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Abstract In the classical Mazurkiewicz trace approach the behaviour of a concurrent sys-
tem is described in terms of sequential observations that differ only with respect to their
ordering of independent actions. This paper investigates an extension of the trace model to
the case that actions can be observed as occurring simultaneously. Thus observations are
sequences of steps, i.e., sets of actions. This leads to a step trace model based on three rela-
tions between events: simultaneity, serialisability, and interleaving. Whereas the underlying
causal structures of traces are based on dependencies between actions leading to a partial order
interpretation, more general causal structures are needed to describe the invariant relation-
ships between the action occurrences in a step trace. We present a complete picture including
dependence structures extending dependence graphs, and a characterisation of step traces in
terms of invariant order structures.
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36 R. Janicki et al.

1 Introduction

Mazurkiewicz traces [29,31] are a well-established, classical, and basic model for represent-
ing and structuring sequential observations of concurrent behaviour; see, e.g., [6,24].

The fundamental assumption underlying trace theory is that independent events (occur-
rences of actions)may be observed in any order. Sequences that differ onlyw.r.t. their ordering
of independent events are identified as belonging to the same concurrent run of the system
under consideration. Thus a trace is an equivalence class of sequences comprising all (sequen-
tial) observations of a single concurrent run. The dependencies between the events of a trace
are invariant among (common to) all elements of the trace. This (acyclic) dependence graph
determines through its transitive closure the underlying causality structure of the trace as a
(labelled) partial order [35]. In fact, this partial order can also be obtained as the intersection
of the labelled total orders corresponding to the sequences forming the trace. Moreover, the
linearisations (saturations) of this partial order correspond exactly to the sequences belonging
to the trace. Thus a trace can be seen as a labelled partial order which is unique up to isomor-
phism, i.e., the names of the underlying elements; see, e.g., [6,9,24]. Paper [39] provides the
necessary connection (Szpilrajn’s property) between causal structures (partial orders) and
observations (total orders), by showing that each partial order is the intersection of all its
linearisations. The overall setup can be summarised by the schematic commuting diagram
shown in Fig. 1.

Being based on equating independence and lack of ordering, the concurrency paradigm
of Mazurkiewicz traces and the corresponding partial order interpretation of concurrency is
rather restricted [17].

In this paper, we carefully consider how to extend the trace approach to a more general
situation by assuming that observersmay not only register the occurrence of one action before
another, but can also record simultaneous occurrences of actions. Thus here observations
consist of sequences of steps, i.e., sets of one or more actions that occur simultaneously.
Still we aim at retaining the original philosophy underlying Mazurkiewicz traces and our
setup will be based on just a few explicit and simple design choices. Our considerations
lead to the concept of an extended concurrency alphabet with three basic relations between
pairs of different actions: simultaneity indicating that actions may occur together in a step;
serialisability indicating a possible execution order for potentially simultaneous actions;
and interleaving indicating that actions can not occur simultaneously though no specific
ordering is required. These three relations can then be used to identify step sequences as
observations of the same concurrent run. The resulting equivalence classes of step sequences
are called step traces. It is the main goal of this paper to characterise such traces in terms of
the underlying causal structures, in effect aiming to lift the diagram from Fig. 1. Actually,
as we will show, the generalisation that we obtain corresponds to the most general order

Fig. 1 Correspondence diagram for Mazurkiewicz traces
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Step traces 37

structures, namely those associated with concurrent histories without any constraints in the
sense of [17]. First however, we introduce a technically more convenient definition of step
traces. It is based on the notion of a step alphabet with only two relations: simultaneity as
before and sequentialisability which is a combination of serialisability and interleaving.

Next, we turn to the causal order structures underlying step traces with the ultimate aim
to match step traces and step sequences with relational structures, just like Mazurkiewicz
traces correspond to partial orders and total orders to sequences of action occurrences (see
Fig. 1). Partial orders are clearly not expressive enough to capture all possible relationships
between events as determined by a step alphabet. Rather than a strict order (causality or
‘before’), the relational structures we consider have a ‘not later than’ relation to represent
weak causality (i.e., before or in the same step) and a ‘mutual exclusion’ relation for pure
interleaving (not allowed in the same step but not causally ordered). Moreover, as shown
in [17], weak causality and mutex are sufficient to represent the most general concurrent
histories. We thus arrive at so-called order structures, labelled relational structures satisfying
separability (akin to acyclicity) and label-orderedness (akin to lack of auto-concurrency)
properties, as the counterpart of the dependence graphs underlying Mazurkiewicz traces.
Step sequences correspond to saturated versions of these structures.

The order structures that satisfy a general variant of Szpilrajn’s property (meaning that
they can be obtained as the intersection of their saturated extensions) have been identified
in [12,14] as general mutex order structures (in other words, mutex order structures provide
an order theoretic axiomatisation of the weak causality and mutex invariants underlying the
most general concurrent histories of [17]). Moreover, the closure of an order structure is a
general mutex order structure. Thus we are left with the investigation of the properties of
order structures obtained as dependence (order) structures from step sequences. As expected,
equivalent step sequences define the same dependence structure. It is however less obvious
that, conversely, any step sequence (saturated order structure) derived from the dependence
structure of a step sequence is equivalentwith that step sequence (belongs to the samehistory).
Eventually, the problem is reduced to the case of ‘thin’ step sequences in which every step is
minimal in the sense that it cannot be serialised into a sequence of smaller steps, because its
actions have to occur simultaneously. Interestingly, this leads to a proof technique similar to
the approach for Mazurkiewicz traces consisting of sequences.

The whole discussion culminates in the development of a commutative diagram shown in
Fig. 3 for the model of traces based on step sequence observations, which is a counterpart
of the schematic diagram of Fig. 1 that captures the relationship between traces and causal
partial orders.

1.1 Traces of step sequences

Mazurkiewicz traces stem from two elegant mathematical ideas which can be used to capture
the essence of equivalence between different observations of the same run of a concurrent
system. Both are based on a notion of independence between actions expressed as a binary
relation ind. The first idea uses the concept of equations expressing partial commutativity
of action occurrences as determined by the independence relation. As a result, sequences
wabu and wbau of action occurrences are considered equivalent whenever 〈a, b〉 ∈ ind,
irrespective of what w and u are. The second idea is the common partial order structure
that underlies equivalent observations and is defined by the ordering of the occurrences of
dependent actions. Thus, each trace, i.e., equivalence class of sequential observations, has a
unique (up to isomorphism) labelled partial order as its signature.
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38 R. Janicki et al.

Equations could, in general, be of the form a1 . . . ak = b1 . . . bm where the ai and b j are
actions with, e.g.,c = de as a particular example. However, the usefulness for concurrency
theory of equations in this form is not obvious, unless there is an additional interpretation
of the alphabet of actions which usually entails the need for operators. This, in particular,
happens when, instead of sequences of actions, one considers sequences of sets of actions
(or step sequences) together with the operation of set union.

The idea of considering equations on sets of actions generated by relations on actions
has been used to define, e.g., comtraces [18,28], g-comtraces [19], and interval traces [20].
Comtraces are a special case of absorbing monoids in the terminology of [19]—i.e., they are
quotientmonoids over step sequences derived from equations of the form AB = A�B—with
the equations being derived from two relations, sim and ser, respectively called simultane-
ity and serialisability. Likewise, g-comtraces are a special case of partially commutative
absorbing monoids in the terminology of [19]—i.e., they are quotient monoids derived from
equations of the form AB = A � B and AB = BA—with the equations being derived from
simultaneity and serialisability as well as interleaving, inl. As shown in [25], the equations
used in [19] and the subsequent papers do not model the relevant aspects of concurrent behav-
iours in a fully adequate way. In essence, the problem was that the interleaving equations
AB = BA were defined only by A × B ⊆ inl, in effect disallowing the mixing of two
different ‘reasons’ for commuting two actions; the other one being A × B ⊆ ser ∩ ser−1
(for a detailed discussion see Sect. 3). The corresponding model of causal structures was also
not completely satisfactory, and a suitable improvement was proposed in [12,14].

In this paper, we will take a fresh look at the way in which a theory of traces consisting of
step sequences could be developed and, in particular, we will develop an improved treatment
of equations on step sequences of [19]. The soundness of the proposed improvement will
be demonstrated in the second part of the paper by showing how the recently proposed
model of causal structures matches exactly the extension of Mazurkiewicz traces introduced
here.

1.2 Contribution of the paper

The first contribution of this paper is a detailed discussion of what could be a basic extension
of Mazurkiewicz’ concurrency alphabets to the case of step sequence executions assuming
that only swapping and splitting of steps can lead to equivalent executions. When it is further
assumed that such operations on steps are based on binary relations over actions in systems
whichdonot exhibit auto-concurrency, this leads to the introductionof step alphabets basedon
simultaneity and sequentialisability relations and step traces. We also introduce a partition
of step alphabets into more detailed relations which capture fine details pertaining to the
understanding and analysis of concurrency phenomena.

The second contribution is the development of a class of labelled relational structures,
called order structures, and their subclasses which can be used to represent step sequences,
causal dependencies between action occurrences in step sequences, and ultimately step traces.
The latter solves an outstanding problem of finding an order-theoretic characterisation of
traces of step sequences corresponding to the most general class of concurrent histories
composed of step sequence observations in [17].

The third contribution is the introduction of an order-theoretic counterpart of step traces
which simplifies proofs and streamlines the treatment of the correspondence between
step traces and invariant order structures (a labelled version of general mutex order
structures).
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Step traces 39

1.3 Outline of the paper

We start by making explicit some notions and notations used in this paper. Section 3 dis-
cusses the proposed extension of classical trace theory to a model supporting step sequence
executions. In particular, it introduces the notions of step alphabet and step trace. In Sect. 4,
we investigate order structures which capture the causality in step sequences and step traces
in the form of saturated order structures and invariant order structures, respectively. Section 5
brings together the extended model of traces and the extended model of causal order struc-
tures. The nature of the resulting correspondence is similar to that conveyed by the schematic
diagram in Fig. 1. Moreover, the notion of an order structure trace (a counterpart of step
trace in the domain of order structures) is introduced. Section 6 concludes the paper, com-
pares the approach developed here with other existing extensions of trace theory, and finally
sketches possible directions for future work. The proofs of the formal results are included in
the “Appendix”.

2 Preliminaries

We use standard notions of set and formal language theory. Throughout the paper,

Σ is an action alphabet and S is the set of steps over Σ

We assume that Σ is finite and nonempty, and S comprises all nonempty sets of actions
from Σ . SEQ will denote all finite sequences of actions (sequences over Σ), and SSEQ all
finite sequences of steps (step sequences over Σ). We identify a singleton step with its only
member, and non-singleton steps will be denoted by listing their elements within parentheses.
Thus a step sequence {a}{b, c}{a} can be written down as a(bc)a or a(cb)a.

