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When arbitrary sets are approximated by more structured sets, it may not be possible to 
obtain an exact approximation that is equivalent to a given set. Presented here, is a new 
proposal for a ‘metric’ approach to Rough Sets. We assume some finite measure space is 
defined on a given universe, and then use it to define various similarity indexes. A set 
of axioms and the concept of consistency for similarity indexes are also proposed. The 
core of the paper is a definition of the ‘optimal’ or ‘best’ approximation with respect to 
any particular similarity index, and an algorithm to find this optimal approximation by 
using the Marczewski–Steinhaus Index. This algorithm is also shown to hold for a class of 
similarity indexes that are consistent with the Marczewski–Steinhaus Index.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and motivation

When numerical data is generated empirically there is often some perturbation in the collection or recording of the 
data. Often, to accommodate the possibility of errors it is assumed that the true value for each piece of data is within 
some interval around the measured data. For example if the measured data is x, we might assume that the true value is in 
the range (x − ε, x + ε). These values can be taken as the lower and upper approximations. When the measurement of data 
involves identifying or selecting a subset of items from a universe of possible items, and certain groups of the items are 
deemed equivalent under some criteria, Rough Sets are an appropriate tool for analysis [16,17].

The concepts of lower and upper approximation have long been defined in the context of Rough Sets, but the concept 
of an approximation is not restricted only to lower and upper approximations. Consider the well known linear least squares 
approximation of points in the two dimensional plane (credited to C. F. Gauss, 1795, cf. [2]). Here we know or assume that 
the points should be on a straight line and we are trying to find the line that fits the data best. However, this is not the 
case of an upper, or lower approximation in the sense of Rough Sets. The cases like the linear least squares approximation 
assume that there is a well defined concept of similarity (or distance) and some techniques for finding maximal similarity
(minimal distance) between entities and their approximations.

What the Rough Sets approach seems to be missing is a feasible concept of the ‘best’ or ‘optimal’ approximation to a set. 
In this paper, which is a substantial generalization and extension of the ideas first proposed in [11], we provide a solution 
to this problem.

What we propose is a ‘metric’ or standard of measurement for comparison within the framework of Rough Sets [16] and 
a technique of using it.
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We start with an assumption that our universe of elements is a finite measure space. This is a substantial extension of 
the model from [11] where cardinality was considered a measure of a set. Then we present axioms which we require for 
any similarity index to satisfy if it is to be used to find an optimal approximation. Next we introduce and analyze several 
similarity indexes for arbitrary sets. As most of these indexes were originally defined with cardinality as a measure of sets 
[4], we also provide their finite measure generalizations.

Later we define what it means for a Rough Sets approximation to be optimal (with respect to a given similarity index), 
and what it means for similarity indexes to be consistent. We also show that consistent similarity indexes yield to identical 
optimal approximations.

The main result of this paper is an efficient greedy algorithm which yields an optimal rough sets approximation for any 
given set X, when the Marczewski–Steinhaus similarity index is used, and some finite measure space is given. The algorithm is 
based on the properties of an index that quantifies the ratio of common to distinct elements of two given sets. We used the 
Marczewski–Steinhaus similarity index as an engine of our algorithm because it has a very natural and regular definition 
and convenient mathematical properties (it can be transformed into a metric).

The results are more general in that it appears it can be used with very minor changes for any similarity index that is 
consistent with the Marczewski–Steinhaus index, and this class is fairly large.

The paper is organized as follows. In Section 2 we recall the basic notions of Rough Sets and define the concept of border 
sets, while Section 3 adapts some ideas of measure theory for our purposes. In Section 4 we discuss several known similarity 
indexes in the context of measure theory, propose some axioms we think the similarity indexes should obey, define the 
concept of consistency for similarity indexes, and introduce the notion of optimal approximation in the framework of Rough 
Sets. Section 5 contains the main result of this paper, namely an efficient algorithm for finding optimal approximation when 
the very general and intuitive Marczewski–Steinhaus [13] index is used. We also show that this algorithm can be used 
with minor changes for any similarity index that is consistent with Marczewski–Steinhaus index. Section 7 analyses some 
examples that illustrate our concepts. A case of a similarity index that is not consistent with Marczewski–Steinhaus index is 
discussed in Section 8, and Section 9 contains final comments.

2. Rough Sets and borders

In this section we introduce, review, and also adapt for our purposes, some general ideas that are crucial to our approach.
The principles of Rough Sets [16,17] can be formulated as follows.
Let U be a finite and non-empty universe of elements, and let E ⊆ U × U be an equivalence relation. Recall that for each 

E ⊆ U × U , [x]E will denote the equivalence class of E containing x, and U/E will denote the set of all equivalence classes 
of E .

The elements of Comp = U/E are called elementary sets or components and they are interpreted as basic observable, 
measurable, or definable sets. We will denote the elements of Comp, i.e. equivalence classes of E , by bold symbols, and 
write for example x ∈ B ⊆ Comp.

The pair AS = (U , E) is referred to as a Pawlak approximation space.
A non-empty set X ⊆ U is approximated by two subsets of U ; A(X) and A(X), called the lower and upper approximations 

of X respectively, and are defined as follows:

Definition 1. (See [16,17].) For each X ⊆ U ,

1. A(X) = ⋃{x | x ∈ Comp∧ x ⊆ X},
2. A(X) = ⋃{x | x ∈ Comp∧ x ∩ X �= ∅}. �

Clearly A(X) ⊆ X ⊆ A(X). There are many versions and many extensions of this basic model, see for example [10,21,22,
26], as well as many various applications (cf. [9,20,22,23]). Even robotic locomotion can utilize this notion to ensure it re-
mains within bounds, and could also use measures of similarity to move based on the best/optimal available (representable) 
approximation of its surroundings [6].

A set A ⊆ U is definable (or exact) [17] if it is a union of some equivalence classes of the equivalence relation E . Let D
denote the family of all definable sets defined by the space (U , E). Formally

A ∈D ⇐⇒ ∃x1, . . . ,xn ∈ Comp. A = x1 ∪ . . . ∪ xn.

We would like to point out the duality of Comp and D. Each set of components C ⊆ Comp uniquely defines the definable 
set dset(C) ∈ D, as dset(C) = ⋃

x∈C x, and each definable set A ∈ D uniquely defines the set of components comp(A) ⊆ Comp, 
by comp(A) = {x | x ⊆ A}.

Moreover, for each set of components C ⊆ Comp we have comp(dset(C)) = C, and for each definable set A ∈ D we have 
dset(comp(A)) = A.

Clearly every lower and upper approximation is a definable set, i.e. A(X) ∈D and A(X) ∈D for every X ⊆ U . Furthermore, 
all definable sets are equal to their lower and upper approximations, as the below corollary shows.

Corollary 1. For every X ⊆ U , X ∈D ⇐⇒ A(X) = A(X) = X. �
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Since the definable sets in the area between the upper and lower approximations will play an important role in our 
model, we need to precisely define this area.

Definition 2. For every X ⊆ U , we define the set of components B(X) ⊆ Comp called the border of X , and the set of border 
sets of X called B(X) ⊆ D, as follows:

1. x ∈B(X) ⇐⇒ x ∈ comp(A(X)) \ comp(A(X)),
2. A ∈ B(X) ⇐⇒ A ⊆ A(X) \ A(X) ∧ A ∈D. �

The border and boarder sets are building blocks for our optimal approximation defined later. The corollary below de-
scribes basic properties of borders and border sets.

Corollary 2. For every X ⊆ U ,

1. dset(B(X)) = A(X) \ A(X) ∈ B(X) and B(X) ⊆ B(X),
2. A ∈ B(X) ⇐⇒ ∃{x1, . . . , xn} ∈B(X). A = x1 ∪ . . . ∪ xn,
3. if A ∈ B(X) then A ∩ X �= ∅ and A \ X �= ∅.
4. if X ∈D then B(X) = ∅. �

Corollary 2(3) will often be used later in proofs of many important results of this paper. It states that if X is not definable, 
then it overlaps with each element of its border set.

