set of all interval orders generated via Fishburn’s Theorem (Theorem 4) from all t̂ (enumerated version of t)
such that t ∈ [x]. Interval orders generated by appropriate sequences from E ∗ , and denoted by �x for x ∈ E ∗ , are described
by Definition 6(3).

Our second main result is the following.

Theorem 28. For every x ∈ InSeq(E ∗),

Interv(Sx) = Interv([x]) = {�t | t ∈ [x]}.

Proof. By definition Interv([x]) = {�t | t ∈ [x]}.
(⊇) Let t ∈ [x] and a(i), b(j) ∈ �̂E

x . By Theorem 26, Sx = St , so we only have to consider t = x. Consider the rela-

tion ≺x . We have a(i) ≺x b(j) Definition 22⇐⇒ Ea(i) �[x] Bb(j) Definition 10=⇒ Ea(i) �t Bb(j) Definition 6(3)⇐⇒ a(i) �x b(j) . Hence, by Defini-

tion 2, the relation �x is an extension of ≺x . Let us now consider the relation �x . Here we have a(i) �x b(j) Definition 22⇐⇒
Ba(i) �[x] Eb(j) Definition 10=⇒ Ba(i) �t Eb(j) . Because �t is a total order, Ba(i) �t Eb(j) ⇐⇒ ¬(Eb(j) �t Ba(i)). But ¬(Eb(j) �t

Ba(i)) Definition 6(3)⇐⇒ ¬(b(j) �x a(i)) ⇐⇒ a(i) ��
x b(j) . Hence a(i) �x b(j) =⇒ a(i) ��

x b(j) , so, by Definition 2, �x an extension
of �x as well, which means, now by Definition 19, �x∈ Interv(Sx).

88 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
(⊆) We need to show that for each <∈ Interv(Sx) there exists t< ∈ [x] such that < = �t< . We start with constructing
some t< that satisfies < =�t< , and then we will show that our t< ∈ [x].

Let <∈ Interv(Sx) and let �< ⊆ �̂E
x × �̂E

x be a total order representation of < via Fishburn Theorem (Theorem 4), i.e.
a(i) < b(j) ⇐⇒ Ea(i) �< Bb(j) . Furthermore let t< ∈ E ∗ be the sequence representation of the total order �< , i.e. �< = �t< ,
where �t< is the total order generated by t< as in Definition 5(5). Note that, by Definition 6(3), the interval order < equals
the interval order �t< .

We will now show that t< ∈ [x].
Since <∈ Interv(Sx) then < is an extension of ≺x and �x , i.e., by Definition 19, ≺x⊆< and �x⊆<� . We will

show that �< is a total extension of �[x] , i.e. �< ∈ Total(�[x]). To prove this we will just show that for all α, β ∈
{Ba(i), Ea(i), Bb(j), Eb(j)} we have α �[x] β =⇒ α �< β .

First note that from Theorem 21(1) and Theorem 4(1) we have Ba(i)�[x] Ea(i) , Bb(j)�[x] Eb(j) , and Ba(i) �< Ea(i) , Bb(j) �<

Eb(j) . Now we have to consider the remaining four cases.

(Case 1). Consider Ea(i) and Bb(j) . By Definitions 22, 19 and Theorem 4(2), we have: Ea(i) �[x] Bb(j) Definition 22⇐⇒ a(i) ≺x

b(j) Definition 19=⇒ a(i) < b(j) Th.4(2)⇐⇒ Ea(i) �< Bb(j) .

(Case 2). Consider Ba(i) and Eb(j) . Again by Definitions 22, 19 and Theorem 4(2), we have: Ba(i) �[x] Eb(j) Definition 22⇐⇒
a(i) �x b(j) Definition 19=⇒ a(i) <� b(j) ⇐⇒ ¬(b(j) < a(i)) Th.4(2)⇐⇒ ¬(Eb(j) �< Ba(i)) ⇐⇒ Ba(i) �< Eb(j) .

(Case 3). Consider Ba(i) and Bb(j) . From Lemma 24(1) it follows: Ba(i) �[x] Bb(j) ⇐⇒ (Ea(i) �[x] Bb(j)) ∨ (∃c(k) ∈
�̂E

x . Ba(i) �[x] Ec(k) �[x] Bb(j)). From Case 1 we obtain Ea(i) �[x] Bb(j) =⇒ Ea(i) �< Bb(j) , i.e., by Theorem 4(2),
Ba(i) �< Ea(i) �< Bb(j) , so Ba(i) �< Bb(j) . Similarly from Case 2 and Case 1 we obtain Ba(i) �[x] Ec(k) �[x] Bb(j) =⇒
Ba(i) �< Ec(k) �< Bb(j) =⇒ Ba(i) �< Bb(j) .

(Case 4). Consider Ea(i) and Eb(j) . Similarly as Case 3 but using Lemma 24(2) instead.
This means that indeed �< ∈ Total(�[x]). By Theorem 11, �< ∈ {�t | t ∈ [x]}. But t< is by the definition a sequence

representation of �< , i.e. �< = �t< , so t< ∈ [x], which end the proof of (⊆). �
Theorems 26 and 28 show that interval traces, i.e. sets of legal sequences of beginnings and ends, correspond to interval

order structures in the same way as Mazurkiewicz traces correspond to partial orders (dependency graphs of [34]).
From the definition of Sx (Definition 22), it follows that �[x] satisfies Theorem 21 for Sx . We will show that in fact �[x]

is the smallest order that does this.

Proposition 29. For every x ∈ InSeq(E ∗), �[x] is the least partial order that satisfies Theorem 21 for the interval order structure Sx.

Proof. We will show that for each < that satisfies Theorem 21, and every α, β ∈ Êx , we have α �[x] β =⇒ α < β . Since α
and β are of the form Ba(i) or Ea(i) where a ∈ �, we have to consider four cases.

(Case 1). α = Ba(i), β = Eb(j) . In this case we have

Ba(i) �[x] Eb(j) Definition 22⇐⇒ a(i) �x b(j) Th.21⇐⇒ Ba(i) < Eb(j) .

(Case 2). α = Ea(i), β = Bb(j) . Now we have

Ea(i) �[x] Bb(j) Definition 22⇐⇒ a(i) ≺x b(j) Th.21⇐⇒ Ea(i) < Bb(j) .

(Case 3). α = Ba(i), β = Bb(j) . By Lemma 24 we have

Ba(i) �[x] Bb(j) ⇐⇒ (Ea(i) �[x] Bb(j)) ∨ (∃c(k) ∈ �̂E
x . Ba(i) �[x] Ec(k) �[x] Bb(j)).

If Ea(i) �[x] Bb(j) the case is reduced to Case 2, so assume (∃c(k) ∈ �̂E
x . Ba(i) �[x] Ec(k) �[x] Bb(j)). Thus Ba(i) �[x] Ec(k) �[x]

Bb(j) Definition 22⇐⇒ a(i) �x c(k) ≺x b(j) Th.21⇐⇒ Ba(i) < Ec(k) < Bb(j) =⇒ Ba(i) < Bb(j) , so Ba(i) �[x] Bb(j) =⇒ Ba(i) < Bb(j) .
(Case 4). α = Ba(i), β = Bb(j) . Dually to Case 3, by exchanging B with E . �
Let us now analyze a simple example.

Example 30. Let � = {a, b, c, d}. Then we have E = {Ba, Ea, Bb, Eb, Bc, Ec, Bd, Ed}. Let ind ⊆ E ×E be the interval indepen-
dency from Fig. 3.

Take x = BaEaBbEbBcEcBdEd ∈ E ∗ . Since x ∈ InSeq(E ∗) then the interval trace [x]ind is defined, and [x]ind = x, where x
is that from Example 16 (it contains fourteen interval sequences).

The interval order structure S[x] = Sx = (�̂E
x , ≺, �), where Ê �

x = {a(1), b(1), c(1), d(1)}, and the relations ≺ and � are
these from Fig. 4, after replacing a with a(1) , b with b(1) , etc. The set Êx = {Ba(1), Ea(1), Bb(1), Eb(1), Bc(1), Ec(1), Bd(1), Ed(1)}
and the relation �[x] ⊆ Êx × Êx equals <1 also from Fig. 4, after replacing Ba with Ba(1) , Ea with Ea(1) , etc.

The set Interv(S[x]) = {<1, <2, <3, <4, <5}, where <1, <2, <3, <4,x and <5 are interval orders from Fig. 4, again after
replacing a with a(1) , b with b(1) , etc., and clearly Interv(S[x]) = Interv([x]ind), as expected.

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 89
Moreover <1=�BaEaBbEbBcEcBdEd , <2=�BaEaBbEbBdEdBcEc , <3=�BaEaBbBcEbEcBdEd=�BaEaBcBbEbEcEdEd=�BaEaBcBbEcEbBdEd=
�BaEaBbBcEcEbBdEd , <4=�BaEaBbEbBcBdEcEd=�BaEaBbEbBdBcEcEd=�BaEaBbEbBdBcEdEc=�BaEaBbEbBcBdEdEc , <5=�BaEaBbBcEbBdEcEd
=�BaEaBbBcEbBdEdEc=�BaEaBcBbEbBdEdEc=�BaEaBcBbEbBdEcEd .

Finally note that the results would be the same if x would be replaced by any interval sequence t ∈ [x]ind . �

7. Interval traces vs comtraces

While every stratified order is an interval order, every stratified order structure is an interval order structure [23], and
every Mazurkiewicz trace can be interpreted as a simplified comtrace [24], the similar relationship is far more complex for
comtraces and interval traces. We start with recalling basic ideas and results of stratified order structures, followed by the
same for comtraces.

7.1. Stratified order structures

When all system runs/observations are represented by stratified orders or step sequences, the interval order structures
can be replaced by simpler stratified order structures.

Definition 31 ([14,20]). A stratified order structure is a relational structure S = (X, ≺, �), such that for all a, b, c ∈ X :

S1: a �� a S3: a � b � c ∧ a �= c =⇒ a � c

S2: a ≺ b =⇒ a � b S4: a � b ≺ c ∨ a ≺ b � c =⇒ a ≺ c.

The relation ≺ is called causality while � is called weak causality. �

Stratified order structures were independently introduced in [14] and [20]. Their comprehensive theory has been pre-
sented in [17,23,24,28]. The interpretation of the relations ≺ and � is the same as for interval order structures, i.e. the
causality relation ≺ represents the “earlier than” relationship, and the weak causality relation � represents the “not later
than” relationship, however in this case we assume that the system runs are stratified orders. Similarly as for interval order
structures, the relation ≺ is always a partial order, while the relation � may not be. Moreover, if < is a stratified order on
X , then (X, <, <�) is a stratified order structure, i.e. stratified orders can be interpreted as simple instances of stratified
order structures.

Definition 32 ([23]).
1. A stratified order < on X is an stratified extension of an stratified order structure S = (X, ≺, �) if ≺ ⊆ < and � ⊆ <� ,

i.e. if < is stratified, it is an extension of ≺, and <� is an extension of �.
2. The set of all stratified extensions of S will be denoted by Strat(S). �

As expected, every stratified order structure is also an interval order structure.

Proposition 33 ([23]).
1. Every stratified order structure S is also an interval order structure.
2. For every stratified order structure S, Strat(S) ⊆ Interv(S). �

Theorem 20 states that each interval order structure order is uniquely represented by its set of interval extension exten-
sions. We have the similar relationship between stratified order structures and stratified orders.

Theorem 34 ([23]). For each stratified order structure S = (X, ≺, �), we have

S =
(

X,
⋂

<∈Strat(S)

<,
⋂

<∈Strat(S)

<�
)
,

i.e. S is entirely defined by the set of all its extensions. �

The above theorem is a generalization of Szpilrajn’s Theorem to stratified order structures (cf. [17,28]).
The relational structure S from Fig. 4 is a also simple example of a stratified order structure with Strat(S) = {<1, <2, <3,

<4} (but <5 /∈ Strat(S)). However not every interval order structure is a stratified order structure. The relational structure
S0 = ({a, b, c}, ≺0, �0), where the relations ≺0 and �0 are described below

90 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
�

�
�

�

a

b

c

≺0

�

�
�

�

a

b

c

�0

���
���
�

	

is an interval order structure, but not a stratified order structure. We have here a ≺0 b �0 c but ¬(a ≺0 c), so the axiom S5
of Definition 31 is not satisfied.

7.2. Comtraces

Comtraces are extensions of Mazurkiewicz traces that handle both ‘not later than’ relationship and system runs/observa-
tions modeled by step sequences, and can be uniquely represented by stratified order structures [22,28].

Definition 35 ([22]).
1. Let � be a finite set, ser ⊆ sim ⊂ � × � be two relations called serialisability and simultaneity respectively. The triple

(�, sim, ser) is called the comtrace alphabet. We assume that sim is irreflexive and symmetric.
2. We define S, the set of all (potential) steps, as the set of all cliques of the graph (�, sim), i.e. S = {A | A �= ∅ ∧ (∀a, b ∈

A. a = b ∨ (a, b) ∈ sim)}.
3. Let ≈ ⊆ S∗ × S∗ be the relation comprising all pairs (x, y) of step sequences such that

x = x1 Ax2 and y = x1 BCx2.

where x1, x2 ∈ S∗ and A, B, C are steps in S satisfying A = B ∪ C , B ∪ C = ∅ and B × C ⊆ ser.
4. Let ≡(sim,ser) be the reflexive and transitive closure of ≈ ∪ ≈−1, i.e.