Let u = A1 . . . Ak ∈ S
∗ be a step sequence. Then:

– #u(a) is the number of occurrences of an action a within u;
– occ(u) = {〈a, i〉 | a ∈ Σ ∧ 1 ≤ i ≤ #u(a)} are the action occurrences of u;
– the position posu(α)within u of an action occurrence α = 〈a, i〉 ∈ occ(u) is the smallest

index j ≤ k such that #A1...A j (a) = i ;
– occi (u) = {α ∈ occ(u) | posu(α) = i} are the action occurrences contributing to the

i-th step of u; and
– occseq(u) = occ1(u) · · · occk(u) is u with explicit action occurrences.

For example, occ(a(bc)a) = {〈a, 1〉 , 〈a, 2〉 , 〈b, 1〉 , 〈c, 1〉}, posa(bc)a(〈a, 2〉) = 3, and
occseq(a(bc)a) = {〈a, 1〉}{〈b, 1〉 , 〈c, 1〉}{〈a, 2〉}.

Let EQ be a finite set of equations on step sequences, each equation being of the form
u = v, where u and v are nonempty step sequences. EQ induces a relation ≈EQ on step
sequences comprising all pairs 〈tuw, tvw〉 such that t, w ∈ S

∗, and u = v or v = u is an
equation in EQ. Furthermore, ≡EQ is the equivalence relation on step sequences defined as
≈∗

EQ.

X
f−→ Y denotes a mapping f from X to Y , and X ′ f−→ Y ′ the restriction of f to the

domain X ′ ⊆ X and codomain Y ′ ⊇ f −1(X ′).
For a binary relation R over X , Rsym = R ∪ R−1 denotes the symmetric closure, R� =

R∗\idX the irreflexive transitive closure, and R� = R∗ ∩ (R∗)−1 the largest equivalence
relation contained in R∗. R is a partial order relation if it is irreflexive and transitive, and a
total order relation if it is a partial order relation such that Rsym = (X × X)\idX .
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40 R. Janicki et al.

A labelled partial order is a triple po = 〈Δ,≺, �〉, where Δ
�−→ Σ is a labelling of the

finite domain Δ and ≺ is a partial order relation on Δ. po is total if ≺ is a total partial order
relation, and label-linear if x ≺sym y, for all distinct x, y ∈ Δ satisfying �(x) = �(y) (in
such case all the elements with the same label are totally ordered by ≺).

3 Extending Mazurkiewicz traces

One of the aims of Mazurkiewicz trace theory is to add structure to the otherwise plain set
of observations of the behaviour of a concurrent system, each observation being represented
by a sequence of action occurrences. Action occurrences are assumed to be atomic and, cru-
cially, there is a (static) notion of independence between pairs of actions. This independence
relation is then used to identify observations which differ only by the order of occurrences
of independent actions. The resulting equivalence relation groups together observations of
the same concurrent run (history), with the corresponding equivalences classes being called
traces. The relevance of the resulting framework is reinforced by the fact that it corresponds
to an order theoretic model of partial order histories of concurrent systems and concurrent
system models.

Here we aim at capturing possibly lightest extension of the theory of Mazurkiewicz
traces in the case that the smallest unit of observation is a set of action occurrences (a
step) rather than a single action occurrence, reflecting the idea that actions could occur (and
be observed as occurring) simultaneously. Thus behaviour observations are now represented
by step sequences rather than sequences of action occurrences. We will now elaborate our
proposed extension, retaining the philosophy behind the original model, making explicit all
key design choices, and motivating all specific design decisions.

The first design decision we face is what should be the form of the equations used in the
extended model. Interleaving equations

AB = BA with A ∩ B = ∅

directly generalise Mazurkiewicz’s ab = ba, and so we will use them in the extended
framework. But restricting ourselves to only interleaving equations would effectively turn
the resulting traces of step sequences into a class of Mazurkiewicz traces with actions being
sets. Then, for example, we would not be able to derive (ab) = ab for two completely
independent actions, a and b. We will therefore use in the extended framework serialisation
equations

C = DE with D ∩ E = ∅

allowing one to split a step into two consecutive substeps. No other equations will be used
nor needed.

Note 1 We assumed A ∩ B = ∅ as the order of different occurrences of an action should
not be changed, and D ∩ E = ∅ as in equivalent observations each action should occur the
same number of times.

We are only interested in those combinations of interleaving and serialisation equations
which follow from the fundamental principle of Mazurkiewicz’s approach which is that all
equivalences between behaviours are ultimately derived from binary relationships between
actions. Hence one needs to provide relation(s) on actions which determine what steps can
be interleaved, what steps can be split and how, and indeed what actions can form legal steps.
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Step traces 41

Our way to meet these requirements is to introduce three irreflexive binary relations over
Σ :

sim is a symmetric simultaneity relation defining all legal steps A ∈ S through (A ×
A)\idΣ ⊆ sim.

inl is a symmetric relation defining the interleaving equations AB = BA through A× B ⊆
inl. We will also require inl∩ sim = ∅, i.e., at this point interleaved action occurrences
cannot be simultaneous (but see the discussion below).

ser is a sub-relation of sim defining the serialisability equationsC = DE through D×E ⊆
ser and C = D ∪ E .

Suppose now that A × B ⊆ ser and B × A ⊆ ser. Then, according to the above, we
obtain two equations, A ∪ B = AB and B ∪ A = BA. These equations, in turn, can be
used to derive a new equivalence AB = BA. Hence, intuitively, for all pairs of actions
〈a, b〉 ∈ A × B it is possible to commute. Taking this observation further, we will stipulate
that AB = BA provided that for all pairs of actions 〈a, b〉 ∈ A × B it is the case that
〈a, b〉 ∈ inl or 〈a, b〉 ∈ ser ∩ ser−1. The interleaving equations AB = BA will therefore be
defined through A × B ⊆ inl ∪ (ser ∩ ser−1) rather than by A × B ⊆ inl. This concludes
the design of our extended trace model, with the three relations described above being the
basic building blocks of the extended concurrency alphabets.

A sim-inl-ser alphabet is a quadruple ψ = 〈Σ, sim, inl, ser〉, where sim, inl, ser are
irreflexive relations over Σ such that sim and inl are symmetric, inl ∩ sim = ∅, and ser ⊆
sim. All sim-inl-ser alphabets are denoted by Ψ .

The set Sψ of steps defined by a sim-inl-ser alphabet ψ comprises all nonempty A ⊆ Σ

such that 〈a, b〉 ∈ sim, for all distinct a, b ∈ A. Moreover, the equations EQψ induced by
ψ are as follows, where A, B ∈ Sψ :

AB =ψ BA if A × B ⊆ inl ∪ (ser ∩ ser−1) (interleaving)
AB =ψ A ∪ B if A × B ⊆ ser (serialisability)

The resulting relations ≈EQψ
and ≡EQψ

on step sequences will respectively be denoted by
≈ψ and≡ψ . The set of equivalence classes of≡ψ which contain at least one step sequence in
SSEQψ = S

∗
ψ , called sim-inl-ser traces, will be denoted bySTRψ .Moreover, the sim-inl-ser

trace containing u ∈ SSEQψ will be denoted by �u�ψ .
Applying the equations in EQψ to step sequences composed of legal steps can never

produce an illegal step.

Proposition 1 If τ ∈ STRψ then τ ⊆ SSEQψ .

Example 1 Consider ψ0 = 〈{a, b, c, d}, sim, inl, ser〉, a sim-inl-ser alphabet with simul-
taneity, interleaving, and serialisability relations given below, where each edge stands for
two arrows in opposite directions:

sim =
a b

cd
inl =

a b

cd
ser =

a b

cd

ψ0 generates, e.g., the interleaving equations ab =ψ0 ba and a(bd) =ψ0 (bd)a, and serial-
isability equations (ac) =ψ0 ac, (ac) =ψ0 ca, and (bc) =ψ0 cb. We also have:
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42 R. Janicki et al.

�(bd)c�ψ0 = {(bd)c}
�c(bd)�ψ0 = {c(bd), (cbd)}
�a(bd)�ψ0 = {a(bd), (bd)a}
�a(bc)�ψ0 = {a(bc), (bc)a, acb, cba, cab, (ca)b}
�a(cd)�ψ0 = {(acd), a(cd), (ac)d, (ad)c, c(ad), (cd)a, d(ac), acd, adc, cad, cda,

dac, dca}
�a(bcd)�ψ0 = {a(bcd), (bcd)a, ac(bd), ca(bd), c(bd)a, (ac)(bd)}

We also note that (bc) =ψ0 bc is not an equation generated by ψ0.

The above direct capture of an extended concurrency alphabet can be replaced by a simpler
notion, based on two rather than three relations on actions: one is sim as above defining all
legal steps, whereas the other one, seq, combines serialisability and (pure) interleaving.

Definition 1 (step alphabet) A step alphabet is a triple θ = 〈Σ, sim, seq〉, where sim and
seq, respectively called simultaneity and sequentialisability, are irreflexive relations overΣ .
Moreover, sim and seq\sim are assumed to be symmetric. All step alphabets are denoted
by Θ .

The set Sθ of steps defined by a step alphabet θ comprises all nonempty A ⊆ Σ such that
〈a, b〉 ∈ sim, for all distinct a, b ∈ A. Moreover, the equations EQθ induced by θ are as
follows, where A, B ∈ Sθ :

AB =θ BA if A × B ⊆ seq ∩ seq−1 (interleaving)
AB =θ A ∪ B if A × B ⊆ seq ∩ sim (sequentialising)

The resulting relations ≈EQθ
and ≡EQθ

on step sequences will respectively be denoted by
≈θ and ≡θ .

Definition 2 (step trace) A step trace over a step alphabet θ is an equivalence classes of
≡θ containing at least one step sequence in SSEQθ = S

∗
θ . All such step traces over θ are

denoted by STRθ . Moreover, the step trace containing u ∈ SSEQθ will be denoted by �u�θ .

Applying the equations in EQθ to step sequences composed of legal steps can never
produce an illegal step.

Proposition 2 If τ ∈ STRθ then τ ⊆ SSEQθ .

The two representations of extended concurrency alphabets, viz. sim-inl-ser alphabets and
step alphabets, are equivalent in the sense that the traces defined are the same. We show this
using the following two mappings:

Ψ
sa2gca−−−−→ Θ 〈Σ, sim, inl, ser〉 �→ 〈Σ, sim, inl ∪ ser〉

Θ
gca2sa−−−−→ Ψ 〈Σ, sim, seq〉 �→ 〈

Σ, sim, (seq ∩ seq−1)\sim, seq ∩ sim
〉

Theorem 1 Ψ
sa2gca−−−−→ Θ

gca2sa−−−−→ Ψ are inverse bijections such that, for all ψ ∈ Ψ and
θ ∈ Θ , STRsa2gca(ψ) = STRψ and STRgca2sa(θ) = STRθ (i.e., the two mappings are
trace-preserving).
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From this point on, for ease of reference, we may refer to the traces of step sequences
defined by sim-inl-ser alphabets and step alphabet as step traces.

