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Property-Driven Rough Sets Approximations
of Relations

Ryszard Janicki�

Abstract. The problem of approximating an arbitrary relation by a relation with
desired properties is formally defined and analysed. Two special cases, approxima-
tion by partial orders and approximation by equivalence relations are discussed in
detail.
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12.1 Introduction

While, in general, sets are just arbitrary collections of arbitrary elements [8], when
they are applied in other parts of Mathematics or Science, they usually have some
structure and properties. Their elements are usually engaged in complex relation-
ships. While a collection that consists of, say, a white elephant, computer mouse,
empty set, and a letter ‘a’, is a proper set (c.f. [8, 12]), in most applications the sets
are more homogenous, as ‘sets of integers’, ‘vertices’, ‘variables’, etc., and quite of-
ten they have some very specific structures like ‘trees’, ‘partitions’, ‘partial orders’,
etc.

Those structures and properties are essential when it comes to the problem of
approximation of raw empirical data by appropriate mathematical concepts.

The simplest and most abstract way of modelling complex connections relation-
ships is to use the notion of relation.
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The problem we will try to deal with in this chapter can be formulated as follows.
We have a set of data that have been obtained in an empirical manner. From the
nature of the problem, we know that the set should have some structure and desired
properties, for example, it should be partially ordered, or partially ordered for one
attribute and partitioned by some equivalence relation for another attribute (so it
should be represented by two binary relations) but because the data are empirical it
is not. In general case, this might be just an arbitrary set without the desired structure
and properties. What is the ‘best’ approximation that has the desired structure and
properties and how it can be computed? For the approximation of arbitrary relations
by partial orders, this problem was discussed and some solutions were proposed in
[6] (within both the standard theory of relations [8, 12] and Rough Sets paradigm
[9, 10]).

In this chapter, we will generalise and refine some ideas of [6] to arbitrary rela-
tions, and we will illustrate our concepts by showing approximations by two of the
most often used kinds of relations, partial orders and equivalence relations.

It appears that the concept of approximation has two different intuitions in Mathe-
matics and Science. The first one stems from the fact that often, empirical numerical
data have some errors, so in reality, we seldom have the value x (unless the measure-
ments are expressible in integers) but usually some interval (x−ε,x+ε), that is, the
lower approximation and the upper approximation. Rough Sets [9, 10] exploit this
idea for general sets. The second intuition can be illustrated by least square approx-
imation of points in the two-dimensional plane (c.f. [15]). Here we know or assume
that the points should be on a straight line and we are trying to find the line that fits
the data best. In this case the data have a structure (points in two dimensional plane,
that is, a relation that is a function) and should satisfy a desired property (be on the
straight line). Note that even if we replace a solution f (x) = ax + b by two lines
f1(x) = ax + b− δ and f2(x) = ax + b + δ, where δ is a standard error (c.f. [15]),
there is no guarantee that any point resides between f1(x) and f2(x). Hence this is
not the case of an upper, or lower approximation in the sense of Rough Sets. How-
ever this approach assumes that there is a well-defined concept of a metric which
allows us to minimise the distance, and this concept is not obvious, and often not
even possible for non-numerical objects (see for instance [6]).

The approach presented in this chapter is a mixture of both intuitions. There is no
metric, but the concept of “minimal distance” is replaced and somehow simulated
by a sequence of property-driven lower and/or upper approximations, in the style of
Rough Sets.

The chapter is structured as follows. The next section provides basic facts about
relations. Section 12.3 recalls the classical Rough Set approach to the approximation
of relations. In Section 12.4, the concept of property-driven rough approximation of
arbitrary relations is introduced, and the basic definitions are given. The next three
sections provide basic theoretical framework for the approach presented. Section
12.5 deals with a single property (as for instance transitivity only), Section 12.6
provides an analysis of a composition of two properties (for instance symmetry
and transitivity), and Section 12.7 extends the obtained results to a composition
of an arbitrary number of properties. In Section 12.8, we use the ideas presented
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12 Property-Driven Rough Sets Approximations of Relations 335

in previous sections to approximate an arbitrary binary relation by a partial order,
and in Section 12.9 to approximate an arbitrary binary relation by an equivalence
relation. Section 12.8 refines some results of [6]. The last section contains final
comments.

12.2 Relations and Some of Their Basic Classifications

In this section, we recall some fairly known concepts and results that will be used
in the following sections [2, 8, 12].

Let X be a set, any R ⊆ X ×X× ...×X
︸ ︷︷ ︸

n

= ∏n
i=1 X is called an n-ary relation

(on X).
If n = 2, that is, R⊆ X ×X then R is called a binary relation (on X).
Customarily, we will use the generic name relation for both n-ary and binary

relations and apply the prefixes ‘n-ary’ and ‘binary’ only when needed. For the rest
of this section, we assume that any relation is a binary relation, that is, a relation
R⊆ X ×X . We also will often write aRb to denote (a,b) ∈ R.

Definition 12.1 (Basic Types of Relations). Let R, < ,and ≡ be relations on X .

1. idX = {(x,x) | x ∈ X}, or just id, is called the identity relation.
2. R is reflexive iff id ⊆ R, that is, (x,x) ∈ R for all x ∈ X .
3. R is irreflexive iff id∩R = /0, that is, (x,x) /∈ R for all x ∈ X .
4. R is symmetric iff for all x,y ∈ X , xRy⇒ yRx.
5. R is transitive iff for all x,y,z ∈ X , xRy∧ yRz⇒ xRz.
6. A relation ≡ is an equivalence relation iff it is reflexive, symmetric and

transitive, that is, x≡ x, x≡ y⇒ y≡ x, and x≡ y≡ z⇒ x≡ z, for all x,y,z ∈ X .
7. A relation < is a (sharp) partial order iff it is irreflexive and transitive, that

is, ¬(x < x) and x < y < z⇒ x < z for all x,y,z ∈ X . �

For every equivalence relation ≡ on X and every x ∈ X , the set [x]≡ = {y | x ≡ y}
denotes an equivalence class containing the element x.

We also have [x]≡ = [y]≡if and only if x ≡ y (c.f. [2, 8, 12]).
The set of all equivalence classes of an equivalence relation≡ is denoted as X/≡,

and it is a partition of X , that is, the sets from X/≡ are disjoint and cover the whole
X .

For every two relations R,S on X , the relational composition R ◦ S is defined as
a(R◦S)cif and only if ∃b ∈ X . aRb∧bRc, for all a,c ∈ X ; for every relation R on X ,
we have R−1 = {(a,b) | (b,a) ∈ R}, and R0 = id, Rk = R◦ ...◦R︸ ︷︷ ︸

k

for k > 0.

For every relation R on X , the smallest transitive (reflexive, symmetric, etc.) re-
lation on X containing R is called the transitive (reflexive, symmetric, etc.) closure
of R (c.f. [2, 12]).
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Proposition 12.1 (Explicit Expresions for Closures [2, 12]). Let R be a relation
on X.

1. Rref = R∪ id is the reflexive closure of R.
2. Rsym = R∪R−1 is the symmetric closure of R.
3. R+ =

⋃∞
i=1 Ri is the transitive closure of R.

4. R∗ =
⋃∞

i=0 Ri is the reflexive-transitive closure of R. �

Closures correspond to simple upper approximations of relations in the sense of
Rough Sets. Concepts corresponding to lower approximations are more complex
and less systematic and will be discussed later (in Section 12.8).