3. Measures

In this section we recall some basic results from measure theory, adapted to our purposes (cf. [7,15]).
Let U be a set (not necessarily finite) and let μ : 2U → R, where R is a set of real numbers, be a function that satisfies 

the following properties:

1. for all X ⊆ U , 0 ≤ μ(X) < ∞,
2. μ(∅) = 0,
3. if Xi ⊆ U for i = 1, . . . , ∞ and Xi ∩ X j = ∅ if i �= j, then

μ(

∞⋃
i=1

Xi) =
∞∑

i=1

μ(Xi).

Any such function is called a finite measure over 2U , and a triple (U , 2U , μ) is a measure space (cf. [7,15]). One can show 
that μ also satisfies:

• for all X , Y ⊆ U , if X ⊆ Y then μ(X) ≤ μ(Y ),
• for all Xi ⊆ U , where i = 1, . . . , ∞ (and Xi are not necessarily disjoint), we have

μ(

∞⋃
i=1

Xi) ≤
∞∑

i=1

μ(Xi).

A set X such that μ(X) = 0 is called a μ-null set and all μ-null sets are called negligible.

• A measure space (U , 2U , μ) is null set free if the empty set, ∅, is the only μ-null set, i.e. if μ(X) = 0 ⇐⇒ X = ∅.

In the standard theory of measure, the property of null set freeness is not defined and not discussed (cf. [7,15]), however 
this is an important property for our approach. Note that for example cardinality is a null free measure.

If a set U is finite, the definition of a measure can be simplified.

• From (3) of the measure definition, we have that if X = {x1, . . . , xm}, then μ(X) = μ({x1}) + . . . + μ({xm}).

This means that for finite sets we can define a measure element-wise, as μ : U →R and then just extend it for sets in a 
standard way as, for every X ⊆ U ,

μ(X) =
∑

μ(x).

x∈X
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We will assume that if a set U is finite, a measure μ is element-wise defined. Discrete probability is an element-wise 
defined measure, with μ(U ) = 1.

• If U is finite then a measure space is null free if for every x ∈ U , μ(x) > 0.

Cardinality is an example of null free element-wise defined measure given by μ(x) = 1 for all x ∈ U .

4. Similarity indexes

The model extended in this paper requires us to have a way to conceive of, and consequently quantify, similarity between 
two sets. It is important to point out that in this context we evaluate similarity between sets, but not between elements (cf.
[23]), and that these indexes do not assume any specific interpretation of sets as done in [20].

We only assume that we have a set U (not necessarily finite) and a finite measure space (U , 2U , μ).
Suppose that we have a (total) function sim : 2U ×2U → [0, 1] that measures similarity between sets. While such functions 

have been known since the beginning of the twentieth century [8], they do not have standard indisputable axiomatization 
[4]. Depending on the area of application, some desirable properties may vary [4,19,25].

In this paper we will assume that the function sim satisfies the following five, intuitive axioms. Namely, for all sets A, 
B ⊆ U , we have:

S1 (Maximum) : sim(A, B) = 1 ⇐⇒ A = B,

S2 (Symmetry) : sim(A, B) = sim(B, A),

S3 (Minimum) : sim(A, B) = 0 ⇐⇒ A ∩ B = ∅,

S4 (Inclusion) : if a ∈ B \ A then sim(A, B) < sim(A ∪ {a}, B),

S5 (Exclusion) : if a /∈ A ∪ B and A ∩ B �= ∅ then sim(A, B) > sim(A ∪ {a}, B)

Most similarities assume the axioms S1–S3 either explicitly or implicitly. The axioms S4 and S5, although satisfied by 
many known similarities, were only recently proposed in [11]. The axioms S1–S5 as formulated above also follow from [11].

In this paper we also propose a weakened version of S5, namely:

S5′ (Weak Exclusion) : if a /∈ A ∪ B then sim(A, B) ≥ sim(A ∪ {a}, B)

The first axiom ensures that if and only if a similarity measure returns one, the two sets are equal. The second axiom 
is the symmetry of similarity measures, meaning that one set is the same distance from a second set, as the second set is 
from the first, and the third axiom states that if two sets do not share any elements, their similarity is zero, and vice versa.

The axioms S4 and S5 deal with changing sizes of sets. We will call them monotonicity axioms. Axiom S4 dictates that 
if we add part of B to A, the result is closer to B than A alone, while axiom S5 reduces to the notion that if we add 
to A some new element not in B , then the result is more distant from B than A alone. The axiom S5 is only applicable 
when the sets being compared have at least one common element, i.e. sim(A, B) > 0. Otherwise sim(A, B) = sim(A, B) =
sim(A ∪ {a}, B) = 0, but since we allow for equality, this requirement is not present in the weakened version. We also 
provide a weakened fifth axiom, in which adding an element to A which was in neither set, may not necessarily decrease 
the similarity between them, allowing for the possibility of leaving the value unchanged.

We will also say that a measure of similarity sim is metrical (i.e. it is a suitable tool to evaluate distance between two 
sets), if the function diff (A, B) = 1 − sim(A, B) is a proper metric or distance1 which holds for all A, B ⊆ U (cf. [3,4]).

The first similarity measure was proposed in 1901 by P. Jaccard [8]. It is still one of the most popular, however the 
following similarity measures are also prominent in the literature at this point in time:

• Jaccard index [8]: sim J (X, Y ) = |X∩Y |
|X∪Y | ,

• Dice–Sørensen index [5,24]: simD S(X, Y ) = 2|X∩Y |
|X |+|Y | ,

• Marczewski–Steinhaus μ-index [13,14]: simM S (X, Y ) = μ(X∩Y )
μ(X∪Y )

, where μ is a finite measure on some U such that X , 
Y ⊆ U ,

• Tversky index [25]: simα,β
T (X, Y ) = |X∩Y |

|X∩Y |+α|X\Y |+β|Y \X | , where α, β ≥ 0 are parameters. Note that for α = β = 1, 

simα,β
T (X, Y ) = sim J (X, Y ) and for α = β = 0.5, simα,β

T (X, Y ) = simD S (X, Y ).

• Braun-Blanquet index2 [1,4]: simBB(X, Y ) = |X∩Y |
max(|X |,|Y |) .

1 This means if the function diff satisfies (cf. [3,4]):

1. diff (A, B) ≥ 0,
2. diff (A, B) = 0 ⇐⇒ A = B ,
3. diff (A, B) = diff (B, A),
4. diff (A, C) ≤ diff (A, B) + diff (B, C), i.e triangle inequality.

2 This index was recently reinvented and analyzed in [19] in the context of Fuzzy Sets. The authors of [19] were probably unaware of its long existence.
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In general, a measure space from Marczewski–Steinhaus μ-index may not be null set free, so it may not satisfy the 
axiom S3, however in practically all known applications, particular measure spaces are null set free (cf. [18]).

In our model the axiom S3, i.e. null set freeness, is important as for instance the results of Section 6 do not hold when 
S3 is not satisfied. Hence, from now on, we assume that every measure space (U , 2U , μ) discussed in this paper is null set free. 
A finite universe U is one of the principal assumptions of Rough Sets (see Section 2) and for finite U enforcing null set 
freeness is natural anyway, we just have to delete from U all elements a, such that μ(a) = 0, and then deal with this new 
smaller universe.

In this paper we will also pay attention to a special version of Tversky index, when α = β . We will call it Symmetric 
Tversky index, and define it formally as

• Symmetric Tversky index: simα
sT (X, Y ) = |X∩Y |

|X∩Y |+α|X\Y |+α|Y \X | = |X∩Y |
|X∩Y |+α|(X∪Y )\(X∩Y )| .

If μ(X) = |X |, then sim J (X, Y ) = simM S (X, Y ), so the Jaccard index is a special case of more general Marczewski–
Steinhaus μ-index.

When we replace the cardinality with finite measure in other indexes, we get:

• Dice–Sørensen μ-index: simμD S(X, Y ) = 2μ(X∩Y )
μ(X)+μ(Y )

,

• Tversky μ-index: simα,β
μT (X, Y ) = μ(X∩Y )

μ(X∩Y )+αμ(X\Y )+βμ(Y \X)
,

• Symmetric Tversky μ-index:

simα
μT (X, Y ) = μ(X ∩ Y )

μ(X ∩ Y ) + αμ(X \ Y ) + αμ(Y \ X)
= μ(X ∩ Y )

μ(X ∩ Y ) + αμ((X ∪ Y ) \ (X ∩ Y ))
,

• Braun-Blanquet μ-index: simμBB(X, Y ) = μ(X∩Y )
max(μ(X),μ(Y ))

.