Example 2 The step alphabet corresponding to the sim-inl-ser alphabetψ0 of Example 1 has
the following simultaneity and sequentialising relations:

sim =
a b

cd
seq =

a b

cd

In the last part of this section, we take another look at the structure of a step alphabet
ψ = 〈Σ, sim, seq〉 ∈ Ψ . We then single out six semantically meaningful relationships
between pairs of actions which form a partition of Σ ×Σ (see [32] for a similar partition in
the case of comtraces):

ssi defined as sim\(seq ∪ seq−1) is strong simultaneity allowing a pair of actions to be
executed simultaneously, and disallowing sequentialisability and interleaving.

sse defined as (seq\seq−1) ∩ sim is semi-sequentialisability allowing a pair of simul-
taneously executed actions to be executed in the order given, but not in the reverse
order.

con defined as seq∩seq−1∩sim is concurrency identifying actions which can be executed
simultaneously as well as in any order.

wdp defined as (seq−1\seq) ∩ sim is weak dependence which is an inverse of semi-
sequentialisability.

rig defined as (Σ×Σ)\(sim∪(seq∩seq−1)) is rigid order allowing neither simultaneity
nor changing of the order of actions.

inl defined as (seq ∩ seq−1)\sim is interleaving as before.

Example 3 For the step alphabet of Example 1, the relations derived above are as follows:

con =
a b

cd
rig =

a b

cd
inl =

a b

cd

wdp =
a b

cd
ssi =

a b

cd
sse =

a b

cd

Hence a and b are the only truly interleaved actions, while b and d are the only actions whose
sequentialisation and interleaving is disallowed (this does not prevent b and d from occurring
in the same step). The rigid order, which plays the role of dependence in Mazurkiewicz trace
theory, is implied by label-linearity and does not involve any pair of different actions.
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4 Extending causal structures

This section describes order structures, a class of labelled relational structures which will
be used to represent the observational and causal relationships in the behaviours of concur-
rent systems. Also introduced are saturated order structures (so-structures) that represent
individual step sequence observations, and invariant order structures (io-structures) that rep-
resent causal relationships underpinning step traces. The main goal is to identify relational
structures matching step traces and step sequences in the same way as partial orders match
Mazurkiewicz traces, and total orders match sequences of action occurrences.

4.1 Order structures

We start the order theoretic treatment of step traces by formally introducing relational struc-
tures and formulating at this level properties which are essential for the definition of order
structures. The first property is separability which corresponds to acyclicity in the domain
of binary relations, and the second label-orderedness which corresponds to label-linearity
introduced in Sect. 2 for labelled partial orders. The latter property will turn out to be a
powerful notion which essentially allows one to completely abstract from the identities of
the underlying domain elements.

A relational structure is a triple rs = 〈Δ, �, �, �〉, where Δ
�−→ Σ is a labelling of

a finite domain Δ, and �, � are two binary relations on Δ. We interpret Δ as the set of
events that have happened, x � y as a record that x occurred not simultaneously with y, and
x � y that x occurred not later than y, i.e.,before or simultaneously with y. The relations
� and � will therefore be respectively called mutex and weak causality. Moreover, if both
x � y and x � y hold, then x must have occurred before y. For this reason, we will refer
to the intersection of � and � as causality (or precedence), denoting it by ≺. The labelling
function � associates an action with each event, with distinct events corresponding to distinct
occurrences (or executions) of actions. For every label a, wewill use≺a to denote≺ restricted
to the elements labelledwith a, andwriteΔrs �rs, etc, to emphasize the relational structure rs.

The properties relevant to the relations between action occurrences are defined as follows.
A relational structure rs = 〈Δ, �, �, �〉 is:
– separable if � is symmetric, � is irreflexive, and � ∩ ��= ∅ (note that this implies

that � is also irreflexive as idΔ is included in ��);
– label-ordered if x ≺ y or y ≺ x , for all x �= y satisfying �(x) = �(y); and
– label-linear if ≺a is a total order relation, for every label a ∈ Σ .

Label-orderedness guarantees that domain elements with the same label (intuitively repre-
senting two occurrences of the same action) are related by ≺.
Proposition 3 Every separable label-ordered relational structure is label-linear.

We can now introduce a notion which is central to our treatment of step traces.

Definition 3 (order structure) An order structure is a separable and label-ordered relational
structure. All order structures are denoted by OS.

Since x � y � x means that x and y are simultaneous events, the requirement of separability
excludes situations where events forming a weak causality cycle—captured by��—are also
involved in the mutex relationship. Label-orderedness together with separability guarantees
that all events labelled by the same action are totally ordered, hence order structures are
label-linear (see Proposition 3).
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Note 2 Referring to the setup of Mazurkiewicz traces, order structures correspond to acyclic
relations.

4.2 Isomorphism, extension, and closure

We will now introduce and discuss some properties of relational structures which are direct
counterparts of similar notions in the domain of binary relations and partial orders.

Let rs = 〈Δ, �, �, �〉 and rs′ = 〈
Δ′, �′, �′, �′

〉
be two relational structures.

– rs and rs′ are isomorphic if there exists a label-preserving bijection Δ
κ−→ Δ′ such that

x � y iff κ(x) �′ κ(y), and x � y iff κ(x) �′ κ(y), for all x, y ∈ Δ. We denote this
by rs ∼κ rs′ or rs ∼ rs′.

– rs′ is an extension of rs if Δ = Δ′, � = �′, � ⊆ �′ and � ⊆ �′. We denote this by
rs′ ∈ ext(rs) or rs � rs′.

Isomorphisms between label-linear relational structures are unique.

Proposition 4 If there is a bijection establishing an isomorphism between two label-linear
relational structures, then it is unique.

The next notion we introduce is structure-closure which is a counterpart of the transitive
closure of an acyclic relation. It is defined in terms of two families of relational structures,
one being a subset of the other. Structures belonging to the smaller family are closed and the
closure of a structure belonging to the larger family is obtained by extending its component
relations leading to a structure in the smaller family.

Given two families of relational structures, F ⊃ F′, a structure-closure operator of Fwith

respect to F′ is a mapping F
cls−→ F′ such that, for all rs ∈ F and rs′ ∈ F′:

rs � cls(rs) (1)

rs � rs′ �⇒ cls(rs) � rs′ . (2)

We then obtain that closing a closed structure has no effect, and all the closed extensions of a
relational structure are also extensions of the closure of that structure, i.e., closing a structure
does not enlarge ‘too much’ the component relations.

Proposition 5 LetF
cls−→ F′ be a structure-closure operator. Then, for all rs ∈ F and rs′ ∈ F′:

1. cls(rs′) = rs′.
2. ext(rs) ∩ F′ = ext(cls(rs)) ∩ F′.

The final notion we introduce in this section will be used to provide an order-theoretic
counterpart of a set of step sequences belonging to some step trace.

A nonempty set rss of relational structures is consistent if all these relational structures
have the same domain Δ and domain labelling �. For such a set, the intersection is the
relational structure:

⋂
rss =

〈

Δ,
⋂

rs∈rss
�rs,

⋂

rs∈rss
�rs, �

〉

.

A consistent rss is said to be separable or label-ordered or label-linear if so is
⋂

rss. In this
paper, we will be interested in consistent sets of label-linear relational structures.

Directly from the definitions, we obtain:
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Proposition 6 Let rss be a consistent set of relational structures.

1. If rss is label-ordered, then so are all its elements.
2. If at least one element of rss is separable, then so is rss.

The implications in the above proposition cannot be reversed. Moreover, it is not the case
that the relational structures belonging to a label-linear rss have to be label-linear.

Proposition 7 Let rss be a label-linear consistent set of label-linear relational structures,
and a ∈ Σ be a label. Then ≺a⋂

rss=≺a
rs, for all rs ∈ rss.

Two label-linear consistent sets of label-linear relational structures, rss and rss′, are iso-
morphic if there are bijections Δrss

κ−→ Δrss′ and rss
φ−→ rss′ such that rs ∼κ φ(rs), for all

rs ∈ rss. We denote this by rss ∼ rss′ or rss ∼κ,φ rss′.

Proposition 8 Two label-linear consistent sets rss and rss′ of label-linear relational struc-
tures are isomorphic if andonly if for each relational structure in one set there is an isomorphic
relational structure in the other set.

Using similar arguments as in the proof of Proposition 8, we obtain the uniqueness of
isomorphisms between label-linear consistent sets of label-linear relational structures.

Proposition 9 If there are bijections (κ , φ) establishing an isomorphism between two label-
linear consistent sets rss and rss′ of label-linear relational structures, then each of them is
unique.

4.3 Saturated order structures

An order structure representing a single step sequence observation has to have all the obser-
vational relationships between events determined, i.e., it needs to be �-maximal within the
set of order structures.

Definition 4 (saturated order structure)An order structure os is saturated if ext(os)∩OS =
{os}. All saturated order structures (so-structures) are denoted by SOS.

In the original definition of saturated order structures in [12,14], label-orderedness was not
an issue as only unlabelled structures were considered there.

Note 3 Referring to the setup of Mazurkiewicz traces, saturated order structures correspond
to total orders where adding an additional ordering between two elements destroys acyclicity.
In the case of a saturated order structure, adding extra mutex or weak causality relations
between events destroys separability.

Knowing only that an order structure is saturated is not very useful when it comes to
proofs and understanding of other properties. Therefore, we will now provide an axiomatic
characterisation of saturated order structures.

Proposition 10 A relational structure 〈Δ, �, �, �〉 is saturated if and only if

x �= y ∧ x � z � y �⇒ x � y : L1
x � y �⇒ x �sym y : L2

x �= y ∧ x �� y ⇐⇒ x � y � x : L3
x �= y ∧ �(x) = �(y) �⇒ x � y : L4

for all x, y, z ∈ Δ.
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Intuitively, e.g.,Axiom L2 means that if events x and y are not simultaneous, then one of
them must have happened before the other. Moreover, Axioms L2 and L4 together imply
label-orderedness.

4.4 Invariants and histories

Within the order-theoretic part of Mazurkiewicz’ approach, there are two ways in which one
can represent concurrent behaviour: by means of a causal partial order po (or a causal invari-
ant in the terminology of [17]); and through a set of total orders T which are the sequential
observations of po (or a history in the terminology of [17]). These two representations are
in one-to-one correspondence; more precisely, T is obtained by linearising po in all possi-
ble ways, and po can be obtained from T by intersecting the total orders it contains. This
combination of invariant/history has been adopted in [17], where a general notion of history
and underlying invariants were proposed. We will now revisit the resulting framework for
the model of order structures.

Following the general approach, we consider two ways of representing a history. An order
structure (a dependence structure), typically non-saturated, captures the causal invariants
underlying the history, whereas a set of saturated order structures captures the observations
of the history.Of course, not any combination of so-structures represents a concurrent history.
Below we assume that all so-structures involved have at least the same action occurrences
and the same ordering of the occurrences of any given action.

Definition 5 (so-structure set) An so-structure set is a label-ordered consistent set of so-
structures. All so-structure set (sos-sets) are denoted by SOSS.