12.3 Classical Rough Relations

The principles of Rough Rets [9, 10] can be formulated as follows. Let U be a finite
and nonempty universe of elements, and let E ⊆U ×U be an equivalence relation.
The elements of U/E are called elementary sets, and they are interpreted as basic
observable, measurable, or definable sets. The pair (U,E) is referred to as a Pawlak
approximation space. A set X ⊆ U is approximated by two subsets of U , A(X) -
called the lower approximation of X , and A(X) - called the upper approximation of
X , where A(X) and A(X) are defined as follows.

Definition 12.2 ([9, 10])

1. A(X) =
⋃{[x]E | x ∈U ∧ [x]E ⊆ X},

2. A(X) =
⋃{[x]E | x ∈U ∧ [x]E ∩X �= /0}. �

Rough set approximations satisfy the following properties:

Proposition 12.2 (Pawlak [10])

1. X ⊆ Y =⇒A(X)⊆ A(Y ),
2. A(X ∩Y ) = A(X)∩A(Y ),
3. A(X)⊆ X,
4. A(X) = A(A(X)),
5. A(X) = A(A(X)),

6. X ⊆ Y =⇒A(X)⊆ A(Y ),
7. A(X ∪Y ) = A(X)∪A(Y ),
8. X ⊆ A(X),
9. A(X) = A(A(X)),

10. A(X) = A(A(X)). �

Since every relation is a set of pairs, this approach can be used for relations as well
[13]. Unfortunately, in such cases as ours, we want approximations to have some
specific properties like irreflexivity, transitivity etc., and most of those properties
are not closed under the set union operator. As was pointed out in [17], in general,
one cannot expect approximations to have the desired properties (see [17] for de-
tails). It is also unclear how to define the relation E for cases such as ours.
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However, the Rough Sets can also be defined in an orthogonal (sometimes called
‘topological’) manner [10, 14, 16]. For a given (U,E), we may define D(U) as the
smallest set containing /0, all of the elements of U/E and that is closed under set
union. Clearly, U/E is the set of all components generated by D(U) [8]. We may
start with defining a space as (U,D), where D is a family of sets that contains /0, and
for each x ∈U , there is X ∈D such that x ∈ X (i.e. D is a cover of U [12]). We may
now define ED as the equivalence relation generated by the set of all components
defined by D (see for example [8]). Hence, both approaches are equivalent [10, 14,
17]; however, now for each X ⊆U , we might use different formulas for A(X) and
A(X).

Proposition 12.3 ([10, 14, 17])

1. A(X) =
⋃{Y | Y ⊆ X ∧Y ∈D},

2. A(X) =
⋂{Y | X ⊆ Y ∧Y ∈D}. �

We can now define D as a set of relations having the desired properties and then cal-
culate A(R) and/or A(R) with respect to a given D. Such an approach was proposed
and analysed in [17]; however, it seems to have only limited applications. It assumes
that the set D is closed under both union and intersection, and few properties of re-
lations do this. For instance, transitivity is not closed under union and having a cycle
is not closed under intersection. Some properties, like ‘having exactly one cycle’,
are preserved by neither union nor intersection. This problem was discussed in [17],
and they proposed that perhaps a different D could be used for the lower and upper
approximations. But this solution again seems to have rather limited applications.
The approach of [17] assumes additionally that, for the upper approximation there
is at least one element of D that contains R, and, for the lower approximation there
exists at least one element of D that is included in R. These are assumptions that
are too strong for many applications (see [6]). If R contains a cycle, then there is no
partial order that contains R!

To solve those problems, we need to create a new setting.

12.4 Property-Driven Rough Approximations of Relations

In this section, we will provide a formal basis of our approach.
Let X be a set and X =∏n

1 X = X × ...×X
︸ ︷︷ ︸

n

. We assume that in this section any

relation is an n-ary relation and a subset of X.

Definition 12.3. 1. Any first-order predicate (c.f. [3]) α containing one atomic n-
ary relational symbol R (which may occur more than once) will be called an
n-ary relational property (or just a property).

2. Let R ⊆ X. An n-ary relational property α is called a property of the n-ary
relation R if the symbol R is interpreted as the relation R, all variables of α
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are over the set X , and the tuple (X ,R) is a model of α, that is, α holds for any
assignment (c.f. [3]). �

Obvious examples of properties are transitivity (α = (∀a,b,c. R(a,b)∧R(b,c)⇒
R(a,c))), reflexivity (α = (∀a. R(a,a))), symmetry (α = (∀a,b. R(a,b)⇒ R(b,a))
etc., for binary relations. Standardly, when it does not cause any confusion, the same
symbol is used to denote both R and R. We would like to point out the difference
between a property, that is, just a statement that may or may not be true and where
R is just a symbol, and a property of R, a statement that is true for all assignments,
and R is a well-defined relation.

Definition 12.4. Let P be a finite set of n-ary relational properties, such that for
each α ∈ P , there is a non-empty relation Q⊆ X, and α is a property of Q.

1. Any element α ∈ P is called an elementary property.
2. For each elementary property α ∈ P , Pα ⊆ 2X is the set of n-ary relations over

X that satisfy the property α. �

Definition 12.4 allows /0 ∈ Pα, but disallows Pα = /0 and Pα = { /0}.
Even though any property can be called ‘elementary’, it is assumed that in any

concrete case the elemetary properties are ‘simple’ and ‘regular’. They are just
atomic parts from which the real more sophisticated properties are built.

Definition 12.5. 1. For every α ∈ P , Pα is closed under intersection iff for each
R,S ∈ Pα, R∩S∈ Pα. The set of all α∈ P that are closed under intersection will
be denoted by P∩.

2. For every α∈ P , Pα is closed under union iff for each R,S∈ Pα, R∪S ∈ Pα. The
set of all α ∈ P that are closed under union will be denoted by P∪. �

Some examples of properties for binary relations:

• α =transitivity, or α =partial ordering, Pα is closed under intersection but not
under union,

• α=symmetry, Pα is closed both under intersection and under union,
• α=having a cycle, Pα is closed under union but not under intersection.

Assumption 1. We assume that if α ∈ P then, Pα is either closed under union or it
is closed under intersection (or both), that is, P = P∪ ∪P∩. �

This assumption is much weaker than it might appear as this is an assumption only
about elementary properties, not about composite more sophisticated properties that
will be considered later. However, it is absolutely needed as we want to define lower
and upper approximations in the style of Proposition 12.3 and want at least one of
them to exist.

Definition 12.6. The pair (X,{Pα | α ∈ P}) will be called an property-driven ap-
proximation space for the n-ary relations over X . �
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When /0 ∈ {Pα | α ∈ P} and {Pα | α ∈ P} is a cover then, Definition 12.6 corre-
sponds to the definition of space (U,D) from Section 12.3. In Section 12.3, the ele-
ments of D were used to construct lower and upper approximations A(X) and A(X)
(see Proposition 12.3), here our intention is to use the elements of {Pα | α ∈ P} as
building bricks of our property-driven lower and upper approximations. However,
as opposed to the properties of D, it may happen that /0 /∈ {Pα | α ∈ P} and that
{Pα | α ∈ P} is not a cover.

Intuitively, for every relation R and every property α ∈ P , we expect an appro-
priate lower approximation of R to be a subset of R that belongs to Pα, and an
appropriate upper approximation of R to be a superset of R that also belongs to
Pα. Note that, these are weaker expectations than required from classical rough set
approximations where we expect ‘the largest subset of R’ for lower and ‘the small-
est superset of R’ for upper approximation. However, even this may not always be
possible, which leads us to the following definition.