≡(sim,ser) = (≈ ∪ ≈−1)∗.

Clearly the relation ≡(sim,ser) is an equivalence relation.
5. For every x ∈ S∗ , the equivalence class [x]≡(sim,ser) is called a comtrace. �

We will often write [x](sim,ser) , instead of [x]≡(sim,ser) . One may show that [x][y] = [x] ◦ [y] = [xy], where ◦ is a concate-
nation of sets of step sequences, a symbol that is usually omitted. Formally, an algebra of comtraces is a quotient equational
monoid over step sequences [22,19].

The comtraces were invented to handle explicitly ‘transitive simultaneity’ and ‘not later than’ relationships. The relation
sim, called simultaneity, is symmetric and irreflexive, the relation ser, called serializability is a subset of sim. If (a, b) ∈ sim
then a and b can be executed simultaneously, while (a, b) ∈ ser means a and b can either be executed simultaneously, or a
precedes b. When operational semantics is expressed in terms of stratified orders or step sequences, (a, b) ∈ sim means the
step {a, b} is allowed, and (a, b) ∈ ser means the both the step {a, b} and the sequence {a}{b} are allowed.

If sim = ser then a comtrace can fully be represented by an appropriate Mazurkiewicz trace with ind = sim [22,19].
For every comtrace x = [x](sim,ser) over (�, sim, ser), the set Strat(x) = {�t | t ∈ x}, is the set of all stratified orders

defined by the elements of x, and let Sx = (�̂x, ≺x, �x), be the relational structure given by

≺x=
⋂

<∈Strat(x)

<, �x=
⋂

<∈Strat(x)

<� .

Theorem 36 ([22]). For every comtrace x = [x](sim,ser) over (�, sim, ser), the relational structure Sx = (�̂x, ≺x, �x) is a stratified
order structure and Strat(Sx) = Strat(x). �

The relational structure Sx = (�̂x, ≺x, �x) is a stratified order structure generated by the comtrace x. Since Strat(Sx) =
Strat(x), both x and Sx represent the same behavior. More details about comtrace theory and applications can be found in
[18,22,24,28].

For example if � = {a, b, c, d}, sim and ser are relations as the ones below:

�

�

�

�

�

�

�

�

��

a a

c c

b b

d d

sim ser
and x = {a}{b, c}{d} is a step sequence over a comtrace alphabet (�, sim, ser), then the set of step sequences

[x](sim,ser) = { {a}{b}{c}{d}, {a}{b}{d}{c}, {a}{b, c}{d}, {a}{b}{c,d} }
is the comtrace generated by the step sequence x. Note that in this case, step sequences [x](sim,ser) , when interpreted as
stratified orders, i.e. Strat([x](sim,ser)), satisfy

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 91
Strat([x](sim,ser)) = {<1,<2,<3,<4} = Strat(S),

where S is exactly the stratified order structure from Fig. 4.
Moreover, S = S[x](sim,ser) (cf. [22]).

7.3. Representing comtraces by interval traces

Mazurkiewicz traces can be represented by comtraces with sim = ser = ind, and stratified order structures can be re-
garded as special cases of interval order structures. Do we have a similar relationship between comtraces and interval
traces? It turns out this case is more complicated.

Let (�, sim, com) be a comtrace alphabet, x a step sequence, and x = [x](sim,ser) be a comtrace defined by x.

It is usually false that there is an interval trace alphabet (E , ind) and an interval sequence y such that the interval trace y = [y]ind
satisfies Strat(x) = Interv(y).

Consider � = {a, b, c}, sim and ser as below

�

�
�

a

b

c
����

sim

�

�
�

�

a

b

c

ser

���

and x = [{a, b, c}](sim,ser) = {{a, b, c}, {a}{b, c}}.
Suppose there is a relation ind on E = {Ba, Bb, Bc, Ea, Eb, Ec} and an interval sequence y ∈ E ∗ such that the interval

trace y = [y]ind satisfies Strat(x) = Interv(y). The stratified order �{a,b,c} can be represented by the interval sequence
y1 = BaBbBcEaEbEc, so y = [y1]ind , and the stratified order �{a}{b,c} can be represented by the interval sequence y2 =
BaEaBbBcEbEc, so y1, y2 ∈ y, i.e. we must have y1 ≡ind y2. To obtain y1 from y2 we must move Ea from after Bc to
before Bb, hence (Ea, Bb) ∈ ind and (Ea, Bc) ∈ ind. But this means that y3 = BaBbEaBcEbEc ∈ y but the order �y3 is not
stratified!

It can be shown by inspection that if y must contain all interval sequence representations of �{a,b,c} and �{a}{b,c} , and
the only stratified orders included in Interv(y) are �{a,b,c} and �{a}{b,c} , then the relation ind must be as the one below:

�

�

�

�

�

�

.

..

..

..

..

.

. . .
. . .

. . .
.

...
...

..
�
�

�
�
�
�

Ec Bb

Ba Ea

Bc Eb

The interval trace y = [y1]ind generates the set of interval orders Interv(y) = {�1, �2, �3, �4}, where the orders �1 =�{a,b,c} , �2 = �{a}{b,c} , and �3, �4 are given below:

�

�
�

a(1)

b(1)

c(1)

�1

�

�
�

�

a(1)

b(1)

c(1)

�2

���
�

�
�

�

a(1)

b(1)

c(1)

�3

�

�
�

a(1)

b(1)

c(1)

�4

���

The orders �1 and �2 are stratified while �3 and �4 are not.
However, we have (see Definition 1 for the meaning of <�)
≺x= �1 ∩ �2 = �1 ∩ �2∩ �3 ∩ �4=≺y , and�x= ��

1 ∩ ��
2 = ��

1 ∩ ��
2 ∩ ��

3 ∩ ��
4 =�y ,

which implies that the stratified order structure Sx and Sy are identical, i.e. Sx = Sy , as Sx = ({a(1), b(1), c(1)}, ≺x, �x) and
Sy = ({a(1), b(1), c(1)}, ≺y, �y).

We show that this pattern holds in general.
For every comtrace alphabet (�, sim, ser), let (E , ind(sim,ser)) be an interval trace alphabet such that the relation

ind(sim,ser) satisfies:

(Bb, Ea) ∈ ind(sim,ser) ⇐⇒ (a,b) ∈ ser.

Theorem 37. Let (�, sim, ser) be a comtrace alphabet, x be a step sequence, y be any interval sequence such that �x =�y ,
x = [x](sim,ser) , y = [y]ind. Furthermore let Sx = (�̂x, ≺x, �x) be the stratified order structure generated by the comtrace x, and
Sy = (�̂E

y , ≺y, �y) be the interval order structure generated by the interval order y.
Then we have Sx = Sy .

92 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Proof. Clearly �̂x = �̂E
y . We will show that ≺x=≺y and �x=�y .

Let w = u1 Au2 ∈ x, v = u1 BCu2 ∈ x, A = B ∪ C , B ∩ C = ∅ and B × C ⊆ ser, i.e. w ≈(sim,ser) v . Note that �w ⊆ �v

and ��
v ⊆ ��

w . Assume B = {b1, . . . , bk}, C = {c1, . . . , cm}, so A = {b1, . . . , bk, c1, . . . , cm}. For every set X ⊆ �, let B(X) =
{Ba | a ∈ X} and E(X) = {Ea | a ∈ X}. Let witv , vitv , uitv

1 and uitv
2 be some interval sequence representations of stratified

orders �w , �u , �u1 and �u2 respectively, i.e. �witv = �w , �uitv = �u , �uitv
1

= �u1 and �uitv
2

= �u2 . We may assume that
witv = uitv

1 zB
A zE

A uitv
2 , where zB

A ∈ perm(B(A)) and zE
A ∈ perm(E(A)), and uitv = uitv

1 zB
B zE

B zB
C zE

C uitv
2 , where zB

B ∈ perm(B(B)),
zE

B ∈ perm(E(B)), zB
C ∈ perm(B(C)) and zE

C ∈ perm(E(C)).
Because (Bb, Ea) ∈ ind(sim,ser) ⇔ (a, b) ∈ ser, and ind(sim,ser) satisfies property (2) of Definition 12, we have

witv ≡ind(sim,ser) vitv . Assume witv ≈ind(sim,ser) s1 ≈ind(sim,ser) . . . ≈ind(sim,ser) sn ≈ind(sim,ser) uitv .
Consider r = r1 BaEbr2 and t = r1 EbBar2 where (Ba, Eb) ∈ ind. Note that �r⊆�t and ��

t ⊆��
r .

But this means the �witv ⊆�si ⊆�uitv , and ��
uitv ⊆��

si
⊆�witv , for all i = 1, . . . , n. Hence �w ∩�u =�witv ∩ �s1 ∩ . . .∩ �sn

∩ �uitv and ��
w ∩ ��

u =��
witv ∩ ��

s1
∩ . . .∩ ��

sn
∩ ��

uitv .
Let x, x′, x1, . . . , xl be step sequences such that x ≡(sim,ser) x′ and x ≈(sim,ser) x1 ≈(sim,ser) . . . ≈(sim,ser) xl ≈(sim,ser) x′ , and

let y, y′ be interval sequences such that �x =�y and �x′ =�y′ . By the property of ind(sim,ser) we have y ≡ind(sim,ser) y′ , so
let y1, . . . , y j be interval sequences such that y ≈ind(sim,ser) y1 ≈ind(sim,ser) . . . ≈ind(sim,ser) y j ≈ind(sim,ser) y′ . From what we have
proved above, we may conclude that

�x ∩ ⋂l
i=1 �xi ∩ �x′ =�y ∩

⋂ j
i=1 �yi ∩ �y′ , and

��
x ∩ ⋂l

i=1 ��
xi

∩ ��
x′ =��

y ∩
⋂ j

i=1 ��
yi

∩ ��
y′ .

Define ≺xx′= �x ∩ ⋂l
i=1 �xi ∩ �x′ , �xx′′= ��

x ∩ ⋂l
i=1 ��

xi
∩ ��

x′ , and

≺yy′=�y ∩
⋂ j

i=1 �yi ∩ �y′ , �yy′=��
y ∩

⋂ j
i=1 ��

yi
∩ ��

y′ .
Note that ≺x= ⋂

t∈[x](sim,ser)
�t = ⋂

x′∈[x](sim,ser)
≺xx′ ,

≺y= ⋂
r∈[y]ind(sim,ser)

�r= ⋂
y′∈[x]ind(sim,ser)

≺yy′ , so ≺x=≺y .

Similarly, �x= ⋂
t∈[x](sim,ser)

��
t = ⋂

x′∈[x](sim,ser)
�xx′ ,

�y= ⋂
r∈[y]ind(sim,ser)

��
r = ⋂

y′∈[x]ind(sim,ser)
�yy′ , so �x=�y . Hence Sx = Sy . �

Theorem 37 states that while comtraces cannot literally be simulated by interval traces, the stratified order structures they
represent, can.

8. Interval traces as concurrent histories

We claimed that interval traces and the interval order structures induced by them, describe concurrent histories, i.e. sets
of equivalent observations. Can we provide any evidence of that?

In general, concurrent behaviors can be investigated at the level of individual observations as well as at the level of some
structures, such as causal partial orders, stratified order structures, or interval order structures. These structures capture the
essential invariant dependencies between events and represent complete sets of equivalent observations. A key link between
these two levels comes from the notion of a concurrent history [21] which is an invariant closed set 	 of observations (system
runs). The latter means that 	 can be derived in full from a structure built from simple invariant relationships on events �
occurring in 	, such as causality (a ≺	 b if a precedes b in all observations in) and weak causality (a �	 b if a precedes
or is simultaneous with b in all observations in).

Formally, a concurrent history [21] is defined as follows. Let X be a set and let I(X) and S(X) denote, respectively, sets
of all interval orders and stratified orders on X . Let 	 ⊆ I(X) with its elements interpreted as observations (system runs).

An invariant of 	, R ∈ inv(), is any relation R ⊆ X × X defined by:

(x, y) ∈ R ⇐⇒ ∀ < ∈ 	.
R(x, y,<),

where
R(x, y, <) is any propositional formula built from atoms x < y, y < x, x �< y and T rue. For example, a formula

R(x, y, <) = x < y ∨ x �< y generates an invariant R =

⋂
<∈	

(< ∨ �<) = {(x, y) | ∀ < ∈ 	. x < y ∨ x �< y} ∈ inv().

In principle, an invariant is a precedence property that is shared by all elements of the set 	.
Despite a seemingly general definition, there are only at most eight different relational invariants, and at most two of

them are independent, i.e. they cannot be obtained from each other by using the standard set theory operators union,
intersection and complement [21].

We say that a set 	inv
interval is the interval invariant closure of 	 ⊆ I(X) if and only if:

< ∈ 	inv
interval ⇐⇒ [< ∈ I(X)] ∧ [∀R ∈ inv().∀x, y ∈ X . (x, y) ∈ R =⇒
R(x, y,<)].

If 	 ⊆S(X), we define the stratified invariant closure 	inv
strat in the same way, replacing I(X) with S(X).