In other words, the so-structures belonging to an sos-set share their domain and, in
addition, induce the same total ordering on events labelled by any given action (see Propo-
sitions 3, 6 and 7).

To move between sos-sets (histories) and order structures (invariants) we use the opera-
tions of intersection, soss2os, and saturation, os2soss:

SOSS
soss2os−−−−−→ OS soss �→ ⋂

soss

OS
os2soss−−−−−→ SOSS os �→ ext(os) ∩ SOS

(3)

Proposition 11 The mappings soss2os and os2soss are well-defined.

We are now in a position to state what it means that an order structure is an invariant, and
that an sos-set is a history.

Definition 6 (invariant) An invariant order structure is ios ∈ OS satisfying ios =
soss2os ◦ os2soss(ios).1 All invariant order structure (io-structures) are denoted by IOS.

The equality ios = soss2os ◦ os2soss(ios) is a version of Szpilrajn’s property [39],
which states that a poset is the intersection of its total order extensions, and plays a key role
in the model of Mazurkiewicz traces.

Note 4 Referring to the setup of Mazurkiewicz traces, invariant order structures correspond
to labelled partial orders.

1 Note that os2soss(ios) �= ∅ holds by Proposition 11.
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Definition 7 (history) A history sos-set is hsoss ∈ SOSS satisfying hsoss = os2soss ◦
soss2os(hsoss). All history sos-sets (hsos-sets) are denoted by HSOSS.

Example 4 Consider three so-structures, sosi (i = 1, 2, 3), and an order structure, ios0,
depicted below:

a

a

b

a

a

b

a

a

b

a

a

b

sos1 sos2

sos3 ios0

Then hsoss0 = {sos1, sos2, sos3} is a history sos-set and ios0 is an invariant order structure
such that ios0 = soss2os(hsoss0) and hsoss0 = os2soss(ios0).

io-structures are the causal invariants in the realm of order structures and, according to
the next result, their sets of saturated extensions are concurrent histories.

Theorem 2 IOS
os2soss−−−−−→ HSOSS

soss2os−−−−−→ IOS are inverse bijections.

An axiomatic characterisation of invariant order structures without domain labellings was
introduced in [12,14]. In the next definition we augment this characterisation with Axiom I7
to ensure label-linearity, obtaining a complete axiomatisation of invariant order structures.

Theorem 3 A relational structure 〈Δ, �, �, �〉 is an invariant order structure if and only if
x �� x : I1

x �= y ∧ x � z � y �⇒ x � y : I2
x � y �⇒ y � x �= y : I3

x ≺ z � y ∨ x � z ≺ y �⇒ x � y : I4
z � y ∧ z � x � z �⇒ x � y : I5

z � z′ ∧ x � z � y ∧ x � z′ � y �⇒ x � y : I6
x �= y ∧ �(x) = �(y) �⇒ x ≺sym y : I7

for all x, y, z, z′ ∈ Δ.

Order structures are like dependence graphs (acyclic relations) in the model of
Mazurkiewicz traces, which need to be transitively closed in order to provide full informa-
tion, e.g., about event precedence, in the form of partial orders. We therefore need a suitable
notion of closure for order structures. Again, such a notion for order structures without
domain labellings was introduced in [12,14], as recalled below (note that domain labelling
does not play any role in this purely order-theoretic definition).
An order structure closure is a mapping given by:

OS
os2ios−−−−→ IOS 〈Δ, �, �, �〉 �→ 〈

Δ, �� ◦ (� ∪ crosssym) ◦ ��, ��, �
〉

(4)

where cross = {〈x, y〉 | ∃z, z′ : z � z′ ∧ x �∗ z �∗ y ∧ x �∗ z′ �∗ y}.
Intuitively, the derived weak causality, ��, captures the fact that weak causality is transi-

tive. The first component of the derived mutex, �� ◦ � ◦ ��, captures the fact that if we
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Fig. 2 Correspondence diagram
for order structures. where: OS
are order structures
(Definition 3), IOS are invariants
(Definition 6 and Theorem 3),
HSOSS are histories
(Definition 7), os2ios is closure
(Eq.4 and Proposition 12),
soss2os is intersection (Eq. 3,
Theorem 2), and os2soss is
saturation (Eq. 3, Theorem 2) HSOSS IOS

OS

os2iosos2soss

os2soss

soss2os

have two clusters of simultaneous events, and there is a pair of events in these two clusters
which is non-simultaneous, then the same is true of all the pairs of events coming from
these clusters (see also Axiom I5 in Theorem 3). The other component, �� ◦crosssym◦ ��,
captures the cross-like propagation of the mutex relationship capture by the diagram below
which illustrates the derivation of 〈x, y〉 ∈ cross (see also Axiom I6 in Theorem 3):

x

z

z

y ∗: :

We then obtain that order structure closure is the only way in which order structures can
be closed to yield invariant order structures.

Proposition 12 os2ios is the unique structure-closure operator from OS to IOS.

In this way, we have ended our quest for general relational structures corresponding to
causal partial orders, and the general notion of invariant order structure and concurrent history
as from Theorem 2 and Proposition 12 we obtain:

Theorem 4 The diagram in Fig. 2 commutes.

5 Step traces and extended causal structures

We now join together the two lines of our discussion, one concerned with generalisation of
Mazurkiewicz traces, and the other dealing with extensions of causal partial orders. Through-
out this section, θ = 〈Σ, sim, seq〉 is a fixed step alphabet.

5.1 Step sequences and order structures

We need to formally establish the correspondence between step sequences from SSEQθ and
saturated order structures, similarly to the way in which sequences can be interpreted as total
orders. Moreover, we will later be in a position to lift the notion of a trace to the level of
so-structures.

It follows from Proposition 4 that isomorphisms between label-linear relational structures
are unique and so we are free to choose the names of the elements that will carry the action
names as labels. We therefore focus on order structures whose domains can be seen as a set
of events which occurred during an execution of a concurrent system.
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Definition 8 (consistent so-structure) An so-structure sos = 〈Δ, �, �, �〉 is consistent
with θ if there is a mapping Σ

ε−→ N such that Δ = {〈a, i〉 | a ∈ Σ ∧ 1 ≤ i ≤ ε(a)} and, for
all distinct 〈a, i〉 , 〈a, j〉 , 〈b, k〉 ∈ Δ, we have �(〈a, i〉) = a and:

〈a, i〉 ≺ 〈a, j〉 ⇐⇒ i < j
〈a, i〉 �� 〈b, k〉 �⇒ 〈a, b〉 ∈ sim .

(5)

All so-structures consistent with θ are denoted by SOSθ .

In other words, in a consistent so-structure, consecutive occurrences of events with the same
label are totally ordered, and the labels of events that happen simultaneously are occurrences
of actions that can be simultaneous according to θ .

Consistent so-structures correspond exactly to the step sequences in SSEQθ as we now
proceed to prove. First we show how such structures can be interpreted as sequences of sets
of simultaneous events.

Proposition 13 Let sos = 〈Δ, �, �, �〉 ∈ SOSθ . Then there is a unique sequence τsos =
Δ1 . . . Δk such that:

1. Δ1, . . . , Δk is a partition of the domain Δ satisfying � = ⋃{Δi × Δ j | i �= j},
� = ⋃{Δi ×Δ j | i ≤ j}\idΔ and ≺ = ⋃{Δi ×Δ j | i < j}.

2. Δ1, . . . , Δk are the equivalence classes of ��.

The unique sequence τsos in Proposition 13 will be called the layer decomposition of sos.
This decomposition defines through its labeling a step sequence associated with sos.

Proposition 14 Let τsos = Δ1 . . . Δk be the layer decomposition of sos ∈ SOSθ . Then, for
all 1 ≤ i ≤ k, labelling � is injective on Δi and �(Δi ) ∈ Sθ .

Thus a consistent so-structure corresponds to a sequence of layers, each layer comprising
events which can be seen as a valid step according to the alphabet θ . We now take advantage
of this observation to establish the full correspondence between so-structures in SOSθ and
step sequences in SSEQθ , using two mappings:

SOSθ
sos2sseq−−−−−→ SSEQθ sos �→ �(τsos)

SSEQθ
sseq2sos−−−−−→ SOSθ u �→ 〈Δ, �, �, �〉

(6)

where Δ = occ(u) and, for all α, β ∈ occ(u) with posu(α) = k and posu(β) = m:

α � β if k �= m
α � β if k ≤ m ∧ α �= β .

(7)

Theorem 5 SSEQθ
sseq2sos−−−−−→ SOSθ

sos2sseq−−−−−→ SSEQθ are inverse bijections.

Labelling the layer decomposition of the order structure of a step sequence in SSEQθ is
the same as listing this step sequence with explicit action occurrences.

Proposition 15 If u ∈ SSEQθ then τsseq2sos(u) = occseq(u).

Finally, using the bijective correspondence between step sequences and their underlying
labelled order structures, we lift the concept of step trace to the level of so-structures.

Let sos, sos′ ∈ SOSθ . Then sos ≈̇θ sos′ if sos2sseq(sos) ≈θ sos2sseq(sos′). We
denote by ≡̇θ the reflexive transitive closure of ≈̇θ .
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Definition 9 (order structure trace) An order structure trace over θ is an equivalence class
of ≡̇θ . All order structure traces will be denoted by OSTRθ .

We then obtain, by Theorem 5 and the definition of OSTRθ :

Theorem 6 STRθ
sseq2sos−−−−−→ OSTRθ

sos2sseq−−−−−→ STRθ are inverse bijections.

The above result provides a strong as well as convenient method for moving between
the language-theoretic and order-theoretic descriptions of concurrent histories, respectively
captured by step traces order structure traces.

5.2 Step sequences and dependence structures

The information assembled in the alphabet θ is sufficient to capture the intrinsic dependencies
between events involved in a single step sequence over θ . For this we define the following
mapping:

SSEQθ

sseq2osθ−−−−−→ OS u �→ 〈Δ, �, �, �〉
where Δ = occ(u), for all α, β ∈ Δ with posu(α) = k and posu(β) = m:

α � β if 〈�(α), �(β)〉 /∈ sim ∩ seq (∈ ssi ∪ wdp ∪ rig ∪ inl) ∧ k < m
or 〈�(α), �(β)〉 /∈ sim ∩ seq−1 (∈ ssi ∪ sse ∪ rig ∪ inl) ∧ k > m

α � β if 〈�(α), �(β)〉 /∈ seq ∩ seq−1 (∈ ssi ∪ sse ∪ wdp ∪ rig) ∧ k < m
or 〈�(α), �(β)〉 ∈ sim\seq−1 (∈ ssi ∪ sse) ∧ k = m

(8)

We refer to sseq2osθ (u) as the dependence structure of u. The definition of dependence
structure explicitly indicates if two action occurrences are weakly causally related and/or
mutual exclusive or neither based on their relative order in the sequence and their mutual
relation as given in θ . Consider, e.g., the first line in the definition: two occurrences, that
are not in the same step and have labels that cannot be sequentialised when in the same
step, are to be connected by the mutex relation. As another example, the last line states that
occurrences of two actions are weakly causally related whenever they occur in the same step
and a sequentialisation with the second action occurring before the first one is not possible.
Note that the definition given above refers also to the semantical relationships between actions
as discussed in Sect. 3.