Definition 12.7. Let R⊆ X be a non-empty relation and α ∈ P . We say that:

1. R has α-lower bound if and only if ∃Q ∈ Pα. Q⊆ R,
2. R has α-upper bound if and only if ∃Q ∈ Pα. R⊆ Q.

We also define

3. lbα(R) = {Q | Q ∈ Pα∧Q⊆ R}, the set of all α-lower bounds of R, and
4. ubα(R) = {Q |Q ∈ Pα∧R⊆ Q}, the set of all α-upper bounds of R. �

Note that, if the relation X =∏n
i=1 X satisfies α, then α-upper bound exists for any

R⊆ X, and if the relation /0 satisfies α, then α-lower bound exists for any R ⊆ X.

Some examples for binary relations:

• α =transitivity, R - any relation, both α-lower bound and α-upper bound do
exist,

• α =reflexivity, R - any relation, α-lower bound exists only when R is already
reflexive, α-upper bound does exist,

• α =irreflexivity, R - any relation, α-lower bound does exist, α-upper bound
exists only when R is already irreflexive,

• α =symmetry, R - any relation, α-lower bound may not exist while α-upper
bound does exist,

• α =partial ordering, R has a cycle, α-lower bound exists but α-upper bound
does not exist.

• α=partial ordering, R - any relation,α-lower bound exists, α-upper bound may
not exist,

• α=equivalence, R - any relation,α-lower bound exists only when R is reflexive,
α-upper bound does exist,

• α =having a cycle, R is a partial order, α-lower bound does not exist, α-upper
bound exists,
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• α =having a cycle, R - any relation, α-lower bound may not exist, α-upper
bound exists,

• α = (R(a,b)∧¬R(c,d)), R any relation such that (a,b) /∈ R and (c,d) ∈ R,
neither α-lower bound nor α-upper bound exists.

The remaining auxilliary concepts that are needed to formally define lower and up-
per approximations that preserve elementary properties of relations are the well
known concepts of maximal and minimal elements of families of relations (c.f.
[2, 12]).

Definition 12.8. For every family of relations F ⊆ 2X, we define

1. min(F ) = {R | ∀Q ∈ F . Q ⊆ R ⇒ R = Q}, the set of all minimal elements of
F ,

2. max(F ) = {R | ∀Q ∈ F .R ⊆ Q ⇒ R = Q}, the set of all maximal elements of
F .

�

We are now able to provide the two main definitions of our model.

Definition 12.9 (α-lower and α-upper approximations)

1. If R has α-lower bound then we define its α-lower approximation as:

Aα(R) =
⋂
{Q |Q ∈max(lbα(R))}.

2. If R has α-upper bound then we define its α-upper approximation as:

Aα(R) =
⋃
{Q |Q ∈ min(ubα(R))}. �

If R does not have α-lower bound (α-upper bound) then its α-lower approximation
(α-upper approximation) does not exist. This is the major difference between this
model and the standard Rough Sets model. It might happen that neither α-lower
approximation nor α-upper approximation exists. Then α should probably not be
called an ‘elementary’ property and it should instead be decomposed into a con-
junction of simpler properties. This problem will be discussed in Section 12.6.

To show that Definition 12.9 is sound, we need to prove the following:

(1) if the relation R has a property α, both approximations are reduced to identity,
(2) for every property α ∈ P , both Aα(R) and Aα(R) satisfy the property α (if they

exist), first of all this is what they were invented for,
(3) when a propertyα is closed under both union and intersection, and an α-(lower/

upper) approximation exists, it should be identical to the standard lower/upper
approximation (either that of Definition 12.2 or its equivalent version from
Proposition 12.3).

The result below proves the point (1).

Proposition 12.4. If R ∈ Pα then Aα(R) = Aα(R) = R.
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Proof. If R ∈ Pα then lbα(R) = ubα(R) = {R}. �

The proof of point (2) will be split into two parts.

Proposition 12.5

1. If α ∈ P∩ and R has α-lower bound then
Aα(R) =

⋂{Q |Q ∈max(lbα(R))} ∈ Pα.
2. If α ∈ P∪ and R has α-upper bound then

Aα(R) =
⋃{Q |Q ∈min(ubα(R))} ∈ Pα.

Proof
(1) Every element of max(lbα(R)) is in Pα. Since α ∈ P∩, the intersection of all
elements of max(lbα(R)) is also in Pα.
(2) Every element of min(ubα(R)) is in Pα. Sinceα∈P∪, the union of all elements
of min(ubα(R)) also is in Pα. �

The second part involves new representations of both Aα(R) and Aα(R), more or
less in the style of A(R) and A(R) from Proposition 12.3.

Proposition 12.6

1. If α ∈ P∪ and R has α-lower bound, then

Aα(R) =
⋃
{Q |Q ∈ lbα(R)} =

⋃
{Q | Q⊆ R∧Q ∈ Pα} ∈ Pα.

2. If α ∈ P∩ and R has α-upper bound, then

Aα(R) =
⋂
{Q |Q ∈ ubα(R)} =

⋂
{Q | R⊆ Q∧Q ∈ Pα} ∈ Pα.

Proof
(1) If α ∈ P∪ and R has α-lower bound, then max(lbα(R)) is a singleton set, that
is, max(lbα(R)) = {Q}, where Q =

⋃{S | S ∈ lbα(R)}. Every element of lbα(R) is
clearly in Pα. Since α ∈ P∪, the union of all elements of lbα(R) is in Pα, that is,
Q ∈ Pα.
(2) If α∈ P∩ and R has α-upper bound, then min(ubα(R)) is a singleton set, that is,
min(ubα(R)) = {S}, where S =

⋂{Q |Q ∈ ubα(R)}. Since α ∈ P∩, the intersection
of all elements of ubα(R) is in Pα, that is, S ∈ Pα. �

The next result shows when this model is exactly the same as the classical Rough
Sets approach to relations (the version from [16, 17] illustrated by Proposition 12.3).
It is a proof of point (3) of the soudness requirements.

Corollary 12.1

1. If α ∈ P∪ ∩P∩ and R has α-lower bound, then Aα(R) = A(R), and,
2. if α ∈ P∪ ∩P∩ and R has α-upper bound, then Aα(R) = A(R),

where A(R) and A(R) are classical upper and lower rough approximations over the
space (X ×X ,{Pα | α ∈ P}), as defined in Proposition 12.3.
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Proof (1) From the second equality in Proposition 12.6(1).
(2) From the second equality in Proposition 12.6(2). �

In this section, we defined lower and upper approximations that provide desired
relational properties. In the next section, we will discuss major properties of these
approximations.

12.5 Properties of α-Approximations

In this section, we will show that the operational and compositional properties of
α-lower and α-upper approximations are pretty close (but not identical) to those of
standard rough set approximations as presented in Proposition 12.2. We start with
the properties of α-lower approximation (compare with Proposition 12.2(1–4) for
standard rough set lower approximation).

Proposition 12.7. If R,Q ⊆ X have α-lower bound then:

1. R⊆ Q =⇒ Aα(R)⊆ Aα(Q),
2. Aα(R)⊆ R,
3. Aα(R) = Aα(Aα(R)),
4. Aα(R∩Q) = Aα(Aα(R)∩Aα(Q)),
5. if α ∈ P∩ then Aα(R∩Q) = Aα(R)∩Aα(Q),
6. if R has α-upper bound then Aα(R) = Aα(Aα(R)).