In the terminology introduced above, Jaccard μ-index and Marczewski–Steinhaus μ-index mean the same formula.
All the similarity indexes above clearly have values between 0 and 1 and all, except (general) Tversky index and Tversky 

μ-index, satisfy the similarity axioms S1–S4. The Tversky index is not, in general, symmetric, so it may not satisfy S2.3 The 
Braun-Blanquet index does not satisfy S5, it only satisfies S5′ .

Proposition 1 (Similarity axioms and similarity indexes).

1. Marczewski–Steinhaus μ-index, Dice–Sørensen μ-index and Symmetric Tversky μ-index satisfy axioms S1–S5.
2. Tversky μ-index satisfies axioms S1 and S3–S5. It satisfies S2 if and only if α = β . Tversky index also satisfies S2 if and only if 

α = β .
3. Braun-Blanquet μ-index satisfies axioms S1–S4 and S5′ .

Proof. In the proof below we admit infinite or even uncountable sets, but a measure μ must be finite and null-free.
(Marczewski–Steinhaus μ-index) Only S4–S5 are not immediately obvious. If a ∈ B \ A, then a /∈ A ∩ B , so μ((A ∪ {a}) ∩

B) = μ(A ∩ B) + μ({a}). On the other hand A ∪ B = (A ∪ {a}) ∪ B , so simM S (A, B) = μ(A∩B|
μ(A∪B)

<
μ(A∩B)+μ({a})

μ(A∪B)
= simM S (A ∪

{a}, B).
Hence S4 does hold.
If a /∈ A ∪ B then A ∩ B = (A ∪ {a}) ∩ B and (A ∪ {a}) ∪ B = (A ∪ B) ∪ {a}, so

μ((A ∪ {a}) ∪ B) = μ(A ∪ B) + μ({a}).
Thus simM S (A, B) = μ(A∩B)

μ(A∪B)
>

μ(A∩B)
μ(A∪B)+μ({a}) = simM S (A ∪ {a}, B), so S5 holds too.

(Dice–Sørensen μ-index) Only S4–S5 are not immediately obvious. For S4 we have again μ(A ∪ {a}) ∩ B) = μ(A ∩ B) +
μ({a}). Define n = μ(A ∩ B), m = μ(A) + μ(B). Clearly n < m. Also note that μ(A ∪ {a}) = μ(A) + μ({a}). Hence:

n < m ⇐⇒ 2nm + 2nμ({a}) < 2nm + 2mμ({a}) ⇐⇒
simμD S(A, B) = 2n

m
<

2n + 2μ({a})
m + μ({a}) = simμD S(A ∪ {a}, B),

which means that S4 holds.
If a /∈ A ∪ B , then simμD S(A, B) = 2n

m > 2n
m+μ({a}) = simμD S(A ∪ {a}, B), so S5 holds too.

3 Tversky index is an asymmetric by design similarity index on sets that compares a variant to a prototype. If we consider X to be the prototype and Y
to be the variant, then α corresponds to the weight of the prototype and β corresponds to the weight of the variant. For the interpretation of X and Y as 
prototype and variant, α usually differs from β [25]. However for the interpretations used in this paper, the case α �= β does not make much sense.
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(Tversky and Symmetric Tversky μ-indexes) If X = Y then simα,β
μT (X, Y ) = simα,β

μT (Y , X). If X �= Y then simα,β
μT (X, Y ) =

simα,β
μT (Y , X) ⇐⇒ α = β . Let n = μ(A ∩ B), k = μ(A \ B) and l = μ(B \ A).
If a ∈ B \ A then μ(A ∪ {a}) ∩ B = μ(A ∩ B) + μ({a}) = n + μ({a}), (A ∪ {a}) \ B = A \ B , and B \ A = (B \ (A ∪ a)) ∪ {a}. 

Hence
simα,β

μT (A, B) = n
n+αk+βl <

n+μ({a})
n+αk+β(l−μ({a})) = simα,β

μT (A ∪ {a}, B), so we are done with S4.

If a /∈ A ∪ B , then simα,β
μT (A, B) = n

n+αk+βl > n
n+α(k+μ({a}))+βl = simα,β

μT (A ∪ {a}, B), so S5 holds too.
(Braun-Blanquet index) It obviously satisfies S1–S3. Let n = μ(A ∩ B), r = μ(A) and s = μ(B). If a ∈ B \ A and μ(A) ≥

μ(B), then n < r so
simμB B(A, B) = n

r <
n+μ({a})
r+μ({a}) = simμB B(A ∪ {a}, B).

If μ(A) + μ({a}) < μ(B), then simμB B(A, B) = n
s <

n+μ({a})
s = simμB B(A ∪ {a}, B).

If μ(A) < μ(B) < μ(A) + μ({a}), then simμB B(A, B) = n
s <

n+μ({a})
r+μ({a}) = simμB B(A ∪ {a}, B).

Hence S4 does hold is this case.
If a /∈ A ∪ B and μ(B) ≤ μ(A), then simμB B(A, B) = n

s > n
s+μ({a}) = simμB B(A ∪ {a}, B). If μ(A) + μ({a}) > μ(B) > μ(A), 

then simμB B(A, B) = n
r > n

s+μ({a}) = simμB B(A ∪ {a}, B). However if μ(B) > μ(A) + μ({a}), then simμB B(A, B) = n
r =

simμB B(A ∪ a, B). This means that only S5′ , not S5, is satisfied. �
Note that none of the above results holds if a measure μ is not finite, however Proposition 1 still holds for not null set 

free measures if the axiom S3 is not required.
From all the indexes analyzed above, only Marczewski–Steinhaus μ-index (i.e. also Jaccard index) is metrical as 

diff M S (X, Y ) = 1 − simM S (X, Y ) is a proper metric [13]. Also diff M S (X, Y ) = μ((X\Y )∪(Y \X))
μ(X∪Y )

, appears to have a natural in-

terpretation, while the other differences, diff μD S(X, Y ), diffα,β
μT (X, Y ), and diffμBB(X, Y ) look rather artificial.

The Symmetric Tversky index and μ-index are useful when one wants to express the difference of importance (w.r.t. 
similarity) between the intersection X ∩ Y and the rest of X ∪ Y , i.e. (X ∪ Y ) \ (X ∩ Y ). If α < 1, the measure of X ∩ Y is 
more influential than that of the rest of X ∪ Y , i.e. (X ∪ Y ) \ (X ∩ Y ), if α > 1 it is otherwise. Both Marczewski–Steinhaus 
and Dice–Sørensen μ-indexes are special cases of the Symmetric Tversky μ-index, the former with α = 1 and the latter 
with α = 0.5.

The Tversky μ-index with α �= β implies simα,β
μT (X, Y ) �= simα,β

μT (Y , X) for all X �= Y , which is hard to justify and interpret 
in the setting of this paper. We will show that the concept of optimal approximation proposed later does not work for 
Tversky μ-index with α �= β .

5. Optimal approximations

Let AS = (U , E) be a Pawlak approximation space, i.e. U is a finite and non-empty set, called universe, and E ⊆ U × U is 
an equivalence relation on U .

We can now provide our general definition of optimal approximation.

Definition 3. For every set X ⊆ U , a definable set O ∈ D is an optimal approximation of X (w.r.t. a given similarity measure
sim that satisfies the axiom S2) if and only if:

sim(X,O) = max
A∈D

(sim(X,A))

The set of all optimal approximations of X will be denoted by Optsim(X). �
A specific optimal approximation depends on the precise definition of the similarity measure sim. If sim1 �= sim2 then 

clearly Optsim1
(X) might differ from Optsim2

(X) for some X ⊆ U .
Note that Definition 3 does not make any sense for the Tversky μ-index with α �= β , as is such case, if X �= O, then 

simα,β
μT (X, A) > simα,β

μT (A, X) ⇐⇒ α < β . In the rough sets approach there is no reason why the set X \ A should be treated 
differently than A \ X . While similarities without the axiom S2 have some applications (for example to make a distinction 
between prototypes and variants, cf. [25]), they are not part of this paper.