Example 5 Let θ0 be as in Example 2. The following are some dependence structures gen-
erated from step sequences in SSEQθ0 :

(bd)c

b

d

c

c(bd)

c

b

d

a(bd)

a

b

d

a(bcd)
a

c

b

d

�

≺

With the next proposition we establish a number of properties involving dependence
structures. In particular, the mapping sseq2osθ is well-defined, and by taking advantage of
the additional semantical relationships from Sect. 3 all possible relationships in a dependence
structure can be characterised in a concise way.
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Proposition 16 Let u ∈ SSEQθ and os = sseq2osθ (u) = 〈Δ, �, �, �〉.
(i) � is symmetric, and both � and � are irreflexive.
(ii) If α, β ∈ Δ with posu(α) = k and posu(β) = m, then:

α �� β ∧ β �� α ∧ α �� β ⇐⇒ 〈�(α), �(β)〉 ∈ con
α � β ∧ β � α ∧ α �� β ⇐⇒ 〈�(α), �(β)〉 ∈ ssi ∧ k = m
α �� β ∧ β �� α ∧ α � β ⇐⇒ 〈�(α), �(β)〉 ∈ inl ∧ k �= m
α � β ∧ β �� α ∧ α �� β ⇐⇒ 〈�(α), �(β)〉 ∈ sse ∧ k ≤ m
α � β ∧ β �� α ∧ α � β ⇐⇒ 〈�(α), �(β)〉 ∈ ssi ∪ wdp ∪ rig ∧ k < m

(iii) If 〈a, i〉 , 〈a, j〉 ∈ Δ then 〈a, i〉 ≺ 〈a, j〉 ⇐⇒ i < j .
(iv) If α �� β and α �= β, then posu(α) = posu(β) and 〈�(α), �(β)〉 ∈ sim.
(v) os2soss(os) ⊆ SOSθ .
(vi) sseq2osθ is a well-defined mapping.

We can therefore use two kinds of order structures to capture the causal dependencies of
action occurrences in the step sequences consistent with θ .

Definition 10 (dependencies between events) The dependence structures and invariant order
structures generated by step sequences compatible with the step alphabet θ are as follows:

OSθ = sseq2osθ (SSEQθ ) and IOSθ = os2ios(OSθ )

Note 5 Referring to the setup of Mazurkiewicz traces, dependence structures correspond to
the dependence graphs of action sequences, and invariant order structures to the underlying
causal labelled partial orders.

5.3 Dependence structures and traces

We finally investigate the relationships between dependence structures and step traces. First
we show that every step sequence can be generated from its dependence structure, and that
equivalent step sequences generate the same dependence structures.

Proposition 17 Let u, w ∈ SSEQθ .

1. u ∈ sos2sseq ◦ os2soss ◦ sseq2osθ (u).
2. u ≡θ w implies sseq2osθ (u) = sseq2osθ (w).

Consequently, we can associate dependence structures with step traces:

STRθ

sseq2osθ−−−−−→ OS �u�θ �→ sseq2osθ (u) (9)

Then, directly from Proposition 17(1), we obtain:

Proposition 18 STRθ

sseq2osθ−−−−−→ OS is a well-defined mapping.

Now we turn to the reverse question, namely whether all step sequences defined by a
dependence structure are equivalent (and could thus form a step trace).

To deal with this we found it convenient to single out steps which cannot be sequentialised.
A min-step is A ∈ Sθ such that there are no steps B,C satisfying A = B ∪ C and

B × C ⊆ seq. A step sequence u ∈ SSEQθ is thin if it is composed of min-steps. All thin
step sequences are denoted by SSEQthin

θ .

123

Author's personal copy



Step traces 53

Example 6 Let θ0 be as in Example 2. The step trace �a(bcd)�θ0 contains three thin step
sequences: ac(bd), ca(bd) and c(bd)a; and three non-thin ones: a(bcd), (bcd)a and
(ac)(bd).

Any step sequence can be ‘flattened’ to yield an equivalent thin step sequence.

Proposition 19 For every u ∈ SSEQθ there is w ∈ SSEQthin
θ such that u ≡θ w.

We are then ready for the basic result that we need for our proof of the equivalence of all
step sequences defined by the dependence structure of a step trace. The proof—presented in
the “Appendix”—relies on several auxiliary observations. We start from a thin step sequence
and its dependence structure. With the min-steps as ‘atomic’ building blocks, we first in
essence follow the classical approach for Mazurkiewicz traces and their dependence graphs
in which the atoms are singleton sets. Recalling that a dependence structure collects all
causal (necessary) relations between themin-stepswith all other relations being observational
and specific to the initial step sequence, we are free to change the order of min-steps as
long as we do not violate the invariant causality of the dependence structure. The result is
(another) linearisation that is equivalentwith the given step sequence.This canbe repeated and
finally we also combine min-steps into larger steps, still obeying the restrictions of causality
imposed by the dependence structure that guarantees equivalence of the thus obtained new
step sequence.

Proposition 20 If u ∈ SSEQθ andw ∈ sos2sseq◦os2soss◦sseq2osθ (u), then u ≡θ w.

From the results on step traces and order structures, as well as their interrelationships, we
can now conclude that we have achieved the main aim of this paper.

Theorem 7 The diagram in Fig. 3 commutes.

We have therefore obtained a counterpart of the schematic correspondence diagram of
Fig. 1. In addition, the diagram in Fig. 3 provides one more domain,OSTRθ , which provides
a technically convenient bridge between the language-theoretic domain of step traces and
the order-theoretic domain of invariant order structures. In Fig. 1—and indeed the standard
approach of Mazurkiewicz traces—such a bridge is established ‘on-the-fly’ by an implicit
identification of a sequence of actions with the corresponding labelled total order.

Example 7 Let θ0 be as in Example 2. The following are some invariant order structures
corresponding to step traces in STRθ0 :

(bd)c θ0

b

d

c

c(bd) θ0

c

b

d

a(bd) θ0

a

b

d

a(bc) θ0

a

c b

a(cd) θ0

a

c d

a(bcd) θ0

a

c

b

d

We have demonstrated that step traces can be represented by invariant order structures. A
question might therefore arise as to whether such (rather complicated) structures are really
necessary, or perhaps a class of simpler order structures would suffice. It turns out that this
is not the case.

Proposition 21 Let os be an order structure with an injective labelling. Then there is a step
alphabet θ and a step sequence u consistentwith θ such that os is isomorphic to sseq2osθ (u).
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STRθ OSTRθ IOSθ

OSθ

sseq2osθ os2iosos2soss

sseq2sos

sos2sseq os2soss

soss2os

Fig. 3 Correspondence diagram for step traces, where: STRθ are step traces (Definition 2), OSTRθ are
order structure traces (Definition 9), OSθ are dependence structures (Definition 10), IOSθ are invariants
(Definition 10), os2ios is closure (Eq.4), soss2os is intersection (Eq.3), os2soss is saturation (Eq.3),
sseq2osθ is derivation of dependence structures (Eqs. 9, 8), sos2sseq is transformation of saturated order
structures to step sequences (Eq.6), and sseq2sos is the reverse transformation (Eq.6)

Although in the abovewe assumed injective labelling, the result we obtained demonstrates
that dependence structures of step alphabets can display all the complex patterns involving
causal relationships captured by order structures. This is no longer the case if we allow
non-injective labellings. Consider, for example, the following io-structure:

a

a

b

ios0

The corresponding history hsoss contains three so-structures sosi (i = 1, 2, 3) such that
τsos1 = aab, τsos2 = aba, and τsos3 = a(ab). One can see that there is no step alphabet θ

such that {sos1, sos2, sos3} ∈ OSTRθ and ios ∈ IOSθ . The intuitive reason is that the first
occurrence of a causes b to occur, so a and b are dependent, but the second occurrence of
a is concurrent with b, and so a and b are independent. However, in any step alphabet the
relationship between a and b is static and cannot depend on a specific occurrence of a.

6 Conclusions

In this paper, we have considered an extension of Mazurkiewicz traces taking steps as the
smallest units of observation rather than single actions. This extension—being based on a
few, light design choices—stays close to the original trace philosophy. We have investigated
(labelled) relational structuresmatching the resulting general step traces and step sequences in
the sameway as partial ordersmatchMazurkiewicz traces and total ordersmatch sequences of
action occurrences (embodied by the schematic commutative diagram of Fig. 1). To represent
observational and causal relationships in the behaviours of concurrent systems we used the
order structures from [12,14] which are an extension of an idea first proposed in [7,17,27].
Note that a direct predecessor of order structureswere the stratified order structures (where�
is included in�), introduced independently in [7] and [16], and then applied, e.g., in [21,23].
Actually, the approach chosen to lift Mazurkiewicz traces to the setting of step sequences
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Fig. 4 An elementary net system
extended with an inhibitor arc
implying that when c is executed
the output place of d must be
empty, and a mutex arc implying
that a and b cannot be executed
simultaneously a

b

c

d

leads to a hierarchy of step alphabets (see also [13], where a slightly different terminology is
used) allowing intuitive classifications fitting both established (e.g., comtraces [18] and ST-
traces [41,42]), and as yet uninvestigated trace models. In the companion paper [15] these
(proper) subclasses are investigated and the order structures representing them identified.
The results of our investigations here are captured by the commuting diagram of Fig. 3. In
essence, with invariant order structures being the most general causal structures representing
concurrent histories comprising step sequences (see, eg [12,14]), it shows that the step traces
as proposed in this paper are the most general version of Mazurkiewicz traces in the context
of step sequences. We ended our discussions looking at the expressiveness of step traces and
concluding that simpler order structures like the ones in [15], would not be sufficient.

When it comes to systemmodels, Mazurkiewicz traces fit elementary net systems [30,37].
Tofit the general concurrency paradigm, and hence by the results of this paper, also step traces,
the elementary net systemmodel has been extended to include two newkinds of arcs, inhibitor
arcs and mutex arcs [25]. As an example, consider Fig. 4 showing an elementary net system
N extended with an inhibitor and mutex arc. For such Petri nets, the relationships between
transitions (actions) can be retrieved directly from the structure of the net, defining a step
alphabet θN , where the actions are simply the transitions of the net. In this particular example,
we have: 〈a, d〉 , 〈b, c〉 ∈ con, 〈a, b〉 ∈ inl, 〈a, c〉 , 〈b, d〉 ∈ rig, and 〈c, d〉 ∈ sse. Then the
set of all step sequences generated by N can be partitioned into step traces conforming to
the alphabet θN , for example:

�abcd�θN = {abcd, ab(cd), bacd, ba(cd), acbd, a(bc)d}
�bda�θN = {bda, bad, b(ad), abd}.