Proof.
(1) Since R ⊆ Q =⇒ lbα(R)⊆ lbα(Q) =⇒ max(lbα(R)) ⊆ lbα(Q), then for each
S ∈ max(lbα(R)), there is S′ ∈ max(lbα(Q)) such that S ⊆ S′; and intersection pre-
serves inclusion.
(2) Since S ∈ lbα(R) =⇒ S ⊆ R, and intersection preserves inclusion.
(3) From Proposition 12.4 because Aα(R) ∈ Pα.
(4) By (1) we have Aα(R∩Q)⊆Aα(R) and Aα(R∩Q)⊆Aα(Q), so Aα(R∩Q)⊆
Aα(R)∩Aα(Q). Hence, by (2) and (3) Aα(R∩Q)⊆ Aα(Aα(R)∩Aα(Q)).
By the definition, we have Aα(Aα(R) ∩Aα(Q)) =

⋂{S | S ∈ max(lbα(Aα(Q)∩
Aα(Q)))}. Let T ∈ lbα(Aα(Q)∩Aα(Q))). This means T ∈ Pα ∧ T ⊆ Aα(R)∩
Aα(Q); hence, T ∈ Pα ∧ T ⊆ R ∧ T ⊆ Q, that is, T ∈ Pα ∧ T ⊆ R∩Q. Therefore,
T ∈ lbα(R∩Q). In this way, we proved that lbα(Aα(Q)∩Aα(Q)) ⊆ lbα(R∩Q).
Hence,
max(lbα(Aα(Q)∩Aα(Q))) ⊆ lbα(X ∩Q), that is, for each S ∈ max(lbα(Aα(Q)∩
Aα(Y ))), there exists S′ ∈max(lbα(R∩Q)), such that S⊆ S′. Since intersection pre-
serves inclusion, this means that Aα(Aα(R)∩Aα(Q))⊆ Aα(R∩Q).
(5) By (4) of this proposition, we have Aα(R ∩Q) = Aα(Aα(R) ∩Aα(Q)). If
α ∈ P∩ then, Aα(R)∩Aα(Q) ∈ Pα, so by Proposition 12.4, we have
Aα(R)∩Aα(Q) = Aα(Aα(R)∩Aα(Q)).
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(6) If R has α-upper bound then Aα(R) ∈ Pα so from Proposition 12.4, it follows
that,
Aα(X) = Aα(Aα(X)). �

The difference from the classical case is that intersection splits into two cases and
mixing lower with upper α-approximation is conditional.

We will now present the properties of α-upper approximation (compare with
Proposition 12.2(5–10) for standard rough set upper approximation).

Proposition 12.8. If R,Q ⊆ X have α-upper bound then

1. R⊆ Q =⇒ Aα(R)⊆ Aα(Q),
2. R⊆ Aα(R),
3. Aα(R) = Aα(Aα(R)),
4. Aα(R∪Q) = Aα(Aα(R)∪Aα(Q)),
5. if α ∈ P∪ then Aα(R∪Q) = Aα(R)∪Aα(Q),
6. if R has α-lower bound then Aα(R) = Aα(Aα(R)).

Proof.
(1) Since R⊆Q =⇒ ubα(Q)⊆ ubα(R) =⇒min(ubα(Q))⊆ ubα(R), then for each
S′ ∈ min(ubα(Q)) there is S ∈ min(ubα(R)) such that S ⊆ S′; and union preserves
inclusion.
(2) Since S ∈ ubα(R) =⇒ R⊆ S, and union preserves inclusion.
(3) From Proposition 12.4 because Aα(R) ∈ Pα.
(4) By (1) we have Aα(R) ⊆ Aα(R∪Q) and Aα(Q) ⊆ Aα(R∪Q), so Aα(R)∪
Aα(Q)⊆ Aα(R∪Q). Hence, by (2) and (3) Aα(Aα(R)∪Aα(Q))⊆ Aα(R∪Q).
Since R⊆ Aα(R) and Q⊆ Aα(Q) then, R∪Q⊆ Aα(R)∪Aα(Q), i.e.
upα(Aα(R)∪Aα(Q)⊆ upα(R∪Q), and consequently, min(upα(Aα(R)∪Aα(Q))⊆
upα(R∪Q). Hence, for each S′ ∈min(upα(Aα(R)∪Aα(Q)), there exists
S ∈min(upα(R∪Q)) such that S⊆ S′. Since union preserves inclusion, we obtained
Aα(R∪Q)⊆ Aα(Aα(R)∪Aα(Q)).
(5) By (4) of this proposition, Aα(R∪Q) = Aα(Aα(R)∪Aα(Q)). If α ∈ P∪ then
Aα(R)∪Aα(Q) ∈ Pα, so by Proposition 12.4 we have
Aα(R)∪Aα(Q) = Aα(Aα(R)∪Aα(Q)).
(6) If R has α-lower bound then, Aα(R) ∈ Pα so by Proposition 12.4 we have,
Aα(X) = Aα(Aα(X)). �

Here the difference from the classical case is that union splits into two cases and
mixing upper with lower α-approximation is conditional.

12.6 Composite Properties

Most of the interesting properties are composite properties. For example, a binary
relation can be made a partial order by applying transitive closure first and making
the outcome acyclic later, or in the opposite order (see Section 12.8 and [6]), or a
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relation can be made an equivalence relation by applying relexive, symmetric and
transitive closures in this order (see Section 12.9). In this section, we will propose a
framework for doing this kind of compositions in a systematic way.

In principle, we will try to solve the following problem. Suppose we have two
propertiesα and β, but we are really interested in the propertyα∧β. Under what cir-
cumstances do the approximations Aα(Aβ(R)), Aα(Aβ(R)), Aα(Aβ(R)) and

Aα(Aβ(R)) exist and satisfy the property α∧β? What is the relationship between
Aα(Aβ(R)) and Aβ(Aα(R)), Aα(Aβ(R)) and Aβ(Aα(R)), etc.? What about the rela-
tionship between the approximations Aα∧β(R) and Aα(Aβ(R)), and between
Aα∧β(R) and Aα(Aβ(R))?

We will restrict our attention to the conjuction operator ‘∧’ only. The other two
basic operators of propositional logic, conjuction ‘∨’, and negation ‘¬’, will not
be discussed. Adding them to this model is an open research problem. However,
most of the popular properties in Science and also in Mathematics are defined as
conjuctions of two or more basic properties.

Hence we start with the following definition.

Definition 12.10. P∧ = {α1∧ ...∧αk | k ≥ 1 and αi ∈ P for i = 1, ...,k}.
The elements of P∧ are called composite properties. �

Propositions 12.5 and 12.6 guarantee that if either Aα(R) or Aα(R) exists, it satisfies
the property α. But if R has a property β different from α, neither Aα(R) nor Aα(R)
may satisfy β. For example if R is transitive, its symmetric closure is symmetric, but
may not be transitive any longer [12].

Definition 12.11. Let α,β ∈ P∧.

1. We say that α l-preserves β iff
for every R ∈ Pβ, if R has α-lower bound then Aα(R) ∈ Pβ,

2. We say that α u-preserves β iff
if R has α-upper bound then Aα(R) ∈ Pβ. �

The result below validates the above definition.

Proposition 12.9. Let α,β ∈ P∧. Then we have:

1. if α l-preserves β, R has β-lower bound and Aβ(R) has α-lower bound, then
S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.