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 93
Definition 38 ([21]).
1. A set 	 ⊆ I(X) is an interval concurrent history iff 	 = 	inv

interval .
2. A set 	 ⊆ S(X) is an stratified concurrent history iff 	 = 	inv

interval . �
For every set of partial orders 	 over X , we define: ≺	=

⋂
<∈	

<, �	=
⋂

<�∈	

<� , and S	 = (X, ≺	, �).

Proposition 39 ([23]). Let 	 ∈ I(X), and let π	 be the following predicate:

π	 = (∃ < ∈ 	. x < y) ∧ (∃ < ∈ 	. y < x) =⇒ (∃ < ∈ 	. x �< y).

1. The following two conditions are equivalent:
(a) 	 = 	inv

interval and π	 is true, i.e. 	 is an interval concurrent history satisfying π	.
(b) S	 is an interval order structure and 	 = Interv(S).

2. The following two conditions are equivalent:
(a) 	 = 	inv

strat and π	 is true, i.e. 	 is a stratified concurrent history satisfying π	.
(b) S	 is a stratified order structure and 	 = Strat(S). �

The predicate π	 used in Proposition 39 is called a concurrency paradigm in [17,19,21,23]. In principle, a paradigm de-
scribes how simultaneity (represented by �< for < ∈) is handled in concurrent histories. The most popular concurrency
paradigm, used both in true concurrency and interleaving models, often called a ‘diagonal rule’ is the following [6,10,17,41]:

(∃ < ∈ 	. x < y) ∧ (∃ < ∈ 	. y < x) ⇐⇒ (∃ < ∈ 	. x �< y).

Due to the ⇐⇒ between the left and right side, the above paradigm may make, in some circumstances, the concept of
simultaneous executions redundant, as they might be fully represented by interleavings from the left hand side. This is ex-
ploited by popular interleaving models (cf. [6]) and Mazurkiewicz traces [10]. When the ‘diagonal rule’ paradigm is assumed
for concurrent histories, neither interval nor stratified order structures are needed as in this case they are just partial or-
ders in disguise, namely in both cases: � = ≺� [17,21,23]. Moreover, if the ‘diagonal rule’ paradigm holds, both comtraces
of [22] and interval traces of this paper can be represented by standard Mazurkiewicz traces (a simple consequence of
Theorems 11, 36, 28, about equivalence of trace based model and relation based models).

However, if we assume ‘diagonal rule’ paradigm, we cannot express ‘not later than’ phenomenon as simultaneity always
implies both interleavings. The paradigm π	 allows expressing conveniently the ‘not later than’ phenomenon. Nevertheless
a question that has to be asked is ‘do we need the assumption π	 at all?’. While Theorems 20 and 34 do not have any
assumption like π	 , if π	 does not hold for Interv(S) or Strat(S) respectively, the sets Interv(S) and Strat(S) may not
be appropriate concurrent histories (cf. [17,21]). With the general case, one without π	 or any other assumption about
treatment of simultaneity, different more general relational structures and more sophisticated traces must be used. The
case when all observations/system runs are assumed to be represented by step sequences, i.e. stratified orders, has been
analyzed in detail in [19,24,32], and a complete solution in terms of so called ‘invariant structures’ and ‘step traces’ was
proposed very recently in [19]. Stratified order structures are special cases of invariant structures and both comtraces and
Mazurkiewicz traces are special cases of step traces. The case when all observations/system runs are represented by interval
orders is an open research problem, with some very preliminary results presented in [17].

In the rest of this paper we will assume that interval order structures and stratified order structures represent concurrent
histories, i.e. the paradigm π	 holds.

For example 	1 = {<1, <2, <3, <4} and 	2 = {<1, <2, <3, <4, <5}, where <1, <2, <3, <4, and <5 are these from
Fig. 4, are concurrent histories and S	1 = S	2 = S as Strat(S	1) = 	1 and Interv(S	2) = 	2. However 	4 = {<2, <3, <4}
for example is not a concurrent history as S	4 = S and Strat(S	4) = 	1 �= 	4. For more details the reader is referred to
[17,21,23,18].

9. Analysis of a toy example

Consider the following simple program written using Dijkstra’s cobegin’s and coend’s.

Q: cobegin
a : begin worka; lock(r) end;
b : begin unlock(r); workb end;
[]
c : workc
coend

Assume that the subroutines a, b, and c are atomic, and worka, workb, and workc require the resource r, which can be
used simultaneously by any finite number of subroutines. The resource r is initially unlocked and available to use. Clearly
none of the subroutines a, b, and c is instantaneous, they all need some time intervals to execute.

94 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Fig. 5. Behavioural properties of the program Q : its two concurrent histories, histQ
1 and histQ

2 , the interval order structure S Q
2 that represents the history

histQ
2 , interval independency relation indQ and the partial order �x2 generated by the interval trace x2 = [BaBcEaBbEbEc]indQ . The partial order �x2 also

defines S Q
2 via Theorem 21.

The program Q illustrates the difficulties of modeling ‘simultaneity’ and ‘not later than’ relationships when no re-
strictions on the shape of system runs is assumed. For time intervals ‘simultaneity’ is standardly modeled by intervals
overlapping [3], an approach used in our concept of interval traces. It can be shown by inspection that, if some specific as-
sumptions about time and event duration are made, the program Q could have two potential sequential runs (observations),
represented by sequences abc and cab, and two non-sequential runs (observations), one where a and c are executed simul-
taneously first and then are followed by b, and the other where c is simultaneously executed with a sequence a followed
by b. In Fig. 5, these runs are represented by total orders <Q

1 and <Q
2 , by a stratified order <

Q
3 and by an interval order <

Q
4 ,

respectively. We may say that the program Q , all possible observations (system runs) that involve all three events a, b, c
are represented by the set of partial orders Obs(Q) = {<Q

1 , <Q
2 , <Q

3 , <Q
4 }.

One can check by inspection that sets histQ
1 = {<Q

1 } and histQ
2 = {<Q

2 , <Q
3 , <Q

4 } are concurrent histories as histQ
1 =

(histQ
1)inv

interval and histQ
2 = (histQ

2)inv
interval , and additionally Obs(Q) = histQ

1 ∪ histQ
2 . Moreover histQ

1 trivially satisfies both
‘diagonal rule’ and π	 , while histQ

2 does not satisfy the ‘diagonal rule’ as for example b(<
Q
4)�c and for all < ∈ histQ

2 we
have ¬(b < c). However histQ

2 satisfies π	 as for 	 = histQ
2 , the predicate (∃ < ∈ 	. x < y) ∧ (∃ < ∈ 	. y < x) is always

false.
It can also be shown by inspection that histQ

1 = Interv(ShistQ
1
), histQ

2 = Interv(ShistQ
2
), and ShistQ

2
= S Q

2 , where S Q
2 =

({a, b, c}, ≺Q
2 , �Q

2) is shown in Fig. 5. The history histQ
1 represents system runs (observations) where a occurs before c

(or c is later than a), while the history histQ
2 represents observations where c is not later than a. The history histQ

1 com-

prises only one observation, a total order <Q
1 , while histQ

2 contains three observations, a total order <Q
2 , a stratified order

<
Q
3 and an interval (but not stratified) order <Q

4 .
Analyzing the program Q for possible commuting (independent) beginnings and ends, we observe that, if mandatory

relationships enforced by Definition 12 are not counted, only Bb and Ec may commute, which results in the interval
independency relation indQ from Fig. 5. As histQ

1 = {<Q
1 }, its representation in any model is trivial. For example the in-

terval trace x1 = [BaEbBbEbBcEc]indQ , or the interval order structure S Q
1 = ({a, b, c}, <Q

1 , <Q �
1) both describe histQ

1 , as
Interv(x1) = Interv(S Q

1) = {<Q
1 }.

The concurrent history histQ
2 = {<Q

2 , <Q
3 , <Q

4 } is uniquely represented by the interval order structure S Q
2 = ({a, b, c}, ≺Q

2 ,

�Q
2) from Fig. 5. One can verify by inspection that the set of all interval order extensions of S Q

2 satisfies Interv(S Q
2) =

histQ
2 = {<Q

2 , <Q
3 , <Q

4 }. Moreover the set of interval sequences x2 defined as

x2 =
⎧⎨⎩ BcEcBaEaBbEb, BaBcEcEaBbEb, BaBcEaEcBbEb, BcBaEcEaBbEb,

BcBaEaEcBbEb, BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc,
BcBaEaBbEcEb

⎫⎬⎭ .

is an interval trace over the interval trace alphabet ({Ba, Ea, Bb, Eb, Bc, Ec}, indQ), where indQ is the interval indepen-
dency relation from Fig. 5. Hence x2 = [x]indQ for any x ∈ x, for example x = BaBcEaBbEbEc (underlined), so x2 =
[BaBcEaBbEbEc]indQ . Since Interv(x2) = hist Q

2 , the trace x2 represents the history hist Q
2 . The partial order �x2 that rep-

resents both the interval order structure Sx2 and the interval order x2, is also shown in Fig. 5.
Interval sequences from Sx2 represent the elements of hist Q

2 as follows:

• BcEcBaEaBbEb represents the total order <Q
2 ,

• each of the sequences BaBcEcEaBbEb, BaBcEaEcBbEb, BcBaEcEaBbEb and BcBaEaEcBbEb represents the stratified
order <Q

3 , and
• each of the sequences BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc and BcBaEaBbEcEb represents the strict inter-

val order <Q .
4

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 95
Analyzing systems or programs is usually easier if they can be represented by some formal models with well developed
semantics, as various types of automata, Petri nets, process algebras, etc. In the next section we show that interval traces
can be used as a convenient semantics of some version of Petri nets with inhibitor arcs.

10. Inhibitor Peri nets and their interval traces semantics

Inhibitor arcs allow a transition to check for an absence of a token. They have been introduced in [2] to solve a synchro-
nization problem not expressible in classical Petri nets. In principle they allow ‘test for zero’, an operator the standard Petri
nets do not have (cf. [36]).

Elementary nets with inhibitor arcs [22] are very simple. They are just classical elementary nets of [37,42], i.e. one-safe
place-transition nets without self-loops (cf. [9]), extended with inhibitor arcs. Nevertheless they can easily express complex
behaviors involving ‘not later than’ cases [5,22,27,28], priorities, various versions of simultaneities, etc. [17,23,49]. However
the expressiveness of elementary nets with inhibitor arcs is often misunderstood and misinterpreted. While for most known
models each elementary net with inhibitor arcs can always equivalently be represented by an appropriate elementary net
with activator4 arcs [22,28], the activator arcs can not always be simulated by self-loops. If only firing sequences, i.e. lan-
guages, generated by nets are concerned, then both inhibitor and activator elementary nets can be represented by equivalent
one-safe nets with self-loops. However this is absolutely not true if simultaneous executions, for instance steps, are allowed
(cf. [5,22,49]). Moreover, we will show later in Section 10.5 that the relationship between inhibitor nets and activator nets
is more complex than it was assumed in the existing models.

In general, the theory of Petri nets does not make any specific assumptions about the nature of transitions. They can rep-
resent both instantaneous and non-instantaneous (i.e. lasting some time) entities (cf. [39,9,41]). If we are interested only in
firing sequence semantics, as for example in popular [36], then the distinction between instantaneous or non-instantaneous
transitions is often negligible. However for step sequences [5,22,28] or interval orders [23] this distinction is important. In
this paper we assume that the transitions of standard elementary nets with inhibitor arcs, like the net N Q in Fig. 6, are not
instantaneous, their execution takes some time. In principle this is the same model that was used in [22,28,49] for example.

In this section we will show how some rich semantics, that includes non-transitive simultaneity, of elementary inhibitor
nets can be expressed with interval traces.

10.1. Inhibitor Petri nets and their standard operational semantics

An inhibitor net is a tuple N = (P , T , F , I, m0), where P is a set of places, T is a set of transitions, P and T are disjoint,
F ⊆ (P × T) ∪ (T × P) is a flow relation, I ⊆ P × T is a set of inhibitor arcs, and m0 ⊆ P is the initial marking. An inhibitor
arc (p, e) ∈ I means that e can be enabled only if p is not marked. In diagrams (p, e) is indicated by an edge with a small
circle at the end. Any set of places m ⊆ P is called a marking.

For every x ∈ P ∪ T , the set •x = {y | (y, x) ∈ F } denotes the input nodes of x and the set x• = {y | (x, y) ∈ F } denotes the
output nodes of x. The set x◦ = {y | (x, y) ∈ I ∪ I−1} is the set of nodes connected by an inhibitor arc to x. The dot-notation
extends to sets in the natural way, e.g. the set X• comprises all outputs of the nodes in X . We assume that for every t ∈ T ,
both •t and t• are non-empty and disjoint. These requirements do not always appear in the literature, but following [37,42]
we use them for two reasons. Firstly because they are quite natural, and secondly because they allow us to avoid many
unnecessary technicalities (cf. [42]). Additionally, both of •t and t• must have an empty intersection with t◦ .