It also seems worthwhile to point out differences with some concurrency models from
the literature that at first sight might seem related to step traces. First of all, there exist other
generalisations of traces. Semi-traces originally introduced as rewriting systems by [4] and
later investigated in, e.g., [11,36] are generated by semi-commutations. The rewriting rules
that change the order of two adjacent action occurrences can be one-directional, ab → ba,
rather than the bi-directional interpretation ab ↔ ba of Mazurkiewicz independence. This
cannot be mimicked with rewriting via steps as done in this paper. Conversely, there do not
exist partial order models which can deal with ‘not later than’ situations [17,18].

Other approaches that allow simultaneous executions, i.e., steps, either cannot express any
equivalent of ‘not later than’ [1,38,41], or, as [3,22,42], can equivalently be modelled with
the comtraces of [18] (i.e., a special case of the model presented in this paper). In addition,
we are not aware of a model that can express a mutex situation represented here by the
interleaving equation (AB = BA and A∩ B = ∅) other than those following [19]. However,
the model of [19] does not cover all interesting cases (see [25]), and is a special case of the
model considered in this paper. Other extensions of Mazurkiewicz traces consider infinite
sequences, leading to complex traces or infinite traces as in, e.g., [5,8]. Finally, it should be
noted that the extension of Mazurkiewicz traces discussed in this paper is a static one, in
contrast to the context or history dependent traces from, e.g., [2,10,26].
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Then there are various kinds of events structures based on the seminal work [33]. These
structures are single objects describing the full behaviour of a concurrent system, explicitly
representing conflict (choice). In contrast, a step trace represents a conflict-free run of a
system where mutex is treated as a choice of ordering rather than conflicting behaviour.

We view this paper as a beginning, establishing step traces as the right semantical model
fitting the general concurrency paradigm of [17]. Mazurkiewicz approach in which indepen-
dence, simultaneity and unorderedness are basically the same notion, has been refined and, as
a consequence, some of its elegant simple properties, e.g. relating alphabets and equivalence
classes, have to be re-investigated.What is alsomissing is a full investigation of the algebraic,
logic and automata-theoretic properties of step traces. For example, it may be the case that
the models of [40] or [34] can be suitably extended.

Acknowledgments We are grateful to the reviewers for their useful comments and suggestions. This
research was supported by Epsrc (Uncover project), the Polish National Science Center (Grant No.
2013/09/D/ST6/03928), and Nserc of Canada.

7 Appendix: Proofs of Section 3

Proof of Proposition 1. Follows from the fact that ser ⊆ sim, and so if we consider an
equation AB =ψ A ∪ B with A, B ∈ Sψ , we have that A ∪ B ∈ Sψ . � 

Proof of Proposition 2. Follows from the fact that for an equation AB =ψ A ∪ B with
A, B ∈ Sψ , we have that A ∪ B ⊆ sim. � 

Proof of Theorem 1. We first show that the mappings sa2gca and gca2sa are well-defined.
Let ψ = 〈Σ, sim, inl, ser〉 ∈ Ψ . Then sa2gca(ψ) = 〈Σ, sim, inl ∪ ser〉 ∈ Θ . Indeed,
inl∪ser is clearly irreflexive. Moreover, by ser ⊆ sim and inl∩sim = ∅, (inl∪ser)\sim =
inl\sim = inl. Hence (inl ∪ ser)\sim is symmetric as inl is.

Now, let θ = 〈Σ, sim, seq〉 ∈ Θ . Then

gca2sa(θ) = 〈
Σ, sim,

(
seq ∩ seq−1

) \sim, seq ∩ sim
〉 ∈ Ψ .

Indeed, (seq ∩ seq−1)\sim and seq ∩ sim are clearly irreflexive, (seq ∩ seq−1)\sim is
symmetric, and seq ∩ sim ⊆ sim. Moreover, ((seq ∩ seq−1)\sim) ∩ sim = ∅.

To show that the mappings are inverse bijections, we show that

gca2sa ◦ sa2gca(ψ) = ψ and sa2gca ◦ gca2sa(θ) = θ ,

for all ψ = 〈Σ, sim, inl, ser〉 ∈ Ψ and θ = 〈Σ, sim, seq〉 ∈ Θ . Indeed, we have that

gca2sa ◦ sa2gca(ψ) = gca2sa (〈Σ, sim, inl ∪ ser〉)
= 〈

Σ, sim,
(
(inl ∪ ser) ∩ (inl ∪ ser)−1

) \sim, (inl ∪ ser) ∩ sim
〉

= 〈Σ, sim, inl, ser〉 ,

where the last equality follows from
(
(inl ∪ ser) ∩ (inl ∪ ser)−1

) \sim
=

((
inl ∩ inl−1

)
∪

(
ser ∩ inl−1

)
∪ (

inl ∩ ser−1
) ∪ (

ser ∩ ser−1
)) \sim

=
(
inl ∩ inl−1

)
\sim ∪ (

ser ∩ ser−1
) \sim = inl ∩ inl−1 = inl
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and the symmetry of inl, sim ∩ inl = ∅, and ser ⊆ sim, as well as

(inl ∪ ser) ∩ sim = (inl ∩ sim) ∪ (ser ∩ sim) = ser ∩ sim

and ser ⊆ sim. We then observe that

sa2gca ◦ gca2sa(θ)=sa2gca
(〈
Σ, sim,

(
seq ∩ seq−1

) \sim, seq ∩ sim
〉)

= 〈
Σ, sim,

((
seq ∩ seq−1

) \sim) ∪ (seq ∩ sim)
〉=〈Σ, sim, seq〉 ,

where the last equality follows from

((seq ∩ seq−1)\sim) ∪ (seq ∩ sim) = ((seq\sim) ∩ (seq−1\sim))) ∪ (seq ∩ sim)

= (seq\sim) ∪ (seq ∩ sim) = seq

and seq\sim = seq\sim ∩ seq−1\sim which holds because seq\sim is symmetric.
To prove that sa2gca and gca2sa are trace-preserving, it suffices to show that

STRsa2gca(ψ) = STRψ , for every ψ = 〈Σ, sim, inl, ser〉 ∈ Ψ .
Letsa2gca(ψ) = 〈Σ, sim, seq〉. Then, clearlySsa2gca(ψ) = Sψ .Moreover,seq∩sim =

ser∩sim = ser as we have inl∩sim = ∅ and ser ⊆ sim, and so the serialisability equations
induced by the two alphabets are the same. The interleaving equations are also the same, as
we have:

seq ∩ seq−1 = (inl ∪ ser) ∩ (inl ∪ ser)−1 = (inl ∪ ser) ∩ (inl−1 ∪ ser−1)
= (inl ∪ ser) ∩ (inl ∪ ser−1) = inl ∪ (ser ∩ ser−1) .

Henceψ and sa2gca(ψ) induce the same equations over S
∗
sa2gca(ψ)

= S
∗
ψ . We can therefore

conclude that STRsa2gca(ψ) = STRψ . � 

8 Proofs of Section 4

Proof of Proposition 3. Let rs = 〈Δ, �, �, �〉 be a separable label-ordered relational struc-
ture. Suppose that a ∈ Σ and x, y, z ∈ �−1(a) and x ≺ z ≺ y. First, we observe that x �= y
since otherwise we would obtain a contradiction with the separability of rs. Hence by rs
being label-ordered, we have x ≺sym y. If y ≺ x , we again obtain a contradiction with the
separability of rs. Hence x ≺ y. � 
Proof of Proposition 4. Let rs ∼κ rs′ be isomorphic label-linear relational structures, and let
a ∈ Σ . By the label-preservation of κ , κ is a bijection between �−1rs (a) and �−1rs′ (a). Hence,
by the label-linearity of rs, κ restricted to �−1rs (a) is unique. � 
Proof of Proposition 5. (1) By Eq. (1), rs′ � cls(rs′). Moreover, rs′ � rs′ and so, by Eq. (2),
cls(rs′) � rs′. Hence rs′ � cls(rs′) � rs′, and so cls(rs′) = rs′.

(2) Let rs′′ ∈ F′. We need to show that rs � rs′′ iff cls(rs) � rs′′. The left-to-right
implication follows fromEq. (2).Moreover, the right-to-left implication follows fromEq. (1).

� 
Proof of Proposition 7. Clearly, ≺a⋂

rss⊆≺a
rs. Moreover, ≺a

rs⊆≺a⋂
rss as otherwise ≺a⋂

rss
would not be a total order relation (note that ≺a

rs is a total order relation). � 
Proof of Proposition 8. (�⇒) Follows from the definition of isomorphism between rss and
rss′.
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(⇐�) First, we observe that all relational structures within rss (and also within rss′) are
non-isomorphic. Indeed, suppose that rs ∼κ rs′, for some rs, rs′ ∈ rss. Then, by Proposi-
tion 7, we have that κ is the identity on Δrss. Hence rs = rs′. It therefore follows that there
is a unique bijection rss

φ−→ rss′ relating isomorphic relational structures.
Suppose now that rs ∼κ φ(rs) and rs′ ∼κ ′ φ(rs′). By Proposition 4, both κ and κ ′ are

unique isomorphisms. It then follows from Proposition 7 that κ|�−1(a) = κ ′|�−1(a), for every
a ∈ Σ . Hence κ = κ ′. � 

Proof of Proposition 10. Let sos = 〈Δ, �, �, �〉 ∈ SOS. First we show that sos is separa-
ble:

– Suppose that x � x . Then x � x � x and so, by Axiom L3, x �= x which produces a
contradiction. Hence � is irreflexive. Therefore, by Axiom L2, � is also irreflexive.

– Suppose that x �� y and x �= y. Then, by Axiom L3, we have x � y � x and thus also
y � x � y which in turn implies y �� x . Hence � is symmetric.

– Suppose that x �� y. If x = y then, by the irreflexivity of �, we have x �� y. If x �= y
then, by repeated application of Axiom L1, x � y � x . Hence, by Axiom L3, x �� y
and so we can conclude that � ∩ ��= ∅.

As a result, sos is separable. Moreover, sos is label-ordered. Indeed, suppose that x �= y and
�(x) = �(y). Then, by Axiom L4, x � y and so, by Axiom L2, we have x �sym y. Thus
x ≺sym y.

We can therefore conclude that sos ∈ OS. To show that sos ∈ SOS, suppose that os �= sos
is an order structure such that sos � os. Then there must exist x, y ∈ Δ such that one of the
following holds:

– x �os y and x �� y. Since �os is irreflexive, x �= y. Hence, by Axiom L3, x � y �
x . Therefore, by sos � os, x ��

os y which, together with x �os y, contradicts the
separability of os.

– x �os y and x �� y. Since �os is irreflexive, x �= y. Hence, by Axiom L3, we have
x � y. Thus, by Axiom L2 and x �� y, we obtain y � x . Therefore, by sos � os,
x ��

os y and x �os y, contradicting the separability of os.

Since in both cases we obtained a contradiction, sos is a saturated order structure.
Conversely, let os = 〈Δ, �, �, �〉 ∈ SOS. We first show that if x �= y then:

(a) x �� y implies x �+ y �+ x .
(b) x �� y implies y �+ x and x � y.