2. if α l-preserves β, R has β-upper bound and Aβ(R) has α-lower bound, then
S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.

3. if α u-preserves β, R has β-lower bound and Aβ(R) has α-upper bound, then

S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.

4. if α u-preserves β, R has β-upper bound and Aβ(R) has α-upper bound, then
S = Aα(Aβ(R)) ∈ Pα∩Pβ, that is, S satisfies the property α∧β.
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Proof. (1) Since R has β-lower bound, by Proposition 12.5(1) - if β ∈ P∩, or
Proposition 12.6(1) - if β ∈ P∪, then Q = Aβ(R) ∈ Pβ. Since α l-preserves β and
Q = Aβ(R) hasα-lower bound, then by Definition 12.11(1), S = Aα(Q)∈Pβ. Again,
since Q = Aβ(R) has α-lower bound, by Proposition 12.5(1) - if α ∈ P∩, or Propo-
sition 12.6(1) - if α ∈ P∪, then S = Aα(Q) ∈ Pα. Hence S = Aα(Aβ(R)) ∈ Pα∩Pβ.
(2), (3) and (4) are carried out similarly as (1). �

In general there are no specific relationships between Aα(Aβ(R)) and Aβ(Aα(R)),
or between Aα(Aβ(R)) and Aβ(Aα(R)). The approximation Aα(Aβ(R)) may exist
but Aβ(Aα(R)) may not, and similarly for upper approximations. Even if they both
exist, they may be equal, not equal, one included into another - or not, etc., some
examples will be discussed in Sections 12.8 and 12.9. However, there is a very
specific relationship between Aα(Aβ(R)) and Aα(Aβ(R)).

Proposition 12.10. Let α,β ∈ P∧, and

• α u-preserves β and β l-preserves α,
• R has α-upper bound and β-lower bound,
• Aα(R) has β-lower bound, and
• Aβ(R) has α-lower bound

then

1. Aα(Aβ(R)) ∈ Pα∩Pβ and Aβ(Aα(R)) ∈ Pα∩Pβ.

2. Aα(Aβ(R))⊆ Aβ(Aα(R)).

Proof. (1) By Proposition 12.9(2) and 12.9(3).
(2) By Proposition 12.8(2), R⊆ Aα(R), so Aβ(R)⊆ Aβ(Aα(R)), and

Aα(Aβ(R)) ⊆ Aα(Aβ(Aα(R))). By (1) of this proposition, Aβ(Aα(R)) ∈ Pα, so by

Proposition 12.4, Aα(Aβ(Aα(R))) = Aβ(Aα(R)). Therefore Aα(Aβ(R)) ⊆
Aβ(Aα(R)). �

Note that, the above result is consistent with Propositions 12.7(6) and 12.8(6). We
would like to point out that, in general, there is no inclusion-type relationship be-
tween R and Aα(Aβ(R)) and similary for R and Aβ(Aα(R).

Suppose that both A(α∧β)(R) and Aα(Aβ(R)) (or A(α∧β)(R) and Aα(Aβ(R))) ex-

ist and Aα(Aβ(R)) ∈ P(α∧β) (or Aα(Aβ(R)) ∈ P(α∧β)). Which one is a better approx-
imation of R?

Proposition 12.11. Assume that α, β belong to P∧.

1. If R has β-lower bound and (α ∧ β)-lower bound, and Aβ(R) has α-lower
bound, then: A(α∧β)(R)⊆ Aα(Aβ(R))⊆ R,

2. If R has β-upper bound and (α∧ β)-upper bound, and Aβ(R) has α-upper
bound, then: R⊆ Aα(Aβ(R))⊆ A(α∧β)(R).

3. A(α∧β)(R), A(α∧β)(R), Aα(Aβ(R)), Aα(Aβ(R)) ∈ P(α∧β) = Pα∩Pβ.
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Proof. (1) Since obviously lb(α∧β)(R)⊆ lbβ(R) then A(α∧β)(R)⊆ Aβ(R). Hence
Aα(A(α∧β)(R))⊆ Aα(Aβ(R)). Since A(α∧β)(R) ∈ Pα, then due to Proposition 12.4,
Aα(A(α∧β)(R)) = A(α∧β)(R). From Proposition 12.7(2) we have Aα(Aβ(R)) ⊆ R,
which ends the proof of (1).
(2) Since obviously ub(α∧β)(R) ⊆ ubβ(R) then min(ub(α∧β)(R)) ⊆ ubβ(R). This
means Aβ(R)⊆A(α∧β)(R). Hence Aα(Aβ(R))⊆Aα(A(α∧β)(R)). Since A(α∧β)(R)∈
Pα, then due to Proposition 12.4, Aα(A(α∧β)(R)) = A(α∧β)(R). From Proposition
12.8(2) we have R⊆ Aα(Aβ(R)), which ends the proof of (2).
(3) A(α∧β)(R) and A(α∧β)(R) belong to P(α∧β) by either Proposition 12.5 or Propo-

sition 12.6. Aα(Aβ(R)) ∈ Pα∩Pβ by Proposition 12.9(1), and Aα(Aβ(R)) ∈ Pα∩Pβ
by Proposition 12.9(4). �

Proposition 12.11 suggests an important technique for the design of approximation
schema. It in principle says that using a complex predicate as a property usually
results in a worse approximation than when the property is decomposed into simpler
ones, and then we approximate a given relation over all these simpler properties.
This means that before starting an approximation process we should think carefully
how the given property could be decomposed into the simpler (and more regular
with respect to the theory presented) ones.

12.7 Mixed Approximations

Many properties may have the form like α1∧α2∧ ...∧αk , and in general only some
sequences of αi-approximations could lead to the desired result. In this section we
will provide some framework to deal with this problem.

We adopt the following convention, we will often write A(0)
α (R) instead of Aα(R)

and A(1)
α (R) instead of Aα(R).

Definition 12.12. A sequence s = (α1, i1)(α2, i2)...(αk, ik), where k≥ 1, α j ∈ P and
i j ∈ {0,1} for j = 1, ...,k, is a proper approximation schedule of a given relation
R⊆ X, iff the following conditions are satisfied

1. αi �= αi+1, for i = 1, ...,k−1, and
2. the mixed approximation As(R), defined as

As(R) = A(i1)
α1 (A(i2)

α2 (...(A(ik)
αk (R))...))

does exist and As(R) ∈ P(α1∧...∧αk).

A conjunction π(s) = α1 ∧α2 ∧ ....∧αk is the composite property generated by
the sequence s. �
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We will also write α(0) instead of (α,0), α(1) instead of (α,1), ‘α-0 bound’ instead
of ‘α-lower bound’, ‘α-1 bound’ instead of ‘α-upper bound’, ‘0-preserves’ instead
of ‘l-preserves’, and ‘1-preserves’ instead of ‘u-preserves’.

Proposition 12.12. Let R ⊆ X and s = α(i1)
1 α(i2)

2 ....α(ik)
k be a sequence with αi �=

αi+1, for i = 1, ...,k− 1. Define subsequences of s as follows: sk = α(ik)
k , sk−1 =

α(ik−1)
k−1 sk , ..., s2 = α(i2)

2 s3, s1 = α(i1)
1 s2 = s.