Example 40. The tuple N P = (P , T , F , I, m0), with P = {s1, s2, s3, s4, s5}, T = {a, b, c}, F = {(s1, a), (a, s3), (s2, c), (c, s4), (s3, b),

(b, s5)}, I = {(s3, c)} and m0 = {s1} is an inhibitor net. This is the net N Q from Fig. 6. We have here •a = {s1}, a• = {s3},
•b = {s3}, b• = {s5}, •c = {s2}, c• = {s4}, •s1 = ∅, s•

1 = {a}, •s2 = ∅, s•
2 = {c}, •s3 = {a}, s•

3 = {c}, •s4 = {c}, s•
4 = ∅, •s5 = {b},

s•
5 = ∅, and s◦

3 = {c}, c◦ = {s3}. �

We will show in this section that the net N Q from Fig. 6 can be considered as a model of the program Q analyzed in
Section 9 as it has the same behavioral properties as the properties of the program Q (illustrated in Fig. 5). The orders <Q

1 ,
<

Q
2 , and <Q

3 , represented by step sequences {a}{b}{c}, {c}{a}{b}, and {a, c}{b} can easily be derived by practically any step
sequence semantics proposed for inhibitor nets (cf. [5,22,49]), and the model proposed later in this section will allow us to
derive the rest of the properties depicted in Fig. 5.

Since in our model transitions are not instantaneous, one may imagine ‘holding a token’ when firing particular transi-
tions. For the net N Q , holding a token in c may overlap with holdings a token in a and next in b, and then a possible
outcome could be for example an interval sequence BaBcEaBbEbEc, or the interval order <Q

4 . The idea of ‘holding a token’
is not new, it is used in all semantics of timed Petri nets where time is assigned to transitions (cf. [50,52]). We will formally
embed the idea of ‘holding a token’ in our interval trace semantics of elementary nets with inhibitor arcs.

4 Activator arcs (also called ‘read’, or ‘contextual’ arcs [5,35,49]), formally introduced in [22,35], are conceptually orthogonal to the inhibitor arcs, they
allow a transition to check for a presence of a token.

96 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
We will now briefly recall the firing sequences and the firing step sequences semantics. We will use the notation from
[22,28], which in principle is the notation used for elementary nets [37,42] extended with rules for handling inhibitor arcs.
The rules are simple but use the assumption that both •t and t• are non-empty and disjoint.

10.1.1. Firing sequence and firing step sequence semantics
The firing sequences semantics, the simplest operational semantics, is defined in almost the same way as any other kind

of Petri nets. The only difference is that for the inhibitor nets, a transition can be enabled only if no place with which it is
joined by an inhibitor arc is marked.

Formally, a transition t is enabled at marking m if •t ⊆ m and (t• ∪ t◦) ∩m = ∅. For each marking m, the set of all enabled
transitions at m is denoted by enabledN (m).

An enabled t can occur leading to a new marking m′ = (m \• t) ∪ t• , which is denoted by m[t〉m′ .
A firing sequence from the marking m1 to mk+1 is any sequence of transitions t1...tk for which there are markings

m2, ..., mk satisfying: m1[t1〉m1[t2〉m2...mk[tk〉mk+1.
In such case we write: m1[t1...tk〉mk+1.
The set of all firing sequences from the marking m to the marking m′ is defined as

FSN(m→m′) = {x ∈ T ∗ | m[x〉m′}.
The firing step sequence semantics is defined in a similar fashion. The only difference is that sets of mutually independent

transitions can be fired simultaneously.
Let A ⊆ T be a non-empty set such that for all distinct t, r ∈ A, we have (t• ∪• t) ∩ (r• ∪• r) = ∅. Every such set A is

called a step, and a step A is a step enabled at marking m if • A ⊆ m and (A• ∪ A◦) ∩ m = ∅. For each marking m, the set of
all step enabled sets of transitions at m is denoted by senabledN (m).

We also denote m[A〉m′ , where m′ = (m \• A) ∪ A• .
A firing step sequence from the marking m1 to mk+1 is any sequence of non-empty sets of transitions A1...Ak for which

there are markings m2, ..., mk satisfying:
m1[A1〉m1[A2〉m2...mk[Ak〉mk+1.

In such case we may write: m1[A1...Ak〉mk+1.
The set of all firing step sequences from the marking m to the marking m′ is defined as follows:

FSSN(m→m′) = {x ∈ (P(T) \ ∅)∗ | m[x〉m′}.
It can easily be shown [22] that {{a1} . . . {ak} | a1 . . .ak ∈ FSN(m→m′) ⊆ FSSN (m→m′), which, by a small abuse of notation
can be stated as FSN (m→m′) ⊆ FSSN (m→m′).

For example for the net N Q from Fig. 6 where the initial marking is {s1, s2} and the final marking {s4, s5}, we have

FSN Q ({s1, s2}→{s4, s5}) = {abc, cab},
FSSN Q ({s1, s2}→{s4, s5}) = { {a}{b}{c}, {c}{a}{b}, {a, c}{b} }.

When sequences and step sequences are replaced by the partial orders they describe, we get {<Q
1 , <Q

2 } for FSN Q and
{<Q

1 , <Q
2 , <Q

3 } for FFSN Q (see Fig. 5).
We will now show how the idea of ‘holding a token’ can be implemented by using the concept of an interval sequence.

10.2. Firing interval sequences semantics

As it was aptly stated in [49]: “If transitions have a beginning and an end, a system state cannot adequately be described by a
marking alone; instead, it consists of a marking together with some transitions that have started, but have not finished yet”. One way
of describing such system state is the concept of ST-marking, proposed in [47] and explored in [45,49]. For a given net (with
or without inhibitor arcs), an ST-marking is a pair (mS T , cS T), where mS T ⊆ P is a marking of N and cS T ⊆ T is the set of
currently firing transitions. The ST-markings can be defined for general place/transitions nets [41], that are not considered in
this paper.

In this paper we use only elementary inhibitor nets, so we opted for a simpler model that is briefly presented in Fig. 6. If
inhibitor arcs are not involved, to represent transitions by their beginnings and ends we might just replace each transition

t by the net Bt Et�� �t as proposed for example in [52] for Timed Petri nets.
However, the inhibitor arcs cause some problems. Consider our example net N Q . The ‘obvious’ transformation of the net

N Q into the net N2
Q (in N Q a token in s3 prevents c from being enabled, so a token in s3 but in N2

Q prevents starting c, i.e.
Bc is not enabled), does not work for at least two reasons. No matter how we implement ‘holding a token’, we want our model
to be consistent with most well established step sequence semantics of elementary inhibitor nets. None of the well estab-
lished step sequence semantics of elementary inhibitor nets consider the step sequence {a}{b, c} (or stratified order <¬Q

5
from Fig. 5) to be a legal step sequence generated by the net N Q [5,22,19,49]. But the interval sequence BaEaBbBcEbEc is
a firing sequence of N2

Q and represents the stratified order <¬Q
5 . Moreover the interval sequence BaEaBcBbEbEc is not a

firing sequence of N2 , but it also represents the stratified order <¬Q .
Q 5

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 97
Fig. 6. Elementary inhibitor nets N Q and N0, and two potential models of ‘holding a token’ idea for the net N Q . Both N1
Q and N2

Q fire all interval
sequences that represent the strict interval order <Q

4 , N1
Q also fires two (out of four) interval sequences generating the stratified order <Q

5 . All firing
sequences (starting from {s1, s2} and ending at {s4, s5}) of the net N0 represent the strict interval order <Q

4 . For the net N0 the sets of total and interval
orders it generates, are empty.

In other words, ‘holding a token’ is more restrictive when inhibitor arcs are involved. When •t1 ∩ t◦
2 �= ∅ and t1 holds

a token but t2 does not, then t2 cannot start until t1 ends. Otherwise ‘holding a token’ is inconsistent with probably
all reasonable step sequence semantics. Transformation from N Q to N1

Q preserves this property. One may verify that
FSN1

Q
({s1, s2}→{s4, s5}) = {x1} ∪ x2, where x1 = BaEaBbEbBcEc, and x2 is the interval trace that represents the concurrent

history hist Q
2 and is discussed in Section 9. In other words, FSN1

Q
({s1, s2}→{s4, s5}) is the interval sequence representation

of Obs(Q) = hist Q
1 ∪hist Q

2 , and this is what we expect. For N2
Q we have FSN2

Q
({s1, s2}→{s4, s5}) = {x1} ∪x2 ∪{y1, y2}, where

y1 = BaEaBbBcEcEb, y2 = BaEaBbBcEbEc, and for each x ∈ {y1, y2}, �x=<¬Q 5 . The remaining two interval sequences that
also define <¬Q 5 , namely BaEaBcBbEcEb and BaEaBcBbEbEc are not firing sequences of N2

Q .
While defining the meaning of one entity by transforming it into another is good for providing intuition and motiva-

tion, it is not necessarily a good way to do it in a general case. Hence we will formally define firing interval sequences,
FISN (m→m′), in terms of the net N alone, without explicitly using the transformation illustrated in Fig. 6 (from N Q
into N1

Q). The key idea is to allow tokens not only in places but in transitions as well. A token in a transition t could
be interpreted as ‘t is active’, and removing all tokens from •t and placing one token in t can be interpreted as an execution
of Bt , while removing the token from t and placing tokens in t• can be interpreted as executing Et . The whole definition is
given below. It creates a basic structure that we will use to formally define ‘holding a token’ semantics (but without explicit
notion of time) in terms of interval sequences (for runs/observations) and interval traces (for concurrent histories).

Definition 41. Let N = (P , T , F , I, m0) be a given elementary nets with inhibitor arcs.

1. For each t ∈ T we define Bt – the beginning of t and Et – the end of t , and the set T = {Bt | t ∈ T } ∪ {Et | t ∈ T }. The
elements of T are called BE-transitions.

2. For each t ∈ T we define:
(a) •Bt = •t ,
(b) Bt• = {t},
(c) •Et = {t},
(d) Et• = t• ,
(e) Bt◦ = t◦ ∪ (t◦)• , and
(f) Et◦ = ∅.

3. We say that a set m ⊆ P ∪ T is an extended marking if m ∩ (•m ∪ m•) = ∅.
4. A B E-transition τ ∈ T is enabled at extended marking m ⊆ P ∪ T if •τ ⊆ m and (τ • ∪ τ ◦) ∩ m = ∅. For each extended

marking m, the set of all enabled elements of T at m is denoted by enabledext
N (m).

5. An enabled τ can occur leading to a new extended marking m′ = (m \• τ) ∪ τ • , which is denoted by: m[[τ 〉 〉m′.
6. An extended firing sequence from the extended marking m1 to the extended marking mk+1 is any sequence of

B E-transitions τ1...τk for which there are extended markings m2, ..., mk satisfying: m1[[τ1〉 〉m2...mk[[τk〉 〉mk+1.
In such case we write: m1[[τ1...τk〉 〉mk+1. �

The above definition is pretty much self explained as it mimics the standard firing sequence semantics approach, with
the exception of condition 2(e). In the standard model, a token in a place p ∈ t◦ means t cannot be fired until this token

98 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
is removed. In the new model it means that Bt cannot be fired. But if this token is removed for instance by firing Bt1
where t1 ∈ p• , then Bt could be enabled, and potentially fired before firing Et1, which can be interpreted as simultaneous
execution of t and t1, contrary to the fact that p ∈ t◦ ∩• t1 was supposed to prevent it. This is the case for Bc, Bb and Eb in
the net N2

Q in Fig. 6. To prevent this we need to extend Bt◦ (see the rule (τ • ∪ τ ◦) ∩ m = ∅ in condition 4 of Definition 41)
by (t◦)• , which leads to Bt◦ = t◦ ∪ (t◦)• .

In particular each marking is an extended marking. For the net N Q from Fig. 6, for example {s2, s3}, {s1, c}, and {a, c}
are extended markings, but {s3, b} is not as s•

3 = {b} and •b = {s3}. Furthermore, if m ⊆ P , i.e. m is a marking, then for each
a ∈ T , a ∈ enabledN (m) ⇐⇒ Ba ∈ enabledext

N (m), so enabledN and enabledext
N are consistent.

We will now show that the concepts introduced in Definition 41 allow us to do the following for any given elementary
net N with inhibitor arcs:

1. Derive all system runs/observations, including these represented by strict interval orders, encoded as interval sequences,
i.e. <Q

1 , <Q
2 , <Q

3 , and <Q
4 for the net N Q .

2. Derive a (Mazurkiewicz type) independency relation indN , such that for every interval sequence that represents a system
run x, the interval trace [x]indN represents an appropriate concurrent history. For the net N Q , [BaEaBbEbBcEc]indN

should represent hist Q
1 and [BcEcBaEaBbEb]indN should represent hist Q

2 (see Fig. 5).
3. Transform obtained interval traces into appropriate interval order structures by applying the results of Section 6 of this

paper.

We will start with a formal definition of firing interval sequences.

Definition 42. The set of all firing interval sequences from the marking m to the marking m′ is defined as

FISN(m→m′) = {x ∈ T ∗ | m[[x〉〉m′}.
Note that we assume m, m′ ⊆ P . �

For the net N Q , we have FISN Q ({s1, s2}→{s4, s5}) = FISN1
Q
({s1, s2}→{s4, s5}) = {BaEaBbEbBcEc} ∪ x2, where x2 repre-

sents the concurrent history hist Q
2 and is discussed in Section 9. Hence N Q generates the same set of interval sequences as

we derived from the program Q in the previous section.
It is not immediately obvious that Definition 42 is sound and complete. This would require the set FISN (m→m′) to

satisfy the following two properties

• every element of FISN (m→m′) must be an interval sequence, and
• since all total order representations of a given interval order are considered equivalent and none is preferred, if x ∈

FISN(m→m′), then �x=�y should imply y ∈ FISN(m→m′).