Axioms S4 and S5 imply that all optimal approximations reside between lower and upper approximations (inclusive), 
for all similarity indexes that satisfy them.

Proposition 2. Assume that a similarity index sim(. . .) satisfies the axioms S4–S5. Then, for every set X ⊆ U , and every O ∈
Optsim(X), we have

A(X) ⊆ O ⊆ A(X)
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Proof. Suppose that A(X) � O, i.e. C = A(X) \ O �= ∅. Since C ⊆ X , then by axiom S4, sim(O, X) < sim(O ∪ C, X), so O must 
not be optimal. Now suppose that O � A(X), i.e. C = O \ A(X) �= ∅. By axiom S5, sim(O \ C, X) > sim(O, X), so O must not 
be optimal again. �

We also have to note here that the above result depends on the axiom S5 and its weakened version S5′ does not suffice, 
so Proposition 2 cannot be applied for Braun-Blanquet μ-index.

For example, consider the universe of elements U = {a1, a2, b1, b2, b3, c1, c2, c3, c4, c5, c6, c7, d1} with equivalence classes 
Comp = {A, B, C, D}, where A = {a1, a2}, B = {b1, b2, b3}, C = {c1, c2, c3, c4, c5, c6, c7}, D = {d1} and select the set X =
{a1, b1, b2, c1, c2, c3}. Also assume that μ(Y ) = |Y | for all Y ⊆ U . When we compare X to all definable sets using the 
Braun-Blanquet index, the maximum similarity value we obtain is 1

2 . We can get this by evaluating simB B(X, A ∪ B), or 
simB B(X, B ∪ C), or simB B(X, A ∪ B ∪ C). By our definition for the definable set A ∪ B ∪ D we get simB B(X, A ∪ B ∪ D) = 1

2
which makes it an optimal approximation, but A ∪ B ∪ D � A(X) = A ∪ B ∪ C .

One of the consequences of Proposition 2 is that any optimal approximation of X , is the union of the lower approxima-
tion of X and some element A ∈ B(X) ∪ {∅}.

Definition 4. Let X ⊆ U , and O ∈D. We say that O is an intermediate approximation of X , if

A(X) ⊆ O ⊆ A(X)

The set of all intermediate approximations of X will be denoted by IA(X). �
Note that it is independent of a similarity index that is used to find an optimal approximation Optsim(X).
From Proposition 2 we have:

Corollary 3. For each set X ⊆ U ,

1. Optsim(X) ⊆ IAsim(X).
2. If O ∈ Optsim(X) then there exists A ∈B(X) ∪ {∅} such that O = A(X) ∪ A.
3. If O ∈ Optsim(X) then there exists B ∈B(X) ∪ {∅} such that O = A(X) \ B. �

These are properties of optimal approximations. The set of them must be a portion of the intermediate approximations. 
Any optimal approximation must be the union of the lower approximation with some definable set which is in the upper 
but not the lower approximation (or is the empty set itself). It must also be possible to represent any optimal approximation 
by the upper approximation with some border set removed from it (or the empty set if the approximation is optimal).

The notion of optimal approximation also introduces some structure to the current available field of similarity measures, 
as certain different similarity indexes may generate the same optimal approximations.

Definition 5. We say that two similarity indexes sim1 and sim2 are consistent if for all sets A, B , C ,

sim1(A, B) < sim1(A, C) ⇐⇒ sim2(A, B) < sim2(A, C). �
This clearly leads to the following result.

Corollary 4. If sim1 and sim2 are consistent then for each X ⊆ U ,

1. Optsim1
(X) = Optsim2

(X).
2. sim1 satisfies the axioms S4 and S5 if and only if sim2 satisfies them. �

These concepts will allow us to extend results and algorithms designed for specific similarity indexes, to larger classes 
of consistent indexes.

First we will show that Marczewski–Steinhaus μ-index and Symmetric Tversky μ-index are consistent.

Proposition 3 (Consistency of Marczewski–Steinhaus and sym. Tversky μ-indexes). For all A, B, C and α > 0

simM S(A, B) < simM S(A, C) ⇐⇒ simα
μsT (A, B) < simα

μsT (A, C).

Proof. If A = C then simM S (A, C) = simα
μsT (A, C) = 1, so the equivalence holds. Assume A �= C . Since simM S (A, C) > 0, then 

A ∩ C �= ∅. Moreover A \ C �= ∅ or C \ A �= ∅. Hence:
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simM S(A, B) < simM S(A, C) ⇐⇒ μ(A ∩ B)

μ(A ∪ B)
<

μ(A ∩ C)

μ(A ∪ C)
⇐⇒

μ(A ∩ B)

μ(A ∩ B) + μ(A \ B) + μ(B \ A)
<

μ(A ∩ C)

μ(A ∩ C) + μ(A \ C) + μ(C \ A)
⇐⇒

μ(A ∩ B)(μ(A \ C) + μ(C \ A)) < μ(A ∩ C)(μ(A \ B) + μ(B \ A)) ⇐⇒
μ(A ∩ B)

μ(A ∩ C)
<

μ(A \ B) + μ(B \ A)

μ(A \ C) + μ(C \ A)
⇐⇒ μ(A ∩ B)

μ(A ∩ C)
<

αμ(A \ B) + αμ(B \ A)

αμ(A \ C) + αμ(C \ A)
⇐⇒

μ(A ∩ B)

μ(A ∩ B) + αμ(A \ B) + αμ(B \ A)
<

μ(A ∩ C)

μ(A ∩ C) + αμ(A \ C) + αμ(C \ A)
⇐⇒ simα

μsT (A, B)

< simα
μsT (A, C). �

The above proposition immediately implies that the Dice–Sørensen and Marczewski–Steinhaus μ-indexes are consistent 
too.

Corollary 5 (Consistency of Marczewski–Steinhaus and Dice–Sørensen μ-indexes). For all A, B, C ,

simM S(A, B) < simM S(A, C) ⇐⇒ simμD S(A, B) < simμD S(A, C).

Proof. Since simμD S (A, B) = sim0.5
μsT (A, B). �

In general the Braun-Blanquet μ-index is not consistent with the Marczewski–Steinhaus index. To show this, consider the 
case of A = {a1, a2, a3, a4}, B = {a1, a2, a3, a5, . . . , a21}, C = {a1, a4, a22, . . . , a32}, and μ is just cardinality, so μ(X) = |X |. We 
have here |A| = 4, |B| = 20, |C | = 13, |A ∩ B| = 3 and |A ∩ C | = 2. Hence simM S (A, B) = 3

21 = 1
7 > simM S (A, C) = 2

15 , while 
simB B(A, B) = 3

20 < simB B(A, C) = 2
13 .

The similarities that do not satisfy the axiom S2 are not covered by the theory presented in this paper, however, for 
curiosity reasons, we will show that Tversky index with α �= β is not consistent with the Jaccard index. Consider A =
{a1, a2, a3, a4}, B = {a1, a2, a3, a4, a6, . . . , a12}, and C = {a3, a4, a5}. Then |A| = 4, |B| = 11, |C | = 3, |A ∩ B| = 4, |A ∩ C | = 2, 
|A ∪ B| = 11, and |A ∪ C | = 5. So in this case sim J (A, B) = 4

11 < sim J (A, C) = 2
5 , but for any α and β such that α

β
> 5

4 , 

we have simα,β
T (A, B) > simα,β

T (A, C). For example for α = 1.5 and β = 1.0 we have simα,β
T (A, B) = 4

11 > simα,β
T (A, C) = 1

3 . 
Hence, in general Marczewski–Steinhaus μ-index and Tversky μ-index are not consistent for α �= β .

So far we have not applied the concept of optimal approximation to any specific similarity measure. We only assumed 
that the function sim satisfies the axioms S1–S5. However to show more specific and detailed properties of optimal approxi-
mations, especially an efficient algorithm to find one, we need to choose a specific similarity measure. Due to Corollary 4(1), 
the results will hold for all other consistent similarity indexes.