The sequence s = α(i1)
1 α(i2)

2 ....α(ik)
k is a proper approximation schedule of the rela-

tion R iff the following conditions are satisfied:

1. R has αk-ik bound,
2. for each j = k−1, ...,1, α j i j-preserves π(s j+1) and As j+1(R) has α j -i j bound.

Proof. By induction on the length of s, using Propositions 12.3, 12.6 and 12.9. �

While Definition 12.12 is not constructive, Proposition 12.12 suggests a recursive
algorithm that can be used to compute As(R).

12.8 Approximations by Partial Orders

The theory proposed above can be applied to any composite property and any re-
lation. We will now apply it to the approximation of arbitrary binary relations by
partial orders. This section is a refined version of the results initially presented in [6].

We start with defining two operations on binary relations that will later be used
to construct partial order approximations.

Let X be a set and R⊆ X ×X be any relation.

Definition 12.13 ([6]). Let R⊆ X ×X .

1. The relation R•, the acyclic refinement of R, is defined as follows:

aR•b if and only if aRb∧¬(aRcycb),

where aRcycbif and only if aR+b∧ bR+a, that is, aRcycb means a and b belong
to some cycle.

2. The relation R⊂ , the inclusion property kernel of R, is defined as:

aR
⊂

b if and only if bRref ⊂ aRref ∧Rref a⊂ Rref b,

where Rref is a reflexive closure of R, and for every relation S⊆ X ×X ,
Sa = {x | xSa} and aS = {x | aSx}.

3. The relation R⊂∧• is defined as follows: aR⊂∧•bif and only if aR⊂b∧aR•b. �
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Fig. 12.1. [6] An example of a relation R, its partial order approximations R⊂∧• , R⊂ , (R•)⊂ ,
(R•)+ and (R+)•. Dotted lines in (R•)+ and (R+)• indicate the relationship that is not in R
and was added by the transitivity operation. In general, we only have R⊂∧• ⊆ R⊂ and it might
happen that R⊂∧• �= R⊂ (c.f. [6]).

The word ‘kernel’ is often used as an antonym of ‘closure’. While ‘closure’ is de-
fined as the least superset having a desired property, the word ‘kernel’ is often used
to name the greatest subset having a desired property. The ‘inclusion property ker-
nel’ is a kernel in this sense. While R• is an acyclic subset of R, it is not a kernel, as
the greatest acyclic subrelation usually does not exist. Hence, the name ‘refinement’
was proposed and used (see [6]).

Theorem 12.1 ([6]). For every relation R⊆ X ×X, we have.

1. The relations R⊂∧• , R⊂ , (R•)⊂ , (R•)+, and (R+)• are partial orders, and can be
considered as partial order approximations of R.

2. R⊂∧• ⊆ (R•)⊂ ⊆ (R•)+ ⊆ (R+)•.
3. R⊂∧• ⊆ (R⊂ )• = R⊂ ⊆ R. �

The statements like (R•)⊂ should be read as follows, find the acyclic refinement of
R first and then find the inclusion property kernel of R•.

The relations R⊂∧• , R⊂ , (R•)⊂ , (R•)+, (R+)• and Theorem 12.1 are illustrated by
an example in Figure 12.1 (from [6]). A formal definition of a partial order approx-
imation of arbitrary binary relations has been given and justified in [6] and all the
relations R⊂∧• , R⊂ , (R•)⊂ , (R•)+, (R+)• satisfy that definition. The idea of using the
relation (R+)• as a partial order approximation came from Schröder (1985) and was
initially formulated in terms of quasi-orders (see [6]). The other approximations,
to our knowledge, originated from [6] and its conference predecessor. There is no
universal inclusion-type relationship between R⊂ and (R•)⊂ ,(R•)+,(R+)•, and con-
sidering R⊂ alone as a partial order approximation of R is a little bit controversial
(see an example from Figure 1 of [6]), but justifiable in some cases (see [6]).
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Partial order approximations of arbitrary binary relations play a crucial role in
the theory of non-numerical rankings based on the pairwise comparisons paradigm
[4, 7].

Let P be the following set of properties over the relation R, P = {α1,α2,α3,α4,
α5}, where:

• α1
df
= ∀a,b∈ X . bRref ⊂ aRref ∧Rref a⊂ Rref b, that is, α1 = inclusion property,

• α2
df
= ∀a,b,c ∈ X . aRb∧bRa =⇒ aRc, that is, α2 = transitivity,

• α3
df
= ∀a,b ∈ X . ¬(aRcycb), that is α3 = acyclicity,

• α4
df
= α1∧α3,

• α5
df
= (∀a ∈ X . ¬(aRa))∧α2, that is, α5 = partial ordering.

Consider the property-driven rough set approximation space

(X ×X ,{Pα | α ∈ P}).

Directly from the definitions we may conclude that an arbitrary relation R has (see
[6], Sections 3 and 4, for details):

• α1-lower bound, but may not have α1-upper bound,
• α2-lower bound and α2-upper bound,
• α3-lower bound, but may not have α3-upper bound,
• α4-lower bound, but may not have α4-upper bound,
• α5-lower bound, but may not have α5-upper bound,

We have here P∩ = {α1,α2,α3,α4,α5}, P∪ = /0.
It turns out that all the partially ordered approximations R⊂ , R⊂∧• , (R•)⊂ , (R•)+

and (R+)• from Theorem 12.1 can be obtained naturally using the Rough Sets ap-
proach proposed in the previous sections. First, we will show that all operations
involved are either lower or upper α-approximations.

Proposition 12.13 ([6])

1. R⊂ = Aα1
(R),

2. R+ = Aα2(R),
3. R• = Aα3

(R),
4. R⊂∧• = Aα4

(R) = Aα1∧α3
(R),

Proof (1) Since R has α1-lower bound and lbα1(R) = {R⊂}, for the details of the
latter see [6], Sections 3 and 4.
(2) Since α2 ∈ P∩ and R has α2-upper bound we can use Proposition 12.6(2), which
says that Aα2(R) is the smallest transitive relation containing R, that is, R+ (c.f.
[12]).
(3) First note that R has α3-lower bound. By the definition, we have
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Aα3
(R) =

⋂{Q | Q ∈ max(lbα3(R))}. Let aRcycb. This means a = a1Ra2R . . .
Rak−1Rak = b, where i �= j⇒ ai �= a j. Let Q∈ lbα1(R). Note that, Q∈max(lbα1(R))
if and only if there is ar such that (ar−1,ar) /∈ Q but a = a0Qa1...Qar−1 and
arQ...Qak. Hence R• =

⋂{Q |Q ∈ max(lbα3(R))}= Aα3
(R).

(4) Since R has α4-lower bound, Aα4
(R) exists and can be constructed. We have

Aα4
(R)=

⋂{Q |Q∈max(lbα1∧α3(R))}=⋂{Q |Q∈max({R⊂ ∩S | S∈ lbα3(R))})}=
R⊂ ∩⋂{Q |Q∈max(lbα3(R))}. From (3) it follows

⋂{Q |Q∈max(lbα3(R))}= R•,
so R⊂∧• = R⊂ ∩R• = Aα1∧α3

(R) = Aα4
(R). �

Now we will show that compositions of appropriate approximations are allowed.

Proposition 12.14

1. α1 l-preserves α3.
2. α2 u-preserves α3.
3. α3 l-preserves α1 and α3 l-preserves α2.

Proof (1) By Theorem 12.1(1), if R is acyclic, R⊂ is acyclic as well, and clearly
R has α1-lower bound ( /0 for example).
(2) By Theorem 12.1(1), transitivity preserves acyclity and of course R has α2-
lower bound ( /0 for example).
(3) By Theorem 12.1(1), acyclic refinement preserves both transitivity and inclu-
sion property kernel, and of course R has α2-lower bound (for example /0 and X ).