Note that if we replace Bt◦ = t◦ ∪ (t◦)• with Bt◦ = t◦ in Definition 41.2(e) (which for the nets in Fig. 6, corresponds using
the net N2

Q to represent the net N Q), the second property does not hold!
The following result guarantees the first property.

Proposition 43. For all markings m, m′ ⊆ P , we have FISN(m→m′) ⊆ InSeq(T ∗).

Proof. It suffices to show that if m[[x〉 〉m′ , then x ∈ InSeq(T ∗), or (see Definition 6(1)) to show that for each a ∈ T ,
π{Ba,Ea}(x) ∈ (BaEa)∗ .

Let x = y Ba z and m[[y Ba〉 〉m′′. Since Ba• = {a}, a ∈ m′′ . We also have: for any ma ⊆ P ∪ T , if a ∈ ma , then Ba is not
enabled in ma , and the only way to remove a from ma is to fire Ea (as •Ea = {a}). Hence we must have x = y Ba w Ea v ,
where π{Ba,Ea}(w) = ε. �

The second property requires a proposition like the one below.

Proposition 44. For every x ∈ FISN(m→m′) and every y ∈ T ∗ , if �x=�y then y ∈ FISN (m→m′). �

The proof of the above proposition is in Appendix A as it requires plenty specific results about interval orders, that are
not much relevant to this section.

The next two results show that the interval sequence semantics is consistent with both sequence semantics and step
sequence semantics. First we show consistency of standard firing sequences and extended firing sequences.

Lemma 45. For every two m, m′ ⊆ P , then for each t ∈ T ,

m[t〉m′ ⇐⇒ m[[Bt Et〉〉m′.

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 99
Proof. Since •Bt = •t , Bt◦ = t◦ ∪ (t◦)• , and m ∩ (t◦)• = ∅, t is enabled at m if and only if Bt is enabled at m.
(⇒) If m[t〉m′ then m′ = (m \• t) ∪ t• . Let m[[Bt〉 〉mB , i.e. mB = (m \• Bt) ∪ Bt• = (m \• t) ∪{t}. Hence Et is enabled at mB .

Let mB [[Et〉 〉mE . And mE = (mB \• Et) ∪ Et• = (((m \• t) ∪ {t}) \ {t}) ∪ t• = (m \• t) ∪ t• = m′ . Hence m[[Bt〉 〉mB [[Et〉 〉m′ , i.e.
m[[Bt Et〉 〉m′.

(⇐) If m[[Bt Et〉 〉m′ then reasoning as in the proof of (⇒) we can show that m′ = (m \• t) ∪ t• . Hence m[t〉m′ . �
We have a similar relationship between firing step sequences and extended firing sequences. For every step A =

{t1, ..., tk} ⊆ T , let A B E ⊆ T ∗ be defined as follows

AB E = {Bti1 ...Btik Et j1 ...Et jk | i1, ..., ik and j1, ..., jk are permutations of 1,2, ...,k}.
For example {a, b}B E = {BaBbEaEb, BaBbEbEa, BbBaEaEb, BbBaEbEa}. In [49], the elements of A B E are called ‘lineariza-

tions’ of the step A.

Lemma 46. For every two markings m, m′ ⊆ P and every step A ⊆ T ,

m [A〉 m′ ⇐⇒ (∀x ∈ AB E. m [[x〉〉 m′).

Proof. Let A = {t1, ..., tk}. Since A is a step then (t•
i ∪• ti) ∩ (t•

j ∪• t j) = ∅ for i �= j, and, by Definition 41(2), (Et•
i ∪• Bti) ∩

(Et•
j ∪• Bt j) = ∅ for i �= j.
(⇒) m [A〉 m′ implies • A ⊆ m, (A• ∪ A◦) ∩ m = ∅, and m′ = (m \• A) ∪ A• . Let y = Bti1 ...Btik and z = Et j1 ...Et jk , where

i1, ..., ik and j1, ..., jk are permutations of 1, 2, ..., k. Since for all ti ∈ A, •ti = •Bti , Bt•
i = {ti}, (t◦

i)
• ⊆ T and t◦

i ∪ (t◦
i)

• = Bt◦
i ,

then •Bti1 ⊆ m and (Bt•
i1

∪ Bt◦
i) ∩m = ∅. Hence Bti1 is enabled at m, and m[Bti1 〉mt1 where mti1

= (m \• Bti1) ∪{ti1 }. Moreover,
since for all ti ∈ A, •ti = •Bti , then (Bt•

i ∪•Bti) ∩ (Bt•
j ∪•Bt j) = ∅ if i �= j. Hence •Bti2 ⊆ mt1 and (Bt•

i2
∪ Bt◦

i2
) ∩mti1

= ∅, which
means Bti2 is enabled at mti1

, and m[Bti2〉mti2
where mti2

= (mti1
\• Bti2) ∪{ti2 }. The arguments for t2 also hold for ti3 . . . tik ,

which means that m [[y〉 〉 mB , where mB = (m \ (• Bti1 ∪ ... ∪• Btik)) ∪ (Bt•
i1

∪ ... ∪ Bt•
ik
) = (m \• A) ∪ (t•

i1
∪ ... ∪ t•

ik
) = (m \• A) ∪ A.

For all E Ti we just have • Eti = {ti}, Et•
i = t•

i for all i. Hence mB [[z〉 〉 mE , where mE = (mB \ (• Et j1 ∪ ... ∪ • Et jk)) ∪ (Et•
j1

∪
... ∪ Et•

jk
) = (((m \• A) ∪ A) \ A) ∪ A• = (m \• A) ∪ A• = m′ , which means m [A〉 m′ =⇒ ∀x ∈ A B E. m [[x〉 〉 m′.

(⇐) Let A = {t1, ..., tk} and assume ∀x ∈ A B E. m [[x〉 〉 m′. This means each Bti is enabled at m, i.e. for each i, •Bti ⊆ m
and Bt◦

i ∩ m = ∅. The latter implies t◦
i ∩ m = ∅. Hence • A ⊆ m and A◦ ∩ m = ∅.

Assume x = yz where y and z are these from the proof of (⇒). Clearly m [[y 〉 〉my [[z〉 〉 m′ , for some my ∈ P ∪ T . By
Definition 41(5), my = (m \ (• Bti1 ∪ ... ∪• Btik)) ∪ (Bt•

i1
∪ ... ∪ Bt•

ik
) = (m \• A) ∪ (t•

i1
∪ ... ∪ t•

ik
) = (m \• A) ∪ A, and m′ = (my \

(• Et j1 ∪ ... ∪•Et jk)) ∪ (Et•
j1

∪ ... ∪ Et•
jk
) = (my \ A) ∪ A• . Hence m′ = (my \ (• Et j1 ∪ ... ∪•Et jk)) ∪ (Et•

j1
∪ ... ∪ Et•

jk
) = (m \• A) ∪ A• .

What remain is to show that A• ∩ m = ∅. Suppose A• ∩ m �= ∅, i.e. Et•
i ∩ m �= ∅ for some i. We may assume j1 = i. Now

we should have m[[y〉 〉my , where my = (m \• A) ∪ A and Eti is enabled at my . Since • A ∩ A• = ∅ (as A is a step), Et•
i ∩m �= ∅

implies Et•
i ∩ my �= ∅, but this means Eti is not enabled at my , a contradiction.

In this way we have proved • A ⊆ m, (A• ∪ A◦) ∩ m = ∅, and m′ = (m \• A) ∪ A• , so m [A〉 m′. �
We will say that an interval sequence x and a step sequence y are equivalent iff �x= �y , i.e. when they both represent the

same partial order. By using the sets A B E we can define this relationship in terms of sequences only. Namely,

• an interval sequence x and a step sequence A1 . . . Ak are equivalent iff

x ∈ AB E
1 ◦ . . . ◦ AB E

k ,

where ‘◦’ denotes concatenation of languages, i.e. A ◦ B = {xy | x ∈ A ∧ y ∈ B}.

We may now define an interval representation of a step sequence A1 . . . Ak as

irs(A1 . . . Ak) = AB E
1 ◦ . . . ◦ AB E

k ,

and formulate the following result characterizing the relationship between firing step sequences and firing interval se-
quences.

Proposition 47. For every inhibitor net N we have:

irs(FSSN(m→m′)) ⊆ FISN(m→m′).

Proof. A straightforward conclusion from Lemma 46. �

100 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
The sets of total, stratified, and interval orders represented by firing sequences, firing step sequences, and firing interval
sequences respectively,can be defined as follows:

TON(m→m′) = {�x | x ∈ FSN(m→m′)},
SON(m→m′) = {�x | x ∈ FSSN(m→m′)}
ION(m→m′) = {�x| x ∈ FISN(m→m′)}.

From Proposition 47 and the fact that each sequence a1 . . .ak is equivalent to the step sequence {a1} . . . {ak}, we have:

Corollary 48. For every inhibitor net we have:

TON(m→m′) ⊆ SON(m→m′) ⊆ ION(m→m′). �

For the net N Q from Fig. 6, with m0 = {s1, s2} and m f = {s4, s5}, we have: TON Q (m0→m f) = {<Q
1 , <Q

2 }, SON Q (m0→m f) =
{<Q

1 , <Q
2 , <Q

3 }, and ION Q (m0→m f) = {<Q
1 , <Q

2 , <Q
3 , <Q

4 } = hist Q
1 ∪ hist Q

2 . Hence, as far as operation semantics is con-
cerned, the net N Q can be regarded as a true representation of the program Q .

Note that there are inhibitor nets for which all their observations are interval orders. The net N0 from Fig. 6 is such
a net. For m0 = {s1, s2} and m f = {s4, s5}, we have FISN0 (m0→m f) = {BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc,

BaBaEaBbEcEb} so ION0(m0→m f) = {<Q
4 }, while FSN0(m0→m f) = FSSN0(m0→m f) = ∅, and TON0 (m0→m f) =

SON0(m0→m f) = ∅.

10.3. Trace and comtrace semantics

One of the disadvantages of any operational semantics is that does not recognize equivalent executions, so they cannot
identify concurrent histories. This is the role of traces, comtraces, and interval traces. In this subsection we briefly recall
basic concepts and results of trace and comtrace semantics of elementary inhibitor nets, as described in [22,28].

The trace semantics alone is not particularly interesting as, since it is derived from the firing sequence semantics, it can
be reduced to standard trace semantics of elementary nets with self-loops [5,10]. However it sets the basis for interval trace
semantics. The interval trace semantics, which is our goal, must be a consistent extension of comtrace semantics.

Let N = (P , T , F , I, m0) be an inhibitor net. We define the (trace) independency relation indtr
N ⊆ T × T as (cf. [22]):

(a,b) ∈ indtr
N ⇐⇒ [(a• ∪ •a) ∩ (b• ∪ •b) = ∅]∧

[a◦ ∩ (•b ∪ b•) = ∅] ∧ [b◦ ∩ (•a ∪ a•) = ∅].
The trace alphabet is (T , indtr

N), and the set of all traces defining behaviors that start from the marking m and end at the
marking m′ is defined as

TrN(m→m′) = {[x]indtr
N

| x ∈ FSN(m→m′)}.
The comtrace semantics is standardly derived from the firing step sequence semantics [22,27]. In this case we define the

following relations simN , serN ⊆ T × T :

(a,b) ∈ simN ⇐⇒ (a• ∪ •a) ∩ (b• ∪ •b) = ∅ ∧ (a◦ ∩ •b) ∪ (b◦ ∩ •a) = ∅,

(a,b) ∈ serN ⇐⇒ (a,b) ∈ simN ∧ a• ∩ b◦ = ∅.

The comtrace alphabet here is (T , simN , serN), and the set of all comtraces defining behaviors that start from the marking
m and end at the marking m′ is defined as

ComTrN(m→m′) = {[x](simn,serN) | x ∈ FSSN(m→m′)}.
The following two results validate all the above definitions of this subsection.

Proposition 49 (Follows from [22,24,28]). For each elementary inhibitor net N Q and for all markings m, m′ ⊆ P :

1. x ∈ FSN (m→m′) ⇐⇒ [x]indtr
N

⊆ FSN (m→m′),

2. x ∈ FSSN (m→m′) ⇐⇒ [x](simN ,serN) ⊆ FSSN (m→m′). �

For the net N Q from Fig. 6 we have

simN P = {(a, c), (c,a)},
serN P = {(c,a)}.

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 101
i.e. (a, c) /∈ serN P , ComTrN P ({s1, s2}→{s4, s5}) = {y1, y2}, where y1 = {{a}{b}{c}}, y2 = {{c}{a}{b}, {a, c}{b}}. When step se-
quences are interpreted as stratified orders, the comtrace y1 represents the set {<Q

1 } and the comtrace y2 represents the
set {<Q

2 , <Q
3 }, where <Q

1 , <Q
2 , <Q

3 are the partial orders from Fig. 5.
The process semantics (in the sense of [37,41]) has been proposed in [22] and substantially refined in [27]. It was proven

that the process semantics and comtrace semantics are equivalent to some extent. The process semantics will not be dis-
cussed in this paper, the details can be found in [18,28].