6. Optimal approximations with Marczewski–Steinhaus similarity index

This section contains the main results of this paper.
Marczewski–Steinhaus μ-index is metrical, and has a natural and regular definition, which makes it perfect for discover-

ing and proving mathematical results.
Let AS = (U , E) be a Pawlak approximation space (i.e. U is finite), and let μ : U → R be a given finite and null-free

measure on U (defined element-wise).
For every X , Y ⊆ U , such that X \ Y �= ∅, we define the index ρ(X, Y ), called the ratio of common to distinct elements, as 

follows

ρ(X, Y ) = μ(X ∩ Y )

μ(X \ Y )
.

Note that ρ(X, Y ) is sound only if μ is finite and null-free.
By Proposition 1(1), the Marczewski–Steinhaus μ-index satisfies the axioms S1–S5, so the property specified by Propo-

sition 2 and Definition 4 is satisfied.
Now, suppose that O ∈ IA(X) is an intermediate approximation of X , and x ∈ B(X) is an element of the border of X

which has no common element with O, i.e. O ∩ x = ∅. To determine which definable set is a better approximation of X
(more similar to X), O or O ∪ x, we can use the lemma below.
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Lemma 1. Let X ⊆ U , O ∈ IA(X), A, B ∈ B(X), A ∩ O = ∅, and B ⊆ O. Then

1. simM S (X, O ∪ A) ≥ simM S (X, O) ⇐⇒ ρ(A, X) ≥ μ(X∩O)
μ(X∪O)

= simM S (X, O)

2. simM S (X, O \ B) ≤ simM S (X, O) ⇐⇒ ρ(B, X) ≥ μ(X∩O)
μ(X∪O)

= simM S (X, O)

Proof. (1) Let μ(X ∩ O) = n, μ(X ∪ O) = m, μ(A \ X) = l, and μ(A ∩ X) = k, so ρ(A, X) = k
l . By Corollary 2(3) and the fact 

that μ is null-free, the values of n, m, l, k are all bigger than zero.
We have simM S (X, O) = μ(X∩O)

μ(X∪O)
and simM S (X, O ∪ A) = μ(X∩(O∪A))

μ(X∪(O∪A))
.

Because A ∩ O = ∅, μ(X ∩ (O ∪ A)) = μ(X ∩ O) + μ(X ∩ A) = n + k and

μ(X ∪ (O ∪ A)) = μ(X ∪ O) + μ(A \ X) = m + l.

Hence,

simM S(X,O ∪ A) ≥ simM S(X,O) ⇐⇒ n + k

m + l
≥ n

m
⇐⇒ k

l
≥ n

m
⇐⇒ ρ(A, X) ≥ μ(X ∩ O)

μ(X ∪ O)
= simM S(X,O).

(2) Let μ(X ∩ O) = n, μ(X ∪ O) = m, μ(B \ X) = l, and μ(B ∩ X) = k, so ρ(B, X) = k
l . By Corollary 2(3) and the definition 

of a measure μ, the values of n, m, l, k are all bigger than zero.
We have here simM S (X, O) = μ(X∩O)

μ(X∪O)
and simM S (X, O \ B) = μ(X∩(O\B))

μ(X∪(O\B))
.

Because B ⊆ O, μ(X ∩ (O \ B)) = μ(X ∩ O) − μ(X ∩ B) = n − k and

μ(X ∪ (O \ B)) = μ(X ∪ O) − μ(B \ X) = m − l.

Thus,

simM S(X,O \ B) ≤ simM S(X,O) ⇐⇒ n − k

m − l
≤ n

m
⇐⇒ k

l
≥ n

m
⇐⇒ ρ(B, X) ≥ μ(X ∩ O)

μ(X ∪ O)
= simM S(X,O). �

Note that we cannot replace equations (1) and (2) of Lemma 1 by one equation, as the assumptions about A and B are 
entirely different. Moreover Lemma 1 does not hold if the measure μ is not null-free, as then the values on n, m, l, k from 
the proof of Lemma 1 are no longer bigger than zero.

Clearly the above lemma also holds for A = x ∈B(X). Intuitively, if more than half of the elements of x also belong to X , 
or equivalently, if more elements of x belong to X than do not, the rough set O ∪ x should approximate X better than O. 
The results below support this intuition.

Corollary 6 (‘Majority rule’). Let X ⊆ U , O ∈ IA(X), x ∈ B(X), and x ∩ O = ∅. Then: μ(x ∩ X) ≥ μ(x \ X) ⇐⇒ μ(x∩X)
μ(x)

≥ 1
2 �⇒

simM S (X, O ∪ x) ≥ simM S (X, O).

Proof. Clearly μ(x ∩ X) ≥ μ(x \ X) ⇐⇒ μ(x∩X)
μ(x\X)

≥ 1. But μ(X∩O)
μ(X∪O)

≤ 1, so by Lemma 1,

simM S(X,O ∪ x) ≥ simM S(X,O). �
However, the reciprocal of Corollary 6 does not hold. It may happen that μ(x∩X)

μ(x)
< 1

2 , but the rough set O ∪ x still 
approximates X better than O. Consider the following example.

Example 1. Let O = {a1, a2, a3, a4, a5}, x = {b1, b2, b3, b4, b5} and X = {a1, a2, a3, a4, a5, b1, b2, c1}. Here we assume that the 
measure μ is cardinality i.e. μ(A) = |A| for all finite A. Then we have |x∩X |

|x| = 2
5 = 0.4 < 1

2 , but sim J (X, O ∪ x) = 7
11 =

0.636 > sim J (X, O) = 5
8 = 0.6254. �

We know from Proposition 2 that if O ∈ Opt(X), then O = A(X) ∪ x1 ∪ . . . ∪ xk , for some k, where each xi ∈ B(X), 
i = 1, . . . , k. Lemma 1 allows us to explicitly define the components xi ∈B(X).

Theorem 1. For every X ⊆ U , the following two statements are equivalent:

1. O ∈ Opt(X)

2. O ∈ IA(X) ∧ ∀x ∈B(X). 
(

x ⊆ O ⇐⇒ ρ(x, X) = μ(x∩X)
μ(x\X)

≥ μ(X∩O)
μ(X∪O)

= simM S (X,O)
)

.
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Proof. (1) ⇒ (2) By Proposition 2, O ∈ IA(X). Let x ∈ B(X) and x ⊆ O. Suppose that μ(x∩X)
μ(x\X)

<
μ(X∩O)
μ(X∪O)

. Then by Lemma 1, 
simM S (X, O \ x) > simM S (X, O), so O is not optimal.

Let μ(x∩X)
μ(x\X)

≥ μ(X∩O)
μ(X∪O)

. Suppose that x ∈ B(X) and x ∩ O = ∅. By Corollary 2(3), we have x ∩ X �= ∅, so let a ∈ x ∩ X . Since 
x ∩ O = ∅, then a ∈ X \ O. Then by Proposition 1(1) and axiom S4, simM S (X, O ∪ {a}) > simM S (X, O), so O is not optimal. 
Note that Lemma 1 gives only simM S (X, O ∪ x) ≥ simM S (X, O) which is not strong enough.

(2) ⇒ (1) Suppose O satisfies (2) but O /∈ Opt(X). Let Q ∈ Opt(X). Hence, by the proof (1) ⇒ (2), Q satisfies (2). We 
have to consider two cases Q \ O �= ∅ and O \ Q �= ∅.

(Case 1) Let Q \ O �= ∅ and let y ∈ B(X) be such that y ⊆ Q \ O. Since Q satisfies (2), we have μ(y∩X)
μ(y\X)

≥ μ(X∩Q)
μ(X∪Q)

=
simM S (X, Q), and because Q ∈ Opt(X), simM S (X, Q) ≥ simM S (X, O). But this means that μ(y∩X)

μ(y\X)
≥ μ(X∩O)

μ(X∪O)
. However O also 

satisfies (2) and y ∈ B(X), so by (2), y ⊆ O, a contradiction. Hence Q \ O = ∅.
(Case 2) Let O \ Q = {y1, . . . , yp} ⊆ B(X). Let μ(X ∩ O) = n, μ(X ∪ O) = m, and μ(yi \ X) = li , μ(yi ∩ X) = ki , for 

i = 1, . . . , p. Since O satisfies (2), for each i = 1, . . . , p, we have μ(yi∩X)
μ(yi\X)

≥ |X∩O|
|X∪O| , or equivalently ki

li
≥ n

m . Hence

(k1 + . . . + kp)m ≥ (l1 + . . . + lp)n.