�

The main result of this section can now be formulated as follows.

Proposition 12.15 ([6])

1. (R•)⊂ = Aα1
(Aα3

(R)),
2. (R⊂ )• = Aα3

(Aα1
(R)) = R⊂ , so Aα3

(Aα1
(R)) = Aα1

(R),
3. (R•)+ = Aα2(Aα3

(R)),
4. (R+)• = Aα3

(Aα2(R)).

Proof From Propositions 12.13 and 12.14, and, for (2), from Theorem 12.1(3). �

Proposition 12.15 illustrates well the basic properties of property-driven rough set
approximations of binary relations by partial orders. Below we provide some obser-
vations.

• Property α5 does not appear in Proposition 12.15 at all. It is actually a rather
useless property. No upper bound exists in a general case, and the relation
Aα5

(R) is usually not very interesting (c.f. [6]). Property α5 (being a partial
order) is just too strong to be efficiently handled as a whole. We can get much
better results when we treat the components of α5, for instance acyclicity and
transitivity, separately and then compose the results obtained.
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• We have R⊂∧• = Aα4
(R) = Aα1∧α3

(R)⊆ (R•)⊂ = Aα1
(Aα3

(R)), and
R⊂∧• = Aα1∧α3

(R)⊆Aα3
(Aα1

(R)) = (R⊂ )• = R⊂ which illustrates Proposition
12.11(1).

• In general, Aα1
(Aα3

(R)) = (R•)⊂ and Aα3
(Aα1

(R)) = (R⊂ )• = R⊂ are not
equal.

• We also have (R•)+ = Aα2(Aα3
(R))⊆Aα3

(Aα2(R)) = (R+)•. which illustrates
Proposition 12.10(2).

While the approximations of arbitrary relations by partial orders, motivated by pair-
wise comparisons non-numerical ranking [4, 7], were initially defined in terms of the
standard theory of relations, their Rough Sets versions better explain those defini-
tions. The Rough Sets versions provide formal motivation and explanation in places
where in the classical versions were just ‘gut feelings’.

12.9 Approximations by Equivalence Relations

In this section we will apply the theory of property-driven rough approximations to
the approximation of arbitrary binary relations by equivalence relations.

We will start with the classical well-known result.

Proposition 12.16 (Folklore, c.f. [2, 8, 12])
For every relation R⊆X×X, the relations ((Rref )sym)+=((Rsym)ref )+=((Rsym)+)ref

are equivalence relations, and R⊆ ((Rref )sym)+. �

However, in general, the relation ((Rref )+)sym = ((R+)ref )sym = ((R+)sym)ref may
not be an equivalence relation. The simplest example is probably X = {a,b,c}
and R={(a,c),(b,c)}. Then, ((Rref )+)sym ={(a,c),(b,c),(c,a),(c,b),(a,a),(b,b),
(c,c)}, and this relation is not transitive as we have bRc and cRa, but not bRa.

Symmetric closure is not the only method for enforcing symmetry. We can also
used the idea of ‘kernel’ for this task.

Definition 12.14. Let R⊆ X ×X , we define

R
sym

= {(a,b) | (a,b) ∈ R∧ (b,a) ∈ R}.

The relation R
sym

will be called a symmetric kernel of R. �

It turns out that the symmetric kernel preserves transitivity and can also be used as
a tool to construct an approximation by an equivalence relation.

Proposition 12.17. For every R⊆ X ×X, we have:

1. R
sym

is symmetric and R
sym ⊆ R.

2. R
sym

=
⋃{Q |Q ⊆ R and Q is symmetric }.
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3. ((Rref )
sym

)+ = ((R
sym

)ref )+ = ((R
sym

)+)ref .
4. ((Rref )+)

sym
= ((R+)ref )

sym
= ((R+)

sym
)ref .

5. ((Rref )
sym

)+ is an equivalence relation.
6. ((Rref )+)

sym
is an equivalence relation.

Proof. (1) From the definition.
(2) It suffices to show that if Q ⊆ R and Q is symmetric, then Q ⊆ R

sym
. Let

(a,b) ∈ Q, so (a,b) ∈ R. If (b,a) /∈ R then (b,a) /∈ Q, and, since Q is symmetric,
(a,b) /∈Q. Hence (b,a)∈Q. Since Q⊆ R, (b,a)∈R. But if (a,b)∈ R and (b,a)∈R,
then (a,b) ∈ R

sym
. Hence Q ⊆ R

sym
.

(3) and (4). Reflexive closure is just adding the identity relation. It does not inter-
fer with either transitive closure or symmetric kernel operation.
(5) Since transitive closure preserves symmetry (c.f. [12]).
(6) It suffices to show that symmetric kernel preserves transitivity. Define Q =
(Rref )+. Clearly Q is transitive. Suppose that Q

sym
is not. This means thare are a,b,c∈

X such that aQ
sym

b and bQ
sym

c but ¬(aQ
sym

c). By Definition 12.14, Q
sym ⊆ Q, so

aQb and bQc. The relation Q is transitive, so we also have aQc. Since ¬(aQ
sym

c),
then, from Definition 12.14, ¬(cQ

sym
a). However, as Q

sym
is symmetric, aQ

sym
b and

bQ
sym

c means that we also have bQ
sym

a and cQ
sym

b, and consequently bQa and cQb.
Since Q is transitive, then have cQa. But aQc and cQa implies that aQ

sym
c and

cQ
sym

a, contradicting ¬(aQ
sym

c). Hence Q
sym

is transitive. �

The relations (R
sym

)+, (R+)
sym

, (Rsym)+ and Proposition 12.17 are illustrated by an
example in Figure 12.2. While R⊆ (Rsym)+, there is no universal inclusion relation-
ship between R and neither (R

sym
)+ nor (R+)

sym
.

Let P be the following set of properties over the relation R, P = {β1,β2,β3,β4},
where:

• β1
df
= ∀a ∈ X . aRa, that is, β1 = reflexivity,

• β2
df
= ∀a,b ∈ X . aRb⇒ bRa, that is, β2 = symmetry,

• β3
df
= ∀a,b,c ∈ X . aRb∧bRa =⇒ aRc, that is, β3 = transitivity,

• β4
df
= β1∧β2∧β3, that is, β3 = equivalence relation.

Consider the property-driven rough set approximation space

(X ×X ,{Pα | α ∈ P}).

Directly from the definitions, we may conclude that an arbitrary relation
R⊆ X ×X has:

• β1-upper bound, but may not have β1-lower bound, β1-lower bound exists only
when R is already reflexive,

• β2-upper bound, but may not have β2-lower bound, β2-lower bound exists only
when R∩ Id �= /0,

• β3-lower bound and β3-upper bound,

janicki@mcmaster.ca



12 Property-Driven Rough Sets Approximations of Relations 353

� �

�

�

�

�

�

	
�

�
����

���


� 

�

�
���

�
a

b

d

c

R

e

g

f

� �

�

�

�

�

�

	
�

�
����

���


�������

������

�

�


�

�
���

�
�

���


�

�

a
b

d

c

R+

e

g

f

� �

�

�

�

�

�

	
�

�
����

���


� 

�

�
���

�
�

���


�

�
�

a
b

d

c

Rsym

e

g

f

� �

�

�

�

�

�


�

�
����

���


�

a
b

d

c

R
sym

e

g

f

� �

�

�

�

�

�


�

�
����

���


�

�

�


�

�
���

�
�

���


�

�

a
b

d

c

(R+)
sym

e

g

f

� �

�

�

�

�

�

	
�

�
����

���


�������

������

�

�


�

�
���

�
�

���


�

�
������

������
�

a
b

d

c

(Rsym)+

e

g

f

� �

�

�

�

�

�


�

�
����

���


�

�

�
a

b

d

c

(R
sym

)+

e

g

f

Fig. 12.2. An example of a relation R and the results of applications of transitive closure,
symmetric closure and symmetric kernel, in various orders. If R is reflexive then, the relations
(R+)

sym
, (Rsym)+ and (R

sym
)+ are equivalence relations. In this figure a •←→• b means

a •−→• b and a •←−• b .