10.4. Interval trace semantics and interval order structure semantics

Since interval traces are just a special kind of general traces, we will just modify the standard trace semantics of inhibitor
nets. The main difference is to define the independency relation on B E-transitions instead of transitions, and use firing
interval sequences instead of firing sequences. Intuitively, the interval trace semantics of the net N Q of Fig. 6, where {a, b, c}
are transitions, is just the (slightly modified) trace semantics of the net N1

Q (with {Ba, Ea, Bb, Eb, Bc, Ec} as transitions) with
appropriate independency relation. We just need to define this new indN relation on B E-transitions and show its validity.

Let N = (P , T , F , I,m0) be an inhibitor net, and let T = {Bt | t ∈ T } ∪ {Et | t ∈ T }.
We may define the B E-net independency relation indnet

N ⊆ T × T as by just mimicking the trace independency relation
indtr

N , but in T × T instead of T × T .

Definition 50. For all distinct α, β ∈ T :

(α,β) ∈ indnet
N ⇐⇒ [(α• ∪ •α) ∩ (β• ∪ •β) = ∅]∧

[α◦ ∩ (•β ∪ β•) = ∅] ∧ [β◦ ∩ (•α ∪ α•) = ∅]. �

Note that, because for each t ∈ T , •Et = {t}, and Et◦ = ∅, (Ea, Eb) ∈ indnet
N for all a, b ∈ T . Unfortunately the relation

indnet
N usually does not satisfy Definition 12(2), as if a• ∩ •b �= ∅ (i.e. a and b are in a conflict [41,42]) then Ba• ∩ •Bb �= ∅

too. We will show that we need only a simple and obvious extension of indnet
N .

We define the (interval trace) independency relation indN ⊆ T × T as follows.

Definition 51. For all distinct a, b ∈ T :

1. (Ba, Bb) ∈ indN ∧ (Ea, Eb) ∈ indN

2. (Ba, Eb) ∈ indN ⇐⇒ [(Ba• ∪ •Ba) ∩ (Eb• ∪ •Eb) = ∅]∧
[Ba◦ ∩ (• Eb ∪ Eb•) = ∅] ∧ [Eb◦ ∩ (• Ba ∪ Ba•) = ∅].

The interval trace alphabet is (T , indN). �

In other words, indN = indnet
N ∪{(Ba, Bb) | a, b ∈ T ∧a �= b}. Obviously the relation indN satisfies Definition 12(2). The next

result shows that Definition 12(1) is satisfied too.

Lemma 52. For each t ∈ T , (Bt, Et) /∈ indN and (Et, Bt) /∈ indN .

Proof. Since Bt• ∩ •Et = {t}, for each t ∈ T . �
Hence (T , indN) is indeed the interval trace alphabet.

The following two results validate Definition 51. The first result, most likely the most crucial, states that if our interests
are restricted to interval firing sequences only, we may identify indN with indnet

N . This means that the property (Ba, Bb) ∈
indN , for all a, b ∈ T , which is natural for general interval traces, but a little bit artificial for elementary inhibitor nets, does
not introduce undesired and nonexistent behaviors, so it does not cause any harm.

Proposition 53. For all markings m, m′ ⊆ P and all x ∈ FISN (m→m′):

[x]indN = [x]indnet
N

.

Proof. Since indnet
N ⊆ indN , then [x]indnet

N
⊆ [x]indN . Consider x1 BaBbx2 ∈ [x]indnet

N
and (Ba, Bb) /∈ indnet

N . By Proposition 49(1),
[x]indnet

N
⊆ FISN(m→m′), so we have Bb �= Ba and m[[x1〉 〉mx1 [[Ba〉 〉mx1 Ba[[Bb〉 〉mx1 BaBb[[x2〉 〉m′ , where mx1 Ba = (mx1 \• Ba) ∪ {a}

and mx BaBb = (mx1 Ba \• Bb) ∪ {b}. (Ba, Bb) /∈ indnet and Ba �= Bb imply Ba• ∩ Bb• �= ∅, or Ba◦ ∩• Bb �= ∅, or Ba◦ ∩ Bb• �= ∅,
1 N

102 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
or Bb◦ ∩• Ba �= ∅, or Bb◦ ∩ Ba• �= ∅. If Ba• ∩ Bb• �= ∅ then Bb is not enabled at mx1 Ba , a contradiction as x1 BaBbx2 ∈
FISN (m→m′). Let r ∈ Ba◦ ∩ •Bb, i.e. r ∈ mx1 Ba . But mx1 = (mx1 Ba \ {a}) ∪ •Ba, so r ∈ Ba◦ ∩ mx1 , i.e. Ba is not enabled at mx1 ,
a contradiction. Since Ba◦ = a◦ ∪ (a◦)• and Bb• = {b}, then Ba◦ ∩ Bb• �= ∅ means b ∈ (a◦)• , i.e. a◦ ∩ •b �= ∅, which implies
Ba◦ ∩ •Bb �= ∅, which was already considered. If Bb◦ ∩ Ba• �= ∅, then Bb◦ ∩ mx1 Ba �= ∅ so Bb is not enabled at mx1 Ba , a
contradiction again. Consider Bb◦ ∩ •Ba �= ∅. We will show that this case implies Bb◦ ∩ Ba• �= ∅. Since Bb◦ = b◦ ∪ (b◦)• and
•Ba =• a, then b◦ ∩ •a �= ∅. Let p ∈ b◦ ∩ •a, so a ∈ p• , and a ∈ (b◦)• , which means, Bb◦ ∩ Ba• �= ∅, as Ba• = {a}. �

The second result is an equivalent of Proposition 49 and it states that interval traces produced by applying the relation
indN are consistent with the concept of firing interval sequences.

Proposition 54. For each elementary inhibitor net N Q and for all markings m, m′ ⊆ P :

x ∈ FISN(m→m′) ⇐⇒ [x]indN ⊆ FISN(m→m′).

Proof. A simple consequence of Propositions 49(1) and 53. �
When we have the relation indN , then for each firing sequence x, the interval trace [x]indN describes a behavior (concur-

rent history) of the inhibitor net N .
The set of all interval traces defining behaviors that start from the marking m and end at the marking m′ is defined as

IntTrN(m→m′) = {[x]indN | x ∈ FISN(m→m′)}.
Proposition 54 validates the above definition of IntTrN(m→m′).

Since every interval trace uniquely defines an interval order structure, we may define the set of all interval order struc-
tures defining behaviors that start from the marking m and end at the marking m′ as

IOSN(m→m′) = {S[x]indN | [x]indN ∈ IntTrN(m→m′)}.
By Theorem 26 we can also write IOSN (m→m′) = {Sx | x ∈ FISN(m→m′)}. At this point we have completed defining

interval trace semantics for elementary nets with inhibitor arcs, as

• FISN (m→m′) provides all valid interval order observations,
• IntTrN (m→m′) or IOSN (m→m′) provide all valid concurrent histories.

For the net N Q from Fig. 6 we have indN Q = indQ ∪ indunused , where indQ is from Fig. 5, and indunused =
{(Ba, Bb), (Ea, Eb), (Bb, Ba), (Eb, Ea), (Ba, Eb), (Eb, Ba)}. However for each m, m′ ⊆ P and every x ∈ FISN Q (m→m′), we have
[x]inQ = [x]indN Q

, as the pairs (Ba, Bb) ∈ indN Q , (Ea, Eb) ∈ indN Q , and (Ba, Eb) ∈ indN Q are never used, in any interval firing
sequence. Hence the relation indN Q is bigger than needed. This is the price paid for having indN derived entirely from the
static structure of the net N . We have the same situation when traces or comtraces are applied for Petri nets (not necessary
with inhibitor arcs), the relations ind, or sim and ser derived from nets, almost always have unused part [22,33].

For the net N Q we also have, with m0 = {s1, s2} and m f = {s4, s5},

• IntTrN Q (m0→m f) = {x1, x2}, where x1 = {BaEaBbEbBcEc}, i.e. the interval sequence representation of hist Q
1 , and x2 is

the interval trace discussed in Section 9, i.e. the interval sequence representation of hist Q
1 .

• IOSN Q (m0→m f) = {S Q
1 , S Q

2 }, where S Q
1 = ({a, b, c}, <Q

1 , <Q �
1), S Q

2 = ({a, b, c}, ≺Q
2 , �Q

2), and <
Q
1 , ≺Q

2 and �Q
2 are

these from Fig. 5. The interval order structure S Q
1 represents uniquely the concurrent history hist Q

1 , while S Q
2 represents

uniquely the concurrent history hist Q
2 .

Since, as we already discussed it in Section 10.2,

• FISN Q (m0→m f) = x1 ∪ x2, and

• ION Q (m0→m f) = {<Q
1 , <Q

2 , <Q
3 , <Q

4 } = hist Q
1 ∪ hist Q

2 .

the net N Q is a true net model of the program Q .

10.5. Relationship to ST-traces model

Our approach to Petri net semantics and the ST-traces of Vogler’s model from [49] have two important factors in com-
mon. The first being that in both models the system states are represented by marking plus transitions that are currently
being executed, and the second being that in both models firing sequences are prefixes of interval sequences built from the
beginnings and endings of transitions.

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 103
Fig. 7. An example of an inhibitor and activator nets that are equivalent w.r.t. firing sequence and firing step sequence semantics but not equivalent w.r.t.
interval firing sequence semantics. We have FISNI T (m0→m f) = {BaBbEaEb, BbBaEaEb, BaBbEbEa, BbBaEbEa} and FISN ST (m0→m f) = ∅.

In our model the system states are represented by extended markings, as in the model of [49] by ST-markings (first
proposed in [47]). For a given net (with or without inhibitor arcs), an ST-marking is a pair (mS T , cS T), where mS T ⊆ P is a
current marking of N and cS T ⊆ T is the set of currently firing transitions. Formally, for every extended marking m, the pair
mS T (m) = (m ∩ P , m ∩ T), is an ST-marking.

An extended firing sequence τ such that m[[τ 〉 〉m′ , can also be interpreted as a ST-trace from the ST-marking mS T (m) to
the ST-marking mS T (m′). Despite the name trace,5 ST-traces are just sequences (more precisely, prefixes of interval sequences)
of the elements of T , i.e. Bt ’s and Et ’s, not sets of (equivalent w.r.t. some rules) sequences as Mazurkiewicz or interval
traces. The ST-traces originate from [45] and are a primary tool in defining ST-bisimulation, which also was first proposed
in [45]. The ST-bisimulation was developed and used in many papers, one of the latest being [46] which contains an
extensive bibliography of this subject. In [49], ST-traces were used to define operational semantics of nets with read/activator
arcs, like in our model extended firing sequences are used to define operational interval semantics of nets with inhibitor
arcs.

There are also some important differences. Firstly, our model deals only with inhibitor arcs, whereas the model of [49]
deals only with read (or activator) arcs. This does matter despite the fact that it is universally assumed that for elementary
nets, inhibitor arcs can be equivalently represented by read/activator arcs from complement places,6 and vice versa. For the net N1a

I T
from Fig. 7, the places s3 and s̃3, and s4 and s̃4 are complementary and the inhibitor net N1

I T from Fig. 7 is considered
behaviorally equivalent to the activator net N1a

S T . Similarly for nets NI T and N S T , the places s1 and s3, and s2 and s4 are
complementary and the nets NI T and N S T are considered behaviorally equivalent. This assumption is crucial for the results
of [4,5,22,27,35] and most likely many others. It is also not questioned in [49] when the obtained results are compared to
that of [22]. When operational semantics is defined in terms of sequences or step sequences, this relationship is natural,
well defined and well supported by intuition.

Fig. 7 indicates that this simple construction based on complementary places does not work when operational semantics is ex-
pressed in terms of interval sequences (including ST-traces). Consider the net NI T : its interval sequence semantics is just a
firing sequence semantics of the net N1

I T , which means that for the initial marking m0 = {s1, s2} and the final marking
m f = {s3, s4}, we have: FISNI T (m0→m f) = FSN1

I T
(m0→m f) = {BaBbEaEb, BbBaEaEb, BaBbEbEa, BbBaEbEa} = {a, b}B E , i.e

just a step {a, b}. The net N1a
S T has been derived from N1

I T by adding appropriate complement places and replacing inhibitor
arcs with activator arcs. Firing sequences for elementary nets with activator arcs have not been defined yet, but this is just
a simple modification of the definition for inhibitor nets. Let A ⊆ P × T be a set of activator arcs, and for x ∈ P ∪ T , let xa =
{y | (x, y) ∈ A ∪ A−1}. Then we have just defined that a transition t is enabled at marking m if •t ∪ ta ⊆ m and t• ∩ M = ∅, and
left the remaining part for inhibitor nets. Now we have FSN1

ST
(m0→m f) = FSN1

I T
(m0→m f) = FISNI T (m0→m f) = {a, b}B E .

For the net N S T (which is identical to the net N3 from Figure 1 in [49]), the situation is much different. For this
particular net, the set of ST-traces it generates is the same as the set of firing sequences generated by the net N1

S T , and
clearly FSN1

ST
(m0→m f) = ∅!

Interval firing sequences for nets like N1
S T has not been formally defined in this paper, but using the same ‘holding token’

idea and reasoning we used for inhibitor nets in Section 10.2, would result in adopting firing sequences of the net N1
S T as

interval firing sequences of the net N S T , i.e. FISN ST (m0→m f) = FSN1
ST

(m0→m f). But this would mean that with respect to
interval firing sequences semantics (and ST-traces semantics) the inhibitor net NI T and the activator net N S T are not equivalent,
as FISNI T (m0→m f) = {a, b}B E �= FISN ST (m0→m f) = ∅.

