McMaster University Department of Computing and Software Dr. W. Kahl

CAS 701 — Logic and Discrete Mathematics in Software Engineering

19 September 2007 — due 26 September 2007

Exercise 1.1

Let $f : A \leftrightarrow B$ and $g : B \leftrightarrow C$ be relations, and let $h : A \leftrightarrow C$ be their composition, $h \coloneqq f ; g$.

(a) Prove that, if f and g are injective, then h is injective, but the converse is false.

(b) Prove that, if f and g are surjective, then h is surjective, but the converse is false.

Let $R : A \leftrightarrow B$ be a total relation and $S : A \rightarrow B$ a univalent relation.

(c) Prove that, if $R \subseteq S$, then R = S.

Exercise 1.2

We define a **rough set** on a carrier *A* be a pair (P, C) where *P* (for *possibly*) and *C* (for *certainly*) are both subsets of *A*, and $C \subseteq P$.

We define the relation \leq on rough sets (on *A*) as follows:

$$(P_1, C_1) \preceq (P_2, C_2)$$
 iff $P_1 \subseteq P_2$ and $C_1 \subseteq C_2$.

- (a) Show that \leq is an ordering.
- (b) Show that \leq is a lattice ordering, and provide explicit definitions for join and meet in that lattice.
- (c) Show the algebraic lattice axioms for your explicit definitions of join and meet.
- (d) Is this lattice modular? Provide a proof for your answer.
- (e) Is this lattice distributive? Provide a proof for your answer.
- (f) Is this lattice complete? Provide a proof for your answer.

Given a surjective **approximation mapping** $\delta : S \to A$ from a *space* set *S* to the *approximation* carrier *A*, we say that a pair (*P*,*C*) of subsets of *A* is an **approximation** of a set $X \subseteq S$ iff for every *a* : *A* we have:

 $a \in P$ iff there is an x : S with $\delta(x) = a$ such that $x \in X$; $a \in C$ iff for all x : S with $\delta(x) = a$ we have $x \in X$.

- (g) Show that each approximation of $X \subseteq S$ is a rough set.
- (h) Show that each set $X \subseteq S$ has exactly one approximation.

We write Δ to denote the mapping from subsets of *S* to their approximation via δ .

- (i) Is Δ an order homomorphism? If yes, provide a proof; otherwise, provide a counterexample.
- (j) Is Δ a lattice homomorphism? If yes, provide a proof; otherwise, provide a counterexample.

Note: Instead of starting from the projection mapping δ as we do here, the rough set literature starts from the equivalence relation δ ; δ ^{\vee}.

Exercise 1.3

A simple graph is a pair (N, E) consisting of a set N of *nodes* and a relation $E : N \leftrightarrow N$, which can be considered as a set of *edges*. We define the **subgraph** ordering \leq on simple graphs as follows:

 $(P_1, C_1) \leq (P_2, C_2)$ iff $P_1 \subseteq P_2$ and $C_1 \subseteq C_2$.

- (a) What are the atoms in the resulting lattice? State your answer formally and provide a proof.
- (b) What are the join-irreducible elements in the resulting lattice? State your answer formally and provide a proof.
- (c) Which subgraphs have complements? State your answer formally and provide a proof.