• β4-upper bound, but may not have β4-lower bound, β4-lower bound exists only
when R is reflexive,

We have here P∩ = {β1,β2,β3,β4} and P∪ = {β1,β2}.
It turns out that all the approximations by equivalence relations from Propositions

12.16 and 12.17 can naturally be obtained using the Rough Sets approach proposed
in the previous sections. First, we will show that all operations involved are either
lower or upper α-approximations.

Proposition 12.18. Let R be a relation on X

1. Rref = Aβ1
(R).

2. Rsym = Aβ2
(R).

3. R
sym

= Aβ2
(R).

4. R+ = Aβ3
(R).

Proof. (1) Clearly R has β1-upper bound. We have ubβ1
(R) = {Q | Rref ⊆ Q},

Hence, min(ubβ1
(R)) = {Rref }.
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(2) Since β2 ∈ P∩ and R has β2-upper bound we can use Proposition 12.6(2),
which says that Aβ2

(R) is the smallest symmetric relation containing R, that is, Rsym

(c.f. [12]).
(3) Since β2 ∈ P∪ and R, has β2-lower bound we can use Proposition 12.6(1),
which says that Aβ2

(R) is the greatest symmetric relation included R. From Propo-

sition 12.17(2), it is R
sym

.
(4) Since β3 ∈ P∩ and R has β3-upper bound we can use Proposition 12.6(2),
which says that Aβ3

(R) is the smallest transitive relation containing R, that is, R+

(c.f. [12]). �

We will now show that the compositions of appropriate approximations are allowed.

Proposition 12.19

1. β2 l-preserves and u-preserves β1.
2. β3 u-preserves β1.
3. β2 l-preserves β3 but β2 does not u-preserve β3.
4. β3 u-preserves β2.

Proof (1) Clearly if R is reflexive, then R
sym

and Rsym are also reflexive. This and
Proposition 12.18(2) and (2) prove this assertion.
(2) If R is reflexive, then R+ is also reflexive. Hence, by Proposition 12.18(4) β3

u-preserves β1.
(3) If R is transitive, then by Proposition 12.17(6), R

sym
is also transitive. Hence,

by Proposition 12.18(3), β2 l-preserves β3. However, Rsym may not be transitive, as
the example after Proposition 12.16 shows. Hence by Proposition 12.18(2), β2 does
not u-preserve β3.
(4) If R is symmetric, then R+ is symmetric too. Hence, by Proposition 12.18(4),
β3 u-preserves β2. �

We can now present the main result of this section.

Proposition 12.20. Let R be a relation on X.

1. ((Rref )sym)+ = Aβ3
(Aβ2

(Aβ1
(R))).

2. ((Rref )
sym

)+ = Aβ3
(Aβ2

(Aβ1
(R))).

3. ((Rref )+)
sym

= Aβ2
(Aβ3

(Aβ1
(R))).

4. ((Rref )
sym

)+ ⊆ ((Rref )+)
sym

.

Proof. (1), (2) and (3) A simple consequence of Propositions 12.18 and 12.19.
(4) From Proposition 12.10(2) we have
Aβ3

(Aβ2
(Aβ1

(R)))⊆ Aβ2
(Aβ3

(Aβ1
(R))). �

Proposition 12.20 illustrates well the basic properties of property-driven rough set
approximations of binary relations by equivalence relations. Below, we provide
some observations.
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• Property β4 does not appear in Proposition 12.20 at all. It is actually a rather
useless property. Quite often Aβ4

(R) = /0 and Aβ4
(R) = X, which is not very

helpful. The property β4 (being an equivalence relation) is just too strong to
be efficiently handled as a whole. We can get much better results when we treat
the components of β4, reflexivity, symmetry and transitivity, separately and then
compose them together in appropriate manner.

• The assertion ((Rref )
sym

)+ ⊆ ((Rref )+)
sym

can of course be proved indepen-
dently, without using Rough sets, but Proposition 12.10(2) makes this (other-
wise not obvious) proof trivial.

• We have applied the reflexive closure first, but in fact, it can be applied as the
second or third as well (see Propositions 12.16, 12.17(3) and 12.17(4)).

Standardly, ((Rref )sym)+ is considered as the only approximation of R by an equiv-
alence relation [12]. In the Rough sets approach, it is natural to think of both upper
and lower approximations, which in this case leads to the design of ((Rref )

sym
)+ and

((Rref )+)
sym

approximations.

12.10 Final Comment

The approach presented in this chapter is called property-driven as its main purpose
is to find an approximation, either lower or upper, that satisfies a given predicate,
called a property. It could be seen as a substantial extension of the ideas presented
for relations in [16, 17] and specially recently in [6]. Both this chapter and [6] were
motivated by problems occurring when non-numerical ranking is constructed from
empirical data [4, 7]. When thinking in terms of properties, very often either only
lower or only upper approximation does make sense, and quite often neither of them
if the property is too sophisticated. This lead us to the idea of composite and mixed
approximations.

Proposition 12.11 might be the most useful result of this chapter as it indicates
how properties should be dealt with to get the best approximations.

We would like to point out that all the assumptions from Section 12.4, especially
Assumption 1, relate only to elementary properties. The requirements for composite
properties are indirect and so much weaker.

We believe the schedules can often be interpreted as a simulation of ‘property-
driven non-numerical metrics’, and that finding a good schedule means finding a
good approximation. But finding a good schedule appears to be more art than sci-
ence, as our experience with partial orders and equivalence relations indicates.

In general, for a proper schedule s, we usually have R\As(R) �= /0, As(R)\R �= /0
and R∩As(R) �= /0. The formal definition of the ‘best’ proper schedule is an open
problem. However, we believe that any rule, if proposed, could only be treated as a
guide, as the problem seems to be very domain related.

In this chapter, we deal only with single n-ary relations and the composite prop-
erties are of the form α1 ∧α2 ∧ ...∧αk. A natural extension of the presented the-
ory would be allowing composite properties with the operators of conjunction and
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negation as well. Another natural extension would be to allow properties with more
than one relational symbol, that is, an extension to the relational systems (a tuple
(X ,R1, ...,Rk), where X is a set and R1, ...,Rk are relations on X , c.f. [2]), as suggested
in [5]. For the former extension, we see some technical problems. For the latter ex-
tension, while the extension of general theory is not problematic, one just needs to
follow [5], we expect plenty of technical problems for particular applications. While
in theory any abstract data type (as defined for example in [1]), can be represented
by a relational structure, it is seldom done in practice, as much of the intution is then
lost. From the applications point of view, an extension of the ideas presented here
to (at least some of) abstract algebras [2], would be very helpful.
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