5 The word “trace” has a few different meanings in computer science. In this paper, we use the word “trace” in the sense of [10], while for ST-traces, the
word “trace” has the same meaning as in for example Hoare’s CSP [15].

6 Places p, q ∈ P are complementary (cf. [42]) (p is a complement of q and vice versa) if p �= q, • p = q• and p• = •q, and |m0 ∩ {p, q}| = 1.

104 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Inhibitor nets are not explicitly considered in [49], and it is assumed that they can be represented by appropriate
activator nets via complementary places. The nets NI T and N S T are considered equivalent but only the semantics of N S T

is formally defined. The net N S T is used as an example of the difference between step sequence semantics proposed in
[22] and step sequence semantics that can be derived from ST-traces. In the model proposed in [22], which uses firing step
sequences as defined in Section 10.1.1, the net NI T can fire the step {a, b} in m0, while in the model of [49], the net N S T

can not fire the step {a, b} in m0.
When current system states are represented by both places and the transitions that are currently being executed, the

relationship between inhibitor places and activator places is different and much more complex than when current system
states are represented by places only. When a transition a is a part of a current system state then •a ∩ a• = ∅, so both
inhibitor and activator places in •a have been deactivated and both inhibitor and activator places in a• remain unchanged.
This means the transition b is enabled in the extended marking {a, s2} in the net NI T , but the transition b is not enabled in
the ST-marking ({a}, {s2}) in the net N S T .

The other main difference between [49] and this paper is that neither a counterpart of independency relation nor
Mazurkiewicz or interval trace are considered in the former. Moreover, the relational structures of [49], called spc-orders,
are different than our interval or stratified order structures. A triple (X, ≺, �) is an spc-order if both ≺ and � are partial
orders and additionally a ≺ b ⇒ a � b and a ≺ b � c ⇒ a � c. The spc-orders comprise equivalent ST-traces, but they are not
concurrent histories as defined in Section 8.

11. Final comment

We have introduced the concept of interval traces, a special kind of Mazurkiewicz traces, that can provide an abstract
semantics of concurrent systems when the operational semantics involves interval orders.

It was proven that interval traces can model interval order structures in the same manner as classical Mazurkiewicz
traces can model partial orders [34] and comtraces can model stratified order structures [22].

The concept and theory of interval traces stems from three sources: classical traces, comtraces, and the representation
theorem of Abraham, Ben-David, and Magidor ([1], Theorem 21 in this paper). Like comtraces, interval traces are generated
by two relations sim and ser on a given set of events, and the interpretation of these relations is the same as for comtraces.
However, comtraces are sets of step sequences of event occurrences, interval traces are just sets of ordinary sequences
(like classical traces) but beginnings and ends of event occurrences. Like in classical traces, the structure of interval traces
is generated by a single independency relation ind, but defined for the beginnings and ends. Technically, interval traces
are just a special case of classical traces that are defined on the set of beginnings and ends of events. The representation
theorem of Abraham, Ben-David, and Magidor allows representing interval order structures by appropriate partial orders of
beginnings and ends. We have shown that the partial order generated by a given interval trace uniquely defines an interval
order structure via the Abraham, Ben-David, and Magidor theorem. Moreover this partial order is the least partial order
representation of the derived interval order structure.

We have also shown how interval traces can be used to describe an abstract interval order semantics of elementary
nets with inhibitor arcs. This new semantics is consistent with, and an extension of, comtrace semantics from [22,28].
By comparing our model of inhibitor nets with Vogler’s model of activator nets [49], we have shown that the standard
transformation of one type of nets into another via complementary places (cf. [4,5,22,27,35]) does not work for operational
semantics with interval sequences (including ST-traces of [49]).

For both Mazurkiewicz traces and comtraces an equivalent pure process semantics (in a sense of [37]) have been
constructed [10,22,27]. For interval traces only some initial results have recently been published [4]. The mutex relation,
proposed in [29] and used in [19] for generalized comtraces, has not been applied to our model yet.

Acknowledgments

We would like to thank the anonymous referees and Rob van Glabbeek for their comments, errors correction and many
useful suggestions, which allow us not only make many proofs shorter and smarter, but increase the paper readability
as well. This research was partially supported by NSERC Grant of Canada, ORF Grant of Ontario and McMaster Centre for
Safety-Critical Software Certification.

Appendix A. Proofs of Propositions 14 and 44

To prove Propositions 14 and 44 we need to provide some results on sequence representations of interval orders
Suppose < is a finite interval order. By Theorem 4 we know that there exists at least one total order representation �,

which can further be represented as an appropriate sequence. However, neither Theorem 4, nor any of its known proofs (cf.
[11,12,21]), provides an effective method of constructing all such total order representations.

In this section we will show how to construct all total order representations of a given finite interval order. The construc-
tion, which will be based on the concept of principal order [12,21], will be needed to show completeness of our definition
of interval traces.

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 105
Definition 55 ([12,21]). Let < be a partial order on X (of any kind, no restrictions).

1. A set A ⊆ X is a maximal antichain of < if and only if

(∀a,b ∈ A. a �< b ∨ a = b) ∧ (∀a /∈ A.∃b ∈ A. a < b ∨ b < a).

The set of all maximal antichains of < will be denoted by A< .
2. The relation �< ⊆ A< × A< , defined as

A �< B ⇐⇒ A �= B ∧ (∀a ∈ A \ B.∀b ∈ B \ A. a < b)

is called a principal order of < (see [21] for more details). �

We will now show that principal orders are always partial orders of maximal antichains and we can always recover the
partial order < from its principal order �< .

Proposition 56 ([21]). Let < be any partial order on X.

1. The relation �< is a partial order.
2. For all a, b ∈ X:

a < b ⇐⇒ a �= b ∧ (∀A, B ∈ A<. a ∈ A ∧ b ∈ B =⇒ A �< B). �

Maximal antichains and principal orders are also convenient tools for classifying partial orders.

Theorem 57 ([12,21]). A partial order < is an interval order if and only if its principal order �< is a total order (of maximal an-
tichains). �

As a simple consequence of Theorem 57 we have the following corollary.

Corollary 58. A partial order < is stratified if and only if all maximal antichains are equivalence classes of �<. �

When �< is a total order, it can be represented as an appropriate sequence of antichains of <. We will identify this
sequence representation with the total order �< and write �< = A1 . . . An . Note that Ai ’s are different antichains, i.e. Ai ⊆ A j

if i = j, hence we have Ai �< A j iff i is smaller than j.

For example for <3 of Fig. 1 and <Q
4 of Fig. 5, we have

�<3 = {a}{b, c}{c,d} and �
<

Q
4

= {a, c}{b, c}.
Both �<3 and �

<
Q
4

are total orders of maximal antichains.

Let < be an interval order over the finite set X (here we assume nothing about X) and let �< = A1 . . . An be its principal
order represented as a sequence of antichains, and let X = {Ba | a ∈ X} ∪ {Ea | a ∈ X}.

For each a ∈ X , we define:

first<(a) = Ai if a ∈ Ai and either i = 1 or a /∈ Ai−1, and

last<(a) = Ai if a ∈ Ai and either i = n or a /∈ Ai+1.

For example for <3 of Fig. 1 and <
Q
4 of Fig. 5, f irst<3(a) = last<3 (a) = {a}, f irst<3(c) = {b, c}, last<3 (c) = {c, d},

f irst
<

Q
4
(a) = last

<
Q
4
(a) = {a}, f irst

<
Q
4
(c) = {a, c}, last

<
Q
4
(c) = {b, c}.

For each Ai , we define:

B<(Ai) = {Ba | f irst<(a) = Ai},
E<(Ai) = {Ea | last<(a) = Ai}.

For example B<3 ({b, c}) = {Bb, Bc}, E<3({b, c}) = {Eb}, B<3({c, d}) = {Bd}, and E<3({c, d}) = {Ec, Ed}.
Also, for every set X , let perm(X) denote the set of all permutations of the elements of X .
For example perm({a, b, c}) = {abc, acb, bac, bca, cab, cba}.
We are now able to provide a constructive definition of all total representations of a given interval order.

106 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
Definition 59.
1. A set of sequences I S R(<) ⊆ X defined as:

I S R(<) = perm(B<(A1))perm(E<(A1)) . . . perm(B<(An))perm(E<(An))

is called the set of all interval sequence representations of the interval order <.
2. A set of total orders T O (<) ⊆ X × X defined as

T O (<) = {�x | x ∈ I S R(<)}
is called the set of all total order representations of the interval order <. �

For example for <3 of Fig. 1 and <Q
4 of Fig. 5 we have

I R S(<3) =
{

BaEaBbBcEbBdEcEd, BaEaBbBcEbBdEdEc,
BaEaBcBbEbBdEdEc, BaEaBcBbEbBdEcEd

}
, and

I R S(<
Q
4) = {BaBcEaBbEbEc, BaBcEaBbEcEb, BcBaEaBbEbEc, BcBaEaBbEcEb}.

The following result justifies Definition 59.

Theorem 60. Let X be a finite set, < be an interval order over X, and ≺ be a total order over X . The following two properties are
equivalent:

1. for each a ∈ X, Ba ≺ Ea and for all a, b ∈ X, a < b ⇐⇒ Ea ≺ Bb,
2. ≺ ∈ T O (<).

Proof. (2)⇒(1) Suppose that ≺ ∈ T O (<) and let x ∈ I S R(<) be such that ≺ = �x . Let a ∈ X . Note that either f irst<(a) =
last<(a) or f irst<(a) �< last<(a). From Definition 59(1), it immediately follows that Ba �x Ea, i.e. Ba ≺ Ea.

Now suppose a < b. Since a ∈ last<(a) and b ∈ f irst<(b), from Proposition 56(2), we have last<(a) �< f irst<(b). But
since �< is a total order of maximal antichains, last<(a) �< f irst<(b) if and only if x = . . . Ea . . . Bb . . ., so a < b ⇐⇒
Ea �x Bb ⇐⇒ Ea ≺ Bb.

(1)⇒(2) Suppose that each a ∈ X , Ba ≺ Ea and for all a, b ∈ X , a < b ⇐⇒ Ea ≺ Bb. Let x be such that ≺ = �x . We just
have to show that x ∈ I S R(<). Suppose x /∈ I S R(<). For every y ∈ I S R(<) we can write x = v x1, y = v y1. Let y0 be such
element of I S R(<) that the length of prefix v is maximal.

We have to consider four cases:
Case 1. x = u Ba ux, y0 = u Bb u y0 . Hence x = u Ba v1 Bb v2 and y0 = u Bb z1 Ba z2. Suppose z1 = s Ec s1, i.e. y0 =

u Bb s Ec s1 Ba z2, which means Ec �y0 Ba i.e. c < a. Since Ec does not appear in u, we also have x = u Ba t Ec t1, which
means Ba �x Ec, or Ba ≺ Ec i.e. ¬(c < a), a contradiction. This means z1 = Ba1 . . . Bam , so y0 = v BbBa1 . . . Bam Ba z2. But
y0 ∈ I R S(<), so from Definition 59(2) we have that y1 = v BaBbBa1 . . . Bam z2 ∈ I R S(<), so u is not maximal, as uBa is a
prefix of both x and y1. Therefore the Case 1 cannot happen.

Case 2. x = u Ea ux , y0 = u Eb u y0 . Hence x = u Ea v1 Eb v2 and y0 = u Eb z1 Ea z2. Suppose z1 = s Bc s1, i.e. y0 =
u Eb s Bc s1 Ea z2, which means Bc �y0 Ea i.e. ¬(a < c). Since Bc does not appear in u, we also have x = u Ea t Bc t1,
which means Ea �x Bc, or Ea ≺ Bc i.e. a < c, a contradiction. This means z1 = Ea1 . . . Eam , so y0 = v EbEa1 . . . Eam Ea z2. But
y0 ∈ I R S(<), so from Definition 59(2) we have that y1 = v EaEbEa1 . . . Eam z2 ∈ I R S(<), so u is not maximal, as uEa is a
prefix of both x and y1. Therefore the Case 2 also cannot happen.

Case 3. x = u Ba ux , y0 = u Eb u y0 . Hence x = u Ba v1 Eb v2, which means Ba �x Eb, or Ba ≺ Eb, i.e. ¬(b < a), and
y0 = u Eb z1 Ba z2, which means Eb �y0 Ba. i.e. b < a, a contradiction, so the Case 3 is not valid.

Case 4. x = u Ea ux , y0 = u Bb u y0 . Hence x = u Ea v1 Bb v2, which means Ea �x Bb, or Ea ≺ Bb, i.e. a < b, and
y0 = u Bb z1 Ea z2, which means Bb �y0 Ea. i.e. ¬(a < b), a contradiction, so the Case 4 is not valid too. �

The important fact is that the set T O (<) contains all (up to name isomorphism) total representations of an interval
order <, and the set I R S(<) contains all sequence representations of <.

We will now apply the obtained results to interval sequences. Let � be a set of events, E = {Ba | a ∈ �} ∪ {Ea | a ∈ �},
and InSeq(E ∗) be the set of all sequences over E that define interval orders (see Definition 6(1)).