On the other hand, sim J (X, Q) = sim J (X, O \ (y1 ∪ . . .∪ yp)) > sim J (X, O), so by Lemma 1, μ((y1∪...∪yp)∩X)

μ((y1∪...∪yp)\X)
<

μ(X∩O)
μ(X∪O)

. Because 
yi are components, we have yi ∩ y j = ∅ when i �= j. Thus μ((y1 ∪ . . .∪ yp) ∩ X) = μ(y1 ∩ X) + . . .+μ(yp ∩ X) = k1 + . . .+kp , 
and μ((y1 ∪ . . . ∪ yp) \ X) = μ(y1 \ X) + . . . + μ(yp \ X) = l1 + . . . + lp . This means that we have

μ((y1 ∪ . . . ∪ yp) ∩ X)

μ((y1 ∪ . . . ∪ yp) \ X)
<

μ(X ∩ O)

μ(X ∪ O)
⇐⇒ k1 + . . . + kp

l1 + . . . + lp
<

n

m
,

which yields

(k1 + . . . + kp)m < (l1 + . . . + lp)n,

a contradiction, i.e. O \ Q = ∅. Thus, Q \ O = ∅ and O \ Q = ∅, i.e., Q = O, so O ∈ Opt(X). �
Theorem 1 gives the necessary and sufficient conditions for optimal approximations of X (with respect to the 

Marczewski–Steinhaus index and a given measure μ : U →R) in terms of the elements of B(X). We will use it to build an 
efficient algorithm for finding optimal approximations.

By Theorem 1, the value of ρ(x, X) will indicate if x ∈ B(X) is a part of an optimal approximation of X , or not. Since 
B(X) is finite, its elements can be enumerated by natural numbers 1, . . . , |B(X)|.

• Assume that r = |B(X)|, B(X) = {x1, . . . , xr} and also

i ≤ j ⇐⇒ ρ(xi, X) ≥ ρ(x j, X).

In other words, we sort B(X) by decreasing values of ρ(x, X). We will use this sorting to build a special sequence of 
intermediate approximations.

Let O0, O1, . . . , Or ∈ IA(X) be the sequence of intermediate approximations of X defined for i = 0, . . . , r − 1 as follows: 
O0 = A(X) and

Oi+1 =
{

Oi ∪ xi+1 if simM S(X,Oi ∪ xi+1) ≥ simM S(X,Oi)

Oi otherwise.

Note that usually Or �= A(X) = A(X) ∪ x1 ∪ . . . ∪ xr , since Or = x1 ∪ . . . ∪ xr , only if simM S (X, Oi ∪ xi+1) ≥ simM S (X, Oi) for 
all i = 0, . . . , r − 1, or equivalently, if Oi = x1 ∪ . . . ∪ xi for i = 1, . . . , r.

We claim that at least one of these Oi ’s is an optimal approximation. The following technical result is needed to prove 
this claim.

Lemma 2. Let k1, . . . , kn and l1, . . . , ln be positive numbers such that k1
l1

≥ ki
li

for i = 1, . . . , n. Then k1
l1

≥ k1+...+kn
l1+...+ln

.

Proof. k1
l1

≥ ki
li

implies k1li ≥ kil1 for i = 1, . . . , n. Hence k1l1 + k1l2 + . . . + k1ln ≥ k1l1 + k2l1 + . . . + knl1 ⇐⇒ k1
l1

≥ k1+...+kn
l1+...+ln

, 
which ends the proof. �

The essential properties of the sequence O0, O1, . . . , Or are provided by the following theorem.
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Theorem 2. For every X ⊆ U , we set r = |B(X)|, and we have

1. simM S (X, Oi+1) ≥ simM S (X, Oi), for i = 0, . . . , r − 1.
2. If ρ(x1, X) ≤ simM S (X, A(X)) then A(X) ∈ Opt(X).
3. If ρ(xr, X) ≥ simM S (X,A(X)) then A(X) ∈ Opt(X).
4. If simM S (X, Op) ≤ ρ(xp, X) and simM S (X, Op+1) > ρ(xp+1, X), then Op ∈ Opt(X), for p = 1, . . . , r − 1.
5. If simM S (X, Or) ≤ ρ(xr, X) then Or = A(X) ∈ Opt(X).
6. If Op ∈ Opt(X), then Oi = Op for all i = p + 1, . . . , r. In particular Or ∈ Opt(X).
7. O ∈ Opt(X) �⇒ O ⊆ Op , where p is the smallest one from (6).

Proof. (1) Immediately from Lemma 1 and the definition of the sequence O0, . . . , Or .
(2) From Proposition 2 we have that if O ∈ Opt(X), then O = A(X) ∪xi1 ∪ . . .∪xis for some i j ∈ {1, . . . , r}. Since ρ(x1, X) ≥

ρ(xi j , X) for j = 1, . . . , s, by Lemma 2, ρ(x1, X) ≥ μ((xi1 ∪...∪xis )∩X)

μ((xi1 ∪...∪xis )\X)
. Hence simM S (X, A(X)) ≥ μ((xi1 ∪...∪xis )∩X)

μ((xi1 ∪...∪xis )\X)
, so by Lemma 1, 

simM S (X, A(X)) ≥ simM S (X, O), which means A(X) ∈ Opt(X).
(3) Note that ρ(xr, X) ≥ simM S (X,A(X)) implies ρ(xi, X) ≥ simM S (X, A(X)) for all i = 1, . . . , r. Hence by Theorem 1, 

A(X) ∈ Opt(X).
(4) We have simM S (X, O0) ≤ simM S (X, O1) ≤ . . . ≤ simM S (X, Or) andρ(x1, X) ≥ ρ(x2, X) ≥ . . . ≥ ρ(xr, X). Hence the prop-

erty simM S (X, Op) ≤ ρ(xp, X) implies Oi = A(X) ∪ x1 ∪ . . . ∪ xi for all i = 1, . . . , p. Adding the property simM S (X, Op+1) >
ρ(xp+1, X) implies Oi = Op for all i = p + 1, . . . , r, which meant that Op = A(X) ∪ x1 ∪ . . . ∪ xp satisfies (2) of Theorem 1. 
Hence Op ∈ Opt(X).

(5) Again the property simM S (X, Or) ≤ ρ(xr, X) implies Or = A(X) ∪ x1 ∪ . . . ∪ xr , so Or = A(X). Additionally Or = A(X) ∪
x1 ∪ . . . ∪ xr satisfies (2) of Theorem 1, so Or ∈ Opt(X).

(6) From the proofs of (4) and (5).
(7) We have to show that if O = A(X) ∪ A ∈ Opt(X), where A ∈ B(X), then A ⊆ x1 ∪ . . . ∪ xp . Suppose x j ⊆ A and j > p. 

Then ρ(x j, X) < simM S (X, Op) = simM S (X, O), so O does not satisfy (2) of Theorem 1. Hence A ⊆ x1 ∪ . . . ∪ xp . �
Point (1) of Theorem 2 states that Oi+1 is a better (or equal) approximation of X than Oi , (2) and (3) characterize 

the case when either A(X) or A(X) are optimal approximations, while (4) shows conditions when some Op is an optimal 
approximation. Point (5) states that once Op is found to be optimal, we may stop calculations as the remaining Op+i are 
the same as Op , and the last point, (6) indicates that Op is the greatest optimal approximation.

Algorithm 1 (Finding the greatest optimal approximation). Let X ⊆ U .

1. Construct A(X), A(X), and B(X). Assume r = |B(X)|.
2. For each x ∈B(X), calculate ρ(x, X) = μ(x∩X)

μ(x\X)
.

3. Order ρ(x, X) in decreasing order and number the elements of B(X) by this order, so B(X) = {x1, . . . , xr} and i ≤ j ⇐⇒
ρ(xi, X) ≥ ρ(x j, X).