(a)Wefirst observe that y �� x , as� is symmetric.We then consider a relational structure
os′ obtained from os by adding the pair 〈x, y〉 to �. Since os′ �= os and os � os′, it follows
from os ∈ SOS that os′ /∈ OS. We then observe that in such a case 〈x, y〉 must belong to
�os′ ∩ ��

os′ . Hence, by ��
os′=��, we obtain that x �+ y �+ x .

(b)We consider a relational structure os′ obtained from os by adding the pair 〈x, y〉 to �.
As in the case of (a), os′ /∈ OS. We then observe that in such a case there is a pair 〈w, u〉
belonging to �os′ ∩ ��

os′ . Clearly, w � u and the only way that w ��
os′ u holds is that

we created a cycle through adding 〈x, y〉 to �. Hence we must have had y �+ x . Suppose
that x �� y. Then, by (a), x �� y and so w �� u which produces a contradiction with the
separability of os. Hence x � y, and so (b) holds.

We will now show that os is an so-structure, by checking the satisfaction of the defining
conditions Axioms L1–L4:
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– Suppose that x �= y and x � z � y and x �� y. Then, by (b), y �+ x and x � y. Thus
y �+ x � z � y, and so 〈x, y〉 belongs to � ∩ ��, contradicting the separability of
os. As a result, os satisfies Axiom L1.

– Suppose that x � y and x ��sym y (i.e., x �� y and y �� x). Since � is irreflexive,
x �= y. Then, by (a), y �+ x and x �+ y. Thus y �+ x �+ y, and so 〈x, y〉 belongs to
� ∩ ��, contradicting the separability of os. As a result, os satisfies Axiom L2.

– Suppose first that x �= y and x �� y. Then, by (a), x �+ y �+ x , and so, by an already
demonstrated Axiom L1, x � y � x . Conversely, suppose that x � y � x . Then, by the
irreflexivity of �, we have x �= y, and, by � ∩ ��= ∅, we have x �� y. As a result, os
satisfies Axiom L3.

– Suppose that x �= y, �(x) = �(y), and x �� y. Then x ⊀
sym y, contradicting the

label-orderedness of os. As a result, os satisfies Axiom L4.

Hence we can conclude that os ∈ SOS. � 
Proof of Proposition 11. Suppose that soss ∈ SOSS and os = soss2os(soss) = ⋂

soss.
Then os is separable by Proposition 6(2), and its label-orderedness follows from the defini-
tions.

Suppose now that os ∈ OS and soss = os2soss(os) = ext(os) ∩ SOS. From Prop.4.7
and Th.4.13 in [14], it follows that soss �= ∅. Clearly, soss is label-ordered and consistent
due to the definition of ext(os). � 
Proof of Theorem 2. Suppose that ios ∈ IOS and soss = os2soss(ios). Then, by Defini-
tion 6, ios = soss2os◦os2soss(ios). Hence soss = os2soss(ios) = os2soss◦soss2os◦
os2soss(ios) = os2soss ◦ soss2os(soss) and so, by Definition 7, soss ∈ HSOSS.

Suppose now that hsoss ∈ HSOSS and os = soss2os(hsoss). Then, by Definition 7,
os2soss(os) = hsoss. Hence os = soss2os ◦ os2soss(os) and os ∈ IOS. � 
Proof of Theorem 3. LetLGMOSbe the set of all labelled generalisedmutex order structures
defined as the set of all relational structures lgmos satisfying the axioms in Theorem 3. Then,
from Props. 4.7 & 4.8 and Thm.4.13 in [14], we obtain that: � 
Lemma 1 1. If lgmos ∈ LGMOS, then os2soss(lgmos) �= ∅ and lgmos = soss2os ◦

os2soss(lgmos).
2. os2ios is a structure-closure operator from OS to LGMOS.

LGMOS ⊆ IOS holds by Definition 6 and Proposition 1(1).
Suppose that ios ∈ IOS. Let lgmos = os2ios(ios) ∈ IOS. By Propositions 5

and 1(2), os2soss(ios) = os2soss(lgmos). Hence soss2os ◦os2soss(ios) = soss2os ◦
os2soss(lgmos) and so, by Definition 6 and Proposition 1(1), ios = lgmos ∈ LGMOS.
Thus IOS ⊆ LGMOS.

Proof of Proposition 12. By Proposition 1(2) and Theorem 3, os2ios is a structure-closure
operator from OS to IOS.

Suppose OS
cls−→ IOS is a structure-closure operator. Let os ∈ OS. Then os2soss(cls

(os)) = os2soss(os) = os2soss(os2ios(os)), by Proposition 5(i i) and Proposition 1(2).
Hence, by cls(os) ∈ IOS and os2ios(os) ∈ IOS, we obtain cls(os) = os2ios(os). � 

9 Proofs of Section 5

Proof of Proposition 13. Let X be the set of equivalence classes of ��. For distinct X, Y ∈
X , we define X�̇Y and X�̇Y if, respectively, (X × Y )∩ � �= ∅ and (X × Y )∩ � �= ∅. We
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then show that, for distinct X, Y ∈ X , we have the following:

(i) X�̇Y �⇒ X × Y ⊆ � (i i) X �= Y �⇒ X × Y ⊆ �
(i i i) X�̇Y �⇒ ¬Y �̇X (iv) X �= Y �⇒ X�̇symY .

Let α ∈ X and β ∈ Y . Since X �= Y , also α �= β.
(i) If X�̇Y , then there exist γ ∈ X and δ ∈ Y such that γ � δ which together with α �= β

implies by Axiom L1 that α � β.
(ii) If α �� β then α �= β implies, by Axiom L3, that α � β � α, a contradiction.
(iii) Follows from the maximality of ��.
(iv) We have α �= β. If α �� β then, by Axiom L3, α � β � α. Hence X�̇Y �̇X which

contradicts (i i i). Thus we have α � β and so α �sym β, by Axiom L2.
Now define ≺̇ = �̇ ∩ �̇. From what we have just shown it follows that ≺̇ is a total order

relation over X . Moreover, the order in which the equivalence classes of �� are ordered by
≺̇ gives the desired sequence and verifies its uniqueness. � 
Proof of Proposition 14. Let i ≤ k and suppose that α, β ∈ Δi , α �= β and �(α) = �(β).
Then, by Axiom L4, α � β. Hence α ��� β as, by Proposition 10, sos is an order structure,
and so it is separable. We therefore obtained a contradiction with Proposition 13(2).

The second part follows from Proposition 13(2) and Eq. (5). � 
Proof of Theorem 5. We first show that the mappings sos2sseq and sseq2sos are well-
defined.

The first part follows fromProposition 14. To show the second part, we proceed as follows.
Suppose that u ∈ SSEQθ and sos = sseq2sos(u) = 〈Δ, �, �, �〉. First we demonstrate

that sos ∈ SOS by showing that the Axioms L1–L4 hold.
Axiom L1 : Suppose that α �= β and α � γ � β. By Eq. (7), we have posu(α) ≤

posu(γ ) ≤ posu(β). Hence posu(α) ≤ posu(β) and so, by Eq. (7), α � β.
Axiom L2 : Suppose that α � β. By Eq. (7), we have posu(α) �= posu(β) and so also

α �= β. Hence, by Eq. (7), α �sym β.
Axiom L3 : Suppose that α �= β and α �� β. Then, by Eq. (7), posu(α) = posu(β).

Hence, by Eq. (7), α � β � α.
Conversely, suppose that α � β � α. Then, by Eq. (7), posu(α) = posu(β) and α �= β.

Moreover, by Eq. (7), α �� β.
Axiom L4 : Suppose that α �= β and �(α) = �(β). Then posu(α) �= posu(β) and so, by

Eq. (7), α � β.
As a result, sos ∈ SOS.
Suppose now that α = 〈a, i〉 ∈ Δ and β = 〈a, j〉 ∈ Δ, where i �= j . Then i < j ⇐⇒

posu(α) = posu(β). Hence, by Eq. (7), the first part of Eq. (5) holds.
Finally, suppose that α = 〈a, i〉 ∈ Δ and β = 〈b, k〉 ∈ Δ are such that α �� β and

α �= β. Then, by Eq. (7), posu(α) = posu(β). Hence, by u ∈ SSEQθ , we have 〈a, b〉 ∈ sim,
and so the second part of Eq. (5) holds.

As a result, sos ∈ SOSθ . Hence both mappings are well-defined.
Suppose now that u ∈ SSEQθ . By Proposition 15, τsseq2sos(u) = occseq(u). Hence we

obtain sos2sseq(sseq2sos(u)) = �(τsseq2sos(u)) = �(occseq(u)) = u. � 
Proof of Proposition 15. Suppose that occseq(u) = Δ1 . . . Δk and sos = sseq2sos(u) =
〈Δ, �, �, �〉. Clearly, Δ1, . . . , Δk is a partition of Δ. Moreover, from Eq. (7) it follows that
� = ⋃{Δi ×Δ j | i �= j}, � = ⋃{Δi ×Δ j | i ≤ j}\idΔ and≺ = ⋃{Δi ×Δ j | i < j}.
Hence, by Proposition 13(1), τsseq2sos(u) = occseq(u). � 
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Proof of Proposition 16. (i) � is symmetric by (sim\seq−1)−1 = sim−1\seq =
sim\seq and Eq. (8). Clearly, it is also irreflexive by Eq. (8). Also, by Eq. (8) and the fact
that sim\seq−1 is irreflexive, � is irreflexive.
(ii) Follows directly from Eq. (8).
(iii) Clearly, 〈a, i〉 ⊀ 〈a, j〉 for i = j , and so without loss of generality we can assume
i < j and posu(〈a, i〉) < posu(〈a, j〉).
Then, by Eq. (8) and 〈a, a〉 /∈ (sim ∩ seq) ∪ (sim ∩ seq−1), 〈a, i〉 � 〈a, j〉 � 〈a, i〉.
Moreover, 〈a, a〉 /∈ seq ∩ seq−1 and so, by Eq. (8), 〈a, i〉 � 〈a, j〉. We then observe
that 〈a, j〉 � 〈a, i〉 is impossible by Eq. (8) and posu(〈a, i〉) < posu(〈a, j〉).
(iv) By Eq. (8), α �� β implies posu(α) = posu(β). This and α �= β means that
�(α) �= �(β). Hence 〈�(α), �(β)〉 ∈ sim since u ∈ SSEQθ .
(v) The first part of Eq. (5) follows from (i i i), and the second from (iv).
(vi)We need to show that os is label-linear and separable. The former follows from (i i i).
Moreover, if α �� β and α �= β then, by (iv), posu(α) = posu(β). Hence, by Eq. (8),
α �� β and so os is separable. � 

Proof of Proposition 17. (1) Let os = sseq2osθ (u) = 〈Δ, �, �, �〉. By Theorem 5, it
suffices to show that sos = sseq2sos(u) belongs to os2soss(os).