Proposition 61. For every x ∈ InSeq(E ∗), we have ̂x ∈ I S R(�x).

Proof. By Corollary 7 we have �x = �x̂ and �x=�x̂ , and from Theorem 60 it follows that �x ∈ T O (�x). Hence, �x̂ ∈ T O (�x̂
) = {�z | z ∈ I S R(�x̂)}, which means ̂x ∈ I S R(�x̂) = I S R(�x). �

Proposition 61 allows us to provide very short and simple proofs of Propositions 14 and 44.

R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108 107
Proposition 14. Let (E , ind) be an interval trace alphabet, and x ∈ InSeq(E ∗), then for each y ∈ InSeq(E ∗)

�x=�y =⇒ x ≡ind y.

Proof. Since �x=�y then clearly I S R(�x) = I S R(�y). Hence, by Proposition 61, x̂, ̂y ∈ I S R(�x). Two elements of I S R
differ only by permutations of subsequences that consist each only of begins or only of ends (see Definition 59(1)). Hence,
by Definition 12(2), if ̂x, ̂y ∈ I S R(�x), then x ≡ind y. �
Proposition 44. If x ∈ FISN(m→m′), then for every y ∈ T ∗ , if �x=�y then y ∈ FISN (m→m′).

Proof. Since �x=�y then clearly I S R(�x) = I S R(�y). Hence, by Proposition 61, ̂x, ̂y ∈ I S R(�x). We just need to show that
if {̂x, ̂y} ⊆ I S R(�x) then x ∈ FISN(m→m′) implies y ∈ FISN (m→m′).

All elements of I S R(�x) satisfy a pattern given by Definition 59(2). Assume ��x = A1 . . . Am . Hence x̂ = u1 v1 . . . un vn

and ŷ = s1t1 . . . sntn , where for all i = 1, . . . , n, ui, si ∈ perm(B�x (Ai)) and vi, ti ∈ perm(E�x(Ai)).
Assume that m[[̃u1〉 〉m1

1[[̃v1〉 〉m2
1 . . .m2

n−1[[̃un〉 〉m1
n[[̃vn〉 〉m′ . We need prove that m[[̃s1〉 〉m1

1[[̃t1〉 〉m2
1 . . .m2

n−1[[̃sn〉 〉m1
n[[̃tn〉 〉m′ also

hold.
Since both u1 and s1 belong to perm(B�x (A1)), from Definition 41 we have that m[[̃u1〉 〉m1

1 implies m[[̃s1〉 〉m1
1. Similarly

both v1 and t1 belong to perm(E�x (A1)), so from Definition 41 we have that m1
1[[̃v1〉 〉m2

1 implies m1
1[[̃t1〉 〉m2

1. Repeating this
reasoning n − 1 times we obtain m[[̃s1〉 〉m1

1[[̃t1〉 〉m2
1 . . .m2

n−1[[̃sn〉 〉m1
n[[̃tn〉 〉m′ , i.e. m[[y〉 〉m′, i.e. y ∈ FISN (m→m′). �

References

[1] U. Abraham, S. Ben-David, M. Magidor, On global-time and inter-process communication, in: Semantics for Concurrency, Workshops in Computing,
Springer, Heidelberg, 1990, pp. 311–323.

[2] T. Agerwala, M. Flynn, Comments on capabilities, limitations and “correctness” of Petri nets, Comput. Archit. News 4 (2) (1973) 81–86.
[3] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (1983) 832–843.
[4] M. Alqarni, R. Janicki, On interval process semantics of Petri nets with inhibitor arcs, in: Lect. Notes Comput. Sci., vol. 9115, 2015, pp. 7–27.
[5] P. Baldan, N. Busi, A. Corradini, G.M. Pinna, Domain and event structure semantics for Petri nets with read and inhibitor arcs, Theor. Comput. Sci. 323

(2004) 129–189.
[6] J.A. Begstra, et al. (Eds.), The Handbook of Process Algebras, Elsevier Science, 2000.
[7] M. Bidoit, R. Hennicker, M. Wirsing, Characterizing behavioural semantics and abstractor semantics, in: Lect. Notes Comput. Sci., vol. 788, 1994,

pp. 105–119.
[8] P. Degano, U. Montanari, Concurrent histories; a basis for observing distributed systems, J. Comput. Syst. Sci. 34 (1987) 422–467.
[9] J. Desel, W. Reisig, Place/transition Petri nets, in: Lectures on Petri Nets I: Basic Models, in: Lect. Notes Comput. Sci., vol. 1492, 1998, pp. 122–173.

[10] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, Singapore, 1995.
[11] P.C. Fishburn, Intransitive indifference with unequal indifference intervals, J. Math. Psychol. 7 (1970) 144–149.
[12] P.C. Fishburn, Interval Orders and Interval Graphs, John Wiley, New York, 1985.
[13] J. Grabowski, On partial languages, Fundam. Inform. 4 (2) (1981) 427–498.
[14] H. Gaifman, V. Pratt, Partial order models of concurrency and the computation of function, in: Proc. of LICS’87, in: Logic in Computer Science, 1987,

pp. 72–85.
[15] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1986.
[16] R. Janicki, A formal semantics for concurrent systems with a priority relation, Acta Inform. 24 (1987) 33–55.
[17] R. Janicki, Relational structures model of concurrency, Acta Inform. 45 (2008) 279–320.
[18] R. Janicki, J. Kleijn, M. Koutny, Quotient monoids and concurrent behaviours, in: C. Martin-Vide (Ed.), Scientific Applications of Language Methods,

Imperial College Press, London, 2010, pp. 311–385.
[19] R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski, Step traces, Acta Inform. 53 (2016) 35–65.
[20] R. Janicki, M. Koutny, Invariants and paradigms of concurrency theory, in: Proc. of PARLE’91, in: Lect. Notes Comput. Sci., vol. 506, 1991, pp. 59–74.
[21] R. Janicki, M. Koutny, Structure of concurrency, Theor. Comput. Sci. 112 (1993) 5–52.
[22] R. Janicki, M. Koutny, Semantics of inhibitor nets, Inf. Comput. 123 (1) (1995) 1–16.
[23] R. Janicki, M. Koutny, Fundamentals of modelling concurrency using discrete relational structures, Acta Inform. 34 (1997) 367–388.
[24] R. Janicki, D.T.M. Lê, Modelling concurrency with comtraces and generalized comtraces, Inf. Comput. 209 (2011) 1355–1389.
[25] R. Janicki, X. Yin, N. Zubkova, Modeling interval order structures with partially commutative monoids, in: Proc. of CONCUR’2012, in: Lect. Notes Comput.

Sci., vol. 7454, 2012, pp. 425–439.
[26] S. Katz, D. Peled, Defining conditional independence using collapses, in: Semantics for Concurrency, Workshops in Computing, Springer, Heidelberg,

1990, pp. 262–290.
[27] H.C.M. Kleijn, M. Koutny, Process semantics of general inhibitor nets, Inf. Comput. 190 (2004) 18–69.
[28] J. Kleijn, M. Koutny, Formal languages and concurrent behaviour, Stud. Comput. Intell. 113 (2008) 125–182.
[29] J. Kleijn, M. Koutny, Mutex causality in processes and traces of general elementary nets, Fundam. Inform. 122 (1–2) (2013) 119–146.
[30] L. Lamport, What it means for a concurrent program to satisfy a specification: why no one has specified priority, in: Proc. 12th ACM Symp. on

Programming Language, 1985, pp. 78–83.
[31] L. Lamport, The mutual exclusion problem: Part I – a theory of interprocess communication. Part II – statements and solutions, J. ACM 33 (2) (1986)

313–326.
[32] D.T.M. Lê, On three alternative characterizations of combined traces, Fundam. Inform. 113 (2011) 265–293.
[33] A. Mazurkiewicz, Concurrent program schemes and their interpretation, TR DAIMI PB-78, Comp. Science Depart., Aarhus University, 1977.
[34] A. Mazurkiewicz, Introduction to trace theory, in: [10], pp. 3–42.
[35] U. Montanari, F. Rossi, Contextual nets, Acta Inform. 32 (6) (1995) 545–596.
[36] T. Murata, Petri nets: properties, analysis and applications, Proc. IEEE 77 (4) (1989) 541–579.
[37] M. Nielsen, G. Rozenberg, P.S. Thiagarajan, Behavioural notions for elementary net systems, Distrib. Comput. 4 (1990) 45–57.
[38] E. Ochmański, Recognizable trace languages, in: [10], pp. 167–204.

http://refhub.elsevier.com/S0890-5401(16)30148-1/bib41424D63s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib41424D63s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib41463733s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib416C6C656Es1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib414A3135s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib42424350s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib42424350s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib426567s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib424857s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib424857s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib444Ds1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib446573526569s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4452s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib46s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib466973s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib477261623831s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4750s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4750s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib486F61s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A3837s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A3038s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4B4B3130s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4B4B3130s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4B4B4D3135s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4B3931s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4B3933s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4B3935s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4B3937s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A4C3131s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A595As1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4A595As1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4B5031s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4B5031s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4B6C4Bs1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4B6C4B32s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4B6C4B33s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4C616D32s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4C616D32s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4C616D31s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4C616D31s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4C65s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4D6131s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4D52s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4D7572s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib4E5254s1

108 R. Janicki, X. Yin / Information and Computation 253 (2017) 78–108
[39] C.A. Petri, Nets, time and space, Theor. Comput. Sci. 153 (1996) 3–48.
[40] L. Popova-Zeugmann, E. Pelz, Algebraical characterisation of interval-timed petri nets with discrete delays, Fundam. Inform. 120 (3–4) (2012) 341–357.
[41] W. Reisig, Understanding Petri Nets, Springer, 2015.
[42] G. Rozenberg, J. Engelfriet, Elementary net systems, in: Lectures on Petri Nets I: Basic Models, in: Lect. Notes Comput. Sci., vol. 1492, 1998, pp. 12–121.
[43] M.W. Shields, On the non-sequential behaviour of systems possessing a generalized free-choice property, Internal Report CRS-92-81, Dept. of Comp.

Sci., University of Edinburgh, Edinburgh, UK, 1981.
[44] E. Szpilrajn, Sur l’extension de l’ordre partiel, Fundam. Math. 16 (1930) 386–389.
[45] R.J. Van Glabbeek, The refinement theorem for ST-bisimulation semantics, in: M. Broy, C.B. Jones (Eds.), Programming Concepts and Methods, in: Proc.

IFIP Working Conf., Elsevier Science Publisher (North-Holland), Amsterdam, 1990, pp. 27–52.
[46] R.J. Van Glabbeek, U. Goltz, J.-W. Schicke-Uffmann, On characterizing distributability, Log. Methods Comput. Sci. 9 (3–17) (2013) 1–58.
[47] R.J. Van Glabbeek, F. Vaandrager, Petri net models for algebraic theories of concurrency, in: J.W. de Bakker, et al. (Eds.), PARLE Vol. II, in: Lect. Notes

Comput. Sci., vol. 259, Springer, Berlin, 1987, pp. 224–242.
[48] W. Vogler, Timed testing of concurrent systems, Inf. Comput. 121 (1995) 149–171.
[49] W. Vogler, Partial order semantics and read arcs, Theor. Comput. Sci. 286 (1) (2002) 33–63.
[50] J. Wang, Timed Petri Nets, Kluwer Academic, 1998.
[51] N. Wiener, A contribution to the theory of relative position, Proc. Camb. Philos. Soc. 17 (1914) 441–449.
[52] W.M. Zuberek, Timed Petri nets and preliminary performance evaluation, in: Proc. of the 7-th Annual Symp. on Computer Architecture, La Baule,

France, 1980, pp. 89–96.

http://refhub.elsevier.com/S0890-5401(16)30148-1/bib5065747269s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib5050s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib52656931s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib52453938s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib536869656C6473s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib536869656C6473s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib537A70s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib476C616231s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib476C616231s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib476C616232s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib476C616233s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib476C616233s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib566F676C657230s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib566F676C6572s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib57616E67s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib576965s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib5A7562s1
http://refhub.elsevier.com/S0890-5401(16)30148-1/bib5A7562s1

	Modeling concurrency with interval traces
	1 Introduction
	2 Partial orders and sequences
	2.1 Partial orders
	2.2 Sequences, enumerated sequences, sequences of beginnings and ends, and their relationship to partial orders

	3 Mazurkiewicz traces
	4 Interval traces
	5 Interval order structures and their partial order representations
	6 Interval traces and interval order structures
	7 Interval traces vs comtraces
	7.1 Stratiﬁed order structures
	7.2 Comtraces
	7.3 Representing comtraces by interval traces

	8 Interval traces as concurrent histories
	9 Analysis of a toy example
	10 Inhibitor Peri nets and their interval traces semantics
	10.1 Inhibitor Petri nets and their standard operational semantics
	10.1.1 Firing sequence and ﬁring step sequence semantics

	10.2 Firing interval sequences semantics
	10.3 Trace and comtrace semantics
	10.4 Interval trace semantics and interval order structure semantics
	10.5 Relationship to ST-traces model

	11 Final comment
	Acknowledgments
	Appendix A Proofs of Propositions 14 and 44
	References