4. If ρ(x1, X) ≤ simM S (X, A(X)) then O = A(X).
5. If ρ(xr, X) ≥ simM S (X,A(X)) then O = A(X).
6. If neither (4) nor (5) is applied, calculate Op , starting from p = 1 and increasing p by 1, until simM S (X, Op+1) > ρ(xp+1, X). If 

simM S (X, Op+1) > ρ(xp+1, X) holds, set O = Op . �
Note that the biggest p in (6) of the above algorithm is r − 1. However, due to Theorem 2(5), step (5) of the above 

algorithm covers the case O = Or . Theorem 2 also guarantees that one of (4), (5), or (6) with 1 ≤ p < r always holds. The 
case (4) of the above algorithm means that the optimal approximation O satisfies O = O0, the case (5) corresponds to 
O = Or = A(X) = A(X) ∪ x1 ∪ . . . ∪ xr , and the case (6) corresponds to all other cases.

From Theorem 2 we also have that O is the greatest optimal approximation, i.e. O ∈ Opt(X), and for all O′ ∈ Opt(X), 
O′ ⊆ O. We also know that simM S (X, O′) = simM S (X, O)

This greedy algorithm (because of the choice of ρ(x, X), cf. [12]) has a complexity of C1 + C2 + O(rlogr), where C1 is 
the complexity of constructing A(X), A(X), and B(X); while C2 is the complexity to assign μ(x) for each x ∈ U . Algorithms 
with C = O(|U |2) can be found for example in [20], and clearly C2 = O(|U |).

The most crucial line of the algorithm, line (6), runs in O(r), but line (3) involves sorting which has complexity O(r log r). 
Since r < |U |, the total complexity is O(|U |2).

Algorithm 1 gives us the greatest optimal approximation O, however the whole set Opt(X) can easily be derived from O
just by subtracting appropriate elements of B(X).

Note that because of Corollary 4(1), Algorithm 1 is also effective for any similarity measure sim that is consistent with the 
Marczewski–Steinhaus μ-index simM S , for any finite and null-free measure μ. In particular, by Proposition 3 and Corollary 5
we can use it for Symmetric Tversky μ-index simμT , Dice–Sørensen μ-index simμD S ; and of course the classical Jaccard 
index sim J .
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Table 1
Pawlak’s space of houses and their prices. The column ‘Quality index’ is used only in Example 3.

House Price ($) Equiv. class Qual. index μ

h1 289,000 e1 502
h2 389,000 e5 869
h3 319,000 e2 611
h4 333,000 e3 723
h5 388,000 e5 937
h6 284,000 e1 399
h7 339,000 e3 585
h8 336,000 e3 650
h9 345,000 e4 834
h10 311,000 e2 366
h11 319,000 e2 512
h12 312,000 e2 622

Class Elements Range ($)

e1 h1, h6 280–299,999
e2 h3, h10, h11, h12 300–319,999
e3 h4, h7, h8 320–339,999
e4 h9 340–359,999

360–379,999
e5 h2, h5 380–400,000

Algorithm 1 requires the measure μ to be finite and null-free. The assumption of finiteness of μ is essential (cf. [13]), 
but null-freeness is merely technical. If μ is not null-free, we can use the algorithm presented below.

Algorithm 2 (μ is not null-free). Let AS = (U , E) be a Pawlak approximation space, μ : U → R be a given measure that is finite but 
not null-free, and X ⊆ U .

1. Define U ′ = U \ {x | μ(x) = 0}, E ′ = E ∩ (U ′ × U ′), X ′ = X \ {x | μ(x) = 0} and AS ′ = (U ′, E ′).
2. Apply Algorithm 1 for X ′ and AS ′ . Let O′ be the outcome of this application.
3. Pick any O ∈ IA(X) such that O′ ⊆ O.

Since O′ ∈ Opt(X ′) then O ∈ Opt(X). Moreover μ(X \ X ′) = μ(O \ O′) = 0. �
7. Examples

Our first example will use Jaccard index, i.e. a special case of Marczewski–Steinhaus index with μ(X) = |X |.

Example 2. We define our universe of elements labeled U = {h1, . . . , h12} to be an assortment of houses, each with a price 
or value associated with it, as shown in Table 1. Based on its price, each house belongs to a representative equivalence 
class as demonstrated in the second table. Our classes will be defined by each range of $20,000, starting from $280,000 and 
ending with $400,000 (empty classes are excluded because ∅ /∈ Comp). We could say that all of the houses in each class are 
roughly equivalent in price.

Suppose we wish to select a subset which we are interested in. If houses H = {h1, h3, h8, h9} meet our require-
ments we could say that we have the financing available for each of the equivalence classes those houses belong to. 
Clearly A(H) = e4 and A(H) = e1 ∪ e2 ∪ e3 ∪ e4. Moreover, B(H) = comp(A(H)) \ comp(A(H)) = {e1, e2, e3}, and IA(H) =
{A(H), A1, A2, A3, A4, A5, A6, A(H)} where A1 = e1 ∪ e4, A2 = e2 ∪ e4, A3 = e3 ∪ e4, A4 = e1 ∪ e2 ∪ e4, A5 = e1 ∪ e3 ∪ e4, 
and A6 = e2 ∪ e3 ∪ e4. We also have sim J (H, A(H)) = |H∩A(H)|

|H∪A(H)| = 1
4 , sim J (H, A(H)) = |H∩A(H)|

|H∪A(H)| = 2
5 , and sim J (H, A1) = 2

5 , 

sim J (H, A2) = 2
7 , sim J (H, A3) = 1

3 , sim J (H, A4) = 3
8 , sim J (H, A5) = 3

7 , sim J (H, A6) = 2
7 . From all these Jaccard index values, 

3
7 is the biggest number, so Opt(H) = {A5} = {e1 ∪ e3 ∪ e4}.

What about our algorithm? We have B(H) = {e1, e2, e3}, and ρ(e1, H) = 1, ρ(e2, H) = 1
3 , and ρ(e3, H) = 1

2 . Hence 
ρ(e1, H) > ρ(e3, H) > ρ(e2, H), so we rename the elements of B(H) as e1 = x1, e3 = x2, e2 = x3. Clearly ρ(x1, H) = 1 >
sim J (H, A(H)) = 1

4 and ρ(x3, H) = 1
3 < sim J (H, A(H)) = 2

5 , so neither step (4) nor (5) hold, so we go to the step (6), which is 
the most involved.

We begin by setting O0 = A(H) = e4. Since sim J (H, O0) = 1
4 < sim J (H, O0 ∪ x1) = 2

5 , we have O1 = O0 ∪ x1 = e1 ∪ e4, and 
since sim J (H, O1) = 2

5 < sim J (H, O1 ∪x2) = 3
7 , we have O2 = O1 ∪x2 = e1 ∪e3 ∪e4. However sim J (H, O2) = 3

7 < ρ(x2, H) = 1
2 , 

so O1 /∈ Opt(H). Since sim J (H, O2) = 3
7 > sim J (H, O2 ∪ x3) = 2

5 , we set O3 = O2. Now we have sim J (H, O3) = sim J (H, O2) =
3
7 > ρ(x3, H) = 1

3 , which means that O2 = {h1, h4, h6, h7, h8, h9} ∈ Opt(H).
Note also that O1 = A1, and O2 = A5, and Opt(H) = {O 2}. �
Our second example uses Marczewski–Steinhaus μ-index which is not cardinality.

Example 3. Consider the same universe U = {h1, . . . , h12}, the same equivalence classes {e1, e2, e3, e4}, and the same set 
H = {h1, h3, h8, h9} as in the previous example. Realizing that price is only one of the factors (even though often the most 
important), a real estate agency ‘Best Choice’ introduced a service for customers where they will determine a quality index 
μ ranging from 0 to 1000, which takes into account price, age, type of house, look, and the special customer preferences. 
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Suppose that the index values for a particular customer are described in the right column of the left part of Table 1. The 
index μ is extended to sets of houses X so we can use it to calculate the intermediate similarity values. It is defined as 
μ(X) = ∑

h∈X μ(h). Clearly the index μ is an element-wise null free measure as discussed in Section 3, so it can be used 
in formulas describing similarity indexes.