Thus we prove that sos is a saturated version of os. Suppose that α � β. Then, by
Eq. (8), posu(α) �= posu(β). Hence α �sos β. Next suppose that α � β. Then, by Eq. (8),
posu(α) ≤ posu(β). Hence α �sos β. As a result, sos ∈ os2soss(os).

(2) Let sseq2osθ (u) = 〈Δ, �, �, �〉 and sseq2osθ (w) = 〈
Δ, �′, �′, �

〉
. It suffices to

show the result in the following two cases.

Case 1: u = AB, w = BA and A × B ⊆ seq ∩ seq−1. Then, by seq being irreflexive, we
have that occseq(u) = Δ1Δ2 and occseq(w) = Δ2Δ1, for someΔ1 andΔ2. Clearly,�=�′
as (sim ∩ seq)−1 = sim ∩ seq−1. Moreover, �=�′ as the following holds, by Eq. (8) and
A × B ⊆ seq ∩ seq−1:

((Δ1 ×Δ2) ∪ (Δ2 ×Δ1))∩ �= ((Δ1 ×Δ2) ∪ (Δ2 ×Δ1))∩ �′= ∅ .

Case 2: u = AB, w = A ∪ B and A × B ⊆ seq. Then, by seq being irreflexive, we have
that occseq(u) = Δ1Δ2 and occseq(w) = Δ1 � Δ2, for some Δ1 and Δ2. We then have
�=�′= ∅ as A × B ⊆ sim ∩ seq.

Suppose that α ∈ Δ1 and β ∈ Δ2. Then α � β iff 〈�(α), �(β)〉 ∈ sim\seq−1. Moreover,
α �′ β iff 〈�(α), �(β)〉 /∈ seq ∩ seq−1 iff 〈�(α), �(β)〉 ∈ sim\seq−1 (since 〈�(α), �(β)〉 ∈
sim ∩ seq).

Suppose now that α ∈ Δ2 and β ∈ Δ1, and so 〈�(β), �(α)〉 ∈ seq. Then α ��′ β, by
Eq. (8). If α � β then 〈�(α), �(β)〉 ∈ sim\seq−1, contradicting 〈�(β), �(α)〉 ∈ seq.

As a result, �=�′. � 
Proof of Proposition 19. Let w = A1 . . . Ak be a longest step sequence such that u ≡θ w.
Suppose that w is not thin, and Ai is not a min-step, for some i ≤ k. This means that
there are steps B,C such that Ai = B � C and B × C ⊆ seq ∩ sim. Hence w ≈θ

A1 . . . Ai−1BCAi+1 . . . Ak , contradicting the choice of w. � 
Proof of Proposition 20. We start by defining an auxiliary notion and a result.

A linearisation of an acyclic binary relation ! over a finite set X is any enumeration
u = x1 . . . xk of the elements of X such that xi ! x j implies i < j , for all i, j ≤ k.
Furthermore, we write u "# w if w = x1 . . . xi−1xi+1xi xi+2 . . . xk , where xi and xi+1 are
such that xi �! xi+1 �! xi . � 
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Lemma 2 If u and w are linearisations of! then u "#∗ w.

Proof We proceed by induction on |X |. In the base case, |X | = 0, we have that both u and
v are the empty enumeration. In the inductive case, |X | > 0, we proceed as follows.

Since X is nonempty and finite, and ! acyclic, there is an x ∈ X such that there is no
y ∈ X ′ = X\{x} such that y ! x . We now observe that there is a u′ such that u "#∗ xu′.
Indeed, suppose that u = y1 . . . ymxu′′. Then, for all i ≤ m, we have yi �! x (by the
choice of x), and x �! yi (by u being a linearisation of !). Hence u "#∗ xy1 . . . ymu′′.
Similarly, there is w′ such that w "#∗ xw′. We now observe that u′ and w′ are linearisations
of !′=! ∩(X ′ × X ′). Hence, by the induction hypothesis, u′ "#∗ w′. As a consequence,
xu′ "#∗ xw′ and so u "#∗ xu′ "#∗ xw′ "#∗ w. � 

Let u = A1 . . . Ak and occseq(u) = Δ1 . . . Δk . Moreover, let X be the set of all equiva-
lence classes of��, and! be a binary relation overX such that X ! Y if (X×Y )∩ � �= ∅

and (X × Y )∩ � �= ∅.

Lemma 3 ! is an acyclic relation, and occseq(u) is a linearisation of!.

Proof The first part is obvious, and the second follows from Eq. (7). � 
Lemma 4 (X × X)∩ �= ∅, for every X ∈ X .

Proof Follows from os being an order structure (and its separability). � 
Lemma 5 If ξ is a linearisation of ! then sosξ = sseq2sos(�(ξ)) ∈ os2soss(os) and
τsosξ = ξ .

Proof Follows from Lemmata 3 and 4. � 
Lemma 6 X = {Δ1, . . . , Δk}.
Proof Consider Ai and Δi . Since Ai is a min-step, the graph of the relation (Ai × Ai )\seq
over Ai is strongly connected. Hence, by Eq. (8), the graph of � restricted to the nodes of
Δi is also strongly connected. Suppose that α ∈ Δ\Δi and β ∈ Δi are such that α �� β.
Then, by Eq. (8), posu(α) = posu(β) and so α ∈ Δi , a contradiction. It therefore follows
that Δi ∈ X .

The result follows as both Δ1, . . . , Δk and X are partitions of Δ. � 
Lemma 7 Let sos′ ∈ os2soss(os), τsos′ = Φ1 . . . Φm and j ≤ m.

(i) Φ j is the union of some Δi ’s.
(ii) (Φ j ×Φ j )∩ �= ∅.
(iii) If there is no sos′′ ∈ os2soss(os) such that sos′≈̇θ sos′′ and the length of τsos′′ is greater

than m, then τsos′ is a linearisation of!.
(iv) If X and Y are distinct elements ofX satisfying X �! Y and Y �! X, then �(X)×�(Y ) ⊆

seq ∩ seq−1.
(v) If ξ is a linearisation of! then sosξ ≡̇θ sos′.

Proof (i) Follows from the fact that ifΦ j∩Δi �= ∅ thenΔi ⊆ Φ j asΔi is an equivalence
class of ��.
(ii) Follows from Proposition 14.

123

Author's personal copy



Step traces 63

(iii) By part (i), Φ j = Δi1 � · · · � Δil . Suppose that l > 1. Since ! is acyclic, there
is s ≤ l such that there is no z ∈ Z = {i1, . . . , il}\{is} with Δz ! Δis (i.e.,Δis is
!-minimal).
Consider next the nonempty sets Δis and Φ j\Δis . Suppose α ∈ Δis and β ∈ Δz , for
some z ∈ Z , which means that posu(α) �= posu(β). By Eq. (8) and α ��sos′ β, we
have 〈�(α), �(β)〉 ∈ sim. Suppose that 〈�(α), �(β)〉 /∈ seq. Then, by Eq. (8), β � α,
contradicting the choice of Δis (!-minimality). As a result, Ais ×

⋃
z∈Z Az ⊆ seq.

Hence

sos′′ = sseq2sos(�(Φ1 . . . Φis−1Δis (
⋃

z∈Z
Δz)Φis+1 . . . Φm))

is such that sos′≈̇sos′′ and sos′′ ∈ os2soss(os). This produces a contradiction with the
choice of sos′. Hence τsos′ is a linearisation of!.
(iv) Let α ∈ X and β ∈ Y . Then, by Proposition 16(i i) (1st or 3rd line), we have
〈�(α), �(β)〉 ∈ (sim ∩ seq ∩ seq−1) ∪ (seq ∩ seq−1\sim) = seq ∩ seq−1.
(v) By (i i i), we can assume that τsos′ is a linearisation of !. By Lemma 2, there are
linearisations v1, . . . , vr of ! such that τsos′ = v1 ∼ · · · ∼ vk = ξ . We then observe
that the result follows from (iv). � 

Lemma 8 Let u ∈ SSEQthin
θ and os = sseq2osθ (u) = 〈Δ, �, �, �〉. Then sseq2sos(u)

≡̇θ sos, for every sos ∈ os2soss(os).

Proof Follows from Lemmata 3 and 7. � 
We now observe that Proposition 20 follows Propositions 17(1) and 19, Lemma 8.

Proof of Theorem 7. Follows from Theorems 4 and 6, Proposition 18, and the following
argument.

Let u ∈ SSEQθ . Suppose that w ≡θ u. Then, by Proposition 17(1), sseq2osθ (w) =
sseq2osθ (u). Hence, by Proposition 17(1), w ∈ sos2sseq ◦ os2soss ◦ sseq2osθ (u).
As a result, �u�θ ⊆ sos2sseq ◦ os2soss ◦ sseq2osθ (u). Moreover, by Proposition 20,
sos2sseq ◦ os2soss ◦ sseq2osθ (u) ⊆ �u�θ . Hence �u�θ = sos2sseq ◦ os2soss ◦
sseq2osθ (u). � 
Proof of Proposition 21. Let os = 〈Δ, �, �, �〉. Since � is injective, we may assume that
each α ∈ Δ is of the form 〈a, 1〉 with �(α) = a. Hence Δ is an event domain.

By Proposition 11, there is sos ∈ os2soss(os) �= ∅. Clearly, sos ∈ SOSθ , for any
generalised concurrency alphabet θ = 〈�(Δ), sim, seq〉. Wewill now show how to construct
sim and seq in order to obtain a desired alphabet.

First, we observe that the layer sequence τsos is well-defined even though θ is not fully
defined. Moreover, τsos can be treated as a step sequence over the alphabet Δ. We then
construct sim and seq as follows, by taking all pairs of distinct α, β ∈ Δwith k = posτsos(α)

and m = posτsos(β):

Case 1: α �� β ∧ β �� α ∧ α �� β. Then we add 〈�(α), �(β)〉 and 〈�(β), �(α)〉 to both
sim and seq.
Case 2: α � β∧β � α∧α �� β. Then k = m and we add 〈�(α), �(β)〉 and 〈�(β), �(α)〉
to sim.
Case 3: α �� β∧β �� α∧α � β. Then k �= m and we add 〈�(α), �(β)〉 and 〈�(β), �(α)〉
to seq.
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Case 4: α � β∧β �� α∧α �� β. Then k ≤ m and we add 〈�(α), �(β)〉 and 〈�(β), �(α)〉
to sim, and 〈�(α), �(β)〉 to seq.
Case 5: α � β ∧ β �� α ∧ α � β. Then k < m and we do not add anything.

Note that the above construction follows from the characterisation provided by Proposi-
tion 16(2).

We observe that θ is a generalised concurrency alphabet. Indeed, sim and seq are irreflex-
ive by construction and the fact that α �= β implies �(α) �= �(β). Moreover, sim is symmetric
by construction, and seq\sim is symmetric because it can only acquire pairs of elements in
Case 3.

Let u = sos2sseq(sos) = �(τsos). Then u ∈ SSEQθ follows from the fact that, in the
above construction, if k = m then we have Case 1 or Case 2 or Case 4. We then observe that
os = sseq2osθ (u) follows from Eq. (8). � 
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