What is an optimal approximation of H with Marczewski–Steinhaus index simM S (X, Y ) = μ(X∩Y )
μ(X∪Y )

? To measure the simi-

larity between H and its lower approximation, we have simM S (H, AH) = μ(H∩A(H))

μ(H∪A(H))
= μ(h9)

μ({h1,h3,h8,h9}) =
μ(h9)

μ(h1)+μ(h3)+μ(h8)+μ(h9)
= 834

2897 = 0.28788. The rest of the similarity values calculated in the same manner are as fol-
lows: sim(H, A1) = 0.49636, sim(H, A2) = 0.32863, sim(H, A3) = 0.33689, sim(H, A4) = 0.468515, sim(H, A5) = 0.47585, 
sim(H, A6) = 0.35478, and sim(H, A(H)) = 0.4595. By inspection, we see the largest value is a result of comparing H to 
A1 = e1 ∪ e4, which is clearly different from our previous example where A5 returned the largest value.

What about our algorithm? We have B(H) = {e1, e2, e3}, and now with different measure μ we calculate ρ for each 
element e in the border as

ρ(e, H) = μ(e ∩ H)

μ(e \ H)
= �h∈e∩Hμ(h)

�h∈e\Hμ(h)
.

We get ρ(e1, H) = μ(h1)
μ(h6)

= 2.0100, ρ(e2, H) = μ(h3)
μ(h10)+μ(h11)+μ(h12)

= 0.4073, and ρ(e3, H) = μ(h4)
μ(h7)+μ(h8)

= 0.5038. Hence, 
ρ(e1, H) > ρ(e3, H) > ρ(e2, H), as in the previous example so we again rename the elements of B(H) as e1 = x1, e3 = x2, 
e2 = x3. Since ρ(x1, H) > simM S (H, A(H)) and ρ(x3, H) < simM S (H, A(H)), steps (4) and (5) are not satisfied, so we move to 
step (6).

We begin with O0 = A(H) = e4, and O1 = O0 ∪ x1 = e1 ∪ e4. Note ρ(x1, H) = 2.0100 > simM S (H, O1) = 0.49636. So we 
stop here.

If we continued, we would examine O2 = O1 ∪ x2 = e1 ∪ e3 ∪ e4 and find simM S (H, O2) = 0.47585 and ρ(x2, H) = 0.5038, 
so the outcome would be the same.

Hence for this measure μ, Opt(H) = {O 1}. �
8. The case of Braun-Blanquet index

At the end of Section 5 we have shown that the Braun-Blanquet index [19] is inconsistent with the Jaccard index, and 
we argued that it is also inconsistent with Marczewski–Steinhaus index for almost any μ if the universe U is sufficiently 
large.

We will show that in general, the equivalence of Lemma 1 does not hold and Algorithm 1 does not work for Braun-
Blanquet index.

Consider the following two examples.

Example 4. Consider a universe U = {a1, a2, b1, b2, . . . , b9, c1, c2, . . . , c11}, three equivalence classes covering U , A1 = {a1, a2}, 
A2 = {b1, b2, . . . , b9} and A3 = {c1, c2, . . . , c11}, and the set X = {a1, a2, b1, b2, c1, c2}. We have A(X) = A1 = {a1, a2}, A(X) =
A1 ∪ A2 ∪ A3 = U . One may check by inspection that Optsim J

(X) = A(X) = A1, while OptsimB B
(X) = A1 ∪ A2. When applying 

Algorithm 1 with sim J replaced by simB B we will get A1 as an optimal approximation. The reason is that simB B(X, A1 ∪A2) =
|X∩(A1∪A2)|

max(|X |,|A1∪A2|) = 4
11 = 0.364 > simB B(X, A1) = |X∩A1|

max(|X |,|A1|) = 2
6 = 0.333, but |A2∩X |

|A2\X | = 2
7 = 0.286 < simB B(X, A1) = 0.333, so 

the equivalent of Lemma 1 is not satisfied. Hence the first step of a modified Algorithm 1 would be faulty. Note also that 
simB B(X, A1 ∪ A2) > simB B(X, A1) while sim J (X, A1 ∪ A2) = 4

11 = 0.364 < sim J (X, A1) = 2
5 = 0.4, so this is also a case of 

inconsistency between Jaccard and Braun-Blanquet indexes. �
Example 5. Consider a universe U = {a1, a2, b1, b2, . . . , b6, c1, c2, . . . , c30}, three equivalence classes covering U , A1 = {a1, a2}, 
A2 = {b1, b2, . . . , b6} and A3 = {c1, c2, . . . , c30}, and the set X = {a1, a2, b1, c1, c2, . . . , c5}. We have A(X) = A1 = {a1, a2}, 
A(X) = A1 ∪ A2 ∪ A3 = U . One may check by inspection that Optsim J

(X) = A(X) = A1, while OptsimB B
(X) = A1 ∪ A2. 

When applying Algorithm 1 with sim J replaced by simB B we will get A1 as an optimal approximation. The reason is 
that simB B(X, A1 ∪ A2) = |X∩(A1∪A2)|

max(|X |,|A1∪A2|) = 3
9 = 0.333 > simB B(X, A1) = |X∩A1|

max(|X |,|A1|) = 2
9 = 0.222, but |A2∩X |

|A2\X | = 1
5 = 0.2 <

simB B(X, A1) = 0.222, so the equivalent of Lemma 1 is not satisfied either. Hence the first step of a modified Algorithm 1
would be faulty in this case as well. Note also that simB B(X, A1 ∪ A2) > simB B(X, A1) while sim J (X, A1 ∪ A2) = 3

14 = 0.214 <
sim J (X, A1) = 2

9 = 0.222, so this is another example of inconsistency between Jaccard and Braun-Blanquet indexes. �
Both examples can easily be adapted to other finite and null-free measures if U is sufficiently large. Hence, for Braun-

Blanquet index we need a different algorithm, or a ratio different than ρ(X, Y ).

9. Final comments

In the above we have proposed a novel approach to rough set approximation. In addition to lower and upper approxima-
tions, we introduced and analyzed the concept of optimal approximation, which required the concept of a similarity index, 



14 R. Janicki, A. Lenarčič / International Journal of Approximate Reasoning 71 (2016) 1–14
a measure space on the universe of elements, and a notion of border and border sets. We provided five simple similarity 
measure axioms (one axiom in two versions), and then analyzed several similarity indexes with respect to these axioms.

Only the Marczewski–Steinhaus index [13] (and popular Jaccard index [8], which is its special case) however, can nat-
urally be interpreted as a measure of distance as well, so with this in mind, we used the index to design an algorithm 
which accepts a non-empty universe of elements (with an equivalence relation) and a subset X ⊆ U , and returns the op-
timal approximation. The algorithm is based on the properties of the index ρ(X, Y ), which is called the ratio of common 
to distinct elements. The algorithm runs in O(rlogr) time where r is the number of elements in the ‘border set’, and thus 
has total time complexity O(|U |2). While the basic version of the algorithm requires that the measure is null free, i.e. 
μ(X) = 0 ⇐⇒ X = ∅, it was lated adapted for measures that are not null free.

We also introduced the concept of consistent similarity measures. Since consistent similarity indexes have identical 
optimal approximations, many results obtained for one index can be applied to all consistent indexes. In particular our 
algorithms can be applied, with very minor changes, to the Dice–Sørensen index and the Symmetric Tversky μ-index for 
any parameter ρ . The latter result is especially important as the Symmetric Tversky μ-index covers many more specialized 
similarity indexes [4].

However if a similarity index is not consistent with the Marczewski–Steinhaus index, our algorithm may not work, as 
we illustrate it for a fairly popular Braun-Blanquet index. At this point we do not know how to fix this problem.

One property of the optimal approximation definition that has not been sufficiently explored in this paper is its asym-
metry, the second argument of sim in Definition 3 is always a definable set, i.e. a subset of D. This asymmetry results from 
the Rough Sets setting, it is not the property of a similarity index per se, but its exploitation may lead to new results and 
better solutions.

Another intriguing problem, suggested by one of the reviewers and related to the above one, is the relationship between 
the measure μ and the equivalence relation E . The relation E represents the knowledge of an approximation space (U , E)

and defines the set D. Definition 3 indicates that an optimal simulation is a function of both the measure μ and the 
equivalence relation E , but how μ and E relate is an open problem.
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